Sample records for video processing method

  1. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  2. Towards a Video Passive Content Fingerprinting Method for Partial-Copy Detection Robust against Non-Simulated Attacks

    PubMed Central

    2016-01-01

    Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness). Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes it suitable for partial-copy detection; that is, by processing only short segments of 1 second length. PMID:27861492

  3. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  4. Automated Production of Movies on a Cluster of Computers

    NASA Technical Reports Server (NTRS)

    Nail, Jasper; Le, Duong; Nail, William L.; Nail, William

    2008-01-01

    A method of accelerating and facilitating production of video and film motion-picture products, and software and generic designs of computer hardware to implement the method, are undergoing development. The method provides for automation of most of the tedious and repetitive tasks involved in editing and otherwise processing raw digitized imagery into final motion-picture products. The method was conceived to satisfy requirements, in industrial and scientific testing, for rapid processing of multiple streams of simultaneously captured raw video imagery into documentation in the form of edited video imagery and video derived data products for technical review and analysis. In the production of such video technical documentation, unlike in production of motion-picture products for entertainment, (1) it is often necessary to produce multiple video derived data products, (2) there are usually no second chances to repeat acquisition of raw imagery, (3) it is often desired to produce final products within minutes rather than hours, days, or months, and (4) consistency and quality, rather than aesthetics, are the primary criteria for judging the products. In the present method, the workflow has both serial and parallel aspects: processing can begin before all the raw imagery has been acquired, each video stream can be subjected to different stages of processing simultaneously on different computers that may be grouped into one or more cluster(s), and the final product may consist of multiple video streams. Results of processing on different computers are shared, so that workers can collaborate effectively.

  5. The experiments and analysis of several selective video encryption methods

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Yang, Cheng; Wang, Lei

    2013-07-01

    This paper presents four methods for selective video encryption based on the MPEG-2 video compression,including the slices, the I-frames, the motion vectors, and the DCT coefficients. We use the AES encryption method for simulation experiment for the four methods on VS2010 Platform, and compare the video effects and the processing speed of each frame after the video encrypted. The encryption depth can be arbitrarily selected, and design the encryption depth by using the double limit counting method, so the accuracy can be increased.

  6. A low delay transmission method of multi-channel video based on FPGA

    NASA Astrophysics Data System (ADS)

    Fu, Weijian; Wei, Baozhi; Li, Xiaobin; Wang, Quan; Hu, Xiaofei

    2018-03-01

    In order to guarantee the fluency of multi-channel video transmission in video monitoring scenarios, we designed a kind of video format conversion method based on FPGA and its DMA scheduling for video data, reduces the overall video transmission delay.In order to sace the time in the conversion process, the parallel ability of FPGA is used to video format conversion. In order to improve the direct memory access (DMA) writing transmission rate of PCIe bus, a DMA scheduling method based on asynchronous command buffer is proposed. The experimental results show that this paper designs a low delay transmission method based on FPGA, which increases the DMA writing transmission rate by 34% compared with the existing method, and then the video overall delay is reduced to 23.6ms.

  7. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    PubMed

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  8. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    PubMed

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  9. Interactive Video Usage on Autism Spectrum Disorder Training in Medical Education

    ERIC Educational Resources Information Center

    Taslibeyaz, Elif; Dursun, Onur Burak; Karaman, Selcuk

    2017-01-01

    This study aimed to compare the effects of interactive and non-interactive videos concerning the autism spectrum disorder on medical students' achievement. It also evaluated the relation between the interactive videos' interactivity and the students' decision-making process. It used multiple methods, including quantitative and qualitative methods.…

  10. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  11. Digital Video Cameras for Brainstorming and Outlining: The Process and Potential

    ERIC Educational Resources Information Center

    Unger, John A.; Scullion, Vicki A.

    2013-01-01

    This "Voices from the Field" paper presents methods and participant-exemplar data for integrating digital video cameras into the writing process across postsecondary literacy contexts. The methods and participant data are part of an ongoing action-based research project systematically designed to bring research and theory into practice…

  12. Video enhancement method with color-protection post-processing

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin; Kwak, Youngshin

    2015-01-01

    The current study is aimed to propose a post-processing method for video enhancement by adopting a color-protection technique. The color-protection intends to attenuate perceptible artifacts due to over-enhancements in visually sensitive image regions such as low-chroma colors, including skin and gray objects. In addition, reducing the loss in color texture caused by the out-of-color-gamut signals is also taken into account. Consequently, color reproducibility of video sequences could be remarkably enhanced while the undesirable visual exaggerations are minimized.

  13. Low-complexity video encoding method for wireless image transmission in capsule endoscope.

    PubMed

    Takizawa, Kenichi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.

  14. Spatiotemporal video deinterlacing using control grid interpolation

    NASA Astrophysics Data System (ADS)

    Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin

    2015-03-01

    With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.

  15. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  16. Researching on the process of remote sensing video imagery

    NASA Astrophysics Data System (ADS)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  17. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    PubMed Central

    Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-01-01

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods. PMID:29652838

  18. Video-Based Fingerprint Verification

    PubMed Central

    Qin, Wei; Yin, Yilong; Liu, Lili

    2013-01-01

    Conventional fingerprint verification systems use only static information. In this paper, fingerprint videos, which contain dynamic information, are utilized for verification. Fingerprint videos are acquired by the same capture device that acquires conventional fingerprint images, and the user experience of providing a fingerprint video is the same as that of providing a single impression. After preprocessing and aligning processes, “inside similarity” and “outside similarity” are defined and calculated to take advantage of both dynamic and static information contained in fingerprint videos. Match scores between two matching fingerprint videos are then calculated by combining the two kinds of similarity. Experimental results show that the proposed video-based method leads to a relative reduction of 60 percent in the equal error rate (EER) in comparison to the conventional single impression-based method. We also analyze the time complexity of our method when different combinations of strategies are used. Our method still outperforms the conventional method, even if both methods have the same time complexity. Finally, experimental results demonstrate that the proposed video-based method can lead to better accuracy than the multiple impressions fusion method, and the proposed method has a much lower false acceptance rate (FAR) when the false rejection rate (FRR) is quite low. PMID:24008283

  19. Mode extraction on wind turbine blades via phase-based video motion estimation

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  20. The design of red-blue 3D video fusion system based on DM642

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  1. Video segmentation and camera motion characterization using compressed data

    NASA Astrophysics Data System (ADS)

    Milanese, Ruggero; Deguillaume, Frederic; Jacot-Descombes, Alain

    1997-10-01

    We address the problem of automatically extracting visual indexes from videos, in order to provide sophisticated access methods to the contents of a video server. We focus on tow tasks, namely the decomposition of a video clip into uniform segments, and the characterization of each shot by camera motion parameters. For the first task we use a Bayesian classification approach to detecting scene cuts by analyzing motion vectors. For the second task a least- squares fitting procedure determines the pan/tilt/zoom camera parameters. In order to guarantee the highest processing speed, all techniques process and analyze directly MPEG-1 motion vectors, without need for video decompression. Experimental results are reported for a database of news video clips.

  2. The impact of video technology on learning: A cooking skills experiment.

    PubMed

    Surgenor, Dawn; Hollywood, Lynsey; Furey, Sinéad; Lavelle, Fiona; McGowan, Laura; Spence, Michelle; Raats, Monique; McCloat, Amanda; Mooney, Elaine; Caraher, Martin; Dean, Moira

    2017-07-01

    This study examines the role of video technology in the development of cooking skills. The study explored the views of 141 female participants on whether video technology can promote confidence in learning new cooking skills to assist in meal preparation. Prior to each focus group participants took part in a cooking experiment to assess the most effective method of learning for low-skilled cooks across four experimental conditions (recipe card only; recipe card plus video demonstration; recipe card plus video demonstration conducted in segmented stages; and recipe card plus video demonstration whereby participants freely accessed video demonstrations as and when needed). Focus group findings revealed that video technology was perceived to assist learning in the cooking process in the following ways: (1) improved comprehension of the cooking process; (2) real-time reassurance in the cooking process; (3) assisting the acquisition of new cooking skills; and (4) enhancing the enjoyment of the cooking process. These findings display the potential for video technology to promote motivation and confidence as well as enhancing cooking skills among low-skilled individuals wishing to cook from scratch using fresh ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of automatic video summarization systems

    NASA Astrophysics Data System (ADS)

    Taskiran, Cuneyt M.

    2006-01-01

    Compact representations of video, or video summaries, data greatly enhances efficient video browsing. However, rigorous evaluation of video summaries generated by automatic summarization systems is a complicated process. In this paper we examine the summary evaluation problem. Text summarization is the oldest and most successful summarization domain. We show some parallels between these to domains and introduce methods and terminology. Finally, we present results for a comprehensive evaluation summary that we have performed.

  4. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    PubMed

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    PubMed

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  6. Extraction and analysis of neuron firing signals from deep cortical video microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Blundon, Jay

    We introduce a method for extracting and analyzing neuronal activity time signals from video of the cortex of a live animal. The signals correspond to the firing activity of individual cortical neurons. Activity signals are based on the changing fluorescence of calcium indicators in the cells over time. We propose a cell segmentation method that relies on a user-specified center point, from which the signal extraction method proceeds. A stabilization approach is used to reduce tissue motion in the video. The extracted signal is then processed to flatten the baseline and detect action potentials. We show results from applying themore » method to a cortical video of a live mouse.« less

  7. Video quality assessment using motion-compensated temporal filtering and manifold feature similarity

    PubMed Central

    Yu, Mei; Jiang, Gangyi; Shao, Feng; Peng, Zongju

    2017-01-01

    Well-performed Video quality assessment (VQA) method should be consistent with human visual systems for better prediction accuracy. In this paper, we propose a VQA method using motion-compensated temporal filtering (MCTF) and manifold feature similarity. To be more specific, a group of frames (GoF) is first decomposed into a temporal high-pass component (HPC) and a temporal low-pass component (LPC) by MCTF. Following this, manifold feature learning (MFL) and phase congruency (PC) are used to predict the quality of temporal LPC and temporal HPC respectively. The quality measures of the LPC and the HPC are then combined as GoF quality. A temporal pooling strategy is subsequently used to integrate GoF qualities into an overall video quality. The proposed VQA method appropriately processes temporal information in video by MCTF and temporal pooling strategy, and simulate human visual perception by MFL. Experiments on publicly available video quality database showed that in comparison with several state-of-the-art VQA methods, the proposed VQA method achieves better consistency with subjective video quality and can predict video quality more accurately. PMID:28445489

  8. Online and unsupervised face recognition for continuous video stream

    NASA Astrophysics Data System (ADS)

    Huo, Hongwen; Feng, Jufu

    2009-10-01

    We present a novel online face recognition approach for video stream in this paper. Our method includes two stages: pre-training and online training. In the pre-training phase, our method observes interactions, collects batches of input data, and attempts to estimate their distributions (Box-Cox transformation is adopted here to normalize rough estimates). In the online training phase, our method incrementally improves classifiers' knowledge of the face space and updates it continuously with incremental eigenspace analysis. The performance achieved by our method shows its great potential in video stream processing.

  9. Losing the Red Pen: Video Grading Feedback in Distance and Blended Learning Writing Courses

    ERIC Educational Resources Information Center

    Jones, Lisa Ann

    2014-01-01

    This paper will give a step-by-step demonstration on how to create MP4 files to video-grade undergraduate writing assignments. The process of using prepared rubrics to guide video and audio feedback will be presented and examples shown. This assessment method provides students with personalized video-feedback as a re-usable learning object. The…

  10. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  11. Teaching Complicated Conceptual Knowledge with Simulation Videos in Foundational Electrical Engineering Courses

    ERIC Educational Resources Information Center

    Chen, Baiyun; Wei, Lei; Li, Huihui

    2016-01-01

    Building a solid foundation of conceptual knowledge is critical for students in electrical engineering. This mixed-method case study explores the use of simulation videos to illustrate complicated conceptual knowledge in foundational communications and signal processing courses. Students found these videos to be very useful for establishing…

  12. Automatic and user-centric approaches to video summary evaluation

    NASA Astrophysics Data System (ADS)

    Taskiran, Cuneyt M.; Bentley, Frank

    2007-01-01

    Automatic video summarization has become an active research topic in content-based video processing. However, not much emphasis has been placed on developing rigorous summary evaluation methods and developing summarization systems based on a clear understanding of user needs, obtained through user centered design. In this paper we address these two topics and propose an automatic video summary evaluation algorithm adapted from teh text summarization domain.

  13. Adaptive compressed sensing of multi-view videos based on the sparsity estimation

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-11-01

    The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.

  14. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  15. Task–Technology Fit of Video Telehealth for Nurses in an Outpatient Clinic Setting

    PubMed Central

    Finkelstein, Stanley M.

    2014-01-01

    Abstract Background: Incorporating telehealth into outpatient care delivery supports management of consumer health between clinic visits. Task–technology fit is a framework for understanding how technology helps and/or hinders a person during work processes. Evaluating the task–technology fit of video telehealth for personnel working in a pediatric outpatient clinic and providing care between clinic visits ensures the information provided matches the information needed to support work processes. Materials and Methods: The workflow of advanced practice registered nurse (APRN) care coordination provided via telephone and video telehealth was described and measured using a mixed-methods workflow analysis protocol that incorporated cognitive ethnography and time–motion study. Qualitative and quantitative results were merged and analyzed within the task–technology fit framework to determine the workflow fit of video telehealth for APRN care coordination. Results: Incorporating video telehealth into APRN care coordination workflow provided visual information unavailable during telephone interactions. Despite additional tasks and interactions needed to obtain the visual information, APRN workflow efficiency, as measured by time, was not significantly changed. Analyzed within the task–technology fit framework, the increased visual information afforded by video telehealth supported the assessment and diagnostic information needs of the APRN. Conclusions: Telehealth must provide the right information to the right clinician at the right time. Evaluating task–technology fit using a mixed-methods protocol ensured rigorous analysis of fit within work processes and identified workflows that benefit most from the technology. PMID:24841219

  16. Advanced Video Analysis Needs for Human Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.

    1994-01-01

    Evaluators of human task performance in space missions make use of video as a primary source of data. Extraction of relevant human performance information from video is often a labor-intensive process requiring a large amount of time on the part of the evaluator. Based on the experiences of several human performance evaluators, needs were defined for advanced tools which could aid in the analysis of video data from space missions. Such tools should increase the efficiency with which useful information is retrieved from large quantities of raw video. They should also provide the evaluator with new analytical functions which are not present in currently used methods. Video analysis tools based on the needs defined by this study would also have uses in U.S. industry and education. Evaluation of human performance from video data can be a valuable technique in many industrial and institutional settings where humans are involved in operational systems and processes.

  17. Practical use of video imagery in nearshore oceanographic field studies

    USGS Publications Warehouse

    Holland, K.T.; Holman, R.A.; Lippmann, T.C.; Stanley, J.; Plant, N.

    1997-01-01

    An approach was developed for using video imagery to quantify, in terms of both spatial and temporal dimensions, a number of naturally occurring (nearshore) physical processes. The complete method is presented, including the derivation of the geometrical relationships relating image and ground coordinates, principles to be considered when working with video imagery and the two-step strategy for calibration of the camera model. The techniques are founded on the principles of photogrammetry, account for difficulties inherent in the use of video signals, and have been adapted to allow for flexibility of use in field studies. Examples from field experiments indicate that this approach is both accurate and applicable under the conditions typically experienced when sampling in coastal regions. Several applications of the camera model are discussed, including the measurement of nearshore fluid processes, sand bar length scales, foreshore topography, and drifter motions. Although we have applied this method to the measurement of nearshore processes and morphologic features, these same techniques are transferable to studies in other geophysical settings.

  18. Is Video-Based Education an Effective Method in Surgical Education? A Systematic Review.

    PubMed

    Ahmet, Akgul; Gamze, Kus; Rustem, Mustafaoglu; Sezen, Karaborklu Argut

    2018-02-12

    Visual signs draw more attention during the learning process. Video is one of the most effective tool including a lot of visual cues. This systematic review set out to explore the influence of video in surgical education. We reviewed the current evidence for the video-based surgical education methods, discuss the advantages and disadvantages on the teaching of technical and nontechnical surgical skills. This systematic review was conducted according to the guidelines defined in the preferred reporting items for systematic reviews and meta-analyses statement. The electronic databases: the Cochrane Library, Medline (PubMED), and ProQuest were searched from their inception to the 30 January 2016. The Medical Subject Headings (MeSH) terms and keywords used were "video," "education," and "surgery." We analyzed all full-texts, randomised and nonrandomised clinical trials and observational studies including video-based education methods about any surgery. "Education" means a medical resident's or student's training and teaching process; not patients' education. We did not impose restrictions about language or publication date. A total of nine articles which met inclusion criteria were included. These trials enrolled 507 participants and the total number of participants per trial ranged from 10 to 172. Nearly all of the studies reviewed report significant knowledge gain from video-based education techniques. The findings of this systematic review provide fair to good quality studies to demonstrate significant gains in knowledge compared with traditional teaching. Additional video to simulator exercise or 3D animations has beneficial effects on training time, learning duration, acquisition of surgical skills, and trainee's satisfaction. Video-based education has potential for use in surgical education as trainees face significant barriers in their practice. This method is effective according to the recent literature. Video should be used in addition to standard techniques in the surgical education. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.

    PubMed

    Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao

    2016-06-01

    Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.

  20. The integration processing of the visual and auditory information in videos of real-world events: an ERP study.

    PubMed

    Liu, Baolin; Wang, Zhongning; Jin, Zhixing

    2009-09-11

    In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.

  1. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  2. Development of a web-based video management and application processing system

    NASA Astrophysics Data System (ADS)

    Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting

    2001-07-01

    How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.

  3. An automatic method to calculate heart rate from zebrafish larval cardiac videos.

    PubMed

    Kang, Chia-Pin; Tu, Hung-Chi; Fu, Tzu-Fun; Wu, Jhe-Ming; Chu, Po-Hsun; Chang, Darby Tien-Hao

    2018-05-09

    Zebrafish is a widely used model organism for studying heart development and cardiac-related pathogenesis. With the ability of surviving without a functional circulation at larval stages, strong genetic similarity between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening. However, an economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There have been several image analysis methods to assess cardiac functions in zebrafish embryos/larvae, but they are still improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to calculate heart rate, an important parameter to analyze cardiac function, from videos. It contains several filters to identify the heart region, to reduce video noise and to calculate heart rates. The proposed method was evaluated with 32 zebrafish larval cardiac videos that were recording at three-day post-fertilization. The heart rate measured by the proposed method was comparable to that determined by manual counting. The experimental results show that the proposed method does not lose accuracy while largely reducing the labor cost and uncertainty of manual counting. With the proposed method, researchers do not have to manually select a region of interest before analyzing videos. Moreover, filters designed to reduce video noise can alleviate background fluctuations during the video recording stage (e.g. shifting), which makes recorders generate usable videos easily and therefore reduce manual efforts while recording.

