Sample records for video object tracking

  1. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  2. Another Way of Tracking Moving Objects Using Short Video Clips

    ERIC Educational Resources Information Center

    Vera, Francisco; Romanque, Cristian

    2009-01-01

    Physics teachers have long employed video clips to study moving objects in their classrooms and instructional labs. A number of approaches exist, both free and commercial, for tracking the coordinates of a point using video. The main characteristics of the method described in this paper are: it is simple to use; coordinates can be tracked using…

  3. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  4. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  5. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  6. Moving object detection and tracking in videos through turbulent medium

    NASA Astrophysics Data System (ADS)

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.

    2016-06-01

    This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.

  7. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  8. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  9. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  10. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  11. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  12. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  13. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  14. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  15. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  16. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  17. Detection and Tracking of Moving Objects with Real-Time Onboard Vision System

    NASA Astrophysics Data System (ADS)

    Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.

    2017-05-01

    Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.

  18. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  19. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  20. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  1. Super-resolution imaging applied to moving object tracking

    NASA Astrophysics Data System (ADS)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  2. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  3. A Benchmark Dataset and Saliency-guided Stacked Autoencoders for Video-based Salient Object Detection.

    PubMed

    Li, Jia; Xia, Changqun; Chen, Xiaowu

    2017-10-12

    Image-based salient object detection (SOD) has been extensively studied in past decades. However, video-based SOD is much less explored due to the lack of large-scale video datasets within which salient objects are unambiguously defined and annotated. Toward this end, this paper proposes a video-based SOD dataset that consists of 200 videos. In constructing the dataset, we manually annotate all objects and regions over 7,650 uniformly sampled keyframes and collect the eye-tracking data of 23 subjects who free-view all videos. From the user data, we find that salient objects in a video can be defined as objects that consistently pop-out throughout the video, and objects with such attributes can be unambiguously annotated by combining manually annotated object/region masks with eye-tracking data of multiple subjects. To the best of our knowledge, it is currently the largest dataset for videobased salient object detection. Based on this dataset, this paper proposes an unsupervised baseline approach for video-based SOD by using saliencyguided stacked autoencoders. In the proposed approach, multiple spatiotemporal saliency cues are first extracted at the pixel, superpixel and object levels. With these saliency cues, stacked autoencoders are constructed in an unsupervised manner that automatically infers a saliency score for each pixel by progressively encoding the high-dimensional saliency cues gathered from the pixel and its spatiotemporal neighbors. In experiments, the proposed unsupervised approach is compared with 31 state-of-the-art models on the proposed dataset and outperforms 30 of them, including 19 imagebased classic (unsupervised or non-deep learning) models, six image-based deep learning models, and five video-based unsupervised models. Moreover, benchmarking results show that the proposed dataset is very challenging and has the potential to boost the development of video-based SOD.

  4. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  5. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  6. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  7. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  8. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  9. Enumeration versus multiple object tracking: the case of action video game players

    PubMed Central

    Green, C.S.; Bavelier, D.

    2010-01-01

    Here, we demonstrate that action video game play enhances subjects’ ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills. PMID:16359652

  10. Enumeration versus multiple object tracking: the case of action video game players.

    PubMed

    Green, C S; Bavelier, D

    2006-08-01

    Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills.

  11. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  12. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  13. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    PubMed Central

    2010-01-01

    Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897

  14. Annotation of UAV surveillance video

    NASA Astrophysics Data System (ADS)

    Howlett, Todd; Robertson, Mark A.; Manthey, Dan; Krol, John

    2004-08-01

    Significant progress toward the development of a video annotation capability is presented in this paper. Research and development of an object tracking algorithm applicable for UAV video is described. Object tracking is necessary for attaching the annotations to the objects of interest. A methodology and format is defined for encoding video annotations using the SMPTE Key-Length-Value encoding standard. This provides the following benefits: a non-destructive annotation, compliance with existing standards, video playback in systems that are not annotation enabled and support for a real-time implementation. A model real-time video annotation system is also presented, at a high level, using the MPEG-2 Transport Stream as the transmission medium. This work was accomplished to meet the Department of Defense"s (DoD"s) need for a video annotation capability. Current practices for creating annotated products are to capture a still image frame, annotate it using an Electric Light Table application, and then pass the annotated image on as a product. That is not adequate for reporting or downstream cueing. It is too slow and there is a severe loss of information. This paper describes a capability for annotating directly on the video.

  15. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  16. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  17. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  18. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  19. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  20. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  1. Evaluation of Simulated Clinical Breast Exam Motion Patterns Using Marker-Less Video Tracking

    PubMed Central

    Azari, David P.; Pugh, Carla M.; Laufer, Shlomi; Kwan, Calvin; Chen, Chia-Hsiung; Yen, Thomas Y.; Hu, Yu Hen; Radwin, Robert G.

    2016-01-01

    Objective This study investigates using marker-less video tracking to evaluate hands-on clinical skills during simulated clinical breast examinations (CBEs). Background There are currently no standardized and widely accepted CBE screening techniques. Methods Experienced physicians attending a national conference conducted simulated CBEs presenting different pathologies with distinct tumorous lesions. Single hand exam motion was recorded and analyzed using marker-less video tracking. Four kinematic measures were developed to describe temporal (time pressing and time searching) and spatial (area covered and distance explored) patterns. Results Mean differences between time pressing, area covered, and distance explored varied across the simulated lesions. Exams were objectively categorized as either sporadic, localized, thorough, or efficient for both temporal and spatial categories based on spatiotemporal characteristics. The majority of trials were temporally or spatially thorough (78% and 91%), exhibiting proportionally greater time pressing and time searching (temporally thorough) and greater area probed with greater distance explored (spatially thorough). More efficient exams exhibited proportionally more time pressing with less time searching (temporally efficient) and greater area probed with less distance explored (spatially efficient). Just two (5.9 %) of the trials exhibited both high temporal and spatial efficiency. Conclusions Marker-less video tracking was used to discriminate different examination techniques and measure when an exam changes from general searching to specific probing. The majority of participants exhibited more thorough than efficient patterns. Application Marker-less video kinematic tracking may be useful for quantifying clinical skills for training and assessment. PMID:26546381

  2. More About The Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1996-01-01

    Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.

  3. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  4. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fast object reconstruction in block-based compressive low-light-level imaging

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Sui, Dong; Wei, Ping

    2014-11-01

    In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.

  6. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

    PubMed

    Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang

    2016-09-27

    Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.

  7. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  8. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  9. Image sequence analysis workstation for multipoint motion analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  10. Video redaction: a survey and comparison of enabling technologies

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; Shringi, Ameya; Ptucha, Raymond; Burry, Aaron; Loce, Robert

    2017-09-01

    With the prevalence of video recordings from smart phones, dash cams, body cams, and conventional surveillance cameras, privacy protection has become a major concern, especially in light of legislation such as the Freedom of Information Act. Video redaction is used to obfuscate sensitive and personally identifiable information. Today's typical workflow involves simple detection, tracking, and manual intervention. Automated methods rely on accurate detection mechanisms being paired with robust tracking methods across the video sequence to ensure the redaction of all sensitive information while minimizing spurious obfuscations. Recent studies have explored the use of convolution neural networks and recurrent neural networks for object detection and tracking. The present paper reviews the redaction problem and compares a few state-of-the-art detection, tracking, and obfuscation methods as they relate to redaction. The comparison introduces an evaluation metric that is specific to video redaction performance. The metric can be evaluated in a manner that allows balancing the penalty for false negatives and false positives according to the needs of particular application, thereby assisting in the selection of component methods and their associated hyperparameters such that the redacted video has fewer frames that require manual review.

  11. A robust approach towards unknown transformation, regional adjacency graphs, multigraph matching, segmentation video frames from unnamed aerial vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Gohatre, Umakant Bhaskar; Patil, Venkat P.

    2018-04-01

    In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.

  12. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  13. Automated track video inspection pilot project.

    DOT National Transportation Integrated Search

    2013-09-01

    This project had two main objectives. The first was to improve the safety of transit workers, specifically right-of-way safety for rail transit : workers through demonstration of advanced track inspection techniques that limit the inspectors expos...

  14. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  15. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  16. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    PubMed

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  17. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  18. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  19. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  20. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  1. Saying What You're Looking For: Linguistics Meets Video Search.

    PubMed

    Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark

    2016-10-01

    We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.

  2. Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.

    PubMed

    Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D

    2017-10-01

    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.

  3. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol.

    PubMed

    Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing

    2009-02-01

    Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.

  4. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objectsmore » recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.« less

  5. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  6. Activity-based exploitation of Full Motion Video (FMV)

    NASA Astrophysics Data System (ADS)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  7. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  8. A no-reference video quality assessment metric based on ROI

    NASA Astrophysics Data System (ADS)

    Jia, Lixiu; Zhong, Xuefei; Tu, Yan; Niu, Wenjuan

    2015-01-01

    A no reference video quality assessment metric based on the region of interest (ROI) was proposed in this paper. In the metric, objective video quality was evaluated by integrating the quality of two compressed artifacts, i.e. blurring distortion and blocking distortion. The Gaussian kernel function was used to extract the human density maps of the H.264 coding videos from the subjective eye tracking data. An objective bottom-up ROI extraction model based on magnitude discrepancy of discrete wavelet transform between two consecutive frames, center weighted color opponent model, luminance contrast model and frequency saliency model based on spectral residual was built. Then only the objective saliency maps were used to compute the objective blurring and blocking quality. The results indicate that the objective ROI extraction metric has a higher the area under the curve (AUC) value. Comparing with the conventional video quality assessment metrics which measured all the video quality frames, the metric proposed in this paper not only decreased the computation complexity, but improved the correlation between subjective mean opinion score (MOS) and objective scores.

  9. Feature Quantization and Pooling for Videos

    DTIC Science & Technology

    2014-05-01

    does not score high on this metric. The exceptions are videos where objects move - for exam- ple, the ice skaters (“ice”) and the tennis player , tracked...convincing me that my future path should include a PhD. Martial and Fernando, your energy is exceptional! Its influence can be seen in the burning...3.17 BMW enables Interpretation of similar regions across videos ( tennis ). . . . . . . 50 3.18 Common Motion Words across videos with large camera

  10. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  11. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  12. Enhancing data from commercial space flights (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  13. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  14. A visual tracking method based on deep learning without online model updating

    NASA Astrophysics Data System (ADS)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  15. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  16. A preliminary experiment definition for video landmark acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.

    1976-01-01

    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.

  17. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  18. ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.

    PubMed

    Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José

    2012-02-01

    We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A Kalman-Filter-Based Common Algorithm Approach for Object Detection in Surgery Scene to Assist Surgeon's Situation Awareness in Robot-Assisted Laparoscopic Surgery

    PubMed Central

    2018-01-01

    Although the use of the surgical robot is rapidly expanding for various medical treatments, there still exist safety issues and concerns about robot-assisted surgeries due to limited vision through a laparoscope, which may cause compromised situation awareness and surgical errors requiring rapid emergency conversion to open surgery. To assist surgeon's situation awareness and preventive emergency response, this study proposes situation information guidance through a vision-based common algorithm architecture for automatic detection and tracking of intraoperative hemorrhage and surgical instruments. The proposed common architecture comprises the location of the object of interest using feature texture, morphological information, and the tracking of the object based on Kalman filter for robustness with reduced error. The average recall and precision of the instrument detection in four prostate surgery videos were 96% and 86%, and the accuracy of the hemorrhage detection in two prostate surgery videos was 98%. Results demonstrate the robustness of the automatic intraoperative object detection and tracking which can be used to enhance the surgeon's preventive state recognition during robot-assisted surgery. PMID:29854366

  20. Near-real-time biplanar fluoroscopic tracking system for the video tumor fighter

    NASA Astrophysics Data System (ADS)

    Lawson, Michael A.; Wika, Kevin G.; Gilles, George T.; Ritter, Rogers C.

    1991-06-01

    We have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the 'Video Tumor Fighter' (VTF). The software was written for a Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally-oriented, visible- light cameras and a simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented.

  1. Enhancing cognition with video games: a multiple game training study.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  2. Track and track-side video survey technology development.

    DOT National Transportation Integrated Search

    2015-05-01

    Researchers at HiDef/Createc have completed prototype development and testing of a novel track video surveying technology : called Track and Track-Side Video Survey (TTVS). TTVS is designed to capture clear video images of the track and track side : ...

  3. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  4. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  5. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  6. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  7. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  8. A digital video tracking system

    NASA Astrophysics Data System (ADS)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  9. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  10. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  11. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  12. A Video Game Platform for Exploring Satellite and In-Situ Data Streams

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2014-12-01

    Exploring spatiotemporal patterns of moving objects are essential to Earth Observation missions, such as tracking, modeling and predicting movement of clouds, dust, plumes and harmful algal blooms. Those missions involve high-volume, multi-source, and multi-modal imagery data analysis. Analytical models intend to reveal inner structure, dynamics, and relationship of things. However, they are not necessarily intuitive to humans. Conventional scientific visualization methods are intuitive but limited by manual operations, such as area marking, measurement and alignment of multi-source data, which are expensive and time-consuming. A new development of video analytics platform has been in progress, which integrates the video game engine with satellite and in-situ data streams. The system converts Earth Observation data into articulated objects that are mapped from a high-dimensional space to a 3D space. The object tracking and augmented reality algorithms highlight the objects' features in colors, shapes and trajectories, creating visual cues for observing dynamic patterns. The head and gesture tracker enable users to navigate the data space interactively. To validate our design, we have used NASA SeaWiFS satellite images of oceanographic remote sensing data and NOAA's in-situ cell count data. Our study demonstrates that the video game system can reduce the size and cost of traditional CAVE systems in two to three orders of magnitude. This system can also be used for satellite mission planning and public outreaching.

  13. A software-based tool for video motion tracking in the surgical skills assessment landscape.

    PubMed

    Ganni, Sandeep; Botden, Sanne M B I; Chmarra, Magdalena; Goossens, Richard H M; Jakimowicz, Jack J

    2018-01-16

    The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The recorded videos were analysed using Kinovea 0.8.15 and the following parameters calculated the path length, average instrument movement and number of sudden or extreme movements. The analysed data showed that experts had significantly shorter path length (median 127 cm vs. 187 cm, p = 0.01), smaller average movements (median 0.40 cm vs. 0.32 cm, p = 0.002) and fewer sudden movements (median 14.00 vs. 21.61, p = 0.001) than their novice counterparts. The use of software-based video motion tracking of laparoscopic cholecystectomy is a simple and viable method enabling objective assessment of surgical performance. It provides clear discrimination between expert and novice performance.

  14. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  15. Are signalized intersections with cycle tracks safer? A case-control study based on automated surrogate safety analysis using video data.

    PubMed

    Zangenehpour, Sohail; Strauss, Jillian; Miranda-Moreno, Luis F; Saunier, Nicolas

    2016-01-01

    Cities in North America have been building bicycle infrastructure, in particular cycle tracks, with the intention of promoting urban cycling and improving cyclist safety. These facilities have been built and expanded but very little research has been done to investigate the safety impacts of cycle tracks, in particular at intersections, where cyclists interact with turning motor-vehicles. Some safety research has looked at injury data and most have reached the conclusion that cycle tracks have positive effects of cyclist safety. The objective of this work is to investigate the safety effects of cycle tracks at signalized intersections using a case-control study. For this purpose, a video-based method is proposed for analyzing the post-encroachment time as a surrogate measure of the severity of the interactions between cyclists and turning vehicles travelling in the same direction. Using the city of Montreal as the case study, a sample of intersections with and without cycle tracks on the right and left sides of the road were carefully selected accounting for intersection geometry and traffic volumes. More than 90h of video were collected from 23 intersections and processed to obtain cyclist and motor-vehicle trajectories and interactions. After cyclist and motor-vehicle interactions were defined, ordered logit models with random effects were developed to evaluate the safety effects of cycle tracks at intersections. Based on the extracted data from the recorded videos, it was found that intersection approaches with cycle tracks on the right are safer than intersection approaches with no cycle track. However, intersections with cycle tracks on the left compared to no cycle tracks seem to be significantly safer. Results also identify that the likelihood of a cyclist being involved in a dangerous interaction increases with increasing turning vehicle flow and decreases as the size of the cyclist group arriving at the intersection increases. The results highlight the important role of cycle tracks and the factors that increase or decrease cyclist safety. Results need however to be confirmed using longer periods of video data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enumeration versus Multiple Object Tracking: The Case of Action Video Game Players

    ERIC Educational Resources Information Center

    Green, C. S.; Bavelier, D.

    2006-01-01

    Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop…

  17. MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Sensing, Exploitation, and Execution (SEE) on a Foundation for Representation, Inference, and Learning

    DTIC Science & Technology

    2016-07-01

    reconstruction, video synchronization, multi - view tracking, action recognition, reasoning with uncertainty 16. SECURITY CLASSIFICATION OF: 17...3.4.2. Human action recognition across multi - views ......................................................................................... 44 3.4.3...68 4.2.1. Multi - view Multi -object Tracking with 3D cues

  18. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and transmitted from, the tracking vehicle. In the first proposed VGS system, the tracking vehicle would transmit a pulse of light. Upon reception of the pulse, circuitry on the tracked vehicle would activate the target lights. During the pulse, the target image acquired by the camera would be digitized. When the pulse was turned off, the target lights would be turned off and the background video image would be digitized. The second proposed system would function similarly to the first proposed system, except that the transmitted synchronizing signal would be a radio pulse instead of a light pulse. In this system, the signal receptor would be a rectifying antenna. If the signal contained sufficient power, the output of the rectifying antenna could be used to activate the target lights, making it unnecessary to include a battery or other power supply for the targets on the tracked vehicle.

  19. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  20. A Novel Video Tracking Method to Evaluate the Effect of Influenza Infection and Antiviral Treatment on Ferret Activity

    PubMed Central

    Oh, Ding Yuan; Barr, Ian G.; Hurt, Aeron C.

    2015-01-01

    Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity. PMID:25738900

  1. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    PubMed

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  2. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

  3. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking

    PubMed Central

    Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander

    2015-01-01

    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943

  4. A review of vision-based motion analysis in sport.

    PubMed

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside of elite sport performance, notably for surveillance in the military and security industry where automatic recognition of moving objects is achievable because identification of the objects is not necessary. The current challenge is to obtain appropriate video sequences that can robustly identify and label people over time, in a cluttered environment containing multiple interacting people. This problem is often compounded by the quality of video capture, the relative size and occlusion frequency of people, and also changes in illumination. Potential applications of an automated motion detection system are offered, such as: planning tactics and strategies; measuring team organisation; providing meaningful kinematic feedback; and objective measures of intervention effectiveness in team sports, which could benefit coaches, players, and sports scientists.

  5. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  6. Tracking and people counting using Particle Filter Method

    NASA Astrophysics Data System (ADS)

    Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.

    2018-03-01

    In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion

  7. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  8. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  9. Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking

    PubMed Central

    Qu, Shiru

    2016-01-01

    Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710

  10. Visual tracking using objectness-bounding box regression and correlation filters

    NASA Astrophysics Data System (ADS)

    Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy

    2018-03-01

    Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.

  11. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  12. AR.Drone: security threat analysis and exemplary attack to track persons

    NASA Astrophysics Data System (ADS)

    Samland, Fred; Fruth, Jana; Hildebrandt, Mario; Hoppe, Tobias; Dittmann, Jana

    2012-01-01

    In this article we illustrate an approach of a security threat analysis of the quadrocopter AR.Drone, a toy for augmented reality (AR) games. The technical properties of the drone can be misused for attacks, which may relate security and/or privacy aspects. Our aim is to sensitize for the possibility of misuses and the motivation for an implementation of improved security mechanisms of the quadrocopter. We focus primarily on obvious security vulnerabilities (e.g. communication over unencrypted WLAN, usage of UDP, live video streaming via unencrypted WLAN to the control device) of this quadrocopter. We could practically verify in three exemplary scenarios that this can be misused by unauthorized persons for several attacks: high-jacking of the drone, eavesdropping of the AR.Drones unprotected video streams, and the tracking of persons. Amongst other aspects, our current research focuses on the realization of the attack of tracking persons and objects with the drone. Besides the realization of attacks, we want to evaluate the potential of this particular drone for a "safe-landing" function, as well as potential security enhancements. Additionally, in future we plan to investigate an automatic tracking of persons or objects without the need of human interactions.