  4. Segment scheduling method for reducing 360° video streaming latency

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.

  5. Video Tutorial of Continental Food

    NASA Astrophysics Data System (ADS)

    Nurani, A. S.; Juwaedah, A.; Mahmudatussa'adah, A.

    2018-02-01

    This research is motivated by the belief in the importance of media in a learning process. Media as an intermediary serves to focus on the attention of learners. Selection of appropriate learning media is very influential on the success of the delivery of information itself both in terms of cognitive, affective and skills. Continental food is a course that studies food that comes from Europe and is very complex. To reduce verbalism and provide more real learning, then the tutorial media is needed. Media tutorials that are audio visual can provide a more concrete learning experience. The purpose of this research is to develop tutorial media in the form of video. The method used is the development method with the stages of analyzing the learning objectives, creating a story board, validating the story board, revising the story board and making video tutorial media. The results show that the making of storyboards should be very thorough, and detailed in accordance with the learning objectives to reduce errors in video capture so as to save time, cost and effort. In video capturing, lighting, shooting angles, and soundproofing make an excellent contribution to the quality of tutorial video produced. In shooting should focus more on tools, materials, and processing. Video tutorials should be interactive and two-way.

  6. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  7. Film grain noise modeling in advanced video coding

    NASA Astrophysics Data System (ADS)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  8. On the use of video projectors for three-dimensional scanning

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo

    2017-08-01

    Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.

  9. Task-technology fit of video telehealth for nurses in an outpatient clinic setting.

    PubMed

    Cady, Rhonda G; Finkelstein, Stanley M

    2014-07-01

    Incorporating telehealth into outpatient care delivery supports management of consumer health between clinic visits. Task-technology fit is a framework for understanding how technology helps and/or hinders a person during work processes. Evaluating the task-technology fit of video telehealth for personnel working in a pediatric outpatient clinic and providing care between clinic visits ensures the information provided matches the information needed to support work processes. The workflow of advanced practice registered nurse (APRN) care coordination provided via telephone and video telehealth was described and measured using a mixed-methods workflow analysis protocol that incorporated cognitive ethnography and time-motion study. Qualitative and quantitative results were merged and analyzed within the task-technology fit framework to determine the workflow fit of video telehealth for APRN care coordination. Incorporating video telehealth into APRN care coordination workflow provided visual information unavailable during telephone interactions. Despite additional tasks and interactions needed to obtain the visual information, APRN workflow efficiency, as measured by time, was not significantly changed. Analyzed within the task-technology fit framework, the increased visual information afforded by video telehealth supported the assessment and diagnostic information needs of the APRN. Telehealth must provide the right information to the right clinician at the right time. Evaluating task-technology fit using a mixed-methods protocol ensured rigorous analysis of fit within work processes and identified workflows that benefit most from the technology.

  10. No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.

    PubMed

    Li, Xuelong; Guo, Qun; Lu, Xiaoqiang

    2016-05-13

    It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.

  11. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  12. Heterogeneous CPU-GPU moving targets detection for UAV video

    NASA Astrophysics Data System (ADS)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  13. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  14. Transferring of speech movements from video to 3D face space.

    PubMed

    Pei, Yuru; Zha, Hongbin

    2007-01-01

    We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models.

  15. PIZZARO: Forensic analysis and restoration of image and video data.

    PubMed

    Kamenicky, Jan; Bartos, Michal; Flusser, Jan; Mahdian, Babak; Kotera, Jan; Novozamsky, Adam; Saic, Stanislav; Sroubek, Filip; Sorel, Michal; Zita, Ales; Zitova, Barbara; Sima, Zdenek; Svarc, Petr; Horinek, Jan

    2016-07-01

    This paper introduces a set of methods for image and video forensic analysis. They were designed to help to assess image and video credibility and origin and to restore and increase image quality by diminishing unwanted blur, noise, and other possible artifacts. The motivation came from the best practices used in the criminal investigation utilizing images and/or videos. The determination of the image source, the verification of the image content, and image restoration were identified as the most important issues of which automation can facilitate criminalists work. Novel theoretical results complemented with existing approaches (LCD re-capture detection and denoising) were implemented in the PIZZARO software tool, which consists of the image processing functionality as well as of reporting and archiving functions to ensure the repeatability of image analysis procedures and thus fulfills formal aspects of the image/video analysis work. Comparison of new proposed methods with the state of the art approaches is shown. Real use cases are presented, which illustrate the functionality of the developed methods and demonstrate their applicability in different situations. The use cases as well as the method design were solved in tight cooperation of scientists from the Institute of Criminalistics, National Drug Headquarters of the Criminal Police and Investigation Service of the Police of the Czech Republic, and image processing experts from the Czech Academy of Sciences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2002-01-01

    A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.

  17. Content fragile watermarking for H.264/AVC video authentication

    NASA Astrophysics Data System (ADS)

    Ait Sadi, K.; Guessoum, A.; Bouridane, A.; Khelifi, F.

    2017-04-01

    Discrete cosine transform is exploited in this work to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors. The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each group of pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations is confirmed.

  18. Pixel-By Estimation of Scene Motion in Video

    NASA Astrophysics Data System (ADS)

    Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.

    2017-05-01

    The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.

  19. High resolution, high frame rate video technology development plan and the near-term system conceptual design

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    1990-01-01

    The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.

  20. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  1. Whiteboard animation for knowledge mobilization: a test case from the Slave River and Delta, Canada.

    PubMed

    Bradford, Lori E A; Bharadwaj, Lalita A

    2015-01-01

    Objective To present the co-creation of a whiteboard animation video, an enhanced e-storytelling technique for relaying traditional knowledge interview results as narratives. Design We present a design for translating interview results into a script and accompanying series of figures, followed by technical steps to create a whiteboard animation product. Method Our project used content analysis and researcher triangulation, followed by a collaborative process to develop an animated video to disseminate research findings. A 13-minute long whiteboard animation video was produced from a research study about changing environments in northern Canadian communities and was distributed to local people. Three challenging issues in the video creation process including communication issues, technical difficulties and contextual debate were resolved among the supporting agencies and researchers. Conclusions Dissemination of findings is a crucial step in the research process. Whiteboard animation video products may be a viable and culturally-appropriate form of relaying research results back to Indigenous communities in a storytelling format.

  2. Whiteboard animation for knowledge mobilization: a test case from the Slave River and Delta, Canada

    PubMed Central

    Bradford, Lori E. A.; Bharadwaj, Lalita A.

    2015-01-01

    Objective To present the co-creation of a whiteboard animation video, an enhanced e-storytelling technique for relaying traditional knowledge interview results as narratives. Design We present a design for translating interview results into a script and accompanying series of figures, followed by technical steps to create a whiteboard animation product. Method Our project used content analysis and researcher triangulation, followed by a collaborative process to develop an animated video to disseminate research findings. A 13-minute long whiteboard animation video was produced from a research study about changing environments in northern Canadian communities and was distributed to local people. Three challenging issues in the video creation process including communication issues, technical difficulties and contextual debate were resolved among the supporting agencies and researchers. Conclusions Dissemination of findings is a crucial step in the research process. Whiteboard animation video products may be a viable and culturally-appropriate form of relaying research results back to Indigenous communities in a storytelling format. PMID:26507716

  3. Tracking zebrafish larvae in group – Status and perspectives☆

    PubMed Central

    Martineau, Pierre R.; Mourrain, Philippe

    2013-01-01

    Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not. PMID:23707495

  4. Streamed video clips to reduce anxiety in children during inhaled induction of anesthesia.

    PubMed

    Mifflin, Katherine A; Hackmann, Thomas; Chorney, Jill Maclaren

    2012-11-01

    Anesthesia induction in children is frequently achieved by inhalation of nitrous oxide and sevoflurane. Pediatric anesthesiologists commonly use distraction techniques such as humor or nonprocedural talk to reduce anxiety and facilitate a smooth transition at this critical phase. There is a large body of successful distraction research that explores the use of video and television distraction methods for minor medical and dental procedures, but little research on the use of this method for ambulatory surgery. In this randomized control trial study we examined whether video distraction is effective in reducing the anxiety of children undergoing inhaled induction before ambulatory surgery. Children (control = 47, video = 42) between 2 and 10 years old undergoing ambulatory surgery were randomly assigned to a video distraction or control group. In the video distraction group a video clip of the child's preference was played during induction, and the control group received traditional distraction methods during induction. The modified Yale Preoperative Anxiety Scale was used to assess the children's anxiety before and during the process of receiving inhalation anesthetics. All subjects were similar in their age and anxiety scores before entering the operating rooms. Children in the video distraction group were significantly less anxious at induction and showed a significantly smaller change in anxiety from holding to induction than did children in the control group. Playing video clips during the inhaled induction of children undergoing ambulatory surgery is an effective method of reducing anxiety. Therefore, pediatric anesthesiologists may consider using video distraction as a useful, valid, alternative strategy for achieving a smooth transition to the anesthetized state.

  5. Video quality assessment method motivated by human visual perception

    NASA Astrophysics Data System (ADS)

    He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng

    2016-11-01

    Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.

  6. Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices

    PubMed Central

    Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee

    2015-01-01

    In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068

  7. How do video-based demonstration assessment tasks affect problem-solving process, test anxiety, chemistry anxiety and achievement in general chemistry students?

    NASA Astrophysics Data System (ADS)

    Terrell, Rosalind Stephanie

    2001-12-01

    Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.

  8. VQone MATLAB toolbox: A graphical experiment builder for image and video quality evaluations: VQone MATLAB toolbox.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Rummukainen, Olli; Häkkinen, Jukka

    2016-03-01

    This article presents VQone, a graphical experiment builder, written as a MATLAB toolbox, developed for image and video quality ratings. VQone contains the main elements needed for the subjective image and video quality rating process. This includes building and conducting experiments and data analysis. All functions can be controlled through graphical user interfaces. The experiment builder includes many standardized image and video quality rating methods. Moreover, it enables the creation of new methods or modified versions from standard methods. VQone is distributed free of charge under the terms of the GNU general public license and allows code modifications to be made so that the program's functions can be adjusted according to a user's requirements. VQone is available for download from the project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  9. Efficient implementation of neural network deinterlacing

    NASA Astrophysics Data System (ADS)

    Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee

    2009-02-01

    Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.

  10. Method of determining the necessary number of observations for video stream documents recognition

    NASA Astrophysics Data System (ADS)

    Arlazarov, Vladimir V.; Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Janiszewski, Igor

    2018-04-01

    This paper discusses a task of document recognition on a sequence of video frames. In order to optimize the processing speed an estimation is performed of stability of recognition results obtained from several video frames. Considering identity document (Russian internal passport) recognition on a mobile device it is shown that significant decrease is possible of the number of observations necessary for obtaining precise recognition result.

  11. Detection of illegal transfer of videos over the Internet

    NASA Astrophysics Data System (ADS)

    Chaisorn, Lekha; Sainui, Janya; Manders, Corey

    2010-07-01

    In this paper, a method for detecting infringements or modifications of a video in real-time is proposed. The method first segments a video stream into shots, after which it extracts some reference frames as keyframes. This process is performed employing a Singular Value Decomposition (SVD) technique developed in this work. Next, for each input video (represented by its keyframes), ordinal-based signature and SIFT (Scale Invariant Feature Transform) descriptors are generated. The ordinal-based method employs a two-level bitmap indexing scheme to construct the index for each video signature. The first level clusters all input keyframes into k clusters while the second level converts the ordinal-based signatures into bitmap vectors. On the other hand, the SIFT-based method directly uses the descriptors as the index. Given a suspect video (being streamed or transferred on the Internet), we generate the signature (ordinal and SIFT descriptors) then we compute similarity between its signature and those signatures in the database based on ordinal signature and SIFT descriptors separately. For similarity measure, besides the Euclidean distance, Boolean operators are also utilized during the matching process. We have tested our system by performing several experiments on 50 videos (each about 1/2 hour in duration) obtained from the TRECVID 2006 data set. For experiments set up, we refer to the conditions provided by TRECVID 2009 on "Content-based copy detection" task. In addition, we also refer to the requirements issued in the call for proposals by MPEG standard on the similar task. Initial result shows that our framework is effective and robust. As compared to our previous work, on top of the achievement we obtained by reducing the storage space and time taken in the ordinal based method, by introducing the SIFT features, we could achieve an overall accuracy in F1 measure of about 96% (improved about 8%).

  12. Automated Visual Event Detection, Tracking, and Data Management System for Cabled- Observatory Video

    NASA Astrophysics Data System (ADS)

    Edgington, D. R.; Cline, D. E.; Schlining, B.; Raymond, E.

    2008-12-01

    Ocean observatories and underwater video surveys have the potential to unlock important discoveries with new and existing camera systems. Yet the burden of video management and analysis often requires reducing the amount of video recorded through time-lapse video or similar methods. It's unknown how many digitized video data sets exist in the oceanographic community, but we suspect that many remain under analyzed due to lack of good tools or human resources to analyze the video. To help address this problem, the Automated Visual Event Detection (AVED) software and The Video Annotation and Reference System (VARS) have been under development at MBARI. For detecting interesting events in the video, the AVED software has been developed over the last 5 years. AVED is based on a neuromorphic-selective attention algorithm, modeled on the human vision system. Frames are decomposed into specific feature maps that are combined into a unique saliency map. This saliency map is then scanned to determine the most salient locations. The candidate salient locations are then segmented from the scene using algorithms suitable for the low, non-uniform light and marine snow typical of deep underwater video. For managing the AVED descriptions of the video, the VARS system provides an interface and database for describing, viewing, and cataloging the video. VARS was developed by the MBARI for annotating deep-sea video data and is currently being used to describe over 3000 dives by our remotely operated vehicles (ROV), making it well suited to this deepwater observatory application with only a few modifications. To meet the compute and data intensive job of video processing, a distributed heterogeneous network of computers is managed using the Condor workload management system. This system manages data storage, video transcoding, and AVED processing. Looking to the future, we see high-speed networks and Grid technology as an important element in addressing the problem of processing and accessing large video data sets.

  13. Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera

    NASA Astrophysics Data System (ADS)

    Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.

    2017-09-01

    Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.

  14. Multi-modal highlight generation for sports videos using an information-theoretic excitability measure

    NASA Astrophysics Data System (ADS)

    Hasan, Taufiq; Bořil, Hynek; Sangwan, Abhijeet; L Hansen, John H.

    2013-12-01

    The ability to detect and organize `hot spots' representing areas of excitement within video streams is a challenging research problem when techniques rely exclusively on video content. A generic method for sports video highlight selection is presented in this study which leverages both video/image structure as well as audio/speech properties. Processing begins where the video is partitioned into small segments and several multi-modal features are extracted from each segment. Excitability is computed based on the likelihood of the segmental features residing in certain regions of their joint probability density function space which are considered both exciting and rare. The proposed measure is used to rank order the partitioned segments to compress the overall video sequence and produce a contiguous set of highlights. Experiments are performed on baseball videos based on signal processing advancements for excitement assessment in the commentators' speech, audio energy, slow motion replay, scene cut density, and motion activity as features. Detailed analysis on correlation between user excitability and various speech production parameters is conducted and an effective scheme is designed to estimate the excitement level of commentator's speech from the sports videos. Subjective evaluation of excitability and ranking of video segments demonstrate a higher correlation with the proposed measure compared to well-established techniques indicating the effectiveness of the overall approach.

  15. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  16. Code inspection instructional validation

    NASA Technical Reports Server (NTRS)

    Orr, Kay; Stancil, Shirley

    1992-01-01

    The Shuttle Data Systems Branch (SDSB) of the Flight Data Systems Division (FDSD) at Johnson Space Center contracted with Southwest Research Institute (SwRI) to validate the effectiveness of an interactive video course on the code inspection process. The purpose of this project was to determine if this course could be effective for teaching NASA analysts the process of code inspection. In addition, NASA was interested in the effectiveness of this unique type of instruction (Digital Video Interactive), for providing training on software processes. This study found the Carnegie Mellon course, 'A Cure for the Common Code', effective for teaching the process of code inspection. In addition, analysts prefer learning with this method of instruction, or this method in combination with other methods. As is, the course is definitely better than no course at all; however, findings indicate changes are needed. Following are conclusions of this study. (1) The course is instructionally effective. (2) The simulation has a positive effect on student's confidence in his ability to apply new knowledge. (3) Analysts like the course and prefer this method of training, or this method in combination with current methods of training in code inspection, over the way training is currently being conducted. (4) Analysts responded favorably to information presented through scenarios incorporating full motion video. (5) Some course content needs to be changed. (6) Some content needs to be added to the course. SwRI believes this study indicates interactive video instruction combined with simulation is effective for teaching software processes. Based on the conclusions of this study, SwRI has outlined seven options for NASA to consider. SwRI recommends the option which involves creation of new source code and data files, but uses much of the existing content and design from the current course. Although this option involves a significant software development effort, SwRI believes this option will produce the most effective results.

  17. Secured web-based video repository for multicenter studies

    PubMed Central

    Yan, Ling; Hicks, Matt; Winslow, Korey; Comella, Cynthia; Ludlow, Christy; Jinnah, H. A; Rosen, Ami R; Wright, Laura; Galpern, Wendy R; Perlmutter, Joel S

    2015-01-01

    Background We developed a novel secured web-based dystonia video repository for the Dystonia Coalition, part of the Rare Disease Clinical Research network funded by the Office of Rare Diseases Research and the National Institute of Neurological Disorders and Stroke. A critical component of phenotypic data collection for all projects of the Dystonia Coalition includes a standardized video of each participant. We now describe our method for collecting, serving and securing these videos that is widely applicable to other studies. Methods Each recruiting site uploads standardized videos to a centralized secured server for processing to permit website posting. The streaming technology used to view the videos from the website does not allow downloading of video files. With appropriate institutional review board approval and agreement with the hosting institution, users can search and view selected videos on the website using customizable, permissions-based access that maintains security yet facilitates research and quality control. Results This approach provides a convenient platform for researchers across institutions to evaluate and analyze shared video data. We have applied this methodology for quality control, confirmation of diagnoses, validation of rating scales, and implementation of new research projects. Conclusions We believe our system can be a model for similar projects that require access to common video resources. PMID:25630890

  18. Automatic vehicle counting using background subtraction method on gray scale images and morphology operation

    NASA Astrophysics Data System (ADS)

    Adi, K.; Widodo, A. P.; Widodo, C. E.; Pamungkas, A.; Putranto, A. B.

    2018-05-01

    Traffic monitoring on road needs to be done, the counting of the number of vehicles passing the road is necessary. It is more emphasized for highway transportation management in order to prevent efforts. Therefore, it is necessary to develop a system that is able to counting the number of vehicles automatically. Video processing method is able to counting the number of vehicles automatically. This research has development a system of vehicle counting on toll road. This system includes processes of video acquisition, frame extraction, and image processing for each frame. Video acquisition is conducted in the morning, at noon, in the afternoon, and in the evening. This system employs of background subtraction and morphology methods on gray scale images for vehicle counting. The best vehicle counting results were obtained in the morning with a counting accuracy of 86.36 %, whereas the lowest accuracy was in the evening, at 21.43 %. Differences in morning and evening results are caused by different illumination in the morning and evening. This will cause the values in the image pixels to be different.

  19. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  20. Video watermarking for mobile phone applications

    NASA Astrophysics Data System (ADS)

    Mitrea, M.; Duta, S.; Petrescu, M.; Preteux, F.

    2005-08-01

    Nowadays, alongside with the traditional voice signal, music, video, and 3D characters tend to become common data to be run, stored and/or processed on mobile phones. Hence, to protect their related intellectual property rights also becomes a crucial issue. The video sequences involved in such applications are generally coded at very low bit rates. The present paper starts by presenting an accurate statistical investigation on such a video as well as on a very dangerous attack (the StirMark attack). The obtained results are turned into practice when adapting a spread spectrum watermarking method to such applications. The informed watermarking approach was also considered: an outstanding method belonging to this paradigm has been adapted and re evaluated under the low rate video constraint. The experimental results were conducted in collaboration with the SFR mobile services provider in France. They also allow a comparison between the spread spectrum and informed embedding techniques.

  1. Here's Another Nice Mess: Using Video in Reflective Dialogue Research Method

    ERIC Educational Resources Information Center

    Hepplewhite, K.

    2014-01-01

    This account discusses "reflective dialogues", a process utilising video to re-examine in-action decision-making with theatre practitioners who operate in community contexts. The reflexive discussions combine with observation, text and digital documentation to offer a sometimes "messy" (from Schön 1987) dynamic to the research…

  2. Development of students' conceptual thinking by means of video analysis and interactive simulations at technical universities

    NASA Astrophysics Data System (ADS)

    Hockicko, Peter; Krišt‧ák, L.‧uboš; Němec, Miroslav

    2015-03-01

    Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think creatively, improves their performance and helps them in studying physics. This paper deals with increasing the key competencies in engineering by analysing real-life situation videos - physical problems - by means of video analysis and the modelling tools using the program Tracker and simulations of physical phenomena from The Physics Education Technology (PhET™) Project (VAS method of problem tasks). The statistical testing using the t-test confirmed the significance of the differences in the knowledge of the experimental and control groups, which were the result of interactive method application.

  3. Extraction of Blebs in Human Embryonic Stem Cell Videos.

    PubMed

    Guan, Benjamin X; Bhanu, Bir; Talbot, Prue; Weng, Nikki Jo-Hao

    2016-01-01

    Blebbing is an important biological indicator in determining the health of human embryonic stem cells (hESC). Especially, areas of a bleb sequence in a video are often used to distinguish two cell blebbing behaviors in hESC: dynamic and apoptotic blebbings. This paper analyzes various segmentation methods for bleb extraction in hESC videos and introduces a bio-inspired score function to improve the performance in bleb extraction. Full bleb formation consists of bleb expansion and retraction. Blebs change their size and image properties dynamically in both processes and between frames. Therefore, adaptive parameters are needed for each segmentation method. A score function derived from the change of bleb area and orientation between consecutive frames is proposed which provides adaptive parameters for bleb extraction in videos. In comparison to manual analysis, the proposed method provides an automated fast and accurate approach for bleb sequence extraction.

  4. Observation of wave celerity evolution in the nearshore using digital video imagery

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.

    2008-12-01

    Celerity of incident waves in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of waves propagating in shallow water including the surf zone is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf zone. The breaking wave celerity is computed along a cross-shore transect from the wave crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear wave celerity computed from the measured water depths over the entire surf zone. Compared to the nonlinear shallow water wave equation (NSWE)-based celerity computed using the measured depths and wave heights, in general, the video-based celerity shows good agreements over the surf zone except the regions across the incipient wave breaking locations. In the regions across the breaker points, the observed wave celerity is even larger than the NSWE-based celerity due to the transition of wave crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear wave celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear wave celerity theory applied.

  5. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  6. Inter-view prediction of intra mode decision for high-efficiency video coding-based multiview video coding

    NASA Astrophysics Data System (ADS)

    da Silva, Thaísa Leal; Agostini, Luciano Volcan; da Silva Cruz, Luis A.

    2014-05-01

    Intra prediction is a very important tool in current video coding standards. High-efficiency video coding (HEVC) intra prediction presents relevant gains in encoding efficiency when compared to previous standards, but with a very important increase in the computational complexity since 33 directional angular modes must be evaluated. Motivated by this high complexity, this article presents a complexity reduction algorithm developed to reduce the HEVC intra mode decision complexity targeting multiview videos. The proposed algorithm presents an efficient fast intra prediction compliant with singleview and multiview video encoding. This fast solution defines a reduced subset of intra directions according to the video texture and it exploits the relationship between prediction units (PUs) of neighbor depth levels of the coding tree. This fast intra coding procedure is used to develop an inter-view prediction method, which exploits the relationship between the intra mode directions of adjacent views to further accelerate the intra prediction process in multiview video encoding applications. When compared to HEVC simulcast, our method achieves a complexity reduction of up to 47.77%, at the cost of an average BD-PSNR loss of 0.08 dB.

  7. A web-based video annotation system for crowdsourcing surveillance videos

    NASA Astrophysics Data System (ADS)

    Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.

    2014-03-01

    Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.

  8. Photometric Calibration of Consumer Video Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  9. Deblocking of mobile stereo video

    NASA Astrophysics Data System (ADS)

    Azzari, Lucio; Gotchev, Atanas; Egiazarian, Karen

    2012-02-01

    Most of candidate methods for compression of mobile stereo video apply block-transform based compression based on the H-264 standard with quantization of transform coefficients driven by quantization parameter (QP). The compression ratio and the resulting bit rate are directly determined by the QP level and high compression is achieved for the price of visually noticeable blocking artifacts. Previous studies on perceived quality of mobile stereo video have revealed that blocking artifacts are the most annoying and most influential in the acceptance/rejection of mobile stereo video and can even completely cancel the 3D effect and the corresponding quality added value. In this work, we address the problem of deblocking of mobile stereo video. We modify a powerful non-local transform-domain collaborative filtering method originally developed for denoising of images and video. The method employs grouping of similar block patches residing in spatial and temporal vicinity of a reference block in filtering them collaboratively in a suitable transform domain. We study the most suitable way of finding similar patches in both channels of stereo video and suggest a hybrid four-dimensional transform to process the collected synchronized (stereo) volumes of grouped blocks. The results benefit from the additional correlation available between the left and right channel of the stereo video. Furthermore, addition sharpening is applied through an embedded alpha-rooting in transform domain, which improve the visual appearance of the deblocked frames.

  10. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

    NASA Astrophysics Data System (ADS)

    Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.

    2013-05-01

    Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.

  11. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.

  12. Improving Video Game Development: Facilitating Heterogeneous Team Collaboration through Flexible Software Processes

    NASA Astrophysics Data System (ADS)

    Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan

    Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.

  13. Smoke regions extraction based on two steps segmentation and motion detection in early fire

    NASA Astrophysics Data System (ADS)

    Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan

    2018-03-01

    Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.

  14. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  15. Description and texts for the auxiliary programs for processing video information on the YeS computer. Part 3: Test program 2

    NASA Technical Reports Server (NTRS)

    Borisenko, V. I., G.g.; Stetsenko, Z. A.

    1980-01-01

    The functions were discribed and the operating instructions, the block diagram and the proposed versions are given for modifying the program in order to obtain the statistical characteristics of multi-channel video information. The program implements certain man-machine methods for investigating video information. It permits representation of the material and its statistical characteristics in a form which is convenient for the user.

  16. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  17. AUDIOVISUAL RESOURCES ON THE TEACHING PROCESS IN SURGICAL TECHNIQUE

    PubMed Central

    PUPULIM, Guilherme Luiz Lenzi; IORIS, Rafael Augusto; GAMA, Ricardo Ribeiro; RIBAS, Carmen Australia Paredes Marcondes; MALAFAIA, Osvaldo; GAMA, Mirnaluci

    2015-01-01

    Background: The development of didactic means to create opportunities to permit complete and repetitive viewing of surgical procedures is of great importance nowadays due to the increasing difficulty of doing in vivo training. Thus, audiovisual resources favor the maximization of living resources used in education, and minimize problems arising only with verbalism. Aim: To evaluate the use of digital video as a pedagogical strategy in surgical technique teaching in medical education. Methods: Cross-sectional study with 48 students of the third year of medicine, when studying in the surgical technique discipline. They were divided into two groups with 12 in pairs, both subject to the conventional method of teaching, and one of them also exposed to alternative method (video) showing the technical details. All students did phlebotomy in the experimental laboratory, with evaluation and assistance of the teacher/monitor while running. Finally, they answered a self-administered questionnaire related to teaching method when performing the operation. Results: Most of those who did not watch the video took longer time to execute the procedure, did more questions and needed more faculty assistance. The total exposed to video followed the chronology of implementation and approved the new method; 95.83% felt able to repeat the procedure by themselves, and 62.5% of those students that only had the conventional method reported having regular capacity of technique assimilation. In both groups mentioned having regular difficulty, but those who have not seen the video had more difficulty in performing the technique. Conclusion: The traditional method of teaching associated with the video favored the ability to understand and transmitted safety, particularly because it is activity that requires technical skill. The technique with video visualization motivated and arouse interest, facilitated the understanding and memorization of the steps for procedure implementation, benefiting the students performance. PMID:26734790

  18. Development and Validation of a Video Measure for Assessing Women’s Risk Perception for Alcohol-Related Sexual Assault

    PubMed Central

    Parks, Kathleen A.; Levonyan-Radloff, Kristine; Dearing, Ronda L.; Hequembourg, Amy; Testa, Maria

    2016-01-01

    Objective Using an iterative process, a series of three video scenarios were developed for use as a standardized measure for assessing women’s perception of risks for alcohol-related sexual assault (SA). The videos included ambiguous and clear behavioral and environmental risk cues. Method Focus group discussions with young, female heavy drinkers (N = 42) were used to develop three videos at different risk levels (low, moderate, and high) in Study 1. Realism, reliability, and validity of the videos were assessed using multiple methods in Studies 2 and 3. One hundred-four women were used to compare differences in risk perception across the video risk level in Study 2. In Study 3 (N = 60), we assessed women’s perceptions of the low and high risk videos under conditions of no alcohol and alcohol. Results The realism and reliability of the videos were good. Women who viewed the low risk video compared to women who viewed the moderate and high risk videos perceived less risk for SA. We found an interaction between alcohol and risk perception such that, women in the alcohol condition were less likely to perceive risk when watching the high risk video. Conclusions As the video risk level increased, women’s perception of risk increased. These findings provide convergent evidence for the validity of the video measure. Given the limited number of standardized scenarios for assessing risk perception for sexual assault, our findings suggest that these videos may provide a needed standardized measure. PMID:27747131

  19. Video monitoring of oxygen saturation during controlled episodes of acute hypoxia.

    PubMed

    Addison, Paul S; Foo, David M H; Jacquel, Dominique; Borg, Ulf

    2016-08-01

    A method for extracting video photoplethysmographic information from an RGB video stream is tested on data acquired during a porcine model of acute hypoxia. Cardiac pulsatile information was extracted from the acquired signals and processed to determine a continuously reported oxygen saturation (SvidO2). A high degree of correlation was found to exist between the video and a reference from a pulse oximeter. The calculated mean bias and accuracy across all eight desaturation episodes were -0.03% (range: -0.21% to 0.24%) and accuracy 4.90% (range: 3.80% to 6.19%) respectively. The results support the hypothesis that oxygen saturation trending can be evaluated accurately from a video system during acute hypoxia.

  20. Compression Algorithm Analysis of In-Situ (S)TEM Video: Towards Automatic Event Detection and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.

    Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the datamore » into a series of images which it compresses into an MPEG-2 video using the open source “avconv” utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.« less

  1. Digital Video: Watch Me Do What I Say!

    ERIC Educational Resources Information Center

    Capraro, Robert M.; Capraro, Mary Margaret; Lamb, Charles E.

    This paper establishes a use for digital video in developing preservice teacher metacognition about the teaching process using a lesson plan-rating sheet as a guide. A lesson plan was developed to meet the specific needs of the methods instructors in a professional development program at a large public institution. The categories listed on the…

  2. Student-Generated Instructional Videos Facilitate Learning through Positive Emotions

    ERIC Educational Resources Information Center

    Pirhonen, Juhani; Rasi, Päivi

    2017-01-01

    The central focus of this study is a learning method in which university students produce instructional videos about the content matter as part of their learning process, combined with other learning assignments. The rationale for this is to promote a more multimodal pedagogy, and to provide students opportunities for a more learner-centred,…

  3. Video Surveillance Captures Student Hand Hygiene Behavior, Reactivity to Observation, and Peer Influence in Kenyan Primary Schools

    PubMed Central

    Pickering, Amy J.; Blum, Annalise G.; Breiman, Robert F.; Ram, Pavani K.; Davis, Jennifer

    2014-01-01

    Background In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Methods Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Findings Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio  = 1.14 [95% CI 1.01–1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Conclusion Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs. PMID:24676389

  4. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development.

    PubMed

    Siegert, F; Weijer, C J; Nomura, A; Miike, H

    1994-01-01

    We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.

  5. Video coding for next-generation surveillance systems

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    Video is used as recording media in surveillance system and also more frequently by the Swedish Police Force. Methods for analyzing video using an image processing system have recently been introduced at the Swedish National Laboratory of Forensic Science, and new methods are in focus in a research project at Linkoping University, Image Coding Group. The accuracy of the result of those forensic investigations often depends on the quality of the video recordings, and one of the major problems when analyzing videos from crime scenes is the poor quality of the recordings. Enhancing poor image quality might add manipulative or subjective effects and does not seem to be the right way of getting reliable analysis results. The surveillance system in use today is mainly based on video techniques, VHS or S-VHS, and the weakest link is the video cassette recorder, (VCR). Multiplexers for selecting one of many camera outputs for recording is another problem as it often filters the video signal, and recording is limited to only one of the available cameras connected to the VCR. A way to get around the problem of poor recording is to simultaneously record all camera outputs digitally. It is also very important to build such a system bearing in mind that image processing analysis methods becomes more important as a complement to the human eye. Using one or more cameras gives a large amount of data, and the need for data compression is more than obvious. Crime scenes often involve persons or moving objects, and the available coding techniques are more or less useful. Our goal is to propose a possible system, being the best compromise with respect to what needs to be recorded, movements in the recorded scene, loss of information and resolution etc., to secure the efficient recording of the crime and enable forensic analysis. The preventative effective of having a well functioning surveillance system and well established image analysis methods is not to be neglected. Aspects of this next generation of digital surveillance systems are discussed in this paper.

  6. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  7. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  8. Particle detection, number estimation, and feature measurement in gene transfer studies: optical fractionator stereology integrated with digital image processing and analysis.

    PubMed

    King, Michael A; Scotty, Nicole; Klein, Ronald L; Meyer, Edwin M

    2002-10-01

    Assessing the efficacy of in vivo gene transfer often requires a quantitative determination of the number, size, shape, or histological visualization characteristics of biological objects. The optical fractionator has become a choice stereological method for estimating the number of objects, such as neurons, in a structure, such as a brain subregion. Digital image processing and analytic methods can increase detection sensitivity and quantify structural and/or spectral features located in histological specimens. We describe a hardware and software system that we have developed for conducting the optical fractionator process. A microscope equipped with a video camera and motorized stage and focus controls is interfaced with a desktop computer. The computer contains a combination live video/computer graphics adapter with a video frame grabber and controls the stage, focus, and video via a commercial imaging software package. Specialized macro programs have been constructed with this software to execute command sequences requisite to the optical fractionator method: defining regions of interest, positioning specimens in a systematic uniform random manner, and stepping through known volumes of tissue for interactive object identification (optical dissectors). The system affords the flexibility to work with count regions that exceed the microscope image field size at low magnifications and to adjust the parameters of the fractionator sampling to best match the demands of particular specimens and object types. Digital image processing can be used to facilitate object detection and identification, and objects that meet criteria for counting can be analyzed for a variety of morphometric and optical properties. Copyright 2002 Elsevier Science (USA)

  9. Client Perceptions of Helpfulness in Therapy: a Novel Video-Rating Methodology for Examining Process Variables at Brief Intervals During a Single Session.

    PubMed

    Cocklin, Alexandra A; Mansell, Warren; Emsley, Richard; McEvoy, Phil; Preston, Chloe; Comiskey, Jody; Tai, Sara

    2017-11-01

    The value of clients' reports of their experiences in therapy is widely recognized, yet quantitative methodology has rarely been used to measure clients' self-reported perceptions of what is helpful over a single session. A video-rating method using was developed to gather data at brief intervals using process measures of client perceived experience and standardized measures of working alliance (Session Rating Scale; SRS). Data were collected over the course of a single video-recorded session of cognitive therapy (Method of Levels Therapy; Carey, 2006; Mansell et al., 2012). We examined the acceptability and feasibility of the methodology and tested the concurrent validity of the measure by utilizing theory-led constructs. Eighteen therapy sessions were video-recorded and clients each rated a 20-minute session of therapy at two-minute intervals using repeated measures. A multi-level analysis was used to test for correlations between perceived levels of helpfulness and client process variables. The design proved to be feasible. Concurrent validity was borne out through high correlations between constructs. A multi-level regression examined the independent contributions of client process variables to client perceived helpfulness. Client perceived control (b = 0.39, 95% CI .05 to 0.73), the ability to talk freely (b = 0.30, SE = 0.11, 95% CI .09 to 0.51) and therapist approach (b = 0.31, SE = 0.14, 95% CI .04 to 0.57) predicted client-rated helpfulness. We identify a feasible and acceptable method for studying continuous measures of helpfulness and their psychological correlates during a single therapy session.

  10. An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection.

    PubMed

    Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong

    2011-06-01

    The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.