  13. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: Stimulus type matters.

    PubMed

    Chevallier, Coralie; Parish-Morris, Julia; McVey, Alana; Rump, Keiran M; Sasson, Noah J; Herrington, John D; Schultz, Robert T

    2015-10-01

    Autism Spectrum Disorder (ASD) is characterized by social impairments that have been related to deficits in social attention, including diminished gaze to faces. Eye-tracking studies are commonly used to examine social attention and social motivation in ASD, but they vary in sensitivity. In this study, we hypothesized that the ecological nature of the social stimuli would affect participants' social attention, with gaze behavior during more naturalistic scenes being most predictive of ASD vs. typical development. Eighty-one children with and without ASD participated in three eye-tracking tasks that differed in the ecological relevance of the social stimuli. In the "Static Visual Exploration" task, static images of objects and people were presented; in the "Dynamic Visual Exploration" task, video clips of individual faces and objects were presented side-by-side; in the "Interactive Visual Exploration" task, video clips of children playing with objects in a naturalistic context were presented. Our analyses uncovered a three-way interaction between Task, Social vs. Object Stimuli, and Diagnosis. This interaction was driven by group differences on one task only-the Interactive task. Bayesian analyses confirmed that the other two tasks were insensitive to group membership. In addition, receiver operating characteristic analyses demonstrated that, unlike the other two tasks, the Interactive task had significant classification power. The ecological relevance of social stimuli is an important factor to consider for eye-tracking studies aiming to measure social attention and motivation in ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Robust multiperson tracking from a mobile platform.

    PubMed

    Ess, Andreas; Leibe, Bastian; Schindler, Konrad; van Gool, Luc

    2009-10-01

    In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.

  15. Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera

    NASA Astrophysics Data System (ADS)

    Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.

    2017-09-01

    Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.

  16. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  17. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  18. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  19. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  20. Gaze inspired subtitle position evaluation for MOOCs videos

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Yan, Mengzhen; Liu, Sijiang; Jiang, Bo

    2017-06-01

    Online educational resources, such as MOOCs, is becoming increasingly popular, especially in higher education field. One most important media type for MOOCs is course video. Besides traditional bottom-position subtitle accompany to the videos, in recent years, researchers try to develop more advanced algorithms to generate speaker-following style subtitles. However, the effectiveness of such subtitle is still unclear. In this paper, we investigate the relationship between subtitle position and the learning effect after watching the video on tablet devices. Inspired with image based human eye tracking technique, this work combines the objective gaze estimation statistics with subjective user study to achieve a convincing conclusion - speaker-following subtitles are more suitable for online educational videos.

  1. Task-oriented situation recognition

    NASA Astrophysics Data System (ADS)

    Bauer, Alexander; Fischer, Yvonne

    2010-04-01

    From the advances in computer vision methods for the detection, tracking and recognition of objects in video streams, new opportunities for video surveillance arise: In the future, automated video surveillance systems will be able to detect critical situations early enough to enable an operator to take preventive actions, instead of using video material merely for forensic investigations. However, problems such as limited computational resources, privacy regulations and a constant change in potential threads have to be addressed by a practical automated video surveillance system. In this paper, we show how these problems can be addressed using a task-oriented approach. The system architecture of the task-oriented video surveillance system NEST and an algorithm for the detection of abnormal behavior as part of the system are presented and illustrated for the surveillance of guests inside a video-monitored building.

  2. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    PubMed

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  3. Privacy-protecting video surveillance

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Jehan; Alhazzazi, Mohanned; Datt, Mahesh; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2005-02-01

    Forms of surveillance are very quickly becoming an integral part of crime control policy, crisis management, social control theory and community consciousness. In turn, it has been used as a simple and effective solution to many of these problems. However, privacy-related concerns have been expressed over the development and deployment of this technology. Used properly, video cameras help expose wrongdoing but typically come at the cost of privacy to those not involved in any maleficent activity. This work describes the design and implementation of a real-time, privacy-protecting video surveillance infrastructure that fuses additional sensor information (e.g. Radio-frequency Identification) with video streams and an access control framework in order to make decisions about how and when to display the individuals under surveillance. This video surveillance system is a particular instance of a more general paradigm of privacy-protecting data collection. In this paper we describe in detail the video processing techniques used in order to achieve real-time tracking of users in pervasive spaces while utilizing the additional sensor data provided by various instrumented sensors. In particular, we discuss background modeling techniques, object tracking and implementation techniques that pertain to the overall development of this system.

  4. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  5. Development of a real time multiple target, multi camera tracker for civil security applications

    NASA Astrophysics Data System (ADS)

    Åkerlund, Hans

    2009-09-01

    A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.

  6. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    PubMed

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  7. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  8. Long-term object tracking combined offline with online learning

    NASA Astrophysics Data System (ADS)

    Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun

    2016-04-01

    We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.

  9. A benchmark for comparison of cell tracking algorithms

    PubMed Central

    Maška, Martin; Ulman, Vladimír; Svoboda, David; Matula, Pavel; Matula, Petr; Ederra, Cristina; Urbiola, Ainhoa; España, Tomás; Venkatesan, Subramanian; Balak, Deepak M.W.; Karas, Pavel; Bolcková, Tereza; Štreitová, Markéta; Carthel, Craig; Coraluppi, Stefano; Harder, Nathalie; Rohr, Karl; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Křížek, Pavel; Hagen, Guy M.; Pastor-Escuredo, David; Jimenez-Carretero, Daniel; Ledesma-Carbayo, Maria J.; Muñoz-Barrutia, Arrate; Meijering, Erik; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2014-01-01

    Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. Availability and implementation: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge. Contact: codesolorzano@unav.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24526711

  10. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    PubMed

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  11. A Framework of Simple Event Detection in Surveillance Video

    NASA Astrophysics Data System (ADS)

    Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao

    Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.

  12. An improved KCF tracking algorithm based on multi-feature and multi-scale

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye

    2018-02-01

    The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.

  13. ViCoMo: visual context modeling for scene understanding in video surveillance

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo M.; Javanbakhti, Solmaz; Loomans, Marijn J. H.; Hazelhoff, Lykele B.; Roubtsova, Nadejda; Zinger, Svitlana; de With, Peter H. N.

    2013-10-01

    The use of contextual information can significantly aid scene understanding of surveillance video. Just detecting people and tracking them does not provide sufficient information to detect situations that require operator attention. We propose a proof-of-concept system that uses several sources of contextual information to improve scene understanding in surveillance video. The focus is on two scenarios that represent common video surveillance situations, parking lot surveillance and crowd monitoring. In the first scenario, a pan-tilt-zoom (PTZ) camera tracking system is developed for parking lot surveillance. Context is provided by the traffic sign recognition system to localize regular and handicapped parking spot signs as well as license plates. The PTZ algorithm has the ability to selectively detect and track persons based on scene context. In the second scenario, a group analysis algorithm is introduced to detect groups of people. Contextual information is provided by traffic sign recognition and region labeling algorithms and exploited for behavior understanding. In both scenarios, decision engines are used to interpret and classify the output of the subsystems and if necessary raise operator alerts. We show that using context information enables the automated analysis of complicated scenarios that were previously not possible using conventional moving object classification techniques.

  14. Common and Innovative Visuals: A sparsity modeling framework for video.

    PubMed

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  15. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  16. Detection of unknown targets from aerial camera and extraction of simple object fingerprints for the purpose of target reacquisition

    NASA Astrophysics Data System (ADS)

    Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri

    2012-01-01

    An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.

  17. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  18. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  19. Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.

    2009-05-01

    A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.

  20. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  1. Tracking-Learning-Detection.

    PubMed

    Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri

    2012-07-01

    This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

  2. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  3. An Objective Comparison of Cell Tracking Algorithms

    PubMed Central

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E. G.; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C.; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C.; Solis-Lemus, Jose A.; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred. A.; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-01-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell tracking algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen datasets of various microscopy modalities, the challenge displays today’s state of the art in the field. We analyze the results using performance measures for segmentation and tracking that rank all participating methods. We also analyze the performance of all algorithms in terms of biological measures and their practical usability. Even though some methods score high in all technical aspects, not a single one obtains fully correct solutions. We show that methods that either take prior information into account using learning strategies or analyze cells in a global spatio-temporal video context perform better than other methods under the segmentation and tracking scenarios included in the challenge. PMID:29083403

  4. An objective comparison of cell-tracking algorithms.

    PubMed

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E G; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C; Solis-Lemus, Jose A; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred A; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-12-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

  5. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  6. Tracking cells in Life Cell Imaging videos using topological alignments.

    PubMed

    Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing

    2009-07-16

    With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.

  7. Design, implementation and accuracy of a prototype for medical augmented reality.

    PubMed

    Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg

    2005-01-01

    This paper is focused on prototype development and accuracy evaluation of a medical Augmented Reality (AR) system. The accuracy of such a system is of critical importance for medical use, and is hence considered in detail. We analyze the individual error contributions and the system accuracy of the prototype. A passive articulated arm is used to track a calibrated end-effector-mounted video camera. The live video view is superimposed in real time with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. The AR accuracy mostly depends on the accuracy of the tracking technology, the registration procedure, the camera calibration, and the image scanning device (e.g., a CT or MRI scanner). The accuracy of the Microscribe arm was measured to be 0.87 mm. After mounting the camera on the tracking device, the AR accuracy was measured to be 2.74 mm on average (standard deviation = 0.81 mm). After using data from a 2-mm-thick CT scan, the AR error remained essentially the same at an average of 2.75 mm (standard deviation = 1.19 mm). For neurosurgery, the acceptable error is approximately 2-3 mm, and our prototype approaches these accuracy requirements. The accuracy could be increased with a higher-fidelity tracking system and improved calibration and object registration. The design and methods of this prototype device can be extrapolated to current medical robotics (due to the kinematic similarity) and neuronavigation systems.

  8. The effects of video game playing on attention, memory, and executive control.

    PubMed

    Boot, Walter R; Kramer, Arthur F; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele

    2008-11-01

    Expert video game players often outperform non-players on measures of basic attention and performance. Such differences might result from exposure to video games or they might reflect other group differences between those people who do or do not play video games. Recent research has suggested a causal relationship between playing action video games and improvements in a variety of visual and attentional skills (e.g., [Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534-537]). The current research sought to replicate and extend these results by examining both expert/non-gamer differences and the effects of video game playing on tasks tapping a wider range of cognitive abilities, including attention, memory, and executive control. Non-gamers played 20+ h of an action video game, a puzzle game, or a real-time strategy game. Expert gamers and non-gamers differed on a number of basic cognitive skills: experts could track objects moving at greater speeds, better detected changes to objects stored in visual short-term memory, switched more quickly from one task to another, and mentally rotated objects more efficiently. Strikingly, extensive video game practice did not substantially enhance performance for non-gamers on most cognitive tasks, although they did improve somewhat in mental rotation performance. Our results suggest that at least some differences between video game experts and non-gamers in basic cognitive performance result either from far more extensive video game experience or from pre-existing group differences in abilities that result in a self-selection effect.

  9. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  10. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M.

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  11. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  12. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  13. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  14. Automated assessment of levodopa-induced dyskinesia: Evaluating the responsiveness of video-based features.

    PubMed

    Li, Michael H; Mestre, Tiago A; Fox, Susan H; Taati, Babak

    2018-05-05

    Technological solutions for quantifying Parkinson's disease (PD) symptoms may provide an objective means to track response to treatment, including side effects such as levodopa-induced dyskinesia. Vision-based systems are advantageous as they do not require physical contact with the body and have minimal instrumentation compared to wearables. We have developed a vision-based system to quantify a change in dyskinesia as reported by patients using 2D videos of clinical assessments during acute levodopa infusions. Nine participants with PD completed a total of 16 levodopa infusions, where they were asked to report important changes in dyskinesia (i.e. onset and remission). Participants were simultaneously rated using the UDysRS Part III (from video recordings analyzed post-hoc). Body joint positions and movements were tracked using a state-of-the-art deep learning pose estimation algorithm applied to the videos. 416 features (e.g. kinematics, frequency distribution) were extracted to characterize movements. The sensitivity and specificity of each feature to patient-reported changes in dyskinesia severity was computed and compared with physician-rated results. Features achieved similar or superior performance to the UDysRS for detecting the onset and remission of dyskinesia. The best AUC for detecting onset of dyskinesia was 0.822 and for remission of dyskinesia was 0.958, compared to 0.826 and 0.802 for the UDysRS. Video-based features may provide an objective means of quantifying the severity of levodopa-induced dyskinesia, and have responsiveness as good or better than the clinically-rated UDysRS. The results demonstrate encouraging evidence for future integration of video-based technology into clinical research and eventually clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Video-assisted segmentation of speech and audio track

    NASA Astrophysics Data System (ADS)

    Pandit, Medha; Yusoff, Yusseri; Kittler, Josef; Christmas, William J.; Chilton, E. H. S.

    1999-08-01

    Video database research is commonly concerned with the storage and retrieval of visual information invovling sequence segmentation, shot representation and video clip retrieval. In multimedia applications, video sequences are usually accompanied by a sound track. The sound track contains potential cues to aid shot segmentation such as different speakers, background music, singing and distinctive sounds. These different acoustic categories can be modeled to allow for an effective database retrieval. In this paper, we address the problem of automatic segmentation of audio track of multimedia material. This audio based segmentation can be combined with video scene shot detection in order to achieve partitioning of the multimedia material into semantically significant segments.

  16. Monocular Stereo Measurement Using High-Speed Catadioptric Tracking

    PubMed Central

    Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku

    2017-01-01

    This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483

  17. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  18. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  19. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  20. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  1. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  2. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  3. Tracking and recognition face in videos with incremental local sparse representation model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  4. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  5. Video Guidance Sensor and Time-of-Flight Rangefinder

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas; Howard, Richard; Bell, Joseph L.; Roe, Fred D.; Book, Michael L.

    2007-01-01

    A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode.

  6. Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    PubMed Central

    Lee, Young-Sook; Chung, Wan-Young

    2012-01-01

    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486

  7. Eastern Space and Missile Center (ESMC) Capability.

    DTIC Science & Technology

    1983-09-16

    Sites Fig. 4 ETR Tracking Itlescopes A unique feature at the ETR is the ability to compute a The Contraves Model 151 includes a TV camera. a widetband...main objective lens. The Contraves wideband transmitter sends video signals from either the main objective TV or the DAGE wide-angle TV system to the...Modified main objective plus the time of day to 0.1 second. to use the ESMC precise 2400 b/s acquisition data system, the Contraves computer system

  8. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  9. An Imaging And Graphics Workstation For Image Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  10. Coding visual features extracted from video sequences.

    PubMed

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  11. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  12. Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.

    PubMed

    Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert

    2014-09-01

    This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.

  13. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-06-24

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  14. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  15. Self-paced model learning for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin

    2017-01-01

    In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.

  16. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  17. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    PubMed

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  18. Video capture virtual reality as a flexible and effective rehabilitation tool

    PubMed Central

    Weiss, Patrice L; Rand, Debbie; Katz, Noomi; Kizony, Rachel

    2004-01-01

    Video capture virtual reality (VR) uses a video camera and software to track movement in a single plane without the need to place markers on specific bodily locations. The user's image is thereby embedded within a simulated environment such that it is possible to interact with animated graphics in a completely natural manner. Although this technology first became available more than 25 years ago, it is only within the past five years that it has been applied in rehabilitation. The objective of this article is to describe the way this technology works, to review its assets relative to other VR platforms, and to provide an overview of some of the major studies that have evaluated the use of video capture technologies for rehabilitation. PMID:15679949

  19. Online Object Tracking, Learning and Parsing with And-Or Graphs.

    PubMed

    Wu, Tianfu; Lu, Yang; Zhu, Song-Chun

    2017-12-01

    This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) of unknown objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. The TLP method is formulated in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM [1] to account for appearance (e.g., lighting and partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame. In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the TB-100/50/CVPR2013 benchmarks  , [3] , and the VOT benchmarks [4] -VOT 2013, 2014, 2015 and TIR2015 (thermal imagery tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep convolutional network   [5] , [6] . In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the state-of-the-art methods in VOT2014, 2015 and TIR2015.

  20. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  1. MR-Compatible Integrated Eye Tracking System

    DTIC Science & Technology

    2016-03-10

    SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video

  2. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  3. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  4. Predicting Boat-Generated Wave Heights: A Quantitative Analysis through Video Observations of Vessel Wakes

    DTIC Science & Technology

    2012-05-18

    by the AWAC. It is a surface- penetrating device that measures continuous changes in the water elevations over time at much higher sampling rates of...background subtraction, a technique based on detecting change from a background scene. Their study highlights the difficulty in object detection and tracking...movements (Zhang et al. 2009) Alternatively, another common object detection method , known as Optical Flow Analysis , may be utilized for vessel

  5. Close to real-time robust pedestrian detection and tracking

    NASA Astrophysics Data System (ADS)

    Lipetski, Y.; Loibner, G.; Sidla, O.

    2015-03-01

    Fully automated video based pedestrian detection and tracking is a challenging task with many practical and important applications. We present our work aimed to allow robust and simultaneously close to real-time tracking of pedestrians. The presented approach is stable to occlusions, lighting conditions and is generalized to be applied on arbitrary video data. The core tracking approach is built upon tracking-by-detections principle. We describe our cascaded HOG detector with successive CNN verification in detail. For the tracking and re-identification task, we did an extensive analysis of appearance based features as well as their combinations. The tracker was tested on many hours of video data for different scenarios; the results are presented and discussed.

  6. Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters

    PubMed Central

    Zhang, Sirou; Qiao, Xiaoya

    2017-01-01

    In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311

  7. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  8. Performance improvement of multi-class detection using greedy algorithm for Viola-Jones cascade selection

    NASA Astrophysics Data System (ADS)

    Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.

    2018-04-01

    This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.

  9. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    PubMed Central

    Fu, Longwen; Liu, Zuoyi

    2018-01-01

    Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612

  10. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  11. Optical tracking of embryonic vertebrates behavioural responses using automated time-resolved video-microscopy system

    NASA Astrophysics Data System (ADS)

    Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.

  12. Simultaneous Recordings of Human Microsaccades and Drifts with a Contemporary Video Eye Tracker and the Search Coil Technique

    PubMed Central

    McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana

    2015-01-01

    Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820

  13. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.

    PubMed

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J

    2015-09-22

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.

  14. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning

    PubMed Central

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P.; Zelikowsky, Moriel; Navonne, Santiago G.; Perona, Pietro; Anderson, David J.

    2015-01-01

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123

  15. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  16. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  17. Ice flood velocity calculating approach based on single view metrology

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xu, L.

    2017-02-01

    Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.

  18. Technology survey on video face tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Gomes, Herman Martins

    2014-03-01

    With the pervasiveness of monitoring cameras installed in public areas, schools, hospitals, work places and homes, video analytics technologies for interpreting these video contents are becoming increasingly relevant to people's lives. Among such technologies, human face detection and tracking (and face identification in many cases) are particularly useful in various application scenarios. While plenty of research has been conducted on face tracking and many promising approaches have been proposed, there are still significant challenges in recognizing and tracking people in videos with uncontrolled capturing conditions, largely due to pose and illumination variations, as well as occlusions and cluttered background. It is especially complex to track and identify multiple people simultaneously in real time due to the large amount of computation involved. In this paper, we present a survey on literature and software that are published or developed during recent years on the face tracking topic. The survey covers the following topics: 1) mainstream and state-of-the-art face tracking methods, including features used to model the targets and metrics used for tracking; 2) face identification and face clustering from face sequences; and 3) software packages or demonstrations that are available for algorithm development or trial. A number of publically available databases for face tracking are also introduced.