  11. Ranging Apparatus and Method Implementing Stereo Vision System

    NASA Technical Reports Server (NTRS)

    Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.

  12. Concept indexing and expansion for social multimedia websites based on semantic processing and graph analysis

    NASA Astrophysics Data System (ADS)

    Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae

    2016-07-01

    This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.

  13. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  14. Subjective Quality Assessment of Underwater Video for Scientific Applications

    PubMed Central

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo

    2015-01-01

    Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions. PMID:26694400

  15. Subjective Quality Assessment of Underwater Video for Scientific Applications.

    PubMed

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo

    2015-12-15

    Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions.

  16. Video surveillance captures student hand hygiene behavior, reactivity to observation, and peer influence in Kenyan primary schools.

    PubMed

    Pickering, Amy J; Blum, Annalise G; Breiman, Robert F; Ram, Pavani K; Davis, Jennifer

    2014-01-01

    In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio  = 1.14 [95% CI 1.01-1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs.

  17. The role of optical flow in automated quality assessment of full-motion video

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Shafer, Scott; Marez, Diego

    2017-09-01

    In real-world video data, such as full-motion-video (FMV) taken from unmanned vehicles, surveillance systems, and other sources, various corruptions to the raw data is inevitable. This can be due to the image acquisition process, noise, distortion, and compression artifacts, among other sources of error. However, we desire methods to analyze the quality of the video to determine whether the underlying content of the corrupted video can be analyzed by humans or machines and to what extent. Previous approaches have shown that motion estimation, or optical flow, can be an important cue in automating this video quality assessment. However, there are many different optical flow algorithms in the literature, each with their own advantages and disadvantages. We examine the effect of the choice of optical flow algorithm (including baseline and state-of-the-art), on motionbased automated video quality assessment algorithms.

  18. Temporally rendered automatic cloud extraction (TRACE) system

    NASA Astrophysics Data System (ADS)

    Bodrero, Dennis M.; Yale, James G.; Davis, Roger E.; Rollins, John M.

    1999-10-01

    Smoke/obscurant testing requires that 2D cloud extent be extracted from visible and thermal imagery. These data are used alone or in combination with 2D data from other aspects to make 3D calculations of cloud properties, including dimensions, volume, centroid, travel, and uniformity. Determining cloud extent from imagery has historically been a time-consuming manual process. To reduce time and cost associated with smoke/obscurant data processing, automated methods to extract cloud extent from imagery were investigated. The TRACE system described in this paper was developed and implemented at U.S. Army Dugway Proving Ground, UT by the Science and Technology Corporation--Acuity Imaging Incorporated team with Small Business Innovation Research funding. TRACE uses dynamic background subtraction and 3D fast Fourier transform as primary methods to discriminate the smoke/obscurant cloud from the background. TRACE has been designed to run on a PC-based platform using Windows. The PC-Windows environment was chosen for portability, to give TRACE the maximum flexibility in terms of its interaction with peripheral hardware devices such as video capture boards, removable media drives, network cards, and digital video interfaces. Video for Windows provides all of the necessary tools for the development of the video capture utility in TRACE and allows for interchangeability of video capture boards without any software changes. TRACE is designed to take advantage of future upgrades in all aspects of its component hardware. A comparison of cloud extent determined by TRACE with manual method is included in this paper.

  19. Bayesian Modeling of Temporal Coherence in Videos for Entity Discovery and Summarization.

    PubMed

    Mitra, Adway; Biswas, Soma; Bhattacharyya, Chiranjib

    2017-03-01

    A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning 10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.

  20. A Method of Sharing Tacit Knowledge by a Bulletin Board Link to Video Scene and an Evaluation in the Field of Nursing Skill

    NASA Astrophysics Data System (ADS)

    Shimada, Satoshi; Azuma, Shouzou; Teranaka, Sayaka; Kojima, Akira; Majima, Yukie; Maekawa, Yasuko

    We developed the system that knowledge could be discovered and shared cooperatively in the organization based on the SECI model of knowledge management. This system realized three processes by the following method. (1)A video that expressed skill is segmented into a number of scenes according to its contents. Tacit knowledge is shared in each scene. (2)Tacit knowledge is extracted by bulletin board linked to each scene. (3)Knowledge is acquired by repeatedly viewing the video scene with the comment that shows the technical content to be practiced. We conducted experiments that the system was used by nurses working for general hospitals. Experimental results show that the nursing practical knack is able to be collected by utilizing bulletin board linked to video scene. Results of this study confirmed the possibility of expressing the tacit knowledge of nurses' empirical nursing skills sensitively with a clue of video images.

  1. YouTube as a potential training method for laparoscopic cholecystectomy

    PubMed Central

    Lee, Jun Suh; Seo, Ho Seok

    2015-01-01

    Purpose The purpose of this study was to analyze the educational quality of laparoscopic cholecystectomy (LC) videos accessible on YouTube, one of the most important sources of internet-based medical information. Methods The keyword 'laparoscopic cholecystectomy' was used to search on YouTube and the first 100 videos were analyzed. Among them, 27 videos were excluded and 73 videos were included in the study. An arbitrary score system for video quality, devised from existing LC guidelines, were used to evaluate the quality of the videos. Video demographics were analyzed by the quality and source of the video. Correlation analysis was performed. Results When analyzed by video quality, 11 (15.1%) were evaluated as 'good', 40 (54.8%) were 'moderate', and 22 (30.1%) were 'poor', and there were no differences in length, views per day, or number of likes, dislikes, and comments. When analyzed by source, 27 (37.0%) were uploaded by primary centers, 20 (27.4%) by secondary centers, 15 (20.5%) by tertiary centers, 5 (6.8%) by academic institutions, and 6 (8.2%) by commercial institutions. The mean score of the tertiary center group (6.0 ± 2.0) was significantly higher than the secondary center group (3.9 ± 1.4, P = 0.001). The video score had no correlation with views per day or number of likes. Conclusion Many LC videos are accessible on YouTube with varying quality. Videos uploaded by tertiary centers showed the highest educational value. This discrepancy in video quality was not recognized by viewers. More videos with higher quality need to be uploaded, and an active filtering process is necessary. PMID:26236699

  2. Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.

    PubMed

    Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2017-06-01

    Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.

  3. A Comparative Study of Video Presentation Modes in Relation to L2 Listening Success

    ERIC Educational Resources Information Center

    Li, Chen-Hong

    2016-01-01

    Video comprehension involves interpreting both sounds and images. Research has shown that processing an aural text with relevant pictorial information effectively enhances second/foreign language (L2) listening comprehension. A hypothesis underlying this mixed-methods study is that a visual-only silent film used as an advance organiser to activate…

  4. Development of Students' Conceptual Thinking by Means of Video Analysis and Interactive Simulations at Technical Universities

    ERIC Educational Resources Information Center

    Hockicko, Peter; Krišták, Luboš; Nemec, Miroslav

    2015-01-01

    Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think…

  5. Video-processing-based system for automated pedestrian data collection and analysis when crossing the street

    NASA Astrophysics Data System (ADS)

    Mansouri, Nabila; Watelain, Eric; Ben Jemaa, Yousra; Motamed, Cina

    2018-03-01

    Computer-vision techniques for pedestrian detection and tracking have progressed considerably and become widely used in several applications. However, a quick glance at the literature shows a minimal use of these techniques in pedestrian behavior and safety analysis, which might be due to the technical complexities facing the processing of pedestrian videos. To extract pedestrian trajectories from a video automatically, all road users must be detected and tracked during sequences, which is a challenging task, especially in a congested open-outdoor urban space. A multipedestrian tracker based on an interframe-detection-association process was proposed and evaluated. The tracker results are used to implement an automatic tool for pedestrians data collection when crossing the street based on video processing. The variations in the instantaneous speed allowed the detection of the street crossing phases (approach, waiting, and crossing). These were addressed for the first time in the pedestrian road security analysis to illustrate the causal relationship between pedestrian behaviors in the different phases. A comparison with a manual data collection method, by computing the root mean square error and the Pearson correlation coefficient, confirmed that the procedures proposed have significant potential to automate the data collection process.

  6. Video self-portraits: a novel approach to group psychotherapy with young adults.

    PubMed

    Cox, E; Lothstein, L M

    1989-04-01

    A group therapy model was formulated for exploring the intersubjective processes of adolescents and young adults whose group bonds had been fragmented by their severe emotional illnesses. The model involved having adolescents and young adults who were psychiatric inpatients make video self-portraits; that is, videotapes which focused on various aspects of their emotional pathology. These tapes were then presented before a larger group of nine patients for discussion. The video team method is shown to aid in self-disclosure and facilitate the working through of severe emotional conflicts in this age group. It is an especially useful method with more severely disturbed patients for whom narcissistic self pathology is a prominent feature.

  7. An openstack-based flexible video transcoding framework in live

    NASA Astrophysics Data System (ADS)

    Shi, Qisen; Song, Jianxin

    2017-08-01

    With the rapid development of mobile live business, transcoding HD video is often a challenge for mobile devices due to their limited processing capability and bandwidth-constrained network connection. For live service providers, it's wasteful for resources to delay lots of transcoding server because some of them are free to work sometimes. To deal with this issue, this paper proposed an Openstack-based flexible transcoding framework to achieve real-time video adaption for mobile device and make computing resources used efficiently. To this end, we introduced a special method of video stream splitting and VMs resource scheduling based on access pressure prediction,which is forecasted by an AR model.

  8. Toward Dietary Assessment via Mobile Phone Video Cameras.

    PubMed

    Chen, Nicholas; Lee, Yun Young; Rabb, Maurice; Schatz, Bruce

    2010-11-13

    Reliable dietary assessment is a challenging yet essential task for determining general health. Existing efforts are manual, require considerable effort, and are prone to underestimation and misrepresentation of food intake. We propose leveraging mobile phones to make this process faster, easier and automatic. Using mobile phones with built-in video cameras, individuals capture short videos of their meals; our software then automatically analyzes the videos to recognize dishes and estimate calories. Preliminary experiments on 20 typical dishes from a local cafeteria show promising results. Our approach complements existing dietary assessment methods to help individuals better manage their diet to prevent obesity and other diet-related diseases.

  9. Student-Directed Video Validation of Psychomotor Skills Performance: A Strategy to Facilitate Deliberate Practice, Peer Review, and Team Skill Sets.

    PubMed

    DeBourgh, Gregory A; Prion, Susan K

    2017-03-22

    Background Essential nursing skills for safe practice are not limited to technical skills, but include abilities for determining salience among clinical data within dynamic practice environments, demonstrating clinical judgment and reasoning, problem-solving abilities, and teamwork competence. Effective instructional methods are needed to prepare new nurses for entry-to-practice in contemporary healthcare settings. Method This mixed-methods descriptive study explored self-reported perceptions of a process to self-record videos for psychomotor skill performance evaluation in a convenience sample of 102 pre-licensure students. Results Students reported gains in confidence and skill acquisition using team skills to record individual videos of skill performance, and described the importance of teamwork, peer support, and deliberate practice. Conclusion Although time consuming, the production of student-directed video validations of psychomotor skill performance is an authentic task with meaningful accountabilities that is well-received by students as an effective, satisfying learner experience to increase confidence and competence in performing psychomotor skills.

  10. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  11. Towards Better Human Robot Interaction: Understand Human Computer Interaction in Social Gaming Using a Video-Enhanced Diary Method

    NASA Astrophysics Data System (ADS)

    See, Swee Lan; Tan, Mitchell; Looi, Qin En

    This paper presents findings from a descriptive research on social gaming. A video-enhanced diary method was used to understand the user experience in social gaming. From this experiment, we found that natural human behavior and gamer’s decision making process can be elicited and speculated during human computer interaction. These are new information that we should consider as they can help us build better human computer interfaces and human robotic interfaces in future.

  12. Influence of video compression on the measurement error of the television system

    NASA Astrophysics Data System (ADS)

    Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.

    2015-05-01

    Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.

  13. Neural Basis of Video Gaming: A Systematic Review

    PubMed Central

    Palaus, Marc; Marron, Elena M.; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies. PMID:28588464

  14. Neural Basis of Video Gaming: A Systematic Review.

    PubMed

    Palaus, Marc; Marron, Elena M; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

  15. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  16. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  17. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    NASA Astrophysics Data System (ADS)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  18. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.

    2013-02-01

    In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.

  19. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  20. A Video Recording and Viewing Protocol for Student Group Presentations: Assisting Self-Assessment through a Wiki Environment

    ERIC Educational Resources Information Center

    Barry, Shane

    2012-01-01

    The purpose of this research was to firstly develop a protocol for video recording student group oral presentations, for later viewing and self-assessment by student group members. Secondly, evaluations of students' experiences of this process were undertaken to determine if this self-assessment method was a positive experience for them in gaining…

  1. Innovative Second Language Speaking Practice with Interactive Videos in a Rich Internet Application Environment

    ERIC Educational Resources Information Center

    Pereira, Juan A.; Sanz-Santamaría, Silvia; Montero, Raúl; Gutiérrez, Julián

    2012-01-01

    Attaining a satisfactory level of oral communication in a second language is a laborious process. In this action research paper we describe a new method applied through the use of interactive videos and the Babelium Project Rich Internet Application (RIA), which allows students to practice speaking skills through a variety of exercises. We present…

  2. Cultivating Asian Students' Willingness to Communicate in American Classrooms Using an Online Video-Based Pre-Arrival Course

    ERIC Educational Resources Information Center

    Hsu, Hui-Ching Kayla

    2017-01-01

    The purpose of this mixed-methods study was: (1) to document the design and implementation process of an online video-based pre-arrival course that was intended to cultivate Asian students' willingness to communicate in American Classrooms; (2) to assess the effectiveness of the course by measuring students' oral proficiency and willingness to…

  3. Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification.

    PubMed

    Garcés, Hugo O; Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo

    2018-05-11

    Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination.

  4. Development and pilot testing of an informed consent video for patients with limb trauma prior to debridement surgery using a modified Delphi technique.

    PubMed

    Lin, Yen-Ko; Chen, Chao-Wen; Lee, Wei-Che; Lin, Tsung-Ying; Kuo, Liang-Chi; Lin, Chia-Ju; Shi, Leiyu; Tien, Yin-Chun; Cheng, Yuan-Chia

    2017-11-29

    Ensuring adequate informed consent for surgery in a trauma setting is challenging. We developed and pilot tested an educational video containing information regarding the informed consent process for surgery in trauma patients and a knowledge measure instrument and evaluated whether the audiovisual presentation improved the patients' knowledge regarding their procedure and aftercare and their satisfaction with the informed consent process. A modified Delphi technique in which a panel of experts participated in successive rounds of shared scoring of items to forecast outcomes was applied to reach a consensus among the experts. The resulting consensus was used to develop the video content and questions for measuring the understanding of the informed consent for debridement surgery in limb trauma patients. The expert panel included experienced patients. The participants in this pilot study were enrolled as a convenience sample of adult trauma patients scheduled to receive surgery. The modified Delphi technique comprised three rounds over a 4-month period. The items given higher scores by the experts in several categories were chosen for the subsequent rounds until consensus was reached. The experts reached a consensus on each item after the three-round process. The final knowledge measure comprising 10 questions was developed and validated. Thirty eligible trauma patients presenting to the Emergency Department (ED) were approached and completed the questionnaires in this pilot study. The participants exhibited significantly higher mean knowledge and satisfaction scores after watching the educational video than before watching the video. Our process is promising for developing procedure-specific informed consent and audiovisual aids in medical and surgical specialties. The educational video was developed using a scientific method that integrated the opinions of different stakeholders, particularly patients. This video is a useful tool for improving the knowledge and satisfaction of trauma patients in the ED. The modified Delphi technique is an effective method for collecting experts' opinions and reaching a consensus on the content of educational materials for informed consent. Institutions should prioritize patient-centered health care and develop a structured informed consent process to improve the quality of care. The ClinicalTrials.gov Identifier is NCT01338480 . The date of registration was April 18, 2011 (retrospectively registered).

  5. Design of multi-view stereoscopic HD video transmission system based on MPEG-21 digital item adaptation

    NASA Astrophysics Data System (ADS)

    Lee, Seokhee; Lee, Kiyoung; Kim, Man Bae; Kim, JongWon

    2005-11-01

    In this paper, we propose a design of multi-view stereoscopic HD video transmission system based on MPEG-21 Digital Item Adaptation (DIA). It focuses on the compatibility and scalability to meet various user preferences and terminal capabilities. There exist a large variety of multi-view 3D HD video types according to the methods for acquisition, display, and processing. By following the MPEG-21 DIA framework, the multi-view stereoscopic HD video is adapted according to user feedback. A user can be served multi-view stereoscopic video which corresponds with his or her preferences and terminal capabilities. In our preliminary prototype, we verify that the proposed design can support two deferent types of display device (stereoscopic and auto-stereoscopic) and switching viewpoints between two available viewpoints.

  6. Video capture on student-owned mobile devices to facilitate psychomotor skills acquisition: A feasibility study.

    PubMed

    Hinck, Glori; Bergmann, Thomas F

    2013-01-01

    Objective : We evaluated the feasibility of using mobile device technology to allow students to record their own psychomotor skills so that these recordings can be used for self-reflection and formative evaluation. Methods : Students were given the choice of using DVD recorders, zip drive video capture equipment, or their personal mobile phone, device, or digital camera to record specific psychomotor skills. During the last week of the term, they were asked to complete a 9-question survey regarding their recording experience, including details of mobile phone ownership, technology preferences, technical difficulties, and satisfaction with the recording experience and video critique process. Results : Of those completing the survey, 83% currently owned a mobile phone with video capability. Of the mobile phone owners 62% reported having email capability on their phone and that they could transfer their video recording successfully to their computer, making it available for upload to the learning management system. Viewing the video recording of the psychomotor skill was valuable to 88% of respondents. Conclusions : Our results suggest that mobile phones are a viable technology to use for the video capture and critique of psychomotor skills, as most students own this technology and their satisfaction with this method is high.

  7. Video capture on student-owned mobile devices to facilitate psychomotor skills acquisition: A feasibility study

    PubMed Central

    Hinck, Glori; Bergmann, Thomas F.