  19. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  20. Surveying drainage culvert use by carnivores: sampling design and cost-benefit analyzes of track-pads vs. video-surveillance methods.

    PubMed

    Mateus, Ana Rita A; Grilo, Clara; Santos-Reis, Margarida

    2011-10-01

    Environmental assessment studies often evaluate the effectiveness of drainage culverts as habitat linkages for species, however, the efficiency of the sampling designs and the survey methods are not known. Our main goal was to estimate the most cost-effective monitoring method for sampling carnivore culvert using track-pads and video-surveillance. We estimated the most efficient (lower costs and high detection success) interval between visits (days) when using track-pads and also determined the advantages of using each method. In 2006, we selected two highways in southern Portugal and sampled 15 culverts over two 10-day sampling periods (spring and summer). Using the track-pad method, 90% of the animal tracks were detected using a 2-day interval between visits. We recorded a higher number of crossings for most species using video-surveillance (n = 129) when compared with the track-pad technique (n = 102); however, the detection ability using the video-surveillance method varied with type of structure and species. More crossings were detected in circular culverts (1 m and 1.5 m diameter) than in box culverts (2 m to 4 m width), likely because video cameras had a reduced vision coverage area. On the other hand, carnivore species with small feet such as the common genet Genetta genetta were detected less often using the track-pad surveying method. The cost-benefit analyzes shows that the track-pad technique is the most appropriate technique, but video-surveillance allows year-round surveys as well as the behavior response analyzes of species using crossing structures.

  1. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    PubMed

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed.

  2. An algorithm to track laboratory zebrafish shoals.

    PubMed

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  4. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  5. Discriminative object tracking via sparse representation and online dictionary learning.

    PubMed

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  6. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  7. Development and human factors analysis of neuronavigation vs. augmented reality.

    PubMed

    Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg; Kalash, Mohammad; Ellis, R Darin

    2004-01-01

    This paper is focused on the human factors analysis comparing a standard neuronavigation system with an augmented reality system. We use a passive articulated arm (Microscribe, Immersion technology) to track a calibrated end-effector mounted video camera. In real time, we superimpose the live video view with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. Using the same robotic arm, we have developed a neuronavigation system able to show the end-effector of the arm on orthogonal CT scans. Both the AR and the neuronavigation systems have been shown to be within 3mm of accuracy. A human factors study was conducted in which subjects were asked to draw craniotomies and answer questions to gage their understanding of the phantom objects. The human factors study included 21 subjects and indicated that the subjects performed faster, with more accuracy and less errors using the Augmented Reality interface.

  8. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE PAGES

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    2015-09-11

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  9. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  10. Object tracking based on harmony search: comparative study

    NASA Astrophysics Data System (ADS)

    Gao, Ming-Liang; He, Xiao-Hai; Luo, Dai-Sheng; Yu, Yan-Mei

    2012-10-01

    Visual tracking can be treated as an optimization problem. A new meta-heuristic optimal algorithm, Harmony Search (HS), was first applied to perform visual tracking by Fourie et al. As the authors point out, many subjects are still required in ongoing research. Our work is a continuation of Fourie's study, with four prominent improved variations of HS, namely Improved Harmony Search (IHS), Global-best Harmony Search (GHS), Self-adaptive Harmony Search (SHS) and Differential Harmony Search (DHS) adopted into the tracking system. Their performances are tested and analyzed on multiple challenging video sequences. Experimental results show that IHS is best, with DHS ranking second among the four improved trackers when the iteration number is small. However, the differences between all four reduced gradually, along with the increasing number of iterations.

  11. A web-based video annotation system for crowdsourcing surveillance videos

    NASA Astrophysics Data System (ADS)

    Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.

    2014-03-01

    Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.

  12. The Habituation/Cross-Habituation Test Revisited: Guidance from Sniffing and Video Tracking

    PubMed Central

    Coronas-Samano, G.; Ivanova, A. V.

    2016-01-01

    The habituation/cross-habituation test (HaXha) is a spontaneous odor discrimination task that has been used for many decades to evaluate olfactory function in animals. Animals are presented repeatedly with the same odorant after which a new odorant is introduced. The time the animal explores the odor object is measured. An animal is considered to cross-habituate during the novel stimulus trial when the exploration time is higher than the prior trial and indicates the degree of olfactory patency. On the other hand, habituation across the repeated trials involves decreased exploration time and is related to memory patency, especially at long intervals. Classically exploration is timed using a stopwatch when the animal is within 2 cm of the object and aimed toward it. These criteria are intuitive, but it is unclear how they relate to olfactory exploration, that is, sniffing. We used video tracking combined with plethysmography to improve accuracy, avoid observer bias, and propose more robust criteria for exploratory scoring when sniff measures are not available. We also demonstrate that sniff rate combined with proximity is the most direct measure of odorant exploration and provide a robust and sensitive criterion. PMID:27516910

  13. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  14. Integrating motion, illumination, and structure in video sequences with applications in illumination-invariant tracking.

    PubMed

    Xu, Yilei; Roy-Chowdhury, Amit K

    2007-05-01

    In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of a moving object, at any position, illuminated by arbitrarily distant light sources, lies "close" to a bilinear subspace consisting of nine illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the 3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire human body with various combinations of motion and illumination directions. We also show results of our theory in estimating 3D motion and illumination model parameters from a video sequence.

  15. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  16. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  17. A framework for activity detection in wide-area motion imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smallermore » than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.« less

  18. Optoelectronic Sensor System for Guidance in Docking

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Book, Michael L.; Jackson, John L.

    2004-01-01

    The Video Guidance Sensor (VGS) system is an optoelectronic sensor that provides automated guidance between two vehicles. In the original intended application, the two vehicles would be spacecraft docking together, but the basic principles of design and operation of the sensor are applicable to aircraft, robots, vehicles, or other objects that may be required to be aligned for docking, assembly, resupply, or precise separation. The system includes a sensor head containing a monochrome charge-coupled- device video camera and pulsed laser diodes mounted on the tracking vehicle, and passive reflective targets on the tracked vehicle. The lasers illuminate the targets, and the resulting video images of the targets are digitized. Then, from the positions of the digitized target images and known geometric relationships among the targets, the relative position and orientation of the vehicles are computed. As described thus far, the VGS system is based on the same principles as those of the system described in "Improved Video Sensor System for Guidance in Docking" (MFS-31150), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 9a. However, the two systems differ in the details of design and operation. The VGS system is designed to operate with the target completely visible within a relative-azimuth range of +/-10.5deg and a relative-elevation range of +/-8deg. The VGS acquires and tracks the target within that field of view at any distance from 1.0 to 110 m and at any relative roll, pitch, and/or yaw angle within +/-10deg. The VGS produces sets of distance and relative-orientation data at a repetition rate of 5 Hz. The software of this system also accommodates the simultaneous operation of two sensors for redundancy

  19. Astro Academy: Principia--Using Tracker to Analyse Experiments Undertaken by Tim Peake on the International Space Station

    ERIC Educational Resources Information Center

    Mobbs, Robin

    2016-01-01

    While on the International Space Station, Tim Peake undertook and recorded video files of experiments suitable for physics teaching coordinated by the National Space Academy. This article describes how the video of these experiments was prepared for use with tracking software. The tracking files of the videos are suitable for use by teachers or…

  20. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Video-tracker trajectory analysis: who meets whom, when and where

    NASA Astrophysics Data System (ADS)

    Jäger, U.; Willersinn, D.

    2010-04-01

    Unveiling unusual or hostile events by observing manifold moving persons in a crowd is a challenging task for human operators, especially when sitting in front of monitor walls for hours. Typically, hostile events are rare. Thus, due to tiredness and negligence the operator may miss important events. In such situations, an automatic alarming system is able to support the human operator. The system incorporates a processing chain consisting of (1) people tracking, (2) event detection, (3) data retrieval, and (4) display of relevant video sequence overlaid by highlighted regions of interest. In this paper we focus on the event detection stage of the processing chain mentioned above. In our case, the selected event of interest is the encounter of people. Although being based on a rather simple trajectory analysis, this kind of event embodies great practical importance because it paves the way to answer the question "who meets whom, when and where". This, in turn, forms the basis to detect potential situations where e.g. money, weapons, drugs etc. are handed over from one person to another in crowded environments like railway stations, airports or busy streets and places etc.. The input to the trajectory analysis comes from a multi-object video-based tracking system developed at IOSB which is able to track multiple individuals within a crowd in real-time [1]. From this we calculate the inter-distances between all persons on a frame-to-frame basis. We use a sequence of simple rules based on the individuals' kinematics to detect the event mentioned above to output the frame number, the persons' IDs from the tracker and the pixel coordinates of the meeting position. Using this information, a data retrieval system may extract the corresponding part of the recorded video image sequence and finally allows for replaying the selected video clip with a highlighted region of interest to attract the operator's attention for further visual inspection.

  2. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  3. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    PubMed

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  4. An intelligent crowdsourcing system for forensic analysis of surveillance video

    NASA Astrophysics Data System (ADS)

    Tahboub, Khalid; Gadgil, Neeraj; Ribera, Javier; Delgado, Blanca; Delp, Edward J.

    2015-03-01

    Video surveillance systems are of a great value for public safety. With an exponential increase in the number of cameras, videos obtained from surveillance systems are often archived for forensic purposes. Many automatic methods have been proposed to do video analytics such as anomaly detection and human activity recognition. However, such methods face significant challenges due to object occlusions, shadows and scene illumination changes. In recent years, crowdsourcing has become an effective tool that utilizes human intelligence to perform tasks that are challenging for machines. In this paper, we present an intelligent crowdsourcing system for forensic analysis of surveillance video that includes the video recorded as a part of search and rescue missions and large-scale investigation tasks. We describe a method to enhance crowdsourcing by incorporating human detection, re-identification and tracking. At the core of our system, we use a hierarchal pyramid model to distinguish the crowd members based on their ability, experience and performance record. Our proposed system operates in an autonomous fashion and produces a final output of the crowdsourcing analysis consisting of a set of video segments detailing the events of interest as one storyline.

  5. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  6. JEFX 10 demonstration of Cooperative Hunter Killer UAS and upstream data fusion

    NASA Astrophysics Data System (ADS)

    Funk, Brian K.; Castelli, Jonathan C.; Watkins, Adam S.; McCubbin, Christopher B.; Marshall, Steven J.; Barton, Jeffrey D.; Newman, Andrew J.; Peterson, Cammy K.; DeSena, Jonathan T.; Dutrow, Daniel A.; Rodriguez, Pedro A.

    2011-05-01

    The Johns Hopkins University Applied Physics Laboratory deployed and demonstrated a prototype Cooperative Hunter Killer (CHK) Unmanned Aerial System (UAS) capability and a prototype Upstream Data Fusion (UDF) capability as participants in the Joint Expeditionary Force Experiment 2010 in April 2010. The CHK capability was deployed at the Nevada Test and Training Range to prosecute a convoy protection operational thread. It used mission-level autonomy (MLA) software applied to a networked swarm of three Raven hunter UAS and a Procerus Miracle surrogate killer UAS, all equipped with full motion video (FMV). The MLA software provides the capability for the hunter-killer swarm to autonomously search an area or road network, divide the search area, deconflict flight paths, and maintain line of sight communications with mobile ground stations. It also provides an interface for an operator to designate a threat and initiate automatic engagement of the target by the killer UAS. The UDF prototype was deployed at the Maritime Operations Center at Commander Second Fleet, Naval Station Norfolk to provide intelligence analysts and the ISR commander with a common fused track picture from the available FMV sources. It consisted of a video exploitation component that automatically detected moving objects, a multiple hypothesis tracker that fused all of the detection data to produce a common track picture, and a display and user interface component that visualized the common track picture along with appropriate geospatial information such as maps and terrain as well as target coordinates and the source video.

  7. Target tracking and 3D trajectory acquisition of cabbage butterfly (P. rapae) based on the KCF-BS algorithm.

    PubMed

    Guo, Yang-Yang; He, Dong-Jian; Liu, Cong

    2018-06-25

    Insect behaviour is an important research topic in plant protection. To study insect behaviour accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in three dimensions (3D). The goal of this research was to analyse frames extracted from videos using Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a quadrature binocular vision insect video capture system was designed and applied in this study. The KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in terms of accuracy and robustness.

  8. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  9. Hybrid markerless tracking of complex articulated motion in golf swings.

    PubMed

    Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar

    2014-04-01

    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Video fingerprinting for copy identification: from research to industry applications

    NASA Astrophysics Data System (ADS)

    Lu, Jian

    2009-02-01

    Research that began a decade ago in video copy detection has developed into a technology known as "video fingerprinting". Today, video fingerprinting is an essential and enabling tool adopted by the industry for video content identification and management in online video distribution. This paper provides a comprehensive review of video fingerprinting technology and its applications in identifying, tracking, and managing copyrighted content on the Internet. The review includes a survey on video fingerprinting algorithms and some fundamental design considerations, such as robustness, discriminability, and compactness. It also discusses fingerprint matching algorithms, including complexity analysis, and approximation and optimization for fast fingerprint matching. On the application side, it provides an overview of a number of industry-driven applications that rely on video fingerprinting. Examples are given based on real-world systems and workflows to demonstrate applications in detecting and managing copyrighted content, and in monitoring and tracking video distribution on the Internet.

  11. Video Analysis of Granular Gases in a Low-Gravity Environment

    NASA Astrophysics Data System (ADS)

    Lewallen, Erin

    2004-10-01

    Granular Agglomeration in Non-Gravitating Systems is a research project undertaken by the University of Tulsa Granular Dynamics Group. The project investigates the effects of weightlessness on granular systems by studying the dynamics of a "gas" of 1-mm diameter brass ball bearings driven at various amplitudes and frequencies in low-gravity. Models predict that particles in systems subjected to these conditions should exhibit clustering behavior due to energy loss through multiple inelastic collisions. Observation and study of clustering in our experiment could shed light on this phenomenon as a possible mechanism by which particles in space coalesce to form stable objects such as planetesimals and planetary ring systems. Our experiment has flown on NASA's KC-135 low gravity aircraft. Data analysis techniques for video data collected during these flights include modification of images using Adobe Photoshop and development of ball identification and tracking programs written in Interactive Data Language. By tracking individual balls, we aim to establish speed distributions for granular gases and thereby obtain values for granular temperature.

  12. Face landmark point tracking using LK pyramid optical flow

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Tang, Sikan; Li, Jiaquan

    2018-04-01

    LK pyramid optical flow is an effective method to implement object tracking in a video. It is used for face landmark point tracking in a video in the paper. The landmark points, i.e. outer corner of left eye, inner corner of left eye, inner corner of right eye, outer corner of right eye, tip of a nose, left corner of mouth, right corner of mouth, are considered. It is in the first frame that the landmark points are marked by hand. For subsequent frames, performance of tracking is analyzed. Two kinds of conditions are considered, i.e. single factors such as normalized case, pose variation and slowly moving, expression variation, illumination variation, occlusion, front face and rapidly moving, pose face and rapidly moving, and combination of the factors such as pose and illumination variation, pose and expression variation, pose variation and occlusion, illumination and expression variation, expression variation and occlusion. Global measures and local ones are introduced to evaluate performance of tracking under different factors or combination of the factors. The global measures contain the number of images aligned successfully, average alignment error, the number of images aligned before failure, and the local ones contain the number of images aligned successfully for components of a face, average alignment error for the components. To testify performance of tracking for face landmark points under different cases, tests are carried out for image sequences gathered by us. Results show that the LK pyramid optical flow method can implement face landmark point tracking under normalized case, expression variation, illumination variation which does not affect facial details, pose variation, and that different factors or combination of the factors have different effect on performance of alignment for different landmark points.

  13. "SmartMonitor"--an intelligent security system for the protection of individuals and small properties with the possibility of home automation.

    PubMed

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-06-05

    "SmartMonitor" is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the "SmartMonitor" system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons.

  14. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.

  15. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  16. Zebrafish tracking using convolutional neural networks.

    PubMed

    Xu, Zhiping; Cheng, Xi En

    2017-02-17

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  17. Advanced Engineering Technology for Measuring Performance.

    PubMed

    Rutherford, Drew N; D'Angelo, Anne-Lise D; Law, Katherine E; Pugh, Carla M

    2015-08-01

    The demand for competency-based assessments in surgical training is growing. Use of advanced engineering technology for clinical skills assessment allows for objective measures of hands-on performance. Clinical performance can be assessed in several ways via quantification of an assessee's hand movements (motion tracking), direction of visual attention (eye tracking), levels of stress (physiologic marker measurements), and location and pressure of palpation (force measurements). Innovations in video recording technology and qualitative analysis tools allow for a combination of observer- and technology-based assessments. Overall the goal is to create better assessments of surgical performance with robust validity evidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Zebrafish tracking using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Cheng, Xi En

    2017-02-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  19. Inter-operative trajectory registration for endoluminal video synchronization: application to biopsy site re-localization.

    PubMed

    Vemuri, Anant Suraj; Nicolau, Stephane A; Ayache, Nicholas; Marescaux, Jacques; Soler, Luc

    2013-01-01

    The screening of oesophageal adenocarcinoma involves obtaining biopsies at different regions along the oesophagus. The localization and tracking of these biopsy sites inter-operatively poses a significant challenge for providing targeted treatments. This paper presents a novel framework for providing a guided navigation to the gastro-intestinal specialist for accurate re-positioning of the endoscope at previously targeted sites. Firstly, we explain our approach for the application of electromagnetic tracking in acheiving this objective. Then, we show on three in-vivo porcine interventions that our system can provide accurate guidance information, which was qualitatively evaluated by five experts.

  20. Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Barton, R. Shane

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  1. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  2. Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  3. Application of Bayesian a Priori Distributions for Vehicles' Video Tracking Systems

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław; Okarma, Krzysztof

    Intelligent Transportation Systems (ITS) helps to improve the quality and quantity of many car traffic parameters. The use of the ITS is possible when the adequate measuring infrastructure is available. Video systems allow for its implementation with relatively low cost due to the possibility of simultaneous video recording of a few lanes of the road at a considerable distance from the camera. The process of tracking can be realized through different algorithms, the most attractive algorithms are Bayesian, because they use the a priori information derived from previous observations or known limitations. Use of this information is crucial for improving the quality of tracking especially for difficult observability conditions, which occur in the video systems under the influence of: smog, fog, rain, snow and poor lighting conditions.

  4. Model-based registration of multi-rigid-body for augmented reality

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro

    2009-02-01

    Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.

  5. Event detection for car park entries by video-surveillance

    NASA Astrophysics Data System (ADS)

    Coquin, Didier; Tailland, Johan; Cintract, Michel

    2007-10-01

    Intelligent surveillance has become an important research issue due to the high cost and low efficiency of human supervisors, and machine intelligence is required to provide a solution for automated event detection. In this paper we describe a real-time system that has been used for detecting car park entries, using an adaptive background learning algorithm and two indicators representing activity and identity to overcome the difficulty of tracking objects.

  6. DynAOI: a tool for matching eye-movement data with dynamic areas of interest in animations and movies.

    PubMed

    Papenmeier, Frank; Huff, Markus

    2010-02-01

    Analyzing gaze behavior with dynamic stimulus material is of growing importance in experimental psychology; however, there is still a lack of efficient analysis tools that are able to handle dynamically changing areas of interest. In this article, we present DynAOI, an open-source tool that allows for the definition of dynamic areas of interest. It works automatically with animations that are based on virtual three-dimensional models. When one is working with videos of real-world scenes, a three-dimensional model of the relevant content needs to be created first. The recorded eye-movement data are matched with the static and dynamic objects in the model underlying the video content, thus creating static and dynamic areas of interest. A validation study asking participants to track particular objects demonstrated that DynAOI is an efficient tool for handling dynamic areas of interest.

  7. Determining the bias and variance of a deterministic finger-tracking algorithm.

    PubMed

    Morash, Valerie S; van der Velden, Bas H M

    2016-06-01

    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates.