    2013-01-01

    Objective We evaluated the feasibility of using mobile device technology to allow students to record their own psychomotor skills so that these recordings can be used for self-reflection and formative evaluation. Methods Students were given the choice of using DVD recorders, zip drive video capture equipment, or their personal mobile phone, device, or digital camera to record specific psychomotor skills. During the last week of the term, they were asked to complete a 9-question survey regarding their recording experience, including details of mobile phone ownership, technology preferences, technical difficulties, and satisfaction with the recording experience and video critique process. Results Of those completing the survey, 83% currently owned a mobile phone with video capability. Of the mobile phone owners 62% reported having email capability on their phone and that they could transfer their video recording successfully to their computer, making it available for upload to the learning management system. Viewing the video recording of the psychomotor skill was valuable to 88% of respondents. Conclusions Our results suggest that mobile phones are a viable technology to use for the video capture and critique of psychomotor skills, as most students own this technology and their satisfaction with this method is high. PMID:23957324

  8. Testing Video and Social Media for Engaging Users of the U.S. Climate Resilience Toolkit

    NASA Astrophysics Data System (ADS)

    Green, C. J.; Gardiner, N.; Niepold, F., III; Esposito, C.

    2015-12-01

    We developed a custom video production stye and a method for analyzing social media behavior so that we may deliberately build and track audience growth for decision-support tools and case studies within the U.S. Climate Resilience Toolkit. The new style of video focuses quickly on decision processes; its 30s format is well-suited for deployment through social media. We measured both traffic and engagement with video using Google Analytics. Each video included an embedded tag, allowing us to measure viewers' behavior: whether or not they entered the toolkit website; the duration of their session on the website; and the number pages they visited in that session. Results showed that video promotion was more effective on Facebook than Twitter. Facebook links generated twice the number of visits to the toolkit. Videos also increased Facebook interaction overall. Because most Facebook users are return visitors, this campaign did not substantially draw new site visitors. We continue to research and apply these methods in a targeted engagement and outreach campaign that utilizes the theory of social diffusion and social influence strategies to grow our audience of "influential" decision-makers and people within their social networks. Our goal is to increase access and use of the U.S. Climate Resilience Toolkit.

  9. Multi-tasking computer control of video related equipment

    NASA Technical Reports Server (NTRS)

    Molina, Rod; Gilbert, Bob

    1989-01-01

    The flexibility, cost-effectiveness and widespread availability of personal computers now makes it possible to completely integrate the previously separate elements of video post-production into a single device. Specifically, a personal computer, such as the Commodore-Amiga, can perform multiple and simultaneous tasks from an individual unit. Relatively low cost, minimal space requirements and user-friendliness, provides the most favorable environment for the many phases of video post-production. Computers are well known for their basic abilities to process numbers, text and graphics and to reliably perform repetitive and tedious functions efficiently. These capabilities can now apply as either additions or alternatives to existing video post-production methods. A present example of computer-based video post-production technology is the RGB CVC (Computer and Video Creations) WorkSystem. A wide variety of integrated functions are made possible with an Amiga computer existing at the heart of the system.

  10. Virtual reality for spherical images

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  11. [A computer method for the evaluation of Paramecium motor activity using video records of their movement].

    PubMed

    Bingi, V N; Zarutskiĭ, A A; Kapranov, S V; Kovalev, Iu M; Miliaev, V A; Tereshchenko, N A

    2004-01-01

    A method for the evaluation of Paramecium caudatum motility was proposed as a tool for the investigation of magnetobiological as well as other physical and chemical effects. The microscopically observed movement of paramecia is recorded and processed using a special software program. The protozoan motility is determined as a function of their mean velocity in a definite time. The main advantages of the method are that it is easily modified for determining various characteristics of the motor activity of paramecia and that the video data obtained can be reused.

  12. Smartphone-based photoplethysmographic imaging for heart rate monitoring.

    PubMed

    Alafeef, Maha

    2017-07-01

    The purpose of this study is to make use of visible light reflected mode photoplethysmographic (PPG) imaging for heart rate (HR) monitoring via smartphones. The system uses the built-in camera feature in mobile phones to capture video from the subject's index fingertip. The video is processed, and then the PPG signal resulting from the video stream processing is used to calculate the subject's heart rate. Records from 19 subjects were used to evaluate the system's performance. The HR values obtained by the proposed method were compared with the actual HR. The obtained results show an accuracy of 99.7% and a maximum absolute error of 0.4 beats/min where most of the absolute errors lay in the range of 0.04-0.3 beats/min. Given the encouraging results, this type of HR measurement can be adopted with great benefit, especially in the conditions of personal use or home-based care. The proposed method represents an efficient portable solution for HR accurate detection and recording.

  13. Wavelet based mobile video watermarking: spread spectrum vs. informed embedding

    NASA Astrophysics Data System (ADS)

    Mitrea, M.; Prêteux, F.; Duţă, S.; Petrescu, M.

    2005-11-01

    The cell phone expansion provides an additional direction for digital video content distribution: music clips, news, sport events are more and more transmitted toward mobile users. Consequently, from the watermarking point of view, a new challenge should be taken: very low bitrate contents (e.g. as low as 64 kbit/s) are now to be protected. Within this framework, the paper approaches for the first time the mathematical models for two random processes, namely the original video to be protected and a very harmful attack any watermarking method should face the StirMark attack. By applying an advanced statistical investigation (combining the Chi square, Ro, Fisher and Student tests) in the discrete wavelet domain, it is established that the popular Gaussian assumption can be very restrictively used when describing the former process and has nothing to do with the latter. As these results can a priori determine the performances of several watermarking methods, both of spread spectrum and informed embedding types, they should be considered in the design stage.

  14. Automated High-Speed Video Detection of Small-Scale Explosives Testing

    NASA Astrophysics Data System (ADS)

    Ford, Robert; Guymon, Clint

    2013-06-01

    Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.

  15. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  16. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However, doing so requires overcoming significant limitations typically including much lower sample rates, reduced sensitivity and dynamic range, more expensive video hardware, and the need for sophisticated video processing. The ATCOM real time image processing software environment provides many of the needed capabilities for researching video-acoustic signal extraction. ATCOM currently is a powerful tool for the visual enhancement of atmospheric turbulence distorted telescopic views. In order to explore the potential of acoustic signal recovery from video imagery we modified ATCOM to extract audio waveforms from the same telescopic video sources. In this paper, we demonstrate and compare both readout techniques for several aerospace test scenarios to better show where each has advantages.

  17. Challenges and opportunities of undertaking a video ethnographic study to understand medication communication.

    PubMed

    Liu, Wei; Gerdtz, Marie; Manias, Elizabeth

    2015-12-01

    To examine the challenges and opportunities of undertaking a video ethnographic study on medication communication among nurses, doctors, pharmacists and patients. Video ethnography has proved to be a dynamic and useful method to explore clinical communication activities. This approach involves filming actual behaviours and activities of clinicians to develop new knowledge and to stimulate reflections of clinicians on their behaviours and activities. However, there is limited information about the complex negotiations required to use video ethnography in actual clinical practice. Discursive paper. A video ethnographic approach was used to gain better understanding of medication communication processes in two general medical wards of a metropolitan hospital in Melbourne, Australia. This paper presents the arduous and delicate process of gaining access into hospital wards to video-record actual clinical practice and the methodological and ethical issues associated with video-recording. Obtaining access to clinical settings and clinician consent are the first hurdles of conducting a video ethnographic study. Clinicians may still feel intimidated or self-conscious in being video recorded about their medication communication practices, which they could perceive as judgements being passed about their clinical competence. By thoughtful and strategic planning, video ethnography can provide in-depth understandings of medication communication in acute care hospital settings. Ethical issues of informed consent, patient safety and respect for the confidentiality of patients and clinicians need to be carefully addressed to build up and maintain trusting relationships between researchers and participants in the clinical environment. By prudently considering the complex ethical and methodological concerns of using video ethnography, this approach can help to reveal the unpredictability and messiness of clinical practice. The visual data generated can stimulate clinicians' reflexivity about their norms of practice and bring about improved communication about managing medications. © 2015 John Wiley & Sons Ltd.

  18. Optimized static and video EEG rapid serial visual presentation (RSVP) paradigm based on motion surprise computation

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Bhattacharyya, Rajan

    2017-05-01

    In this paper, we describe an algorithm and system for optimizing search and detection performance for "items of interest" (IOI) in large-sized images and videos that employ the Rapid Serial Visual Presentation (RSVP) based EEG paradigm and surprise algorithms that incorporate motion processing to determine whether static or video RSVP is used. The system works by first computing a motion surprise map on image sub-regions (chips) of incoming sensor video data and then uses those surprise maps to label the chips as either "static" or "moving". This information tells the system whether to use a static or video RSVP presentation and decoding algorithm in order to optimize EEG based detection of IOI in each chip. Using this method, we are able to demonstrate classification of a series of image regions from video with an azimuth value of 1, indicating perfect classification, over a range of display frequencies and video speeds.

  19. Real-time demonstration hardware for enhanced DPCM video compression algorithm

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.

    1992-01-01

    The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).

  20. Gas leak detection in infrared video with background modeling

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  1. Automated video-microscopic imaging and data acquisition system for colloid deposition measurements

    DOEpatents

    Abdel-Fattah, Amr I.; Reimus, Paul W.

    2004-12-28

    A video microscopic visualization system and image processing and data extraction and processing method for in situ detailed quantification of the deposition of sub-micrometer particles onto an arbitrary surface and determination of their concentration across the bulk suspension. The extracted data includes (a) surface concentration and flux of deposited, attached and detached colloids, (b) surface concentration and flux of arriving and departing colloids, (c) distribution of colloids in the bulk suspension in the direction perpendicular to the deposition surface, and (d) spatial and temporal distributions of deposited colloids.

  2. A motion compensation technique using sliced blocks and its application to hybrid video coding

    NASA Astrophysics Data System (ADS)

    Kondo, Satoshi; Sasai, Hisao

    2005-07-01

    This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.

  3. Pregnancy Prevention at Her Fingertips: A Text- and Mobile Video-Based Pilot Intervention to Promote Contraceptive Methods among College Women

    ERIC Educational Resources Information Center

    Walsh-Buhi, Eric R.; Helmy, Hannah; Harsch, Kristin; Rella, Natalie; Godcharles, Cheryl; Ogunrunde, Adejoke; Lopez Castillo, Humberto

    2016-01-01

    Objective: This paper reports on a pilot study evaluating the feasibility and acceptability of a text- and mobile video-based intervention to educate women and men attending college about non-daily contraception, with a particular focus on long-acting reversible contraception (LARC). A secondary objective is to describe the process of intervention…

  4. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  5. Impact of video technology on efficiency of pharmacist-provided anticoagulation counseling and patient comprehension.

    PubMed

    Moore, Sarah J; Blair, Elizabeth A; Steeb, David R; Reed, Brent N; Hull, J Heyward; Rodgers, Jo Ellen

    2015-06-01

    Discharge anticoagulation counseling is important for ensuring patient comprehension and optimizing clinical outcomes. As pharmacy resources become increasingly limited, the impact of informational videos on the counseling process becomes more relevant. To evaluate differences in pharmacist time spent counseling and patient comprehension (measured by the Oral Anticoagulation Knowledge [OAK] test) between informational videos and traditional face-to-face (oral) counseling. This prospective, open, parallel-group study at an academic medical center randomized 40 individuals-17 warfarin-naïve ("New Start") and 23 with prior warfarin use ("Restart")-to receive warfarin discharge education by video or face-to-face counseling. "Teach-back" questions were used in both groups. Although overall pharmacist time was reduced in the video counseling group (P < 0.001), an interaction between prior warfarin use and counseling method (P = 0.012) suggests the difference between counseling methods was smaller in New Start participants. Following adjustment, mean total time was reduced 8.71 (95% CI = 5.15-12.26) minutes (adjusted P < 0.001) in Restart participants and 2.31 (-2.19 to 6.81) minutes (adjusted P = 0.472) in New Start participants receiving video counseling. Postcounseling OAK test scores did not differ. Age, gender, socioeconomic status, and years of education were not predictive of total time or OAK test score. Use of informational videos coupled with teach-back questions significantly reduced pharmacist time spent on anticoagulation counseling without compromising short-term patient comprehension, primarily in patients with prior warfarin use. Study results demonstrate that video technology provides an efficient method of anticoagulation counseling while achieving similar comprehension. © The Author(s) 2015.

  6. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal

    PubMed Central

    2016-01-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479

  7. Video capture of clinical care to enhance patient safety

    PubMed Central

    Weinger, M; Gonzales, D; Slagle, J; Syeed, M

    2004-01-01

    

 Experience from other domains suggests that videotaping and analyzing actual clinical care can provide valuable insights for enhancing patient safety through improvements in the process of care. Methods are described for the videotaping and analysis of clinical care using a high quality portable multi-angle digital video system that enables simultaneous capture of vital signs and time code synchronization of all data streams. An observer can conduct clinician performance assessment (such as workload measurements or behavioral task analysis) either in real time (during videotaping) or while viewing previously recorded videotapes. Supplemental data are synchronized with the video record and stored electronically in a hierarchical database. The video records are transferred to DVD, resulting in a small, cheap, and accessible archive. A number of technical and logistical issues are discussed, including consent of patients and clinicians, maintaining subject privacy and confidentiality, and data security. Using anesthesiology as a test environment, over 270 clinical cases (872 hours) have been successfully videotaped and processed using the system. PMID:15069222

  8. A simple method for panretinal imaging with the slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2016-12-01

    Slit lamp biomicroscopy of the retina with a convex lens is a key procedure in clinical practice. The methods presented enable ophthalmologists to adequately image large and peripheral parts of the fundus using a video-slit lamp and freely available stitching software. A routine examination of the fundus with a slit lamp and a +90 D lens is recorded on a video film. Later, sufficiently sharp still images are identified on the video sequence. These still images are imported into a freely available image-processing program (Hugin, for stitching mosaics together digitally) and corresponding points are marked on adjacent still images with some overlap. Using the digital stitching program Hugin panoramic overviews of the retina can be built which can extend to the equator. This allows to image diseases involving the whole retina or its periphery by performing a structured fundus examination with a video-slit lamp. Similar images with a video-slit lamp based on a fundus examination through a hand-held non-contact lens have not been demonstrated before. The methods presented enable those ophthalmologists without high-end imaging equipment to monitor pathological fundus findings. The suggested procedure might even be interesting for retinological departments if peripheral findings are to be documented which might be difficult with fundus cameras.

  9. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  10. Video games as a complementary therapy tool in mental disorders: PlayMancer, a European multicentre study

    PubMed Central

    Fernández-Aranda, Fernando; Jiménez-Murcia, Susana; Santamaría, Juan J.; Gunnard, Katarina; Soto, Antonio; Kalapanidas, Elias; Bults, Richard G. A.; Davarakis, Costas; Ganchev, Todor; Granero, Roser; Konstantas, Dimitri; Kostoulas, Theodoros P.; Lam, Tony; Lucas, Mikkel; Masuet-Aumatell, Cristina; Moussa, Maher H.; Nielsen, Jeppe; Penelo, Eva

    2012-01-01

    Background: Previous review studies have suggested that computer games can serve as an alternative or additional form of treatment in several areas (schizophrenia, asthma or motor rehabilitation). Although several naturalistic studies have been conducted showing the usefulness of serious video games in the treatment of some abnormal behaviours, there is a lack of serious games specially designed for treating mental disorders. Aim: The purpose of our project was to develop and evaluate a serious video game designed to remediate attitudinal, behavioural and emotional processes of patients with impulse-related disorders. Method and results: The video game was created and developed within the European research project PlayMancer. It aims to prove potential capacity to change underlying attitudinal, behavioural and emotional processes of patients with impulse-related disorders. New interaction modes were provided by newly developed components, such as emotion recognition from speech, face and physiological reactions, while specific impulsive reactions were elicited. The video game uses biofeedback for helping patients to learn relaxation skills, acquire better self-control strategies and develop new emotional regulation strategies. In this article, we present a description of the video game used, rationale, user requirements, usability and preliminary data, in several mental disorders. PMID:22548300

  11. An evaluation of the benefits and challenges of video consulting between general practitioners and residential aged care facilities.

    PubMed

    Wade, Victoria; Whittaker, Frank; Hamlyn, Jeremy

    2015-12-01

    This research evaluated a project that provided video consultations between general practitioners (GPs) and residential aged care facilities (RACFs), with the aim of enabling faster access to medical care and avoidance of unnecessary hospital transfers. GPs were paid for video consultations at a rate equivalent to existing insurance reimbursement for supporting telehealth services. Evaluation data were gathered by direct observation at the project sites, semi-structured interviews and video call data from the technical network. Three pairs of general practices and RACFs were recruited to the project. 40 video consultations eligible for payment occurred over a 6 month period, three of which were judged to have avoided hospital attendance. The process development and change management aspects of the project required substantially more effort than was anticipated. This was due to problems with RACF technical infrastructure, the need for repeated training and awareness raising in RACFs, the challenge of establishing new clinical procedures, the short length of the project and broader difficulties in the relationships between GPs and RACFs. Video consulting between GPs and RACFs was clinically useful and avoided hospital attendance on a small scale, but further focus on process development is needed to embed this as a routine method of service delivery. © The Author(s) 2015.

  12. The effect of student self-video of performance on clinical skill competency: a randomised controlled trial.

    PubMed

    Maloney, Stephen; Storr, Michael; Morgan, Prue; Ilic, Dragan

    2013-03-01

    Emerging technologies and student information technology literacy are enabling new methods of teaching and learning for clinical skill performance. Facilitating experiential practice and reflection on performance through student self-video, and exposure to peer benchmarks, may promote greater levels of skill competency. This study examines the impact of student self-video on the attainment of clinical skills. A total of 60 Physiotherapy students (100%) consented to participate in the randomised controlled trial. One group (50%) was taught a complex clinical skill with regular practical tutoring, whilst the other group (50%) supplemented the tutoring with a self-video task aimed at promoting reflection on performance. Student skill performance was measured in an objective structured clinical examination (OSCE). Students also completed an anonymous questionnaire, which explored their perception of their learning experiences. Students received significantly higher scores in the OSCE when the examined clinical skill had been supplemented with a self-video of performance task (P = 0.048). Descriptive analysis of the questionnaires relating to student perceptions on the teaching methods identified that the self-video of performance task utilised contributed to improvement in their clinical performance and their confidence for future clinical practice. Students identified a number of aspects of the submission process that contributed to this perception of educational value. The novel results of this study demonstrate that greater clinical skill competency is achieved when traditional tutoring methods are supplemented with student self-video of performance tasks. Additional benefits included the ability of staff and students to monitor longitudinal performance, and an increase in feedback opportunities.