  8. Real-time high-level video understanding using data warehouse

    NASA Astrophysics Data System (ADS)

    Lienard, Bruno; Desurmont, Xavier; Barrie, Bertrand; Delaigle, Jean-Francois

    2006-02-01

    High-level Video content analysis such as video-surveillance is often limited by computational aspects of automatic image understanding, i.e. it requires huge computing resources for reasoning processes like categorization and huge amount of data to represent knowledge of objects, scenarios and other models. This article explains how to design and develop a "near real-time adaptive image datamart", used, as a decisional support system for vision algorithms, and then as a mass storage system. Using RDF specification as storing format of vision algorithms meta-data, we can optimise the data warehouse concepts for video analysis, add some processes able to adapt the current model and pre-process data to speed-up queries. In this way, when new data is sent from a sensor to the data warehouse for long term storage, using remote procedure call embedded in object-oriented interfaces to simplified queries, they are processed and in memory data-model is updated. After some processing, possible interpretations of this data can be returned back to the sensor. To demonstrate this new approach, we will present typical scenarios applied to this architecture such as people tracking and events detection in a multi-camera network. Finally we will show how this system becomes a high-semantic data container for external data-mining.

  9. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  10. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  11. Electronic evaluation for video commercials by impression index.

    PubMed

    Kong, Wanzeng; Zhao, Xinxin; Hu, Sanqing; Vecchiato, Giovanni; Babiloni, Fabio

    2013-12-01

    How to evaluate the effect of commercials is significantly important in neuromarketing. In this paper, we proposed an electronic way to evaluate the influence of video commercials on consumers by impression index. The impression index combines both the memorization and attention index during consumers observing video commercials by tracking the EEG activity. It extracts features from scalp EEG to evaluate the effectiveness of video commercials in terms of time-frequency-space domain. And, the general global field power was used as an impression index for evaluation of video commercial scenes as time series. Results of experiment demonstrate that the proposed approach is able to track variations of the cerebral activity related to cognitive task such as observing video commercials, and help to judge whether the scene in video commercials is impressive or not by EEG signals.

  12. New generation of 3D desktop computer interfaces

    NASA Astrophysics Data System (ADS)

    Skerjanc, Robert; Pastoor, Siegmund

    1997-05-01

    Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).

  13. Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility.

    PubMed

    Faria, Carlos; Sadowsky, Ofri; Bicho, Estela; Ferrigno, Giancarlo; Joskowicz, Leo; Shoham, Moshe; Vivanti, Refael; De Momi, Elena

    2014-11-01

    A new stereo vision system is presented to quantify brain shift and pulsatility in open-skull neurosurgeries. The system is endowed with hardware and software synchronous image acquisition with timestamp embedding in the captured images, a brain surface oriented feature detection, and a tracking subroutine robust to occlusions and outliers. A validation experiment for the stereo vision system was conducted against a gold-standard optical tracking system, Optotrak CERTUS. A static and dynamic analysis of the stereo camera tracking error was performed tracking a customized object in different positions, orientations, linear, and angular speeds. The system is able to detect an immobile object position and orientation with a maximum error of 0.5 mm and 1.6° in all depth of field, and tracking a moving object until 3 mm/s with a median error of 0.5 mm. Three stereo video acquisitions were recorded from a patient, immediately after the craniotomy. The cortical pulsatile motion was captured and is represented in the time and frequency domain. The amplitude of motion of the cloud of features' center of mass was inferior to 0.8 mm. Three distinct peaks are identified in the fast Fourier transform analysis related to the sympathovagal balance, breathing, and blood pressure with 0.03-0.05, 0.2, and 1 Hz, respectively. The stereo vision system presented is a precise and robust system to measure brain shift and pulsatility with an accuracy superior to other reported systems.

  14. Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors

    PubMed Central

    Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu

    2017-01-01

    Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112

  15. Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders

    PubMed Central

    Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini

    2008-01-01

    Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693

  16. Real time tracking by LOPF algorithm with mixture model

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  17. Video-based measurements for wireless capsule endoscope tracking

    NASA Astrophysics Data System (ADS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  18. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  19. Technical Skills Training for Veterinary Students: A Comparison of Simulators and Video for Teaching Standardized Cardiac Dissection.

    PubMed

    Allavena, Rachel E; Schaffer-White, Andrea B; Long, Hanna; Alawneh, John I

    The goal of the study was to evaluate alternative student-centered approaches that could replace autopsy sessions and live demonstration and to explore refinements in assessment procedures for standardized cardiac dissection. Simulators and videos were identified as feasible, economical, student-centered teaching methods for technical skills training in medical contexts, and a direct comparison was undertaken. A low-fidelity anatomically correct simulator approximately the size of a horse's heart with embedded dissection pathways was constructed and used with a series of laminated photographs of standardized cardiac dissection. A video of a standardized cardiac dissection of a normal horse's heart was recorded and presented with audio commentary. Students were allowed to nominate a preference for learning method, and students who indicated no preference were randomly allocated to keep group numbers even. Objective performance data from an objective structure assessment criterion and student perception data on confidence and competency from surveys showed both innovations were similarly effective. Evaluator reflections as well as usage logs to track patterns of student use were both recorded. A strong selection preference was identified for kinesthetic learners choosing the simulator and visual learners choosing the video. Students in the video cohort were better at articulating the reasons for dissection procedures and sequence due to the audio commentary, and student satisfaction was higher with the video. The major conclusion of this study was that both methods are effective tools for technical skills training, but consideration should be given to the preferred learning style of adult learners to maximize educational outcomes.

  20. Automatic acquisition of motion trajectories: tracking hockey players

    NASA Astrophysics Data System (ADS)

    Okuma, Kenji; Little, James J.; Lowe, David

    2003-12-01

    Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for research in automatic video annotation in this domain.

  1. Getting Inside the Expert's Head: An Analysis of Physician Cognitive Processes During Trauma Resuscitations.

    PubMed

    White, Matthew R; Braund, Heather; Howes, Daniel; Egan, Rylan; Gegenfurtner, Andreas; van Merrienboer, Jeroen J G; Szulewski, Adam

    2018-04-23

    Crisis resource management skills are integral to leading the resuscitation of a critically ill patient. Despite their importance, crisis resource management skills (and their associated cognitive processes) have traditionally been difficult to study in the real world. The objective of this study was to derive key cognitive processes underpinning expert performance in resuscitation medicine, using a new eye-tracking-based video capture method during clinical cases. During an 18-month period, a sample of 10 trauma resuscitations led by 4 expert trauma team leaders was analyzed. The physician team leaders were outfitted with mobile eye-tracking glasses for each case. After each resuscitation, participants were debriefed with a modified cognitive task analysis, based on a cued-recall protocol, augmented by viewing their own first-person perspective eye-tracking video from the clinical encounter. Eye-tracking technology was successfully applied as a tool to aid in the qualitative analysis of expert performance in a clinical setting. All participants stated that using these methods helped uncover previously unconscious aspects of their cognition. Overall, 5 major themes were derived from the interviews: logistic awareness, managing uncertainty, visual fixation behaviors, selective attendance to information, and anticipatory behaviors. The novel approach of cognitive task analysis augmented by eye tracking allowed the derivation of 5 unique cognitive processes underpinning expert performance in leading a resuscitation. An understanding of these cognitive processes has the potential to enhance educational methods and to create new assessment modalities of these previously tacit aspects of expertise in this field. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  2. Pixel decomposition for tracking in low resolution videos

    NASA Astrophysics Data System (ADS)

    Govinda, Vivekanand; Ralph, Jason F.; Spencer, Joseph W.; Goulermas, John Y.; Yang, Lihua; Abbas, Alaa M.

    2008-04-01

    This paper describes a novel set of algorithms that allows indoor activity to be monitored using data from very low resolution imagers and other non-intrusive sensors. The objects are not resolved but activity may still be determined. This allows the use of such technology in sensitive environments where privacy must be maintained. Spectral un-mixing algorithms from remote sensing were adapted for this environment. These algorithms allow the fractional contributions from different colours within each pixel to be estimated and this is used to assist in the detection and monitoring of small objects or sub-pixel motion.

  3. Optimizations and Applications in Head-Mounted Video-Based Eye Tracking

    ERIC Educational Resources Information Center

    Li, Feng

    2011-01-01

    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye's pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This…

  4. Automatic colonic lesion detection and tracking in endoscopic videos

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif

    2011-03-01

    The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.

  5. Meta-T: TetrisⓇ as an experimental paradigm for cognitive skills research.

    PubMed

    Lindstedt, John K; Gray, Wayne D

    2015-12-01

    Studies of human performance in complex tasks using video games are an attractive prospect, but many existing games lack a comprehensive way to modify the game and track performance beyond basic levels of analysis. Meta-T provides experimenters a tool to study behavior in a dynamic task environment with time-stressed decision-making and strong perceptual-motor elements, offering a host of experimental manipulations with a robust and detailed logging system for all user events, system events, and screen objects. Its experimenter-friendly interface provides control over detailed parameters of the task environment without need for programming expertise. Support for eye-tracking and computational cognitive modeling extend the paradigm's scope.

  6. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  7. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  8. Vision-based augmented reality system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan

    2003-04-01

    The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.

  9. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery.

    PubMed

    Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.

  10. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery

    PubMed Central

    Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness. PMID:26693249

  11. Localizing people in crosswalks with a moving handheld camera: proof of concept

    NASA Astrophysics Data System (ADS)

    Lalonde, Marc; Chapdelaine, Claude; Foucher, Samuel

    2015-02-01

    Although people or object tracking in uncontrolled environments has been acknowledged in the literature, the accurate localization of a subject with respect to a reference ground plane remains a major issue. This study describes an early prototype for the tracking and localization of pedestrians with a handheld camera. One application envisioned here is to analyze the trajectories of blind people going across long crosswalks when following different audio signals as a guide. This kind of study is generally conducted manually with an observer following a subject and logging his/her current position at regular time intervals with respect to a white grid painted on the ground. This study aims at automating the manual logging activity: with a marker attached to the subject's foot, a video of the crossing is recorded by a person following the subject, and a semi-automatic tool analyzes the video and estimates the trajectory of the marker with respect to the painted markings. Challenges include robustness to variations to lighting conditions (shadows, etc.), occlusions, and changes in camera viewpoint. Results are promising when compared to GNSS measurements.

  12. Digital Image Correlation for Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  13. Person detection, tracking and following using stereo camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  14. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.

  15. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  16. “SmartMonitor” — An Intelligent Security System for the Protection of Individuals and Small Properties with the Possibility of Home Automation

    PubMed Central

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-01-01

    “SmartMonitor” is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the “SmartMonitor” system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons. PMID:24905854

  17. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  18. Attempting to "Increase Intake from the Input": Attention and Word Learning in Children with Autism.

    PubMed

    Tenenbaum, Elena J; Amso, Dima; Righi, Giulia; Sheinkopf, Stephen J

    2017-06-01

    Previous work has demonstrated that social attention is related to early language abilities. We explored whether we can facilitate word learning among children with autism by directing attention to areas of the scene that have been demonstrated as relevant for successful word learning. We tracked eye movements to faces and objects while children watched videos of a woman teaching them new words. Test trials measured participants' recognition of these novel word-object pairings. Results indicate that for children with autism and typically developing children, pointing to the speaker's mouth while labeling a novel object impaired performance, likely because it distracted participants from the target object. In contrast, for children with autism, holding the object close to the speaker's mouth improved performance.

  19. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  20. Hidden Communicative Competence: Case Study Evidence Using Eye-Tracking and Video Analysis

    ERIC Educational Resources Information Center

    Grayson, Andrew; Emerson, Anne; Howard-Jones, Patricia; O'Neil, Lynne

    2012-01-01

    A facilitated communication (FC) user with an autism spectrum disorder produced sophisticated texts by pointing, with physical support, to letters on a letterboard while their eyes were tracked and while their pointing movements were video recorded. This FC user has virtually no independent means of expression, and is held to have no literacy…

  1. Tracking Online Data with YouTube's Insight Tracking Tool

    ERIC Educational Resources Information Center

    Kinsey, Joanne

    2012-01-01

    YouTube users have access to the powerful data collection tool, Insight. Insight allows YouTube content producers to collect data about the number of online views, geographic location of viewers by country, the demographics of the viewers, how a video was discovered, and the attention span of the viewer while watching the video. This article…

  2. Getting the Bigger Picture With Digital Surveillance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a Space Act Agreement, Diebold, Inc., acquired the exclusive rights to Glenn Research Center's patented video observation technology, originally designed to accelerate video image analysis for various ongoing and future space applications. Diebold implemented the technology into its AccuTrack digital, color video recorder, a state-of- the-art surveillance product that uses motion detection for around-the- clock monitoring. AccuTrack captures digitally signed images and transaction data in real-time. This process replaces the onerous tasks involved in operating a VCR-based surveillance system, and subsequently eliminates the need for central viewing and tape archiving locations altogether. AccuTrack can monitor an entire bank facility, including four automated teller machines, multiple teller lines, and new account areas, all from one central location.

  3. Matched filter based detection of floating mines in IR spacetime

    NASA Astrophysics Data System (ADS)

    Borghgraef, Alexander; Lapierre, Fabian; Philips, Wilfried; Acheroy, Marc

    2009-09-01

    Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared.

  4. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  5. Visual Analytics and Storytelling through Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.

    2005-10-31

    This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.

  6. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    NASA Astrophysics Data System (ADS)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  7. Assessing the performance of a motion tracking system based on optical joint transform correlation

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.

    2015-08-01

    We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.

  8. Video observations of sensitive caregiving "off the beaten track": introduction to the special issue.

    PubMed

    Mesman, Judi

    2018-03-22

    This introduction to the special issue on video observations of sensitive caregiving in different cultural communities provides a general theoretical and methodological framework for the seven empirical studies that are at the heart of this special issue. It highlights the cross-cultural potential of the sensitivity construct, the importance of research on sensitivity "off the beaten track," the advantages and potential challenges of the use of video in diverse cultural contexts, and the benefits of forming research teams that include local scholars. The paper concludes with an overview of the seven empirical studies of sensitivity in this special issue with video observations from Brazil, Indonesia, Iran, Kenya, Peru, South Africa, and Yemen.

  9. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  10. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  11. Machine vision application in animal trajectory tracking.

    PubMed

    Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter

    2016-04-01

    This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Blindness to background: an inbuilt bias for visual objects.

    PubMed

    O'Hanlon, Catherine G; Read, Jenny C A

    2017-09-01

    Sixty-eight 2- to 12-year-olds and 30 adults were shown colorful displays on a touchscreen monitor and trained to point to the location of a named color. Participants located targets near-perfectly when presented with four abutting colored patches. When presented with three colored patches on a colored background, toddlers failed to locate targets in the background. Eye tracking demonstrated that the effect was partially mediated by a tendency not to fixate the background. However, the effect was abolished when the targets were named as nouns, whilst the change to nouns had little impact on eye movement patterns. Our results imply a powerful, inbuilt tendency to attend to objects, which may slow the development of color concepts and acquisition of color words. A video abstract of this article can be viewed at: https://youtu.be/TKO1BPeAiOI. [Correction added on 27 January 2017, after first online publication: The video abstract link was added.]. © 2016 John Wiley & Sons Ltd.

  13. Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang; Thomas, Maikael A.

    We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less

  14. OpenControl: a free opensource software for video tracking and automated control of behavioral mazes.

    PubMed

    Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco

    2007-10-15

    Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.

  15. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  16. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-03-26

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  17. Occlusion handling framework for tracking in smart camera networks by per-target assistance task assignment

    NASA Astrophysics Data System (ADS)

    Bo, Nyan Bo; Deboeverie, Francis; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Occlusion is one of the most difficult challenges in the area of visual tracking. We propose an occlusion handling framework to improve the performance of local tracking in a smart camera view in a multicamera network. We formulate an extensible energy function to quantify the quality of a camera's observation of a particular target by taking into account both person-person and object-person occlusion. Using this energy function, a smart camera assesses the quality of observations over all targets being tracked. When it cannot adequately observe of a target, a smart camera estimates the quality of observation of the target from view points of other assisting cameras. If a camera with better observation of the target is found, the tracking task of the target is carried out with the assistance of that camera. In our framework, only positions of persons being tracked are exchanged between smart cameras. Thus, communication bandwidth requirement is very low. Performance evaluation of our method on challenging video sequences with frequent and severe occlusions shows that the accuracy of a baseline tracker is considerably improved. We also report the performance comparison to the state-of-the-art trackers in which our method outperforms.

  18. 2011 Tohoku tsunami runup hydrographs, ship tracks, upriver and overland flow velocities based on video, LiDAR and AIS measurements

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.

    2014-12-01

    The 2004 Indian Ocean tsunami marked the advent of survivor videos mainly from tourist areas in Thailand and basin-wide locations. Near-field video recordings on Sumatra's north tip at Banda Aceh were limited to inland areas a few kilometres off the beach (Fritz et al., 2006). The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life resulting in the costliest natural disaster in recorded history. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided numerous inundation recordings with unprecedented spatial and temporal resolution. High quality tsunami video recording sites at Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast were surveyed, eyewitnesses interviewed and precise topographic data recorded using terrestrial laser scanning (TLS). The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure (Fritz et al., 2012). Measured overland flow velocities during tsunami runup exceed 13 m/s at Yoriisohama. The runup hydrograph at Yoriisohama highlights the under sampling at the Onagawa Nuclear Power Plant (NPP) pressure gauge, which skips the shorter period second crest. Combined tsunami and runup hydrographs are derived from the videos based on water surface elevations at surface piercing objects and along slopes identified in the acquired topographic TLS data. Several hydrographs reveal a draw down to minus 10 m after a first wave crest exposing harbor bottoms at Yoriisohama and Kamaishi. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down. A multi-hour ship track for the Asia Symphony with the vessels complete tsunami drifting motion in Kamaishi Bay is recovered from the universal ship borne AIS (Automatic Identification System). Multiple hydrographs corroborate the tsunami propagation through Miyako Bay and up the Hei River. Tsunami outflow currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs as well as associated flow velocities.

  19. Tonopah Test Range - Index

    Science.gov Websites

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes

  20. Tracking Steps on Apple Watch at Different Walking Speeds.

    PubMed

    Veerabhadrappa, Praveen; Moran, Matthew Duffy; Renninger, Mitchell D; Rhudy, Matthew B; Dreisbach, Scott B; Gift, Kristin M

    2018-04-09

    QUESTION: How accurate are the step counts obtained from Apple Watch? In this validation study, video steps vs. Apple Watch steps (mean ± SD) were 2965 ± 144 vs. 2964 ± 145 steps; P < 0.001. Lin's concordance correlation coefficient showed a strong correlation (r = 0.96; P < 0.001) between the two measurements. There was a total error of 0.034% (1.07 steps) for the Apple Watch steps when compared with the manual counts obtained from video recordings. Our study is one of the initial studies to objectively validate the accuracy of the step counts obtained from Apple watch at different walking speeds. Apple Watch tested to be an extremely accurate device for measuring daily step counts for adults.

  1. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  2. ACE: Automatic Centroid Extractor for real time target tracking

    NASA Technical Reports Server (NTRS)

    Cameron, K.; Whitaker, S.; Canaris, J.

    1990-01-01

    A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.

  3. Object tracking via background subtraction for monitoring illegal activity in crossroad

    NASA Astrophysics Data System (ADS)

    Ghimire, Deepak; Jeong, Sunghwan; Park, Sang Hyun; Lee, Joonwhoan

    2016-07-01

    In the field of intelligent transportation system a great number of vision-based techniques have been proposed to prevent pedestrians from being hit by vehicles. This paper presents a system that can perform pedestrian and vehicle detection and monitoring of illegal activity in zebra crossings. In zebra crossing, according to the traffic light status, to fully avoid a collision, a driver or pedestrian should be warned earlier if they possess any illegal moves. In this research, at first, we detect the traffic light status of pedestrian and monitor the crossroad for vehicle pedestrian moves. The background subtraction based object detection and tracking is performed to detect pedestrian and vehicles in crossroads. Shadow removal, blob segmentation, trajectory analysis etc. are used to improve the object detection and classification performance. We demonstrate the experiment in several video sequences which are recorded in different time and environment such as day time and night time, sunny and raining environment. Our experimental results show that such simple and efficient technique can be used successfully as a traffic surveillance system to prevent accidents in zebra crossings.