  13. Participatory video-assisted evaluation of truck drivers' work outside cab: deliveries in two types of transport.

    PubMed

    Reiman, Arto; Pekkala, Janne; Väyrynen, Seppo; Putkonen, Ari; Forsman, Mikael

    2014-01-01

    The aim of this study was to identify risks and ergonomics discomfort during work of local and short haul delivery truck drivers outside a cab. The study used a video- and computer-based method (VIDAR). VIDAR is a participatory method identifying demanding work situations and their potential risks. The drivers' work was videoed and analysed by subjects and ergonomists. Delivery truck drivers should not be perceived as one group with equal risks because there were significant differences between the 2 types of transportation and specific types of risks. VIDAR produces visual material for risk management processes. VIDAR as a participatory approach stimulates active discussion about work-related risks and discomfort, and about possibilities for improvement. VIDAR may be also applied to work which comprises different working environments.

  14. Digital video steganalysis exploiting collusion sensitivity

    NASA Astrophysics Data System (ADS)

    Budhia, Udit; Kundur, Deepa

    2004-09-01

    In this paper we present an effective steganalyis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability and low complexity the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this paper, we present a method that overcomes this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking, and more sophisticated pattern recognition tools. Applications of our scheme include cybersecurity and cyberforensics.

  15. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    NASA Astrophysics Data System (ADS)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  16. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  17. Live lecture versus video-recorded lecture: are students voting with their feet?

    PubMed

    Cardall, Scott; Krupat, Edward; Ulrich, Michael

    2008-12-01

    In light of educators' concerns that lecture attendance in medical school has declined, the authors sought to assess students' perceptions, evaluations, and motivations concerning live lectures compared with accelerated, video-recorded lectures viewed online. The authors performed a cross-sectional survey study of all first- and second-year students at Harvard Medical School. Respondents answered questions regarding their lecture attendance; use of class and personal time; use of accelerated, video-recorded lectures; and reasons for viewing video-recorded and live lectures. Other questions asked students to compare how well live and video-recorded lectures satisfied learning goals. Of the 353 students who received questionnaires, 204 (58%) returned responses. Collectively, students indicated watching 57.2% of lectures live, 29.4% recorded, and 3.8% using both methods. All students have watched recorded lectures, and most (88.5%) have used video-accelerating technologies. When using accelerated, video-recorded lecture as opposed to attending lecture, students felt they were more likely to increase their speed of knowledge acquisition (79.3% of students), look up additional information (67.7%), stay focused (64.8%), and learn more (63.7%). Live attendance remains the predominant method for viewing lectures. However, students find accelerated, video-recorded lectures equally or more valuable. Although educators may be uncomfortable with the fundamental change in the learning process represented by video-recorded lecture use, students' responses indicate that their decisions to attend lectures or view recorded lectures are motivated primarily by a desire to satisfy their professional goals. A challenge remains for educators to incorporate technologies students find useful while creating an interactive learning culture.

  18. How College Students' Conceptions of Newton's Second and Third Laws Change through Watching Interactive Video Vignettes: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Engelman, Jonathan

    2016-01-01

    Changing student conceptions in physics is a difficult process and has been a topic of research for many years. The purpose of this study was to understand what prompted students to change or not change their incorrect conceptions of Newtons Second or Third Laws in response to an intervention, Interactive Video Vignettes (IVVs), designed to…

  19. Photographic Analysis Technique for Assessing External Tank Foam Loss Events

    NASA Technical Reports Server (NTRS)

    Rieckhoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A video camera and recorder were placed inside the solid rocket booster forward skirt in order to view foam loss events over an area on the external tank (ET) intertank surface. In this Technical Memorandum, a method of processing video images to allow rapid detection of permanent changes indicative of foam loss events on the ET surface was defined and applied to accurately count, categorize, and locate such events.

  20. Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification

    PubMed Central

    Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo

    2018-01-01

    Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination. PMID:29751625

  1. Introducing a Virtual Reality Experience in Anatomic Pathology Education.

    PubMed

    Madrigal, Emilio; Prajapati, Shyam; Hernandez-Prera, Juan C

    2016-10-01

    A proper examination of surgical specimens is fundamental in anatomic pathology (AP) education. However, the resources available to residents may not always be suitable for efficient skill acquisition. We propose a method to enhance AP education by introducing high-definition videos featuring methods for appropriate specimen handling, viewable on two-dimensional (2D) and stereoscopic three-dimensional (3D) platforms. A stereo camera system recorded the gross processing of commonly encountered specimens. Three edited videos, with instructional audio voiceovers, were experienced by nine junior residents in a crossover study to assess the effects of the exposure (2D vs 3D movie views) on self-reported physiologic symptoms. A questionnaire was used to analyze viewer acceptance. All surveyed residents found the videos beneficial in preparation to examine a new specimen type. Viewer data suggest an improvement in specimen handling confidence and knowledge and enthusiasm toward 3D technology. None of the participants encountered significant motion sickness. Our novel method provides the foundation to create a robust teaching library. AP is inherently a visual discipline, and by building on the strengths of traditional teaching methods, our dynamic approach allows viewers to appreciate the procedural actions involved in specimen processing. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Using budget-friendly methods to analyze sport specific movements

    NASA Astrophysics Data System (ADS)

    Jackson, Lindsay; Williams, Sarah; Ferrara, Davon

    2015-03-01

    When breaking down the physics behind sport specific movements, athletes, usually professional, are often assessed in multimillion-dollar laboratories and facilities. Budget-friendly methods, such as video analysis using low-cost cameras, iPhone sensors, or inexpensive force sensors can make this process more accessible to amateur athletes, which in-turn can give insight into injury mechanisms. Here we present a comparison of two methods of determining the forces experienced by a cheerleader during co-education stunting and soccer goalies while side-diving. For the cheerleader, accelerometer measurements were taken by an iPhone 5 and compared to video analysis. The measurements done on the soccer players were taken using FlexiForce force sensors and again compared to video analysis. While these budget-friendly methods could use some refining, they show promise for producing usable measurements for possibly increasing our understanding of injury in amateur players. Furthermore, low-cost physics experiments with sports can foster an active learning environment for students with minimum physics and mathematical background.

  3. Video conference quality assessment based on cooperative sensing of video and audio

    NASA Astrophysics Data System (ADS)

    Wang, Junxi; Chen, Jialin; Tian, Xin; Zhou, Cheng; Zhou, Zheng; Ye, Lu

    2015-12-01

    This paper presents a method to video conference quality assessment, which is based on cooperative sensing of video and audio. In this method, a proposed video quality evaluation method is used to assess the video frame quality. The video frame is divided into noise image and filtered image by the bilateral filters. It is similar to the characteristic of human visual, which could also be seen as a low-pass filtering. The audio frames are evaluated by the PEAQ algorithm. The two results are integrated to evaluate the video conference quality. A video conference database is built to test the performance of the proposed method. It could be found that the objective results correlate well with MOS. Then we can conclude that the proposed method is efficiency in assessing video conference quality.

  4. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  5. Using video-based observation research methods in primary care health encounters to evaluate complex interactions.

    PubMed

    Asan, Onur; Montague, Enid

    2014-01-01

    The purpose of this paper is to describe the use of video-based observation research methods in primary care environment and highlight important methodological considerations and provide practical guidance for primary care and human factors researchers conducting video studies to understand patient-clinician interaction in primary care settings. We reviewed studies in the literature which used video methods in health care research, and we also used our own experience based on the video studies we conducted in primary care settings. This paper highlighted the benefits of using video techniques, such as multi-channel recording and video coding, and compared "unmanned" video recording with the traditional observation method in primary care research. We proposed a list that can be followed step by step to conduct an effective video study in a primary care setting for a given problem. This paper also described obstacles, researchers should anticipate when using video recording methods in future studies. With the new technological improvements, video-based observation research is becoming a promising method in primary care and HFE research. Video recording has been under-utilised as a data collection tool because of confidentiality and privacy issues. However, it has many benefits as opposed to traditional observations, and recent studies using video recording methods have introduced new research areas and approaches.

  6. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  7. Using video-based observation research methods in primary care health encounters to evaluate complex interactions

    PubMed Central

    Asan, Onur; Montague, Enid

    2015-01-01

    Objective The purpose of this paper is to describe the use of video-based observation research methods in primary care environment and highlight important methodological considerations and provide practical guidance for primary care and human factors researchers conducting video studies to understand patient-clinician interaction in primary care settings. Methods We reviewed studies in the literature which used video methods in health care research and, we also used our own experience based on the video studies we conducted in primary care settings. Results This paper highlighted the benefits of using video techniques such as multi-channel recording and video coding and compared “unmanned” video recording with the traditional observation method in primary care research. We proposed a list, which can be followed step by step to conduct an effective video study in a primary care setting for a given problem. This paper also described obstacles researchers should anticipate when using video recording methods in future studies. Conclusion With the new technological improvements, video-based observation research is becoming a promising method in primary care and HFE research. Video recording has been under-utilized as a data collection tool because of confidentiality and privacy issues. However, it has many benefits as opposed to traditional observations, and recent studies using video recording methods have introduced new research areas and approaches. PMID:25479346

  8. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  9. Full-frame video stabilization with motion inpainting.

    PubMed

    Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung

    2006-07-01

    Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.

  10. Video fluoroscopic techniques for the study of Oral Food Processing

    PubMed Central

    Matsuo, Koichiro; Palmer, Jeffrey B.

    2016-01-01

    Food oral processing and pharyngeal food passage cannot be observed directly from the outside of the body without instrumental methods. Videofluoroscopy (x-ray video recording) reveals the movement of oropharyngeal anatomical structures in two dimensions. By adding a radiopaque contrast medium, the motion and shape of the food bolus can be also visualized, providing critical information about the mechanisms of eating, drinking, and swallowing. For quantitative analysis of the kinematics of oral food processing, radiopaque markers are attached to the teeth, tongue or soft palate. This approach permits kinematic analysis with a variety of textures and consistencies, both solid and liquid. Fundamental mechanisms of food oral processing are clearly observed with videofluoroscopy in lateral and anteroposterior projections. PMID:27213138

  11. Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology

    PubMed Central

    Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.

    2015-01-01

    The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032

  12. Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.

    PubMed

    Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei

    2015-01-01

    Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.

  13. Phosphor thermography technique in hypersonic wind tunnel - Feasibility study

    NASA Astrophysics Data System (ADS)

    Edy, J. L.; Bouvier, F.; Baumann, P.; Le Sant, Y.

    Probative research has been undertaken at ONERA on a new technique of thermography in hypersonic wind tunnels. This method is based on the heat sensitivity of a luminescent coating applied to the model. The luminescent compound, excited by UV light, emits visible light, the properties of which depend on the phosphor temperature, among other factors. Preliminary blowdown wind tunnel tests have been performed, firstly for spot measurements and then for cartographic measurements using a 3-CCD video camera, a BETACAM video recorder and a digital image processing system. The results provide a good indication of the method feasibility.

  14. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modem video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  15. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modern video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  16. Seafloor video footage and still-frame grabs from U.S. Geological Survey cruises in Hawaiian nearshore waters

    USGS Publications Warehouse

    Gibbs, Ann E.; Cochran, Susan A.; Tierney, Peter W.

    2013-01-01

    Underwater video footage was collected in nearshore waters (<60-meter depth) off the Hawaiian Islands from 2002 to 2011 as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project, to improve seafloor characterization and for the development and ground-truthing of benthic-habitat maps. This report includes nearly 53 hours of digital underwater video footage collected during four USGS cruises and more than 10,200 still images extracted from the videos, including still frames from every 10 seconds along transect lines, and still frames showing both an overview and a near-bottom view from fixed stations. Environmental Systems Research Institute (ESRI) shapefiles of individual video and still-image locations, and Google Earth kml files with explanatory text and links to the video and still images, are included. This report documents the various camera systems and methods used to collect the videos, and the techniques and software used to convert the analog video tapes into digital data in order to process the images for optimum viewing and to extract the still images, along with a brief summary of each survey cruise.

  17. Smartphone based automatic organ validation in ultrasound video.

    PubMed

    Vaish, Pallavi; Bharath, R; Rajalakshmi, P

    2017-07-01

    Telesonography involves transmission of ultrasound video from remote areas to the doctors for getting diagnosis. Due to the lack of trained sonographers in remote areas, the ultrasound videos scanned by these untrained persons do not contain the proper information that is required by a physician. As compared to standard methods for video transmission, mHealth driven systems need to be developed for transmitting valid medical videos. To overcome this problem, we are proposing an organ validation algorithm to evaluate the ultrasound video based on the content present. This will guide the semi skilled person to acquire the representative data from patient. Advancement in smartphone technology allows us to perform high medical image processing on smartphone. In this paper we have developed an Application (APP) for a smartphone which can automatically detect the valid frames (which consist of clear organ visibility) in an ultrasound video and ignores the invalid frames (which consist of no-organ visibility), and produces a compressed sized video. This is done by extracting the GIST features from the Region of Interest (ROI) of the frame and then classifying the frame using SVM classifier with quadratic kernel. The developed application resulted with the accuracy of 94.93% in classifying valid and invalid images.

  18. Prediction of transmission distortion for wireless video communication: analysis.

    PubMed

    Chen, Zhifeng; Wu, Dapeng

    2012-03-01

    Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.

  19. Using videoed workshops in interdisciplinary research with people who have disabilities.

    PubMed

    Timmins, Fiona; O'rourke, Pearl; Bagnasco, Annamaria; Timmins, Bernard; Ekins, Ray; Long, Siobhan; Aleo, Giuseppe; Sasso, Loredana

    2017-09-19

    Internationally, interdisciplinary research is advocated in healthcare. Such research receives great respect, particularly from funding bodies, which expect innovations in healthcare to emerge from a whole team rather than a single discipline. However, little guidance exists about the process and structures for such research. To explore and explain the use of videoed workshops and mixed-media artefacts to collect data, and explore the benefits and challenges for interdisciplinary healthcare research. sources Videoed workshops were used to ascertain the preferences of eight people who have disabilities concerning assistive technology. These workshops are used to demonstrate the method's benefits and related challenges for interdisciplinary healthcare research. This method of collecting data has important potential benefits for healthcare research. Future research in healthcare must not only be interdisciplinary, it should also involve a range of research designs that are adaptive and responsive to service users' needs and use innovative methods of collecting data. The use of video and photography in interdisciplinary research for healthcare technology is an exciting possibility, but it poses ethical and practical considerations. Videos and photography area a useful aid in interdisciplinary research and can be a valuable means of non-verbal data collection, especially with participants affected by disabilities, and can support research methods, such as the use of questionnaires. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  20. Video encryption using chaotic masks in joint transform correlator

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  1. The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.

    PubMed

    Pooley, R A; McKinney, J M; Miller, D A

    2001-01-01

    A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.

  2. Enhancing health students' understanding of generic research concepts using a web-based video resource.

    PubMed

    Callaghan, Lynne; Lea, Susan J; Mutton, Lauren; Whittlesea, Emma

    2011-11-01

    This paper presents the development and evaluation of a set of innovative video resources aimed at enhancing health students' understanding and learning of generic research concepts. It is vital that health students achieve a solid foundation in research methods in order to support and inform evidence-based practice. Research concepts were identified through a stakeholder consultation with research methods teaching staff from a variety of health professions. Research concepts and processes included reliability, validity, statistical significance, descriptive statistics, qualitative and quantitative methods, sampling and population, research ethics and searching for and evaluating literature. Videos were produced, informed by a 3-component model, including: first, animated slides of concept definition, second, acted analogical scenarios of concepts and third, interviews with staff regarding the application of the concepts in their own research. Workshop-style focus groups were conducted with 27 students from midwifery, paramedicine and physiotherapy degree programmes. Overall, students perceived the resources as demystifying the topic of research methods through the clarification of definition and application of concepts and making sense of concepts through the analogical videos. Students evaluated the resources extremely positively in comparison with books and lectures and believed that the combination of audio and visual media benefited their learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  4. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Learning Electron Transport Chain Process in Photosynthesis Using Video and Serious Game

    NASA Astrophysics Data System (ADS)

    Espinoza Morales, Cecilia

    This research investigates students' learning about the electron transport chain (ETC) process in photosynthesis by watching a video followed by playing a serious board game-Electron Chute- that models the ETC process. To accomplish this goal, several learning outcomes regarding the misconceptions students' hold about photosynthesis and the ETC process in photosynthesis were defined. Middle school students need opportunities to develop cohesive models that explain the mechanistic processes of biological systems to support their learning. A six-week curriculum on photosynthesis included a one day learning activity using an ETC video and the Electron Chute game to model the ETC process. The ETC model explained how sunlight energy was converted to chemical energy (ATP) at the molecular level involving a flow of electrons. The learning outcomes and the experiences were developed based on the Indiana Academic Standards for biology and the Next Generation Science Standards (NGSS) for the life sciences. Participants were 120 eighth grade science students from an urban public school. The participants were organized into six classes based on their level of academic readiness, regular and challenge, by the school corporation. Four classes were identified as regular classes and two of them as challenge classes. Students in challenge classes had the opportunity to be challenged with more difficult content knowledge and required higher level thinking skills. The regular classes were the mainstream at school. A quasi-experimental design known as non-equivalent group design (NEGD) was used in this study. This experimental design consisted of a pretest-posttest experiment in two similar groups to begin with-the video only and video+game treatments. Intact classes were distributed into the treatments. The video only watched the ETC video and the video+game treatment watched the ETC video and played the Electron Chute game. The instrument (knowledge test) consisted of a multiple-choice section addressing general knowledge of photosynthesis and specific knowledge about ETC, and an essay section where students were asked to interpret each part of a diagram about the ETC process. Considering only the effect of treatments on score gain, regular and challenge groups reached higher scores in the posttest in comparison to the pretest after playing Electron Chute in both section of the test. However, the effect of treatments between the classes for each treatment was inconclusive. In the essay, the score gain was higher in the challenge than the regular class, but there was not a significant difference between both classes in the multiple-choice section. In regard to the learning outcomes, the initial model provided by the ETC video was mostly effective on addressing the misconception related to the oxygen production, which derives from the photolysis -or splitting-of the water molecules. Playing Electron Chute was effective on addressing most of the misconceptions targeted in the instruction design used for study. Most of these misconceptions were related to ATP and NADPH production and the cell structures where the ETC process takes place. At the end of the video+game learning treatment, a survey was used to collect data about students' experiences while playing the game. The majority of students agreed that playing the game increased their ability to explain how plants use light energy, but only about a third of them felt they could explain how ETC worked. Enjoyment and need for more explanations were different between students who attended the regular and challenge classes. The majority of the students who attended a regular class indicated they liked the ETC video and playing Electron Chute, percentage of agreement that was significantly higher than students who attended the challenge class. As a result, more students in the regular class indicated an interest in learning other science concepts like ETC. Students who attended the regular class reported that clear rules about how to play the game were helpful for learning. Further, the challenge group indicated the video and the Electron Chute game could include more explanations. These results suggest the video and game learning experience has the potential for engaging students’ interest in science when they participated in a regular class. This study also demonstrates a principled approach for designing a video and game to illustrate important methods for creating content knowledge that supports students’ ability to make sense of how complex systems work. Through more refinements of the game, the learning experiences could be a viable learning experience that accommodates the needs of a diverse population of students who might prefer different learning methods.