  4. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  5. Video tracking analysis of behavioral patterns during estrus in goats

    PubMed Central

    ENDO, Natsumi; RAHAYU, Larasati Puji; ARAKAWA, Toshiya; TANAKA, Tomomi

    2015-01-01

    Here, we report a new method for measuring behavioral patterns during estrus in goats based on video tracking analysis. Data were collected from cycling goats, which were in estrus (n = 8) or not in estrus (n = 8). An observation pen (2.5 m × 2.5 m) was set up in the corner of the female paddock with one side adjacent to a male paddock. The positions and movements of goats were tracked every 0.5 sec for 10 min by using a video tracking software, and the trajectory data were used for the analysis. There were no significant differences in the durations of standing and walking or the total length of movement. However, the number of approaches to a male and the duration of staying near the male were higher in goats in estrus than in goats not in estrus. The proposed evaluation method may be suitable for detailed monitoring of behavioral changes during estrus in goats. PMID:26560676

  6. Tackling Production Techniques: Professional Studio Sound at Amateur Prices: the Power of the Portable Four-Track Audio Recorder.

    ERIC Educational Resources Information Center

    Robinson, David E.

    1997-01-01

    One solution to poor quality sound in student video projects is a four-track audio cassette recorder. This article discusses the advantages of four-track over single-track recorders and compares two student productions, one using a single-track and the other a four-track recorder. (PEN)

  7. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  8. The development of an educational video to motivate teens with asthma to be more involved during medical visits and to improve medication adherence.

    PubMed

    Sleath, Betsy; Carpenter, Delesha M; Lee, Charles; Loughlin, Ceila E; Etheridge, Dana; Rivera-Duchesne, Laura; Reuland, Daniel S; Batey, Karolyne; Duchesne, Cristina I; Garcia, Nacire; Tudor, Gail

    2016-09-01

    Our objective was to develop a series of short educational videos for teens and parents to watch before pediatric visits to motivate teens to be more actively involved during their visits. The development of the short educational videos was theoretically guided by Social Cognitive Theory. First we conducted four focus groups with teens (ages 11 to 17) with asthma, four focus groups with the teens' parents, and seven focus groups with pediatric providers from four clinics. The research team, which included two teens with asthma and their parents, analyzed the focus group transcripts for themes and then developed the initial video script. Next, a visual storyboard was reviewed by focus groups with parents and four with teens to identify areas of the script for improvement. The English videos were then produced. Focus groups with Hispanic parents and teens were then conducted for advice on how to modify the videos to make a more culturally appropriate Spanish version. Based on focus group results, teen newscasters narrate six one- to two-minute videos with different themes: (a) how to get mom off your back, (b) asthma triggers, (c) staying active with asthma, (d) tracking asthma symptoms, (e) how to talk to your doctor and (f) having confidence with asthma. Each video clip has three key messages and emphasizes how teens should discuss these messages with their providers. Teens, parents, and providers gave us excellent insight into developing videos to increase teen involvement during medical visits.

  9. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  10. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  11. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Rao, A; Wendt, R

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less

  12. Understanding Learning Style by Eye Tracking in Slide Video Learning

    ERIC Educational Resources Information Center

    Cao, Jianxia; Nishihara, Akinori

    2012-01-01

    More and more videos are now being used in e-learning context. For improving learning effect, to understand how students view the online video is important. In this research, we investigate how students deploy their attention when they learn through interactive slide video in the aim of better understanding observers' learning style. Felder and…

  13. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  14. Qualitative Video Analysis of Track-Cycling Team Pursuit in World-Class Athletes.

    PubMed

    Sigrist, Samuel; Maier, Thomas; Faiss, Raphael

    2017-11-01

    Track-cycling team pursuit (TP) is a highly technical effort involving 4 athletes completing 4 km from a standing start, often in less than 240 s. Transitions between athletes leading the team are obviously of utmost importance. To perform qualitative video analyses of transitions of world-class athletes in TP competitions. Videos captured at 100 Hz were recorded for 77 races (including 96 different athletes) in 5 international track-cycling competitions (eg, UCI World Cups and World Championships) and analyzed for the 12 best teams in the UCI Track Cycling TP Olympic ranking. During TP, 1013 transitions were evaluated individually to extract quantitative (eg, average lead time, transition number, length, duration, height in the curve) and qualitative (quality of transition start, quality of return at the back of the team, distance between third and returning rider score) variables. Determination of correlation coefficients between extracted variables and end time allowed assessment of relationships between variables and relevance of the video analyses. Overall quality of transitions and end time were significantly correlated (r = .35, P = .002). Similarly, transition distance (r = .26, P = .02) and duration (r = .35, P = .002) were positively correlated with end time. Conversely, no relationship was observed between transition number, average lead time, or height reached in the curve and end time. Video analysis of TP races highlights the importance of quality transitions between riders, with preferably swift and short relays rather than longer lead times for faster race times.

  15. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms.

    PubMed

    Maggioni, Matteo; Boracchi, Giacomo; Foi, Alessandro; Egiazarian, Karen

    2012-09-01

    We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e., self-similarity) along the fourth dimension of the group. Collaborative filtering is then realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, the collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original positions in the video. The proposed filtering procedure addresses several video processing applications, such as denoising, deblocking, and enhancement of both grayscale and color data. Experimental results prove the effectiveness of our method in terms of both subjective and objective visual quality, and show that it outperforms the state of the art in video denoising.

  16. Application aware approach to compression and transmission of H.264 encoded video for automated and centralized transportation surveillance.

    DOT National Transportation Integrated Search

    2012-10-01

    In this report we present a transportation video coding and wireless transmission system specically tailored to automated : vehicle tracking applications. By taking into account the video characteristics and the lossy nature of the wireless channe...

  17. Automatic tracking of cells for video microscopy in patch clamp experiments

    PubMed Central

    2014-01-01

    Background Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Methods Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). Results We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. Conclusion The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices. PMID:24946774

  18. Automatic tracking of cells for video microscopy in patch clamp experiments.

    PubMed

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices.

  19. SwarmSight: Real-time Tracking of Insect Antenna Movements and Proboscis Extension Reflex Using a Common Preparation and Conventional Hardware

    PubMed Central

    Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.

    2017-01-01

    Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251

  20. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  1. Digital Image Correlation for Performance Monitoring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaviccini, Miguel; Turner, Daniel Z.; Herzberg, Michael

    2016-02-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of nondestructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video (HSV) and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed tomore » track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.« less

  2. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    PubMed

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  3. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  4. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.

  5. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  6. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  7. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  8. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  9. Robust infrared target tracking using discriminative and generative approaches

    NASA Astrophysics Data System (ADS)

    Asha, C. S.; Narasimhadhan, A. V.

    2017-09-01

    The process of designing an efficient tracker for thermal infrared imagery is one of the most challenging tasks in computer vision. Although a lot of advancement has been achieved in RGB videos over the decades, textureless and colorless properties of objects in thermal imagery pose hard constraints in the design of an efficient tracker. Tracking of an object using a single feature or a technique often fails to achieve greater accuracy. Here, we propose an effective method to track an object in infrared imagery based on a combination of discriminative and generative approaches. The discriminative technique makes use of two complementary methods such as kernelized correlation filter with spatial feature and AdaBoost classifier with pixel intesity features to operate in parallel. After obtaining optimized locations through discriminative approaches, the generative technique is applied to determine the best target location using a linear search method. Unlike the baseline algorithms, the proposed method estimates the scale of the target by Lucas-Kanade homography estimation. To evaluate the proposed method, extensive experiments are conducted on 17 challenging infrared image sequences obtained from LTIR dataset and a significant improvement of mean distance precision and mean overlap precision is accomplished as compared with the existing trackers. Further, a quantitative and qualitative assessment of the proposed approach with the state-of-the-art trackers is illustrated to clearly demonstrate an overall increase in performance.

  10. Video-Camera-Based Position-Measuring System

    NASA Technical Reports Server (NTRS)

    Lane, John; Immer, Christopher; Brink, Jeffrey; Youngquist, Robert

    2005-01-01

    A prototype optoelectronic system measures the three-dimensional relative coordinates of objects of interest or of targets affixed to objects of interest in a workspace. The system includes a charge-coupled-device video camera mounted in a known position and orientation in the workspace, a frame grabber, and a personal computer running image-data-processing software. Relative to conventional optical surveying equipment, this system can be built and operated at much lower cost; however, it is less accurate. It is also much easier to operate than are conventional instrumentation systems. In addition, there is no need to establish a coordinate system through cooperative action by a team of surveyors. The system operates in real time at around 30 frames per second (limited mostly by the frame rate of the camera). It continuously tracks targets as long as they remain in the field of the camera. In this respect, it emulates more expensive, elaborate laser tracking equipment that costs of the order of 100 times as much. Unlike laser tracking equipment, this system does not pose a hazard of laser exposure. Images acquired by the camera are digitized and processed to extract all valid targets in the field of view. The three-dimensional coordinates (x, y, and z) of each target are computed from the pixel coordinates of the targets in the images to accuracy of the order of millimeters over distances of the orders of meters. The system was originally intended specifically for real-time position measurement of payload transfers from payload canisters into the payload bay of the Space Shuttle Orbiters (see Figure 1). The system may be easily adapted to other applications that involve similar coordinate-measuring requirements. Examples of such applications include manufacturing, construction, preliminary approximate land surveying, and aerial surveying. For some applications with rectangular symmetry, it is feasible and desirable to attach a target composed of black and white squares to an object of interest (see Figure 2). For other situations, where circular symmetry is more desirable, circular targets also can be created. Such a target can readily be generated and modified by use of commercially available software and printed by use of a standard office printer. All three relative coordinates (x, y, and z) of each target can be determined by processing the video image of the target. Because of the unique design of corresponding image-processing filters and targets, the vision-based position- measurement system is extremely robust and tolerant of widely varying fields of view, lighting conditions, and varying background imagery.

  11. An animal tracking system for behavior analysis using radio frequency identification.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Mainetti, Luca; Patrono, Luigi; Pieretti, Stefano; Secco, Andrea; Sergi, Ilaria

    2014-09-01

    Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth. They provide an overview of the system's hardware and software components as well as describe their technique for surgically implanting passive RFID tags in mice. Finally, the authors present the findings of two validation studies to compare the accuracy of the RFID system versus commonly used approaches for evaluating the locomotor activity and object exploration of mice.

  12. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  13. Optical Flow Analysis and Kalman Filter Tracking in Video Surveillance Algorithms

    DTIC Science & Technology

    2007-06-01

    Grover Brown and Patrick Y.C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third edition, John Wiley & Sons, New York, 1997...noise. Brown and Hwang [6] achieve this improvement by linearly blending the prior estimate, 1kx ∧ − , with the noisy measurement, kz , in the equation...AND KALMAN FILTER TRACKING IN VIDEO SURVEILLANCE ALGORITHMS by David A. Semko June 2007 Thesis Advisor: Monique P. Fargues Second

  14. Transforming War Fighting through the Use of Service Based Architecture (SBA) Technology

    DTIC Science & Technology

    2006-05-04

    near-real-time video & telemetry to users on network using standard web-based protocols – Provides web-based access to archived video files MTI...Target Tracks Service Capabilities – Disseminates near-real-time MTI and Target Tracks to users on network based on consumer specified geographic...filter IBS SIGINT Service Capabilities – Disseminates near-real-time IBS SIGINT data to users on network based on consumer specified geographic filter

  15. SRNL Tagging and Tracking Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  16. Linear array of photodiodes to track a human speaker for video recording

    NASA Astrophysics Data System (ADS)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  17. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  18. Tracking flow of leukocytes in blood for drug analysis

    NASA Astrophysics Data System (ADS)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  19. An improved multi-domain convolution tracking algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  20. Pyroclast Tracking Velocimetry: A particle tracking velocimetry-based tool for the study of Strombolian explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca

    2014-07-01

    Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.

  1. Oculomotor abnormalities in children with Niemann-Pick type C.

    PubMed

    Blundell, James; Frisson, Steven; Chakrapani, Anupam; Gissen, Paul; Hendriksz, Chris; Vijay, Suresh; Olson, Andrew

    2018-02-01

    Niemann-Pick type C (NP-C) is a rare recessive disorder associated with progressive supranuclear gaze palsy. Degeneration occurs initially for vertical saccades and later for horizontal saccades. There are studies of oculomotor degeneration in adult NP-C patients [1, 2] but no comparable studies in children. We used high-resolution video-based eye tracking to record monocular vertical and horizontal eye movements in 2 neurological NP-C patients (children with clinically observable oculomotor abnormalities) and 3 pre-neurological NP-C patients (children without clinically observable oculomotor abnormalities). Saccade onset latency, saccade peak velocity and saccade curvature were compared to healthy controls (N=77). NP-C patients had selective impairments of vertical saccade peak velocity and vertical saccade curvature, with slower peak velocities and greater curvature. Changes were more pronounced in neurological than pre-neurological patients, showing that these measures are sensitive to disease progress, but abnormal curvature and slowed downward saccades were present in both groups, showing that eye-tracking can register disease-related changes before these are evident in a clinical exam. Both slowing, curvature and the detailed characteristics of the curvature we observed are predicted by the detailed characteristics of RIMLF population codes. Onset latencies were not different from healthy controls. High-resolution video-based eye tracking is a promising sensitive and objective method to measure NP-C disease severity and neurological onset. It may also help evaluate responses to therapeutic interventions. Copyright © 2017. Published by Elsevier Inc.

  2. Highway-railway at-grade crossing structures : long term settlement measurements and assessments.

    DOT National Transportation Integrated Search

    2016-03-22

    A common maintenance technique to correct track geometry at bridge transitions is hand tamping. The first section presents a non-invasive track monitoring system involving high-speed video cameras that evaluates the change in track behavior before an...

  3. SRNL Tagging and Tracking Video

    ScienceCinema

    None

    2018-01-16

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  4. Multiscale Architectures and Parallel Algorithms for Video Object Tracking

    DTIC Science & Technology

    2011-10-01

    0 4 : if FIFO1 contains nDt frames then 5: Partition data into blocks. 6: Put SPE control block information...char buf 4 = FF; vec to r unsigned char buf 5 = FF; vec to r unsigned char buf 6 = FF; vec to r unsigned char buf 7 = FF; for ( j = 0 ; j < s i z e ; j...Public Release; Distribution Unlimited 8 7 u 6 ill :J (;) 5 E -;::; c 0 4 ~ u Q) X 3 Q) 8 7 6 u Q) Ul 5 :J (;) E :;::; 4 c 0

  5. Virtual imaging in sports broadcasting: an overview

    NASA Astrophysics Data System (ADS)

    Tan, Yi

    2003-04-01

    Virtual imaging technology is being used to augment television broadcasts -- virtual objects are seamlessly inserted into the video stream to appear as real entities to TV audiences. Virtual advertisements, the main application of this technology, are providing opportunities to improve the commercial value of television programming while enhancing the contents and the entertainment aspect of these programs. State-of-the-art technologies, such as image recognition, motion tracking and chroma keying, are central to a virtual imaging system. This paper reviews the general framework, the key techniques, and the sports broadcasting applications of virtual imaging technology.

  6. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  7. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  8. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation.

    PubMed

    Lockery, Daniel; Peters, James F; Ramanna, Sheela; Shay, Barbara L; Szturm, Tony

    2011-05-01

    This paper presents a telerehabilitation system that encompasses a webcam and store-and-feedforward adaptive gaming system for tracking finger-hand movement of patients during local and remote therapy sessions. Gaming-event signals and webcam images are recorded as part of a gaming session and then forwarded to an online healthcare content management system (CMS) that separates incoming information into individual patient records. The CMS makes it possible for clinicians to log in remotely and review gathered data using online reports that are provided to help with signal and image analysis using various numerical measures and plotting functions. Signals from a 6 degree-of-freedom magnetic motion tracking system provide a basis for video-game sprite control. The MMT provides a path for motion signals between common objects manipulated by a patient and a computer game. During a therapy session, a webcam that captures images of the hand together with a number of performance metrics provides insight into the quality, efficiency, and skill of a patient.

  9. Advances of FishNet towards a fully automatic monitoring system for fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2017-04-01

    Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/

  10. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  11. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  12. Automated tracking of whiskers in videos of head fixed rodents.

    PubMed

    Clack, Nathan G; O'Connor, Daniel H; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception.

  13. Automated Tracking of Whiskers in Videos of Head Fixed Rodents

    PubMed Central

    Clack, Nathan G.; O'Connor, Daniel H.; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W.

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception. PMID:22792058

  14. Track-based event recognition in a realistic crowded environment

    NASA Astrophysics Data System (ADS)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  15. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  16. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  17. Congestion detection of pedestrians using the velocity entropy: A case study of Love Parade 2010 disaster

    NASA Astrophysics Data System (ADS)

    Huang, Lida; Chen, Tao; Wang, Yan; Yuan, Hongyong

    2015-12-01

    Gatherings of large human crowds often result in crowd disasters such as the Love Parade Disaster in Duisburg, Germany on July 24, 2010. To avoid these tragedies, video surveillance and early warning are becoming more and more significant. In this paper, the velocity entropy is first defined as the criterion for congestion detection, which represents the motion magnitude distribution and the motion direction distribution simultaneously. Then the detection method is verified by the simulation data based on AnyLogic software. To test the generalization performance of this method, video recordings of a real-world case, the Love Parade disaster, are also used in the experiments. The velocity histograms of the foreground object in the videos are extracted by the Gaussian Mixture Model (GMM) and optical flow computation. With a sequential change-point detection algorithm, the velocity entropy can be applied to detect congestions of the Love Parade festival. It turned out that without recognizing and tracking individual pedestrian, our method can detect abnormal crowd behaviors in real-time.

  18. WISESight : a multispectral smart video-track intrusion monitor.

    DOT National Transportation Integrated Search

    2015-05-01

    International Electronic Machines : Corporation (IEM) developed, tested, and : validated a unique smart video-based : intrusion monitoring system for use at : highway-rail grade crossings. The system : used both thermal infrared (IR) and : visible/ne...

  19. Proof-of-concept of a laser mounted endoscope for touch-less navigated procedures

    PubMed Central

    Kral, Florian; Gueler, Oezguer; Perwoeg, Martina; Bardosi, Zoltan; Puschban, Elisabeth J; Riechelmann, Herbert; Freysinger, Wolfgang

    2013-01-01

    Background and Objectives During navigated procedures a tracked pointing device is used to define target structures in the patient to visualize its position in a registered radiologic data set. When working with endoscopes in minimal invasive procedures, the target region is often difficult to reach and changing instruments is disturbing in a challenging, crucial moment of the procedure. We developed a device for touch less navigation during navigated endoscopic procedures. Materials and Methods A laser beam is delivered to the tip of a tracked endoscope angled to its axis. Thereby the position of the laser spot in the video-endoscopic images changes according to the distance between the tip of the endoscope and the target structure. A mathematical function is defined by a calibration process and is used to calculate the distance between the tip of the endoscope and the target. The tracked tip of the endoscope and the calculated distance is used to visualize the laser spot in the registered radiologic data set. Results In comparison to the tracked instrument, the touch less target definition with the laser spot yielded in an over and above error of 0.12 mm. The overall application error in this experimental setup with a plastic head was 0.61 ± 0.97 mm (95% CI −1.3 to +2.5 mm). Conclusion Integrating a laser in an endoscope and then calculating the distance to a target structure by image processing of the video endoscopic images is accurate. This technology eliminates the need for tracked probes intraoperatively and therefore allows navigation to be integrated seamlessly in clinical routine. However, it is an additional chain link in the sequence of computer-assisted surgery thus influencing the application error. Lasers Surg. Med. 45:377–382, 2013. © 2013 Wiley Periodicals, Inc. PMID:23737122

  20. 2011 Tohoku tsunami video and TLS based measurements: hydrographs, currents, inundation flow velocities, and ship tracks

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-12-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s per second were measured in Kesennuma Bay making navigation impossible. Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to -10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities.;

  1. Video Image Tracking Engine

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Bryan, ThomasC. (Inventor); Book, Michael L. (Inventor)

    2004-01-01

    A method and system for processing an image including capturing an image and storing the image as image pixel data. Each image pixel datum is stored in a respective memory location having a corresponding address. Threshold pixel data is selected from the image pixel data and linear spot segments are identified from the threshold pixel data selected.. Ihe positions of only a first pixel and a last pixel for each linear segment are saved. Movement of one or more objects are tracked by comparing the positions of fust and last pixels of a linear segment present in the captured image with respective first and last pixel positions in subsequent captured images. Alternatively, additional data for each linear data segment is saved such as sum of pixels and the weighted sum of pixels i.e., each threshold pixel value is multiplied by that pixel's x-location).