  6. A method of mobile video transmission based on J2ee

    NASA Astrophysics Data System (ADS)

    Guo, Jian-xin; Zhao, Ji-chun; Gong, Jing; Chun, Yang

    2013-03-01

    As 3G (3rd-generation) networks evolve worldwide, the rising demand for mobile video services and the enormous growth of video on the internet is creating major new revenue opportunities for mobile network operators and application developers. The text introduced a method of mobile video transmission based on J2ME, giving the method of video compressing, then describing the video compressing standard, and then describing the software design. The proposed mobile video method based on J2EE is a typical mobile multimedia application, which has a higher availability and a wide range of applications. The users can get the video through terminal devices such as phone.

  7. Two schemes for rapid generation of digital video holograms using PC cluster

    NASA Astrophysics Data System (ADS)

    Park, Hanhoon; Song, Joongseok; Kim, Changseob; Park, Jong-Il

    2017-12-01

    Computer-generated holography (CGH), which is a process of generating digital holograms, is computationally expensive. Recently, several methods/systems of parallelizing the process using graphic processing units (GPUs) have been proposed. Indeed, use of multiple GPUs or a personal computer (PC) cluster (each PC with GPUs) enabled great improvements in the process speed. However, extant literature has less often explored systems involving rapid generation of multiple digital holograms and specialized systems for rapid generation of a digital video hologram. This study proposes a system that uses a PC cluster and is able to more efficiently generate a video hologram. The proposed system is designed to simultaneously generate multiple frames and accelerate the generation by parallelizing the CGH computations across a number of frames, as opposed to separately generating each individual frame while parallelizing the CGH computations within each frame. The proposed system also enables the subprocesses for generating each frame to execute in parallel through multithreading. With these two schemes, the proposed system significantly reduced the data communication time for generating a digital hologram when compared with that of the state-of-the-art system.

  8. Action recognition in depth video from RGB perspective: A knowledge transfer manner

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen

    2018-03-01

    Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.

  9. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  10. Streaming video-based 3D reconstruction method compatible with existing monoscopic and stereoscopic endoscopy systems

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul

    2012-06-01

    Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.

  11. An unsupervised method for summarizing egocentric sport videos

    NASA Astrophysics Data System (ADS)

    Habibi Aghdam, Hamed; Jahani Heravi, Elnaz; Puig, Domenec

    2015-12-01

    People are getting more interested to record their sport activities using head-worn or hand-held cameras. This type of videos which is called egocentric sport videos has different motion and appearance patterns compared with life-logging videos. While a life-logging video can be defined in terms of well-defined human-object interactions, notwithstanding, it is not trivial to describe egocentric sport videos using well-defined activities. For this reason, summarizing egocentric sport videos based on human-object interaction might fail to produce meaningful results. In this paper, we propose an unsupervised method for summarizing egocentric videos by identifying the key-frames of the video. Our method utilizes both appearance and motion information and it automatically finds the number of the key-frames. Our blind user study on the new dataset collected from YouTube shows that in 93:5% cases, the users choose the proposed method as their first video summary choice. In addition, our method is within the top 2 choices of the users in 99% of studies.

  12. Control Method for Video Guidance Sensor System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are commands is permitted only when the system is in the carried out. Further, acceptance of reset and diagnostic standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  13. Control method for video guidance sensor system

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  14. YouTube as a potential training method for laparoscopic cholecystectomy.

    PubMed

    Lee, Jun Suh; Seo, Ho Seok; Hong, Tae Ho

    2015-08-01

    The purpose of this study was to analyze the educational quality of laparoscopic cholecystectomy (LC) videos accessible on YouTube, one of the most important sources of internet-based medical information. The keyword 'laparoscopic cholecystectomy' was used to search on YouTube and the first 100 videos were analyzed. Among them, 27 videos were excluded and 73 videos were included in the study. An arbitrary score system for video quality, devised from existing LC guidelines, were used to evaluate the quality of the videos. Video demographics were analyzed by the quality and source of the video. Correlation analysis was performed. When analyzed by video quality, 11 (15.1%) were evaluated as 'good', 40 (54.8%) were 'moderate', and 22 (30.1%) were 'poor', and there were no differences in length, views per day, or number of likes, dislikes, and comments. When analyzed by source, 27 (37.0%) were uploaded by primary centers, 20 (27.4%) by secondary centers, 15 (20.5%) by tertiary centers, 5 (6.8%) by academic institutions, and 6 (8.2%) by commercial institutions. The mean score of the tertiary center group (6.0 ± 2.0) was significantly higher than the secondary center group (3.9 ± 1.4, P = 0.001). The video score had no correlation with views per day or number of likes. Many LC videos are accessible on YouTube with varying quality. Videos uploaded by tertiary centers showed the highest educational value. This discrepancy in video quality was not recognized by viewers. More videos with higher quality need to be uploaded, and an active filtering process is necessary.

  15. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  16. If a Picture Is Worth a Thousand Words Is Video Worth a Million? Differences in Affective and Cognitive Processing of Video and Text Cases

    ERIC Educational Resources Information Center

    Yadav, Aman; Phillips, Michael M.; Lundeberg, Mary A.; Koehler, Matthew J.; Hilden, Katherine; Dirkin, Kathryn H.

    2011-01-01

    In this investigation we assessed whether different formats of media (video, text, and video + text) influenced participants' engagement, cognitive processing and recall of non-fiction cases of people diagnosed with HIV/AIDS. For each of the cases used in the study, we designed three informationally-equivalent versions: video, text, and video +…

  17. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  18. Research of real-time video processing system based on 6678 multi-core DSP

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang

    2017-10-01

    In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.

  19. Feathering effect detection and artifact agglomeration index-based video deinterlacing technique

    NASA Astrophysics Data System (ADS)

    Martins, André Luis; Rodrigues, Evandro Luis Linhari; de Paiva, Maria Stela Veludo

    2018-03-01

    Several video deinterlacing techniques have been developed, and each one presents a better performance in certain conditions. Occasionally, even the most modern deinterlacing techniques create frames with worse quality than primitive deinterlacing processes. This paper validates that the final image quality can be improved by combining different types of deinterlacing techniques. The proposed strategy is able to select between two types of deinterlaced frames and, if necessary, make the local correction of the defects. This decision is based on an artifact agglomeration index obtained from a feathering effect detection map. Starting from a deinterlaced frame produced by the "interfield average" method, the defective areas are identified, and, if deemed appropriate, these areas are replaced by pixels generated through the "edge-based line average" method. Test results have proven that the proposed technique is able to produce video frames with higher quality than applying a single deinterlacing technique through getting what is good from intra- and interfield methods.

  20. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  1. Accidental Turbulent Discharge Rate Estimation from Videos

    NASA Astrophysics Data System (ADS)

    Ibarra, Eric; Shaffer, Franklin; Savaş, Ömer

    2015-11-01

    A technique to estimate the volumetric discharge rate in accidental oil releases using high speed video streams is described. The essence of the method is similar to PIV processing, however the cross correlation is carried out on the visible features of the efflux, which are usually turbulent, opaque and immiscible. The key step in the process is to perform a pixelwise time filtering on the video stream, in which the parameters are commensurate with the scales of the large eddies. The velocity field extracted from the shell of visible features is then used to construct an approximate velocity profile within the discharge. The technique has been tested on laboratory experiments using both water and oil jets at Re ~105 . The technique is accurate to 20%, which is sufficient for initial responders to deploy adequate resources for containment. The software package requires minimal user input and is intended for deployment on an ROV in the field. Supported by DOI via NETL.

  2. Development of a video-delivered relaxation treatment of late-life anxiety for veterans.

    PubMed

    Gould, Christine E; Zapata, Aimee Marie L; Bruce, Janine; Bereknyei Merrell, Sylvia; Wetherell, Julie Loebach; O'Hara, Ruth; Kuhn, Eric; Goldstein, Mary K; Beaudreau, Sherry A

    2017-10-01

    Behavioral treatments reduce anxiety, yet many older adults may not have access to these efficacious treatments. To address this need, we developed and evaluated the feasibility and acceptability of a video-delivered anxiety treatment for older Veterans. This treatment program, BREATHE (Breathing, Relaxation, and Education for Anxiety Treatment in the Home Environment), combines psychoeducation, diaphragmatic breathing, and progressive muscle relaxation training with engagement in activities. A mixed methods concurrent study design was used to examine the clarity of the treatment videos. We conducted semi-structured interviews with 20 Veterans (M age = 69.5, SD = 7.3 years; 55% White, Non-Hispanic) and collected ratings of video clarity. Quantitative ratings revealed that 100% of participants generally or definitely could follow breathing and relaxation video instructions. Qualitative findings, however, demonstrated more variability in the extent to which each video segment was clear. Participants identified both immediate benefits and motivation challenges associated with a video-delivered treatment. Participants suggested that some patients may need encouragement, whereas others need face-to-face therapy. Quantitative ratings of video clarity and qualitative findings highlight the feasibility of a video-delivered treatment for older Veterans with anxiety. Our findings demonstrate the importance of ensuring patients can follow instructions provided in self-directed treatments and the role that an iterative testing process has in addressing these issues. Next steps include testing the treatment videos with older Veterans with anxiety disorders.

  3. Manual Therapy Practices of Sobadores in North Carolina

    PubMed Central

    Graham, Alan; Sandberg, Joanne C.; Quandt, Sara A.; Mora, Dana C.

    2016-01-01

    Abstract Objectives: This analysis provides a description of the manual-therapy elements of sobadores practicing in North Carolina, using videotapes of patient treatment sessions. Design: Three sobadores allowed the video recording of eight patient treatment sessions (one each for two sobadores, six for the third sobador). Each of the recordings was reviewed by an experienced chiropractor who recorded the frequencies of seven defined manual-therapy elements: (1) treatment time; (2) patient position on treatment surface; (3) patient body part contacted by the sobador; (4) sobador examination methods; (5) primary treatment processes; (6) sobador body part area referencing patient; and (7) adjunctive treatment processes. Results: The range of treatment time of 9–30 min was similar to the treatment spectra that combine techniques used by conventional massage and manipulative practitioners. The patient positions on the treatment surface were not extraordinary, given the wide variety of treatment processes used, and indicated the sobadores treat patients in multiple positions. The patient body part contacted by the sobadores indicated that they were treating each of the major parts of the musculoskeletal system. Basic palpation dominated the sobadores' examination methods. The sobadores' primary treatment processes included significant variety, but rubbing was the dominant practice. The hands were the sobador body area that most often made contact with the patient. They all used lubricants. Conclusions: Sobadores' methods are similar to those of other manual-therapy practitioners. Additional study of video-recorded sobador practices is needed. Video-recorded practice of other traditional and conventional manual therapies for comparative analysis will help delineate the specific similarities and differences among the manual therapies. PMID:27400120

  4. Light-reflection random-target method for measurement of the modulation transfer function of a digital video-camera

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jakubik, P.; Machala, L.

    2005-11-01

    This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.

  5. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.

  6. Attitudes of older adults toward shooter video games: An initial study to select an acceptable game for training visual processing.

    PubMed

    McKay, Sandra M; Maki, Brian E

    2010-01-01

    A computer-based 'Useful Field of View' (UFOV) training program has been shown to be effective in improving visual processing in older adults. Studies of young adults have shown that playing video games can have similar benefits; however, these studies involved realistic and violent 'first-person shooter' (FPS) games. The willingness of older adults to play such games has not been established. OBJECTIVES: To determine the degree to which older adults would accept playing a realistic, violent FPS-game, compared to video games not involving realistic depiction of violence. METHODS: Sixteen older adults (ages 64-77) viewed and rated video-clip demonstrations of the UFOV program and three video-game genres (realistic-FPS, cartoon-FPS, fixed-shooter), and were then given an opportunity to try them out (30 minutes per game) and rate various features. RESULTS: The results supported a hypothesis that the participants would be less willing to play the realistic-FPS game in comparison to the less violent alternatives (p's<0.02). After viewing the video-clip demonstrations, 10 of 16 participants indicated they would be unwilling to try out the realistic-FPS game. Of the six who were willing, three did not enjoy the experience and were not interested in playing again. In contrast, all 12 subjects who were willing to try the cartoon-FPS game reported that they enjoyed it and would be willing to play again. A high proportion also tried and enjoyed the UFOV training (15/16) and the fixed-shooter game (12/15). DISCUSSION: A realistic, violent FPS video game is unlikely to be an appropriate choice for older adults. Cartoon-FPS and fixed-shooter games are more viable options. Although most subjects also enjoyed UFOV training, a video-game approach has a number of potential advantages (for instance, 'addictive' properties, low cost, self-administration at home). We therefore conclude that non-violent cartoon-FPS and fixed-shooter video games warrant further investigation as an alternative to the UFOV program for training improved visual processing in seniors.

  7. Objectification of perceptual image quality for mobile video

    NASA Astrophysics Data System (ADS)

    Lee, Seon-Oh; Sim, Dong-Gyu

    2011-06-01

    This paper presents an objective video quality evaluation method for quantifying the subjective quality of digital mobile video. The proposed method aims to objectify the subjective quality by extracting edgeness and blockiness parameters. To evaluate the performance of the proposed algorithms, we carried out subjective video quality tests with the double-stimulus continuous quality scale method and obtained differential mean opinion score values for 120 mobile video clips. We then compared the performance of the proposed methods with that of existing methods in terms of the differential mean opinion score with 120 mobile video clips. Experimental results showed that the proposed methods were approximately 10% better than the edge peak signal-to-noise ratio of the J.247 method in terms of the Pearson correlation.

  8. Efficient biprediction decision scheme for fast high efficiency video coding encoding

    NASA Astrophysics Data System (ADS)

    Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won

    2016-11-01

    An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.

  9. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  10. Video Encryption and Decryption on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin

    2015-08-01

    A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.

  11. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme

    PubMed Central

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values. PMID:26963093

  12. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme.

    PubMed

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values.

  13. Method and system for enabling real-time speckle processing using hardware platforms

    NASA Technical Reports Server (NTRS)

    Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)

    2012-01-01

    An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.

  14. Video Elicitation Interviews: A Qualitative Research Method for Investigating Physician-Patient Interactions

    PubMed Central

    Henry, Stephen G.; Fetters, Michael D.

    2012-01-01

    We describe the concept and method of video elicitation interviews and provide practical guidance for primary care researchers who want to use this qualitative method to investigate physician-patient interactions. During video elicitation interviews, researchers interview patients or physicians about a recent clinical interaction using a video recording of that interaction as an elicitation tool. Video elicitation is useful because it allows researchers to integrate data about the content of physician-patient interactions gained from video recordings with data about participants’ associated thoughts, beliefs, and emotions gained from elicitation interviews. This method also facilitates investigation of specific events or moments during interactions. Video elicitation interviews are logistically demanding and time consuming, and they should be reserved for research questions that cannot be fully addressed using either standard interviews or video recordings in isolation. As many components of primary care fall into this category, high-quality video elicitation interviews can be an important method for understanding and improving physician-patient interactions in primary care. PMID:22412003

  15. Video elicitation interviews: a qualitative research method for investigating physician-patient interactions.

    PubMed

    Henry, Stephen G; Fetters, Michael D

    2012-01-01

    We describe the concept and method of video elicitation interviews and provide practical guidance for primary care researchers who want to use this qualitative method to investigate physician-patient interactions. During video elicitation interviews, researchers interview patients or physicians about a recent clinical interaction using a video recording of that interaction as an elicitation tool. Video elicitation is useful because it allows researchers to integrate data about the content of physician-patient interactions gained from video recordings with data about participants' associated thoughts, beliefs, and emotions gained from elicitation interviews. This method also facilitates investigation of specific events or moments during interactions. Video elicitation interviews are logistically demanding and time consuming, and they should be reserved for research questions that cannot be fully addressed using either standard interviews or video recordings in isolation. As many components of primary care fall into this category, high-quality video elicitation interviews can be an important method for understanding and improving physician-patient interactions in primary care.

  16. Development of the cardiovascular system: an interactive video computer program.

    PubMed Central

    Smolen, A. J.; Zeiset, G. E.; Beaston-Wimmer, P.

    1992-01-01

    The major aim of this project is to provide interactive video computer based courseware that can be used by the medical student and others to supplement his or her learning of this very important aspect of basic biomedical education. Embryology is a science that depends on the ability of the student to visualize dynamic changes in structure which occur in four dimensions--X, Y, Z, and time. Traditional didactic methods, including lectures employing photographic slides and laboratories employing histological sections, are limited to two dimensions--X and Y. The third spatial dimension and the dimension of time cannot be readily illustrated using these methods. Computer based learning, particularly when used in conjunction with interactive video, can be used effectively to illustrate developmental processes in all four dimensions. This methodology can also be used to foster the critical skills of independent learning and problem solving. PMID:1483013

  17. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  18. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction

    PubMed Central

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367

  19. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.

    PubMed

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.

  20. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal conversion processing steps, major improvement in video noise reduction, and an added capability to pass audio/embedded digital data within the digital video signal stream are the significant performance increases associated with the incorporation of digital video interface standards. By analyzing the historical progression of military CMS developments, establishing a systems engineering process for CMS design, tracing the commercial evolution of video signal standardization, adopting commercial video signal terminology/definitions, and comparing/contrasting CMS architecture modifications using digital video interfaces; this paper provides a technical explanation on how a systems engineering process approach to video interface standardization can result in extendible and affordable cockpit management systems.

  1. Practical, Real-Time, and Robust Watermarking on the Spatial Domain for High-Definition Video Contents

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu

    Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.