  2. Learning patterns of life from intelligence analyst chat

    NASA Astrophysics Data System (ADS)

    Schneider, Michael K.; Alford, Mark; Babko-Malaya, Olga; Blasch, Erik; Chen, Lingji; Crespi, Valentino; HandUber, Jason; Haney, Phil; Nagy, Jim; Richman, Mike; Von Pless, Gregory; Zhu, Howie; Rhodes, Bradley J.

    2016-05-01

    Our Multi-INT Data Association Tool (MIDAT) learns patterns of life (POL) of a geographical area from video analyst observations called out in textual reporting. Typical approaches to learning POLs from video make use of computer vision algorithms to extract locations in space and time of various activities. Such approaches are subject to the detection and tracking performance of the video processing algorithms. Numerous examples of human analysts monitoring live video streams annotating or "calling out" relevant entities and activities exist, such as security analysis, crime-scene forensics, news reports, and sports commentary. This user description typically corresponds with textual capture, such as chat. Although the purpose of these text products is primarily to describe events as they happen, organizations typically archive the reports for extended periods. This archive provides a basis to build POLs. Such POLs are useful for diagnosis to assess activities in an area based on historical context, and for consumers of products, who gain an understanding of historical patterns. MIDAT combines natural language processing, multi-hypothesis tracking, and Multi-INT Activity Pattern Learning and Exploitation (MAPLE) technologies in an end-to-end lab prototype that processes textual products produced by video analysts, infers POLs, and highlights anomalies relative to those POLs with links to "tracks" of related activities performed by the same entity. MIDAT technologies perform well, achieving, for example, a 90% F1-value on extracting activities from the textual reports.

  3. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  4. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  5. Facilitating Social Initiations of Preschoolers with Autism Spectrum Disorders Using Video Self-Modeling

    ERIC Educational Resources Information Center

    Buggey, Tom; Hoomes, Grace; Sherberger, Mary Elizabeth; Williams, Sarah

    2011-01-01

    Video self-modeling (VSM) has accumulated a relatively impressive track record in the research literature across behaviors, ages, and types of disabilities. Using only positive imagery, VSM gives individuals the opportunity to view themselves performing a task just beyond their present functioning level via creative editing of videos using VCRs or…

  6. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  7. Microgravity

    NASA Image and Video Library

    2003-01-22

    One concern about human adaptation to space is how returning from the microgravity of orbit to Earth can affect an astronaut's ability to fly safely. There are monitors and infrared video cameras to measure eye movements without having to affect the crew member. A computer screen provides moving images which the eye tracks while the brain determines what it is seeing. A video camera records movement of the subject's eyes. Researchers can then correlate perception and response. Test subjects perceive different images when a moving object is covered by a mask that is visible or invisible (above). Early results challenge the accepted theory that smooth pursuit -- the fluid eye movement that humans and primates have -- does not involve the higher brain. NASA results show that: Eye movement can predict human perceptual performance, smooth pursuit and saccadic (quick or ballistic) movement share some signal pathways, and common factors can make both smooth pursuit and visual perception produce errors in motor responses.

  8. A protocol for evaluating video trackers under real-world conditions.

    PubMed

    Nawaz, Tahir; Cavallaro, Andrea

    2013-04-01

    The absence of a commonly adopted performance evaluation framework is hampering advances in the design of effective video trackers. In this paper, we present a single-score evaluation measure and a protocol to objectively compare trackers. The proposed measure evaluates tracking accuracy and failure, and combines them for both summative and formative performance assessment. The proposed protocol is composed of a set of trials that evaluate the robustness of trackers on a range of test scenarios representing several real-world conditions. The protocol is validated on a set of sequences with a diversity of targets (head, vehicle and person) and challenges (occlusions, background clutter, pose changes and scale changes) using six state-of-the-art trackers, highlighting their strengths and weaknesses on more than 187000 frames. The software implementing the protocol and the evaluation results are made available online and new results can be included, thus facilitating the comparison of trackers.

  9. Robust vehicle detection in different weather conditions: Using MIPM

    PubMed Central

    Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664

  10. Understanding Visible Perception

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One concern about human adaptation to space is how returning from the microgravity of orbit to Earth can affect an astronaut's ability to fly safely. There are monitors and infrared video cameras to measure eye movements without having to affect the crew member. A computer screen provides moving images which the eye tracks while the brain determines what it is seeing. A video camera records movement of the subject's eyes. Researchers can then correlate perception and response. Test subjects perceive different images when a moving object is covered by a mask that is visible or invisible (above). Early results challenge the accepted theory that smooth pursuit -- the fluid eye movement that humans and primates have -- does not involve the higher brain. NASA results show that: Eye movement can predict human perceptual performance, smooth pursuit and saccadic (quick or ballistic) movement share some signal pathways, and common factors can make both smooth pursuit and visual perception produce errors in motor responses.

  11. Confocal microscopic observation of structural changes in glass-ionomer cements and tooth interfaces.

    PubMed

    Watson, T F; Pagliari, D; Sidhu, S K; Naasan, M A

    1998-03-01

    This study aimed to develop techniques to allow dynamic imaging of a cavity before, during and after placement of glass-ionomer restorative materials. Cavities were cut in recently extracted third molars and the teeth longitudinally sectioned. Each hemisected tooth surface was placed in green modelling compound at 90 to the optical axis of the microscope. The cavity surface was imaged using a video rate confocal microscope in conjunction with an internally focusable microscope objective. The sample on the stage was pushed up to the objective lens which 'clamped' the cover glass onto it. Water, glycerine or oil was placed below the coverglass, with oil above. Internal tooth structures were imaged by changing the internal focus of the objective. The restorative material was then placed into the cavity. Video images were stored either onto video tape or digitally, using a frame grabber, computer and mass memory storage. Software controls produced time-lapse recordings of the interface over time. Preliminary experiments have examined the placement and early maturation of conventional glass-ionomer cements and a syringeable resin-modified glass-ionomer cement. Initial contact of the cement matrix and glass particles was visible as the plastic material rolled past the enamel and dentine, before making a bond. Evidence for water movement from the dentine into the cement has also been seen. After curing, the early dimensional changes in the cements due to water flux were apparent using the time-lapse facility. This new technique enables examination of developing tooth/restoration interfaces and the tracking of movement in materials.

  12. Blade counting tool with a 3D borescope for turbine applications

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Gu, Jiajun; Tao, Li; Song, Guiju; Han, Jie

    2014-07-01

    Video borescopes are widely used for turbine and aviation engine inspection to guarantee the health of blades and prevent blade failure during running. When the moving components of a turbine engine are inspected with a video borescope, the operator must view every blade in a given stage. The blade counting tool is video interpretation software that runs simultaneously in the background during inspection. It identifies moving turbine blades in a video stream, tracks and counts the blades as they move across the screen. This approach includes blade detection to identify blades in different inspection scenarios and blade tracking to perceive blade movement even in hand-turning engine inspections. The software is able to label each blade by comparing counting results to a known blade count for the engine type and stage. On-screen indications show the borescope user labels for each blade and how many blades have been viewed as the turbine is rotated.

  13. Robust Observation Detection for Single Object Tracking: Deterministic and Probabilistic Patch-Based Approaches

    PubMed Central

    Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill

    2012-01-01

    In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226

  14. Tracking of Ball and Players in Beach Volleyball Videos

    PubMed Central

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  15. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  16. Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish

    NASA Astrophysics Data System (ADS)

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2006-11-01

    A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.

  17. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  18. Recording and reading of information on optical disks

    NASA Astrophysics Data System (ADS)

    Bouwhuis, G.; Braat, J. J. M.

    In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.

  19. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    PubMed

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  20. Objective assessment of operator performance during ultrasound-guided procedures.

    PubMed

    Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R

    2011-09-01

    Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.

  1. Multilevel analysis of sports video sequences

    NASA Astrophysics Data System (ADS)

    Han, Jungong; Farin, Dirk; de With, Peter H. N.

    2006-01-01

    We propose a fully automatic and flexible framework for analysis and summarization of tennis broadcast video sequences, using visual features and specific game-context knowledge. Our framework can analyze a tennis video sequence at three levels, which provides a broad range of different analysis results. The proposed framework includes novel pixel-level and object-level tennis video processing algorithms, such as a moving-player detection taking both the color and the court (playing-field) information into account, and a player-position tracking algorithm based on a 3-D camera model. Additionally, we employ scene-level models for detecting events, like service, base-line rally and net-approach, based on a number real-world visual features. The system can summarize three forms of information: (1) all court-view playing frames in a game, (2) the moving trajectory and real-speed of each player, as well as relative position between the player and the court, (3) the semantic event segments in a game. The proposed framework is flexible in choosing the level of analysis that is desired. It is effective because the framework makes use of several visual cues obtained from the real-world domain to model important events like service, thereby increasing the accuracy of the scene-level analysis. The paper presents attractive experimental results highlighting the system efficiency and analysis capabilities.

  2. Optical cell tracking analysis using a straight-forward approach to minimize processing time for high frame rate data

    NASA Astrophysics Data System (ADS)

    Seeto, Wen Jun; Lipke, Elizabeth Ann

    2016-03-01

    Tracking of rolling cells via in vitro experiment is now commonly performed using customized computer programs. In most cases, two critical challenges continue to limit analysis of cell rolling data: long computation times due to the complexity of tracking algorithms and difficulty in accurately correlating a given cell with itself from one frame to the next, which is typically due to errors caused by cells that either come close in proximity to each other or come in contact with each other. In this paper, we have developed a sophisticated, yet simple and highly effective, rolling cell tracking system to address these two critical problems. This optical cell tracking analysis (OCTA) system first employs ImageJ for cell identification in each frame of a cell rolling video. A custom MATLAB code was written to use the geometric and positional information of all cells as the primary parameters for matching each individual cell with itself between consecutive frames and to avoid errors when tracking cells that come within close proximity to one another. Once the cells are matched, rolling velocity can be obtained for further analysis. The use of ImageJ for cell identification eliminates the need for high level MATLAB image processing knowledge. As a result, only fundamental MATLAB syntax is necessary for cell matching. OCTA has been implemented in the tracking of endothelial colony forming cell (ECFC) rolling under shear. The processing time needed to obtain tracked cell data from a 2 min ECFC rolling video recorded at 70 frames per second with a total of over 8000 frames is less than 6 min using a computer with an Intel® Core™ i7 CPU 2.80 GHz (8 CPUs). This cell tracking system benefits cell rolling analysis by substantially reducing the time required for post-acquisition data processing of high frame rate video recordings and preventing tracking errors when individual cells come in close proximity to one another.

  3. Tracking a Very Near Earth Asteroid

    NASA Astrophysics Data System (ADS)

    Bruck, R.; Rashid, S.; Peppard, T.

    2013-09-01

    The potential effects of an asteroid passing within close proximity to the Earth were recently realized. During the February 16, 2013 event, Asteroid 2012 DA14 passed within an estimated 27,700 kilometers of the earth, well within the geosynchronous (GEO) orbital belt. This was the closest known approach of a planetoid of this size, in modern history. The GEO belt is a region that is filled with critical communications satellites which provide relays for essential government, business and private datum. On the day of the event, optical instruments at Detachment 3, 21OG, Maui GEODSS were able to open in marginal atmospheric conditions, locate and collect metric and raw video data on the asteroid as it passed a point of near heliocentric orbital propinquity to the Earth. Prior to the event, the Joint Space Operations Center (JSpOC) used propagated trajectory data from NASA's Near Earth Object Program Office at the Jet Propulsion Laboratory to assess potential collisions with man-made objects in Earth orbit. However, the ability to actively track this asteroid through the populated satellite belt not only allowed surveillance for possible late orbital perturbations of the asteroid, but, afforded the ability to monitor possible strikes on all other orbiting bodies of anthropogenic origin either not in orbital catalogs or not recently updated in those catalogs. Although programmed only for tracking satellites in geocentric orbits, GEODSS was able to compensate and maintain track on DA14, collecting one hundred and fifty four metric observations during the event.

  4. Audiovisual alignment of co-speech gestures to speech supports word learning in 2-year-olds.

    PubMed

    Jesse, Alexandra; Johnson, Elizabeth K

    2016-05-01

    Analyses of caregiver-child communication suggest that an adult tends to highlight objects in a child's visual scene by moving them in a manner that is temporally aligned with the adult's speech productions. Here, we used the looking-while-listening paradigm to examine whether 25-month-olds use audiovisual temporal alignment to disambiguate and learn novel word-referent mappings in a difficult word-learning task. Videos of two equally interesting and animated novel objects were simultaneously presented to children, but the movement of only one of the objects was aligned with an accompanying object-labeling audio track. No social cues (e.g., pointing, eye gaze, touch) were available to the children because the speaker was edited out of the videos. Immediately afterward, toddlers were presented with still images of the two objects and asked to look at one or the other. Toddlers looked reliably longer to the labeled object, demonstrating their acquisition of the novel word-referent mapping. A control condition showed that children's performance was not solely due to the single unambiguous labeling that had occurred at experiment onset. We conclude that the temporal link between a speaker's utterances and the motion they imposed on the referent object helps toddlers to deduce a speaker's intended reference in a difficult word-learning scenario. In combination with our previous work, these findings suggest that intersensory redundancy is a source of information used by language users of all ages. That is, intersensory redundancy is not just a word-learning tool used by young infants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Tracking zebrafish larvae in group – Status and perspectives☆

    PubMed Central

    Martineau, Pierre R.; Mourrain, Philippe

    2013-01-01

    Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not. PMID:23707495

  6. Human tracking in thermal images using adaptive particle filters with online random forest learning

    NASA Astrophysics Data System (ADS)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  7. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  8. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  9. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  10. Echocardiogram video summarization

    NASA Astrophysics Data System (ADS)

    Ebadollahi, Shahram; Chang, Shih-Fu; Wu, Henry D.; Takoma, Shin

    2001-05-01

    This work aims at developing innovative algorithms and tools for summarizing echocardiogram videos. Specifically, we summarize the digital echocardiogram videos by temporally segmenting them into the constituent views and representing each view by the most informative frame. For the segmentation we take advantage of the well-defined spatio- temporal structure of the echocardiogram videos. Two different criteria are used: presence/absence of color and the shape of the region of interest (ROI) in each frame of the video. The change in the ROI is due to different modes of echocardiograms present in one study. The representative frame is defined to be the frame corresponding to the end- diastole of the heart cycle. To locate the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the R-wave. The corresponding frame is chosen to be the key-frame. The entire echocardiogram video can be summarized into either a static summary, which is a storyboard type of summary and a dynamic summary, which is a concatenation of the selected segments of the echocardiogram video. To the best of our knowledge, this if the first automated system for summarizing the echocardiogram videos base don visual content.

  11. Autonomous sensor-based dual-arm satellite grappling

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  12. A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments.

    PubMed

    Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad

    2017-01-01

    Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.

  13. Optimized swimmer tracking system based on a novel multi-related-targets approach

    NASA Astrophysics Data System (ADS)

    Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.

    2017-02-01

    Robust tracking is a crucial step in automatic swimmer evaluation from video sequences. We designed a robust swimmer tracking system using a new multi-related-targets approach. The main idea is to consider the swimmer as a bloc of connected subtargets that advance at the same speed. If one of the subtargets is partially or totally occluded, it can be localized by knowing the position of the others. In this paper, we first introduce the two-dimensional direct linear transformation technique that we used to calibrate the videos. Then, we present the classical tracking approach based on dynamic fusion. Next, we highlight the main contribution of our work, which is the multi-related-targets tracking approach. This approach, the classical head-only approach and the ground truth are then compared, through testing on a database of high-level swimmers in training, national and international competitions (French National Championships, Limoges 2015, and World Championships, Kazan 2015). Tracking percentage and the accuracy of the instantaneous speed are evaluated and the findings show that our new appraoach is significantly more accurate than the classical approach.

  14. Video-Based Eye Tracking in Sex Research: A Systematic Literature Review.

    PubMed

    Wenzlaff, Frederike; Briken, Peer; Dekker, Arne

    2015-12-21

    Although eye tracking has been used for decades, it has gained popularity in the area of sex research only recently. The aim of this article is to examine the potential merits of eye tracking for this field. We present a systematic review of the current use of video-based eye-tracking technology in this area, evaluate the findings, and identify future research opportunities. A total of 34 relevant studies published between 2006 and 2014 were identified for inclusion by means of online databases and other methods. We grouped them into three main areas of research: body perception and attractiveness, forensic research, and sexual orientation. Despite the methodological and theoretical differences across the studies, eye tracking has been shown to be a promising tool for sex research. The article suggests there is much potential for further studies to employ this technique because it is noninvasive and yet still allows for the assessment of both conscious and unconscious perceptional processes. Furthermore, eye tracking can be implemented in investigations of various theoretical backgrounds, ranging from biology to the social sciences.

  15. Optically Phase-Locked Electronic Speckle Pattern Interferometer (OPL-ESPI)

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert L.; Craig, Peter N.; Goldberg, Warren M.

    1986-10-01

    This report describes the design, theory, operation, and characteristics of the OPL-ESPI, which generates real time equal Doppler speckle contours of vibrating objects from unstable sensor platforms with a Doppler resolution of 30 Hz and a maximum tracking range of + or - 5 HMz. The optical phase locked loop compensates for the deleterious effects of ambient background vibration and provides the bases for a new ESPI video signal processing technique, which produces high contrast speckle contours. The OPL-ESPI system has local oscillator phase modulation capability, offering the potential for detection of vibrations with the amplitudes less than lambda/100.

  16. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    NASA Astrophysics Data System (ADS)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/

  17. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  18. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  19. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  20. Gamifying Video Object Segmentation.

    PubMed

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  1. In vitro investigations of propulsion during laser lithotripsy using video tracking.

    PubMed

    Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald

    2018-04-01

    Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brown, Nelson A.

    2009-01-01

    This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.

  3. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  4. Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking

    NASA Astrophysics Data System (ADS)

    Antonya, C.

    2017-12-01

    Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.

  5. The special effort processing of FGGE data

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The basic FGGE level IIb data set was enhanced. It focused on removing deficiencies in the objective methods of quality assurance, removing efficiencies in certain types of operationally produced satellite soundings, and removing deficiencies in certain types of operationally produced cloud tracked winds. The Special Effort was a joint NASA-NOAA-University of Wisconsin effort. The University of Wisconsin installed an interactive McIDAS capability on the Amdahl computer at the Goddard Laboratory of Atmospheric Sciences (GLAS) with one interactive video terminal at Goddard and the other at the World Weather Building. With this interactive capability a joint processing effort was undertaken to reprocess certain FGGE data sets. NOAA produced a specially edited data set for the special observing periods (SOPs) of FGGE. NASA produced an enhanced satellite sounding data set for the SOPs while the University of Wisconsin produced an enhanced cloud tracked wind set from the Japanese geostationary satellite images.

  6. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.

    PubMed

    Karayiannis, Nicolaos B; Sami, Abdul; Frost, James D; Wise, Merrill S; Mizrahi, Eli M

    2005-04-01

    This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching. A block of pixels is tracked throughout a sequence of frames by searching for the most similar block of pixels in subsequent frames; this search is facilitated by employing various update strategies to account for the changing appearance of the block. The proposed procedure is used to extract temporal motor activity signals from video recordings of neonatal seizures and other events not associated with seizures.

  7. Robust video transmission with distributed source coded auxiliary channel.

    PubMed

    Wang, Jiajun; Majumdar, Abhik; Ramchandran, Kannan

    2009-12-01

    We propose a novel solution to the problem of robust, low-latency video transmission over lossy channels. Predictive video codecs, such as MPEG and H.26x, are very susceptible to prediction mismatch between encoder and decoder or "drift" when there are packet losses. These mismatches lead to a significant degradation in the decoded quality. To address this problem, we propose an auxiliary codec system that sends additional information alongside an MPEG or H.26x compressed video stream to correct for errors in decoded frames and mitigate drift. The proposed system is based on the principles of distributed source coding and uses the (possibly erroneous) MPEG/H.26x decoder reconstruction as side information at the auxiliary decoder. The distributed source coding framework depends upon knowing the statistical dependency (or correlation) between the source and the side information. We propose a recursive algorithm to analytically track the correlation between the original source frame and the erroneous MPEG/H.26x decoded frame. Finally, we propose a rate-distortion optimization scheme to allocate the rate used by the auxiliary encoder among the encoding blocks within a video frame. We implement the proposed system and present extensive simulation results that demonstrate significant gains in performance both visually and objectively (on the order of 2 dB in PSNR over forward error correction based solutions and 1.5 dB in PSNR over intrarefresh based solutions for typical scenarios) under tight latency constraints.

  8. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  9. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs

    PubMed Central

    Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.

    2016-01-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. PMID:28334699

  10. Reconstructing the flight kinematics of swarming and mating in wild mosquitoes

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2012-01-01

    We describe a novel tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, low frame-rate (25 frames per second) video streams from a stereo camera system. Because flying A. gambiae move at 1–4 m s−1, they appear as faded streaks in the images or sometimes do not appear at all. We provide an adaptive algorithm to search for missing streaks and a likelihood function that uses streak endpoints to extract velocity information. A modified multi-hypothesis tracker probabilistically addresses occlusions and a particle filter estimates the trajectories. The output of the tracking algorithm is a set of track segments with an average length of 0.6–1 s. The segments are verified and combined under human supervision to create individual tracks up to the duration of the video (90 s). We evaluate tracking performance using an established metric for multi-target tracking and validate the accuracy using independent stereo measurements of a single swarm. Three-dimensional reconstructions of A. gambiae swarming and mating events are presented. PMID:22628212

  11. Commercial vehicle route tracking using video detection.

    DOT National Transportation Integrated Search

    2010-10-31

    Interstate commercial vehicle traffic is a major factor in the life of any road surface. The ability to track : these vehicles and their routes through the state can provide valuable information to planning : activities. We propose a method using vid...

  12. Automated Video-Based Traffic Count Analysis.

    DOT National Transportation Integrated Search

    2016-01-01

    The goal of this effort has been to develop techniques that could be applied to the : detection and tracking of vehicles in overhead footage of intersections. To that end we : have developed and published techniques for vehicle tracking based on dete...

  13. Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System

    PubMed Central

    Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael

    2018-01-01

    This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078

  14. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.

    PubMed

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-08-30

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.

  15. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  16. 2011 Tohoku tsunami hydrographs, currents, flow velocities and ship tracks based on video and TLS measurements

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Phillips, David A.; Okayasu, Akio; Shimozono, Takenori; Liu, Haijiang; Takeda, Seiichi; Mohammed, Fahad; Skanavis, Vassilis; Synolakis, Costas E.; Takahashi, Tomoyuki

    2013-04-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life to a tsunami aware population. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided fragmented spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible (Fritz et al., 2012). Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to minus 10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities. Lastly a perspective on the recovery and reconstruction process is provided based on numerous revisits of identical sites between April 2011 and July 2012.

  17. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  18. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  19. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  20. An application framework for computer-aided patient positioning in radiation therapy.

    PubMed

    Liebler, T; Hub, M; Sanner, C; Schlegel, W

    2003-09-01

    The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision. In this context, the modular software framework FIVE (Fast Integrated Video-based Environment) has been designed and implemented. It is both hardware- and platform-independent and supports merging position data by integrating various computer-aided patient positioning methods. A highly precise optical tracking system and several subtraction imaging techniques have been realized as modules to supply basic video-based repositioning techniques. This paper describes the common framework architecture, the main software modules and their interfaces. An object-oriented software engineering process has been applied using the UML, C + + and the Qt library. The significance of the current framework prototype for the application in patient positioning as well as the extension to further application areas will be discussed. Particularly in experimental research, where special system adjustments are often necessary, the open design of the software allows problem-oriented extensions and adaptations.

  1. Perception for Outdoor Navigation

    DTIC Science & Technology

    1990-11-01

    without lane marktings. Our perception modules use a variety of techniques for video processing (clusering theory, symbolic feature detection, neural nets...on gravel and dirt roads, as expected. The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images...in that estimate. u bIsrshigl Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the road in video iages. We ame

  2. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  3. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  4. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  5. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  6. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  7. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  8. A Framework for Realistic Modeling and Display of Object Surface Appearance

    NASA Astrophysics Data System (ADS)

    Darling, Benjamin A.

    With advances in screen and video hardware technology, the type of content presented on computers has progressed from text and simple shapes to high-resolution photographs, photorealistic renderings, and high-definition video. At the same time, there have been significant advances in the area of content capture, with the development of devices and methods for creating rich digital representations of real-world objects. Unlike photo or video capture, which provide a fixed record of the light in a scene, these new technologies provide information on the underlying properties of the objects, allowing their appearance to be simulated for novel lighting and viewing conditions. These capabilities provide an opportunity to continue the computer display progression, from high-fidelity image presentations to digital surrogates that recreate the experience of directly viewing objects in the real world. In this dissertation, a framework was developed for representing objects with complex color, gloss, and texture properties and displaying them onscreen to appear as if they are part of the real-world environment. At its core, there is a conceptual shift from a traditional image-based display workflow to an object-based one. Instead of presenting the stored patterns of light from a scene, the objective is to reproduce the appearance attributes of a stored object by simulating its dynamic patterns of light for the real viewing and lighting geometry. This is accomplished using a computational approach where the physical light sources are modeled and the observer and display screen are actively tracked. Surface colors are calculated for the real spectral composition of the illumination with a custom multispectral rendering pipeline. In a set of experiments, the accuracy of color and gloss reproduction was evaluated by measuring the screen directly with a spectroradiometer. Gloss reproduction was assessed by comparing gonio measurements of the screen output to measurements of the real samples in the same measurement configuration. A chromatic adaptation experiment was performed to evaluate color appearance in the framework and explore the factors that contribute to differences when viewing self-luminous displays as opposed to reflective objects. A set of sample applications was developed to demonstrate the potential utility of the object display technology for digital proofing, psychophysical testing, and artwork display.

  9. Robotic Vision-Based Localization in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Mchenry, Michael; Cheng, Yang; Matthies

    2007-01-01

    A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.

  10. [Patella navigation in computer-assisted TKA : Intraoperative measurement of patellar kinematics. Video article].

    PubMed

    Springorum, H-R; Baier, C; Craiovan, B; Maderbacher, G; Renkawitz, T; Grifka, J; Keshmiri, A

    2016-07-01

    Patellofemoral maltracking is a relevant problem after total knee arthroplasty (TKA). Patella navigation is a tool that allows real time monitoring of patella tracking. This video contribution demonstrates the technique of patellofemoral navigation and a possible consequence of intraoperative monitoring. A higher postoperative lateral tilt is addressed with a widening of the lateral retinaculum in a particular manner. In selected cases of patellofemoral problems, patella navigation is a helpful tool to evaluate patellofemoral tracking intraoperatively. Modifications of implant position and soft tissue measurements can then prevent postoperative patellofemoral maltracking.

  11. An analysis of automatic human detection and tracking

    NASA Astrophysics Data System (ADS)

    Demuth, Philipe R.; Cosmo, Daniel L.; Ciarelli, Patrick M.

    2015-12-01

    This paper presents an automatic method to detect and follow people on video streams. This method uses two techniques to determine the initial position of the person at the beginning of the video file: one based on optical flow and the other one based on Histogram of Oriented Gradients (HOG). After defining the initial bounding box, tracking is done using four different trackers: Median Flow tracker, TLD tracker, Mean Shift tracker and a modified version of the Mean Shift tracker using HSV color space. The results of the methods presented in this paper are then compared at the end of the paper.

  12. Manifolds for pose tracking from monocular video

    NASA Astrophysics Data System (ADS)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  13. ConfChem Conference on Select 2016 BCCE Presentations: Tracking Student Use of Web-Based Resources for Chemical Education

    ERIC Educational Resources Information Center

    Bodily, Robert; Wood, Steven

    2017-01-01

    This paper presents the technical infrastructure required to track student use of web-based resources in an introductory chemistry course, the design of a student dashboard, and the results from analyzing student web-based resource use. Students were tracked as they interacted with online homework problems and high quality course content videos.…

  14. High correlation between performance on a virtual-reality simulator and real-life cataract surgery.

    PubMed

    Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif; Cour, Morten la; Tang, Lilian; Saleh, George M; Konge, Lars

    2017-05-01

    To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. Cataract surgeons with varying levels of experience were included in the study. All participants performed and videorecorded three standard cataract surgeries before completing a proficiency-based test on the EyeSi virtual-reality simulator. Standard cataract surgeries were defined as: (1) surgery performed under local anaesthesia, (2) patient age >60 years, and (3) visual acuity >1/60 preoperatively. A motion-tracking score was calculated by multiplying average path length and average number of movements from the three real-life surgical videos of full procedures. The EyeSi test consisted of five abstract and two procedural modules: intracapsular navigation, antitremor training, intracapsular antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion-tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data sources. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  16. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  17. A functional video-based anthropometric measuring system

    NASA Technical Reports Server (NTRS)

    Nixon, J. H.; Cater, J. P.

    1982-01-01

    A high-speed anthropometric three dimensional measurement system using the Selcom Selspot motion tracking instrument for visual data acquisition is discussed. A three-dimensional scanning system was created which collects video, audio, and performance data on a single standard video cassette recorder. Recording rates of 1 megabit per second for periods of up to two hours are possible with the system design. A high-speed off-the-shelf motion analysis system for collecting optical information as used. The video recording adapter (VRA) is interfaced to the Selspot data acquisition system.

  18. Video cameras on wild birds.

    PubMed

    Rutz, Christian; Bluff, Lucas A; Weir, Alex A S; Kacelnik, Alex

    2007-11-02

    New Caledonian crows (Corvus moneduloides) are renowned for using tools for extractive foraging, but the ecological context of this unusual behavior is largely unknown. We developed miniaturized, animal-borne video cameras to record the undisturbed behavior and foraging ecology of wild, free-ranging crows. Our video recordings enabled an estimate of the species' natural foraging efficiency and revealed that tool use, and choice of tool materials, are more diverse than previously thought. Video tracking has potential for studying the behavior and ecology of many other bird species that are shy or live in inaccessible habitats.

  19. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  20. Stereo-Optic High Definition Imaging: A New Technology to Understand Bird and Bat Avoidance of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Evan; Goodale, Wing; Burns, Steve

    There is a critical need to develop monitoring tools to track aerofauna (birds and bats) in three dimensions around wind turbines. New monitoring systems will reduce permitting uncertainty by increasing the understanding of how birds and bats are interacting with wind turbines, which will improve the accuracy of impact predictions. Biodiversity Research Institute (BRI), The University of Maine Orono School of Computing and Information Science (UMaine SCIS), HiDef Aerial Surveying Limited (HiDef), and SunEdison, Inc. (formerly First Wind) responded to this need by using stereo-optic cameras with near-infrared (nIR) technology to investigate new methods for documenting aerofauna behavior around windmore » turbines. The stereo-optic camera system used two synchronized high-definition video cameras with fisheye lenses and processing software that detected moving objects, which could be identified in post-processing. The stereo- optic imaging system offered the ability to extract 3-D position information from pairs of images captured from different viewpoints. Fisheye lenses allowed for a greater field of view, but required more complex image rectification to contend with fisheye distortion. The ability to obtain 3-D positions provided crucial data on the trajectory (speed and direction) of a target, which, when the technology is fully developed, will provide data on how animals are responding to and interacting with wind turbines. This project was focused on testing the performance of the camera system, improving video review processing time, advancing the 3-D tracking technology, and moving the system from Technology Readiness Level 4 to 5. To achieve these objectives, we determined the size and distance at which aerofauna (particularly eagles) could be detected and identified, created efficient data management systems, improved the video post-processing viewer, and attempted refinement of 3-D modeling with respect to fisheye lenses. The 29-megapixel camera system successfully captured 16,173 five-minute video segments in the field. During nighttime field trials using nIR, we found that bat-sized objects could not be detected more than 60 m from the camera system. This led to a decision to focus research efforts exclusively on daytime monitoring and to redirect resources towards improving the video post- processing viewer. We redesigned the bird event post-processing viewer, which substantially decreased the review time necessary to detect and identify flying objects. During daytime field trials, we determine that eagles could be detected up to 500 m away using the fisheye wide-angle lenses, and eagle-sized targets could be identified to species within 350 m of the camera system. We used distance sampling survey methods to describe the probability of detecting and identifying eagles and other aerofauna as a function of distance from the system. The previously developed 3-D algorithm for object isolation and tracking was tested, but the image rectification (flattening) required to obtain accurate distance measurements with fish-eye lenses was determined to be insufficient for distant eagles. We used MATLAB and OpenCV to improve fisheye lens rectification towards the center of the image, but accurate measurements towards the image corners could not be achieved. We believe that changing the fisheye lens to rectilinear lens would greatly improve position estimation, but doing so would result in a decrease in viewing angle and depth of field. Finally, we generated simplified shape profiles of birds to look for similarities between unknown animals and known species. With further development, this method could provide a mechanism for filtering large numbers of shapes to reduce data storage and processing. These advancements further refined the camera system and brought this new technology closer to market. Once commercialized, the stereo-optic camera system technology could be used to: a) research how different species interact with wind turbines in order to refine collision risk models and inform mitigation solutions; and b) monitor aerofauna interactions with terrestrial and offshore wind farms replacing costly human observers and allowing for long-term monitoring in the offshore environment. The camera system will provide developers and regulators with data on the risk that wind turbines present to aerofauna, which will reduce uncertainty in the environmental permitting process.« less

  1. 77 FR 75659 - Certain Video Analytics Software, Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-852] Certain Video Analytics Software..., 2012, based on a complaint filed by ObjectVideo, Inc. (``ObjectVideo'') of Reston, Virginia. 77 FR... United States after importation of certain video analytics software systems, components thereof, and...

  2. Evolution of the 3-dimensional video system for facial motion analysis: ten years' experiences and recent developments.

    PubMed

    Tzou, Chieh-Han John; Pona, Igor; Placheta, Eva; Hold, Alina; Michaelidou, Maria; Artner, Nicole; Kropatsch, Walter; Gerber, Hans; Frey, Manfred

    2012-08-01

    Since the implementation of the computer-aided system for assessing facial palsy in 1999 by Frey et al (Plast Reconstr Surg. 1999;104:2032-2039), no similar system that can make an objective, three-dimensional, quantitative analysis of facial movements has been marketed. This system has been in routine use since its launch, and it has proven to be reliable, clinically applicable, and therapeutically accurate. With the cooperation of international partners, more than 200 patients were analyzed. Recent developments in computer vision--mostly in the area of generative face models, applying active--appearance models (and extensions), optical flow, and video-tracking-have been successfully incorporated to automate the prototype system. Further market-ready development and a business partner will be needed to enable the production of this system to enhance clinical methodology in diagnostic and prognostic accuracy as a personalized therapy concept, leading to better results and higher quality of life for patients with impaired facial function.

  3. Prolonged focal attention without binding: Tracking a ball for half a minute without remembering its color.

    PubMed

    Chen, Hui; Swan, Garrett; Wyble, Brad

    2016-02-01

    Conventional theories of cognition focus on attention as the primary determinant of working memory contents. However, here we show that about one third of observers could not report the color of a ball that they had just been specifically attending for 5-59 s. This counterintuitive result was obtained when observers repeatedly counted the passes of one of two different colored balls among actors in a video and were then unexpectedly asked to report the color of the ball that they had just tracked. Control trials demonstrated that observers' color report performance increased dramatically once they had an expectation to do so. Critically, most of the incorrect color responses were the distractor ball color, which suggested memory storage without binding. Therefore, these results, together with other recent findings argued against two opposing theories: object-based encoding and feature-based encoding. Instead, we propose a new hypothesis by suggesting that the failure to report color is because participants might only activate the color representation in long-term memory without binding it to object representation in working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  5. Infrared target tracking via weighted correlation filter

    NASA Astrophysics Data System (ADS)

    He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping

    2015-11-01

    Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.

  6. 3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2013-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411

  7. Long-range eye tracking: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  8. A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity

    PubMed Central

    Lomp, Oliver; Faubel, Christian; Schöner, Gregor

    2017-01-01

    Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145

  9. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    PubMed

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  10. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  11. Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2016-10-01

    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.

  12. Getting to know you: using documentary video-making to challenge ageist stereotypes.

    PubMed

    Lee, Terry

    2012-01-01

    The article theorizes that augmenting traditional humanities course work with documentary video-making can enhance and motivate learning. The English class profiled focused on aging and the lives of elders in an adult daycare center and a retirement community. Students documented elders' stories in video over 15 weeks. The instructor's goal was to use the immediacy of video to challenge and dismantle ageist stereotypes. Documentary video-making is a simple, and enticing, technology that gives students a powerful tool for getting to know elders. Scholarship on classroom uses of digital video-making is discussed, and critical comments from the five reflective essays students wrote during the semester are used to track changes in student perceptions of elders.

  13. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    PubMed

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. Copyright © 2014. Published by Elsevier B.V.

  14. Data Mining and Information Technology: Its Impact on Intelligence Collection and Privacy Rights

    DTIC Science & Technology

    2007-11-26

    sources include: Cameras - Digital cameras (still and video ) have been improving in capability while simultaneously dropping in cost at a rate...citizen is caught on camera 300 times each day.5 The power of extensive video coverage is magnified greatly by the nascent capability for voice and...software on security videos and tracking cell phone usage in the local area. However, it would only return the names and data of those who

  15. A Picture Is Worth...: Video Self-Modeling Applications at School and Home

    ERIC Educational Resources Information Center

    Buggey, Tom

    2007-01-01

    Video self-modeling (VSM) is a relatively new technique for modifying and training behaviors and has accumulated a relatively impressive track record in the research literature. Using only positive examples, VSM gives persons the opportunity to view themselves performing a task just beyond their present functioning level via creative editing of…

  16. Optimal UAV Path Planning for Tracking a Moving Ground Vehicle with a Gimbaled Camera

    DTIC Science & Technology

    2014-03-27

    micro SD card slot to record all video taken at 1080P resolution. This feature allows the team to record the high definition video taken by the...Inequality constraints 64 h=[]; %Equality constraints 104 Bibliography 1. “ DIY Drones: Official ArduPlane Repository”, 2013. URL https://code

  17. Active Voodoo Dolls: A Vision Based Input Device for Nonrigid Control.

    DTIC Science & Technology

    1998-08-01

    A vision based technique for nonrigid control is presented that can be used for animation and video game applications. The user grasps a soft...allowing the user to control it interactively. Our use of texture mapping hardware in tracking makes the system responsive enough for interactive animation and video game character control.

  18. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Eyelid contour detection and tracking for startle research related eye-blink measurements from high-speed video records.

    PubMed

    Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut

    2013-10-01

    Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. TU-AB-202-12: A Novel Method to Map Endoscopic Video to CT for Treatment Planning and Toxicity Analysis in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Yang, J; Beadle, B

    Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less

  1. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  2. Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.

    PubMed

    Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin

    2016-10-10

    We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.

  3. A Secure and Robust Object-Based Video Authentication System

    NASA Astrophysics Data System (ADS)

    He, Dajun; Sun, Qibin; Tian, Qi

    2004-12-01

    An object-based video authentication system, which combines watermarking, error correction coding (ECC), and digital signature techniques, is presented for protecting the authenticity between video objects and their associated backgrounds. In this system, a set of angular radial transformation (ART) coefficients is selected as the feature to represent the video object and the background, respectively. ECC and cryptographic hashing are applied to those selected coefficients to generate the robust authentication watermark. This content-based, semifragile watermark is then embedded into the objects frame by frame before MPEG4 coding. In watermark embedding and extraction, groups of discrete Fourier transform (DFT) coefficients are randomly selected, and their energy relationships are employed to hide and extract the watermark. The experimental results demonstrate that our system is robust to MPEG4 compression, object segmentation errors, and some common object-based video processing such as object translation, rotation, and scaling while securely preventing malicious object modifications. The proposed solution can be further incorporated into public key infrastructure (PKI).

  4. A Coincidental Sound Track for "Time Flies"

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2014-01-01

    Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…

  5. ThermalTracker Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  7. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    NASA Astrophysics Data System (ADS)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  8. Influence of acquisition frame-rate and video compression techniques on pulse-rate variability estimation from vPPG signal.

    PubMed

    Cerina, Luca; Iozzia, Luca; Mainardi, Luca

    2017-11-14

    In this paper, common time- and frequency-domain variability indexes obtained by pulse rate variability (PRV) series extracted from video-photoplethysmographic signal (vPPG) were compared with heart rate variability (HRV) parameters calculated from synchronized ECG signals. The dual focus of this study was to analyze the effect of different video acquisition frame-rates starting from 60 frames-per-second (fps) down to 7.5 fps and different video compression techniques using both lossless and lossy codecs on PRV parameters estimation. Video recordings were acquired through an off-the-shelf GigE Sony XCG-C30C camera on 60 young, healthy subjects (age 23±4 years) in the supine position. A fully automated, signal extraction method based on the Kanade-Lucas-Tomasi (KLT) algorithm for regions of interest (ROI) detection and tracking, in combination with a zero-phase principal component analysis (ZCA) signal separation technique was employed to convert the video frames sequence to a pulsatile signal. The frame-rate degradation was simulated on video recordings by directly sub-sampling the ROI tracking and signal extraction modules, to correctly mimic videos recorded at a lower speed. The compression of the videos was configured to avoid any frame rejection caused by codec quality leveling, FFV1 codec was used for lossless compression and H.264 with variable quality parameter as lossy codec. The results showed that a reduced frame-rate leads to inaccurate tracking of ROIs, increased time-jitter in the signals dynamics and local peak displacements, which degrades the performances in all the PRV parameters. The root mean square of successive differences (RMSSD) and the proportion of successive differences greater than 50 ms (PNN50) indexes in time-domain and the low frequency (LF) and high frequency (HF) power in frequency domain were the parameters which highly degraded with frame-rate reduction. Such a degradation can be partially mitigated by up-sampling the measured signal at a higher frequency (namely 60 Hz). Concerning the video compression, the results showed that compression techniques are suitable for the storage of vPPG recordings, although lossless or intra-frame compression are to be preferred over inter-frame compression methods. FFV1 performances are very close to the uncompressed (UNC) version with less than 45% disk size. H.264 showed a degradation of the PRV estimation directly correlated with the increase of the compression ratio.

  9. STS-70 mission highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.

  10. The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study.

    PubMed

    Shakir, Afaaf; Chattopadhyay, Arhana; Paek, Laurence S; McGoldrick, Rory B; Chetta, Matthew D; Hui, Kenneth; Lee, Gordon K

    2017-05-01

    Music is commonly played in operating rooms (ORs) throughout the country. If a preferred genre of music is played, surgeons have been shown to perform surgical tasks quicker and with greater accuracy. However, there are currently no studies investigating the effects of music on microsurgical technique. Motion analysis technology has recently been validated in the objective assessment of plastic surgery trainees' performance of microanastomoses. Here, we aimed to examine the effects of music on microsurgical skills using motion analysis technology as a primary objective assessment tool. Residents and fellows in the Plastic and Reconstructive Surgery program were recruited to complete a demographic survey and participate in microsurgical tasks. Each participant completed 2 arterial microanastomoses on a chicken foot model, one with music playing, and the other without music playing. Participants were blinded to the study objectives and encouraged to perform their best. The order of music and no music was randomized. Microanastomoses were video recorded using a digitalized S-video system and deidentified. Video segments were analyzed using ProAnalyst motion analysis software for automatic noncontact markerless video tracking of the needle driver tip. Nine residents and 3 plastic surgery fellows were tested. Reported microsurgical experience ranged from 1 to 10 arterial anastomoses performed (n = 2), 11 to 100 anastomoses (n = 9), and 101 to 500 anastomoses (n = 1). Mean age was 33 years (range, 29-36 years), with 11 participants right-handed and 1 ambidextrous. Of the 12 subjects tested, 11 (92%) preferred music in the OR. Composite instrument motion analysis scores significantly improved with playing preferred music during testing versus no music (paired t test, P <0.001). Improvement with music was significant even after stratifying scores by order in which variables were tested (music first vs no music first), postgraduate year, and number of anastomoses (analysis of variance, P < 0.01). Preferred music in the OR may have a positive effect on trainees' microsurgical performance; as such, trainees should be encouraged to participate in setting the conditions of the OR to optimize their comfort and, possibly, performance. Moreover, motion analysis technology is a useful tool with a wide range of applications for surgical education and outcomes optimization.

  11. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  12. Statistical and sampling issues when using multiple particle tracking

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Doyle, Patrick S.

    2007-08-01

    Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.

  13. Application of TrackEye in equine locomotion research.

    PubMed

    Drevemo, S; Roepstorff, L; Kallings, P; Johnston, C J

    1993-01-01

    TrackEye is an analysis system, which is applicable for equine biokinematic studies. It covers the whole process from digitizing of images, automatic target tracking and analysis. Key components in the system are an image work station for processing of video images and a high-resolution film-to-video scanner for 16-mm film. A recording module controls the input device and handles the capture of image sequences into a videodisc system, and a tracking module is able to follow reference markers automatically. The system offers a flexible analysis including calculations of markers displacements, distances and joint angles, velocities and accelerations. TrackEye was used to study effects of phenylbutazone on the fetlock and carpal joint angle movements in a horse with a mild lameness caused by osteo-arthritis in the fetlock joint of a forelimb. Significant differences, most evident before treatment, were observed in the minimum fetlock and carpal joint angles when contralateral limbs were compared (p < 0.001). The minimum fetlock angle and the minimum carpal joint angle were significantly greater in the lame limb before treatment compared to those 6, 37 and 49 h after the last treatment (p < 0.001).

  14. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    PubMed

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  15. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  16. Micro-miniature radio frequency transmitter for communication and tracking applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its smallmore » size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.« less

  17. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor

    PubMed Central

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-01-01

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments. PMID:28867775

  18. User Input Devices’ Impact on Virtual Desktop Trainers

    DTIC Science & Technology

    2010-07-01

    effectiveness?” 3 Background • Literature Review – Evolution of game controllers – Use of Game controllers outside of video games – Personnel...computers verses console video games • Virtual Battlespace 2 (VBS2TM) • Sony PlayStation 3 game controller • Natural Point TrackIR 5 4 Methodology • Phases...gamers” averaged 4.6 years of experience playing video games at 2.1 hours per week – The “Gamers” averaged 10.4 years of experience playing PC Games

  19. Design Issues in Video Disc Map Display.

    DTIC Science & Technology

    1984-10-01

    such items as the equipment used by ETL in its work with discs and selected images from a disc. % %. I 4 11. VIDEO DISC TECHNOLOGY AND VOCABULARY 0...The term video refers to a television image. The standard home television set is equipped with a receiver, which is capable of picking up a signal...plays for one hour per side and is played at a constant linear velocity. The industria )y-formatted disc has 54,000 frames per side in concentric tracks

  20. Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data

    DTIC Science & Technology

    2017-03-01

    maximum 200 words) Given the problem of detecting objects in video , existing neural-network solutions rely on a post-processing step to combine...information across frames and strengthen conclusions. This technique has been successful for videos with simple, dominant objects but it cannot detect objects...Computer Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT Given the problem of detecting objects in video , existing neural-network solutions rely

  1. Validation of a computerized technique for automatically tracking and measuring the inferior vena cava in ultrasound imagery.

    PubMed

    Bellows, Spencer; Smith, Jordan; Mcguire, Peter; Smith, Andrew

    2014-01-01

    Accurate resuscitation of the critically-ill patient using intravenous fluids and blood products is a challenging, time sensitive task. Ultrasound of the inferior vena cava (IVC) is a non-invasive technique currently used to guide fluid administration, though multiple factors such as variable image quality, time, and operator skill challenge mainstream acceptance. This study represents a first attempt to develop and validate an algorithm capable of automatically tracking and measuring the IVC compared to human operators across a diverse range of image quality. Minimal tracking failures and high levels of agreement between manual and algorithm measurements were demonstrated on good quality videos. Addressing problems such as gaps in the vessel wall and intra-lumen speckle should result in improved performance in average and poor quality videos. Semi-automated measurement of the IVC for the purposes of non-invasive estimation of circulating blood volume poses challenges however is feasible.

  2. Quantification of larval zebrafish motor function in multi-well plates using open-source MATLAB® applications

    PubMed Central

    Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.

    2014-01-01

    This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738

  3. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.

    PubMed

    Zhou, Yangzhong; Cattley, Richard T; Cario, Clinton L; Bai, Qing; Burton, Edward A

    2014-07-01

    This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires <1 h of hands-on work for completion once optimized and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine the following: positional preference; displacement, velocity and acceleration; and duration and frequency of movement events and rest periods. This approach is widely applicable to the analysis of spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multiwell plate format suitable for high-throughput applications.

  4. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  5. Overview of the TREC 2014 Federated Web Search Track

    DTIC Science & Technology

    2014-11-01

    Pictures e021 Dailymotion Video e123 Picsearch Photo/Pictures e022 YouTube Video e124 Wikimedia Photo/Pictures e023 Google Blogs Blogs e126 Funny or...song of ice and fire 7045 Natural Parks America 7072 price gibson howard roberts custom 7092 How much was a gallon of gas during depression 7111 what is

  6. Enhancing Vocabulary Learning through Captioned Video: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Perez, Maribel Montero; Peters, Elke; Desmet, Piet

    2015-01-01

    This study investigates the effect of two attention-enhancing techniques on L2 students' learning and processing of novel French words (i.e., target words) through video with L2 subtitles or captions. A combination of eye-movement data and vocabulary tests was gathered to study the effects of Type of Captioning (full or keyword captioning) and…

  7. The Impact of Video Technology on Student Performance in Physical Education

    ERIC Educational Resources Information Center

    Palao, Jose Manuel; Hastie, Peter Andrew; Guerrero Cruz, Prudencia; Ortega, Enrique

    2015-01-01

    The purpose of this study was to assess the effectiveness of the use of video feedback on student learning in physical education, while also examining the teacher's responses to the innovation. Three classes from one Spanish high school participated in different conditions for learning hurdles in a track and field unit. These conditions compared…

  8. Effectiveness of Using a Video Game to Teach a Course in Mechanical Engineering

    ERIC Educational Resources Information Center

    Coller, B. D.; Scott, M. J.

    2009-01-01

    One of the core courses in the undergraduate mechanical engineering curriculum has been completely redesigned. In the new numerical methods course, all assignments and learning experiences are built around a video/computer game. Students are given the task of writing computer programs to race a simulated car around a track. In doing so, students…

  9. Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.

    PubMed

    Franconeri, S L; Jonathan, S V; Scimeca, J M

    2010-07-01

    In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.

  10. Biomechanical analysis using Kinovea for sports application

    NASA Astrophysics Data System (ADS)

    Muaza Nor Adnan, Nor; Patar, Mohd Nor Azmi Ab; Lee, Hokyoo; Yamamoto, Shin-Ichiroh; Jong-Young, Lee; Mahmud, Jamaluddin

    2018-04-01

    This paper assesses the reliability of HD VideoCam–Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk–Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk–Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam–Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam–Kinovea has the potential to become a reliable motion capture–analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam–Kinovea integration.

  11. Two sources of evidence on the non-automaticity of true and false belief ascription.

    PubMed

    Back, Elisa; Apperly, Ian A

    2010-04-01

    A recent study by Apperly et al. (2006) found evidence that adults do not automatically infer false beliefs while watching videos that afford such inferences. This method was extended to examine true beliefs, which are sometimes thought to be ascribed by "default" (e.g., Leslie & Thaiss, 1992). Sequences of pictures were presented in which the location of an object and a character's belief about the location of the object often changed. During the picture sequences participants responded to an unpredictable probe picture about where the character believed the object to be located or where the object was located in reality. In Experiment 1 participants were not directly instructed to track the character's beliefs about the object. There was a significant reaction time cost for belief probes compared with matched reality probes, whether the character's belief was true or false. In Experiment 2, participants were asked to track where the character thought the object was located, responses to belief probes were faster than responses to reality probes, suggesting that the difference observed in Experiment 1 was not due to intrinsic differences between the probes, but was more likely to be due to participants inferring beliefs ad hoc in response to the probe. In both Experiments 1 and 2, responses to belief and reality probes were faster in the true belief condition than in the false belief condition. In Experiment 3 this difference was largely eliminated when participants had fewer reasons to make belief inferences spontaneously. These two lines of evidence are neatly explained by the proposition that neither true nor false beliefs are ascribed automatically, but that belief ascription may occur spontaneously in response to task demands. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Adaptive low-rank subspace learning with online optimization for robust visual tracking.

    PubMed

    Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan

    2017-04-01

    In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson's disease

    PubMed Central

    Marx, Svenja; Respondek, Gesine; Stamelou, Maria; Dowiasch, Stefan; Stoll, Josef; Bremmer, Frank; Oertel, Wolfgang H.; Höglinger, Günter U.; Einhäuser, Wolfgang

    2012-01-01

    Background: The decreased ability to carry out vertical saccades is a key symptom of Progressive Supranuclear Palsy (PSP). Objective measurement devices can help to reliably detect subtle eye movement disturbances to improve sensitivity and specificity of the clinical diagnosis. The present study aims at transferring findings from restricted stationary video-oculography (VOG) to a wearable head-mounted device, which can be readily applied in clinical practice. Methods: We investigated the eye movements in 10 possible or probable PSP patients, 11 Parkinson's disease (PD) patients, and 10 age-matched healthy controls (HCs) using a mobile, gaze-driven video camera setup (EyeSeeCam). Ocular movements were analyzed during a standardized fixation protocol and in an unrestricted real-life scenario while walking along a corridor. Results: The EyeSeeCam detected prominent impairment of both saccade velocity and amplitude in PSP patients, differentiating them from PD and HCs. Differences were particularly evident for saccades in the vertical plane, and stronger for saccades than for other eye movements. Differences were more pronounced during the standardized protocol than in the real-life scenario. Conclusions: Combined analysis of saccade velocity and saccade amplitude during the fixation protocol with the EyeSeeCam provides a simple, rapid (<20 s), and reliable tool to differentiate clinically established PSP patients from PD and HCs. As such, our findings prepare the ground for using wearable eye-tracking in patients with uncertain diagnoses. PMID:23248593

  14. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  15. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  16. The Phantom Vanish Magic Trick: Investigating the Disappearance of a Non-existent Object in a Dynamic Scene

    PubMed Central

    Tompkins, Matthew L.; Woods, Andy T.; Aimola Davies, Anne M.

    2016-01-01

    Drawing inspiration from sleight-of-hand magic tricks, we developed an experimental paradigm to investigate whether magicians’ misdirection techniques could be used to induce the misperception of “phantom” objects. While previous experiments investigating sleight-of-hand magic tricks have focused on creating false assumptions about the movement of an object in a scene, our experiment investigated creating false assumptions about the presence of an object in a scene. Participants watched a sequence of silent videos depicting a magician performing with a single object. Following each video, participants were asked to write a description of the events in the video. In the final video, participants watched the Phantom Vanish Magic Trick, a novel magic trick developed for this experiment, in which the magician pantomimed the actions of presenting an object and then making it magically disappear. No object was presented during the final video. The silent videos precluded the use of false verbal suggestions, and participants were not asked leading questions about the objects. Nevertheless, 32% of participants reported having visual impressions of non-existent objects. These findings support an inferential model of perception, wherein top-down expectations can be manipulated by the magician to generate vivid illusory experiences, even in the absence of corresponding bottom-up information. PMID:27493635

  17. Augmented-reality visualization of brain structures with stereo and kinetic depth cues: system description and initial evaluation with head phantom

    NASA Astrophysics Data System (ADS)

    Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.

    2001-05-01

    We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.

  18. Defense.gov - Warrior Games

    Science.gov Websites

    Warrior Games Archery, Track & Field More Videos at DoD Vclips Photo Essays Track and Field, Day 4 Army vs. Air Force in Volleyball More Photo Essays Click here for the 2011 Warrior Games Home Profiles Bios Event Schedule Stories Games Closing Marks New Beginning COLORADO SPRINGS, Colo., May 15, 2010

  19. Understanding Collective Activities of People from Videos.

    PubMed

    Wongun Choi; Savarese, Silvio

    2014-06-01

    This paper presents a principled framework for analyzing collective activities at different levels of semantic granularity from videos. Our framework is capable of jointly tracking multiple individuals, recognizing activities performed by individuals in isolation (i.e., atomic activities such as walking or standing), recognizing the interactions between pairs of individuals (i.e., interaction activities) as well as understanding the activities of group of individuals (i.e., collective activities). A key property of our work is that it can coherently combine bottom-up information stemming from detections or fragments of tracks (or tracklets) with top-down evidence. Top-down evidence is provided by a newly proposed descriptor that captures the coherent behavior of groups of individuals in a spatial-temporal neighborhood of the sequence. Top-down evidence provides contextual information for establishing accurate associations between detections or tracklets across frames and, thus, for obtaining more robust tracking results. Bottom-up evidence percolates upwards so as to automatically infer collective activity labels. Experimental results on two challenging data sets demonstrate our theoretical claims and indicate that our model achieves enhances tracking results and the best collective classification results to date.

  20. Simultaneous measurements of jellyfish bell kinematics and flow fields using PTV and PIV

    NASA Astrophysics Data System (ADS)

    Xu, Nicole; Dabiri, John

    2016-11-01

    A better understanding of jellyfish swimming can potentially improve the energy efficiency of aquatic vehicles or create biomimetic robots for ocean monitoring. Aurelia aurita is a simple oblate invertebrate composed of a flexible bell and coronal muscle, which contracts to eject water from the subumbrellar volume. Jellyfish locomotion can be studied by obtaining body kinematics or by examining the resulting fluid velocity fields using particle image velocimetry (PIV). Typically, swim kinematics are obtained by semi-manually tracking points of interest (POI) along the bell in video post-processing; simultaneous measurements of kinematics and flows involve using this semi-manual tracking method on PIV videos. However, we show that both the kinematics and flow fields can be directly visualized in 3D space by embedding phosphorescent particles in animals free-swimming in seeded environments. Particle tracking velocimetry (PTV) can then be used to calculate bell kinematics, such as pulse frequency, bell deformation, swim trajectories, and propulsive efficiency. By simultaneously tracking POI within the bell and collecting PIV data, we can further study the jellyfish's natural locomotive control mechanisms in conjunction with flow measurements. NSF GRFP.

Top