  2. A Comparative Survey of Methods for Remote Heart Rate Detection From Frontal Face Videos

    PubMed Central

    Wang, Chen; Pun, Thierry; Chanel, Guillaume

    2018-01-01

    Remotely measuring physiological activity can provide substantial benefits for both the medical and the affective computing applications. Recent research has proposed different methodologies for the unobtrusive detection of heart rate (HR) using human face recordings. These methods are based on subtle color changes or motions of the face due to cardiovascular activities, which are invisible to human eyes but can be captured by digital cameras. Several approaches have been proposed such as signal processing and machine learning. However, these methods are compared with different datasets, and there is consequently no consensus on method performance. In this article, we describe and evaluate several methods defined in literature, from 2008 until present day, for the remote detection of HR using human face recordings. The general HR processing pipeline is divided into three stages: face video processing, face blood volume pulse (BVP) signal extraction, and HR computation. Approaches presented in the paper are classified and grouped according to each stage. At each stage, algorithms are analyzed and compared based on their performance using the public database MAHNOB-HCI. Results found in this article are limited on MAHNOB-HCI dataset. Results show that extracted face skin area contains more BVP information. Blind source separation and peak detection methods are more robust with head motions for estimating HR. PMID:29765940

  3. 3D modeling of architectural objects from video data obtained with the fixed focal length lens geometry

    NASA Astrophysics Data System (ADS)

    Deliś, Paulina; Kędzierski, Michał; Fryśkowska, Anna; Wilińska, Michalina

    2013-12-01

    The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data. Artykuł zawiera opis procesu opracowania modeli 3D obiektów architektonicznych na podstawie obrazów wideo pozyskanych kamerą wideo Sony NEX-VG10E ze stałoogniskowym obiektywem. Przyjęto założenie, że na podstawie danych wideo i danych z naziemnego skaningu laserowego (NSL) możliwe jest opracowanie modeli 3D obiektów architektonicznych. Pozyskanie danych wideo zostało poprzedzone kalibracją kamery wideo. Model matematyczny kamery był oparty na rzucie perspektywicznym. Proces opracowania modeli 3D na podstawie danych wideo składał się z następujących etapów: wybór klatek wideo do procesu orientacji, orientacja klatek wideo na podstawie współrzędnych odczytanych z chmury punktów NSL, wygenerowanie modelu 3D w strukturze TIN z wykorzystaniem metod automatycznej korelacji obrazów. Opracowane modele 3D zostały porównane z modelami 3D tych samych obiektów, dla których została przeprowadzona samokalibracja metodą wiązek. W celu oceny dokładności opracowanych modeli 3D obiektów architektonicznych wykorzystano punkty naziemnego skaningu laserowego. Do oceny dokładności wykorzystano metodę najkrótszej odległości. Analiza dokładności wykazała, że dokładność modeli 3D generowanych na podstawie danych wideo wynosi około 0.06 ÷ 0.13m względem danych NSL.

  4. Web-video-mining-supported workflow modeling for laparoscopic surgeries.

    PubMed

    Liu, Rui; Zhang, Xiaoli; Zhang, Hao

    2016-11-01

    As quality assurance is of strong concern in advanced surgeries, intelligent surgical systems are expected to have knowledge such as the knowledge of the surgical workflow model (SWM) to support their intuitive cooperation with surgeons. For generating a robust and reliable SWM, a large amount of training data is required. However, training data collected by physically recording surgery operations is often limited and data collection is time-consuming and labor-intensive, severely influencing knowledge scalability of the surgical systems. The objective of this research is to solve the knowledge scalability problem in surgical workflow modeling with a low cost and labor efficient way. A novel web-video-mining-supported surgical workflow modeling (webSWM) method is developed. A novel video quality analysis method based on topic analysis and sentiment analysis techniques is developed to select high-quality videos from abundant and noisy web videos. A statistical learning method is then used to build the workflow model based on the selected videos. To test the effectiveness of the webSWM method, 250 web videos were mined to generate a surgical workflow for the robotic cholecystectomy surgery. The generated workflow was evaluated by 4 web-retrieved videos and 4 operation-room-recorded videos, respectively. The evaluation results (video selection consistency n-index ≥0.60; surgical workflow matching degree ≥0.84) proved the effectiveness of the webSWM method in generating robust and reliable SWM knowledge by mining web videos. With the webSWM method, abundant web videos were selected and a reliable SWM was modeled in a short time with low labor cost. Satisfied performances in mining web videos and learning surgery-related knowledge show that the webSWM method is promising in scaling knowledge for intelligent surgical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Portrayal of Alcohol Intoxication on YouTube

    PubMed Central

    Primack, Brian A.; Colditz, Jason B.; Pang, Kevin C.; Jackson, Kristina M.

    2015-01-01

    Background We aimed to characterize the content of leading YouTube videos related to alcohol intoxication and to examine factors associated with alcohol intoxication in videos that were assessed positively by viewers. Methods We systematically captured the 70 most relevant and popular videos on YouTube related to alcohol intoxication. We employed an iterative process to codebook development which resulted in 42 codes in 6 categories: video characteristics, character socio-demographics, alcohol depiction, degree of alcohol use, characteristics associated with alcohol, and consequences of alcohol. Results There were a total of 333,246,875 views for all videos combined. While 89% of videos involved males, only 49% involved females. The videos had a median of 1646 (IQR 300-22,969) “like” designations and 33 (IQR 14-1,261) “dislike” designations each. Liquor was most frequently represented, followed by beer and then wine/champagne. Nearly one-half (44%) of videos contained a brand reference. Humor was juxtaposed with alcohol use in 79% of videos, and motor vehicle use was present in 24%. There were significantly more likes per dislike, indicating more positive sentiment, when there was representation of liquor (29.1 vs. 11.4, p = .008), brand references (32.1 vs. 19.2, p = .04), and/or physical attractiveness (67.5 vs. 17.8, p < .001). Conclusions Internet videos depicting alcohol intoxication are heavily viewed. Nearly half of these videos involve a brand-name reference. While these videos commonly juxtapose alcohol intoxication with characteristics such as humor and attractiveness, they infrequently depict negative clinical outcomes. The popularity of this site may provide an opportunity for public health intervention. PMID:25703135

  6. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  7. Quality of experience enhancement of high efficiency video coding video streaming in wireless packet networks using multiple description coding

    NASA Astrophysics Data System (ADS)

    Boumehrez, Farouk; Brai, Radhia; Doghmane, Noureddine; Mansouri, Khaled

    2018-01-01

    Recently, video streaming has attracted much attention and interest due to its capability to process and transmit large data. We propose a quality of experience (QoE) model relying on high efficiency video coding (HEVC) encoder adaptation scheme, in turn based on the multiple description coding (MDC) for video streaming. The main contributions of the paper are (1) a performance evaluation of the new and emerging video coding standard HEVC/H.265, which is based on the variation of quantization parameter (QP) values depending on different video contents to deduce their influence on the sequence to be transmitted, (2) QoE support multimedia applications in wireless networks are investigated, so we inspect the packet loss impact on the QoE of transmitted video sequences, (3) HEVC encoder parameter adaptation scheme based on MDC is modeled with the encoder parameter and objective QoE model. A comparative study revealed that the proposed MDC approach is effective for improving the transmission with a peak signal-to-noise ratio (PSNR) gain of about 2 to 3 dB. Results show that a good choice of QP value can compensate for transmission channel effects and improve received video quality, although HEVC/H.265 is also sensitive to packet loss. The obtained results show the efficiency of our proposed method in terms of PSNR and mean-opinion-score.

  8. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoaf, S.; APS Engineering Support Division

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  10. Digital Documentation: Using Computers to Create Multimedia Reports.

    ERIC Educational Resources Information Center

    Speitel, Tom; And Others

    1996-01-01

    Describes methods for creating integrated multimedia documents using recent advances in print, audio, and video digitization that bring added usefulness to computers as data acquisition, processing, and presentation tools. Discusses advantages of digital documentation. (JRH)

  11. Satellite markers: a simple method for ground truth car pose on stereo video

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  12. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    PubMed Central

    Yoon, Hyungchul; Hoskere, Vedhus; Park, Jong-Woong; Spencer, Billie F.

    2017-01-01

    Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach. PMID:28891985

  13. Quality and noise measurements in mobile phone video capture

    NASA Astrophysics Data System (ADS)

    Petrescu, Doina; Pincenti, John

    2011-02-01

    The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.

  14. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    PubMed Central

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational goal. PMID:27834170

  15. Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise

    PubMed Central

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis

    2014-01-01

    A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428

  16. Quantitative fluorescence angiography for neurosurgical interventions.

    PubMed

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  17. HEVC for high dynamic range services

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  18. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  19. Effects of video-based therapy preparation targeting experiential acceptance or the therapeutic alliance.

    PubMed

    Johansen, Ayna B; Lumley, Mark; Cano, Annmarie

    2011-06-01

    Preparation for psychotherapy may enhance the psychotherapeutic process, reduce drop-outs, and improve outcomes, but the effective mechanisms of such preparation are poorly understood. Previous studies have rarely targeted specific processes that are associated with positive therapy outcomes. This randomized experiment compared the effects of preparatory videos that targeted either the Therapeutic Alliance, Experiential Acceptance, or a Control video on early therapeutic process variables in 105 patients seen in individual therapy. Participants watched the videos just before their first therapy session. No significant differences were found between the Alliance and Experiential Acceptance videos on patient recommendations, immediate affective reactions, or working alliance and attrition after the first session. However, the Therapeutic Alliance video produced an immediate increase in negative mood relative to the Control video, whereas the Experiential acceptance video produced a slight increase in positive mood relative to the Alliance video. Surprisingly, patients who viewed the Alliance video were rated significantly lower than the control group on therapist-rated alliance after the first session. These findings suggest there may be specific process effects in the early phase of treatment based on the type of pretraining material used, and also indicate that video-based pretraining efforts could be counterproductive. Furthermore, this research contributes to the literature by providing insights into methodological considerations for future work on the use of technology in psychotherapy and challenges associated with preparing people for successful psychotherapy.

  20. Comparative study of methods for recognition of an unknown person's action from a video sequence

    NASA Astrophysics Data System (ADS)

    Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun

    2009-02-01

    This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.

  1. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    NASA Astrophysics Data System (ADS)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.

  2. Training value of laparoscopic colorectal videos on the World Wide Web: a pilot study on the educational quality of laparoscopic right hemicolectomy videos.

    PubMed

    Celentano, V; Browning, M; Hitchins, C; Giglio, M C; Coleman, M G

    2017-11-01

    Instructive laparoscopy videos with appropriate exposition could be ideal for initial training in laparoscopic surgery, but unfortunately there are no guidelines for annotating these videos or agreed methods to measure the educational content and the safety of the procedure presented. Aim of this study is to systematically search the World Wide Web to determine the availability of laparoscopic colorectal surgery videos and to objectively establish their potential training value. A search for laparoscopic right hemicolectomy videos was performed on the three most used English language web search engines Google.com, Bing.com, and Yahoo.com; moreover, a survey among 25 local trainees was performed to identify additional websites for inclusion. All laparoscopic right hemicolectomy videos with an English language title were included. Videos of open surgery, single incision laparoscopic surgery, robotic, and hand-assisted surgery were excluded. The safety of the demonstrated procedure was assessed with a validated competency assessment tool specifically designed for laparoscopic colorectal surgery and data on the educational content of the video were extracted. Thirty-one websites were identified and 182 surgical videos were included. One hundred and seventy-three videos (95%) detailed the year of publication; this demonstrated a significant increase in the number of videos published per year from 2009. Characteristics of the patient were rarely presented, only 10 videos (5.4%) reported operating time and only 6 videos (3.2%) reported 30-day morbidity; 34 videos (18.6%) underwent a peer-review process prior to publication. Formal case presentation, the presence of audio narration, the use of diagrams, and snapshots and a step-by-step approach are all characteristics of peer-reviewed videos but no significant difference was found in the safety of the procedure. Laparoscopic videos can be a useful adjunct to operative training. There is a large and increasing amount of material available for free on the internet, but this is currently unregulated.

  3. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objectsmore » recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.« less

  4. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  5. Identification and analysis of unsatisfactory psychosocial work situations: a participatory approach employing video-computer interaction.

    PubMed

    Hanse, J J; Forsman, M

    2001-02-01

    A method for psychosocial evaluation of potentially stressful or unsatisfactory situations in manual work was developed. It focuses on subjective responses regarding specific situations and is based on interactive worker assessment when viewing video recordings of oneself. The worker is first video-recorded during work. The video is then displayed on the computer terminal, and the filmed worker clicks on virtual controls on the screen whenever an unsatisfactory psychosocial situation appears; a window of questions regarding psychological demands, mental strain and job control is then opened. A library with pictorial information and comments on the selected situations is formed in the computer. The evaluation system, called PSIDAR, was applied in two case studies, one of manual materials handling in an automotive workshop and one of a group of workers producing and testing instrument panels. The findings indicate that PSIDAR can provide data that are useful in a participatory ergonomic process of change.

  6. Estimation of low back moments from video analysis: a validation study.

    PubMed

    Coenen, Pieter; Kingma, Idsart; Boot, Cécile R L; Faber, Gert S; Xu, Xu; Bongers, Paulien M; van Dieën, Jaap H

    2011-09-02

    This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed. Ten healthy subjects participated in a protocol comprising 12 lifting conditions. Low back moments were assessed using two variants of a video analysis method and a lab-based reference method. Repeated measures ANOVAs showed no overall differences in peak moments between the two versions of the video analysis method and the reference method. However, two conditions showed a minor overestimation of one of the video analysis method moments. Standard deviations were considerable suggesting that errors in the video analysis were random. Furthermore, there was a small underestimation of dynamic components and overestimation of the static components of the moments. Intraclass correlations coefficients for peak moments showed high correspondence (>0.85) of the video analyses with the reference method. It is concluded that, when a sufficient number of measurements can be taken, the video analysis method for assessment of low back loads during lifting tasks provides valid estimates of low back moments in ergonomic practice and epidemiological studies for lifts up to a moderate level of asymmetry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Outcomes of Video-Assisted Teaching for Latching in Postpartum Women: A Randomized Controlled Trial.

    PubMed

    Sroiwatana, Suttikamon; Puapornpong, Pawin

    2018-04-25

    Latching is an important process of breastfeeding and should be taught and practiced by the postpartum mother. The objective is to compare latching outcomes between video-assisted and routine teaching methods among postpartum women. A randomized controlled trial was conducted. Postpartum women who had deliveries without complications were randomized into two groups: 14 cases in the video-assisted teaching group and 14 cases in a routine teaching group. In the first group, the mothers were taught breastfeeding benefits, latching methods, and breastfeeding positions and practiced breastfeeding in a controlled setting for a 30-minute period and watched a 6-minute video with consistent content. In the second group, the mothers were taught a normal 30-minute period and then practiced breastfeeding. In both groups, Latching on, Audible swallowing, the Type of nipples, Comfort, and Help (LATCH) scores were assessed at 24-32 and 48-56 hours after the breastfeeding teaching modals. Demographic data and LATCH scores were collected and analyzed. There were no statistically significant differences in the mothers' ages, occupations, marital status, religion, education, income, infants' gestational age, body mass index, nipple length, route of delivery, and time to first latching between the video-assisted and routine breastfeeding teaching groups. First and second LATCH score assessments had shown no significant differences between both breastfeeding teaching groups. The video-assisted breastfeeding teaching did not improve latching outcomes when it was compared with routine teaching.

  8. Computationally Efficient Clustering of Audio-Visual Meeting Data

    NASA Astrophysics Data System (ADS)

    Hung, Hayley; Friedland, Gerald; Yeo, Chuohao

    This chapter presents novel computationally efficient algorithms to extract semantically meaningful acoustic and visual events related to each of the participants in a group discussion using the example of business meeting recordings. The recording setup involves relatively few audio-visual sensors, comprising a limited number of cameras and microphones. We first demonstrate computationally efficient algorithms that can identify who spoke and when, a problem in speech processing known as speaker diarization. We also extract visual activity features efficiently from MPEG4 video by taking advantage of the processing that was already done for video compression. Then, we present a method of associating the audio-visual data together so that the content of each participant can be managed individually. The methods presented in this article can be used as a principal component that enables many higher-level semantic analysis tasks needed in search, retrieval, and navigation.

  9. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    NASA Astrophysics Data System (ADS)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  10. Thematic video indexing to support video database retrieval and query processing

    NASA Astrophysics Data System (ADS)

    Khoja, Shakeel A.; Hall, Wendy

    1999-08-01

    This paper presents a novel video database system, which caters for complex and long videos, such as documentaries, educational videos, etc. As compared to relatively structured format videos like CNN news or commercial advertisements, this database system has the capacity to work with long and unstructured videos.

  11. “Entering a Clinical Trial: Is it Right For You?"-- A Randomized Study of The Clinical Trials Video and Its Impact on the Informed Consent Process

    PubMed Central

    Hoffner, Brianna; Bauer-Wu, Susan; Hitchcock-Bryan, Suzanne; Powell, Mark; Wolanski, Andrew; Joffe, Steven

    2011-01-01

    PURPOSE This randomized study was designed to assess the utility of an educational video in preparing cancer patients for decisions about clinical trial participation. The study assessed the effect of the video on patients’ understanding and perceptions of clinical trials, its impact on decision making and patient-provider communication, and patients’ satisfaction with the video. METHODS Ninety adults considering cancer clinical trials were randomized to receive (n=45) or not receive (n=45) the video. Using the validated Quality of Informed Consent (QuIC), respondents’ knowledge about clinical trial participation was assessed. All subjects completed additional questions about satisfaction with the video, decision making, and patient-provider communication. Data were analyzed using the Wilcoxon rank-sum test, regression model and descriptive statistics. RESULTS Although intent-to-treat analysis found no significant group differences in objective understanding between those randomized to view or not view the video, the majority of participants reported favorable experiences with regard to watching the video: 85% found the video was an important source of information about clinical trials; 81% felt better prepared to discuss the trial with their physician; 89% of those who watched the video with family indicated that it helped family better understand clinical trials; and 73% indicated it helped family accept their decision about participation. CONCLUSIONS Although the video did not measurably improve patients’ knowledge about clinical trials, it was an important source of information, helped educate families, and enhanced patient communication with their oncology providers. PMID:22009665

  12. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    PubMed

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  13. An educational video game for nutrition of young people: Theory and design

    PubMed Central

    Ledoux, Tracey; Griffith, Melissa; Thompson, Debbe; Nguyen, Nga; Watson, Kathy; Baranowski, Janice; Buday, Richard; Abdelsamad, Dina; Baranowski, Tom

    2016-01-01

    Background Playing Escape from DIAB (DIAB) and Nanoswarm (NANO), epic video game adventures, increased fruit and vegetable consumption among a multi-ethnic sample of 10–12 year old children during pilot testing. Key elements of both games were educational mini-games embedded in the overall game that promoted knowledge acquisition regarding diet, physical activity and energy balance. 95–100% of participants demonstrated mastery of these mini-games suggesting knowledge acquisition. Aim This article describes the process of designing and developing the educational mini-games. A secondary purpose was to explore the experience of children while playing the games. Method The educational games were based on Social Cognitive and Mastery Learning Theories. A multidisciplinary team of behavioral nutrition, PA, and video game experts designed, developed, and tested the mini-games. Results Alpha testing revealed children generally liked the mini-games and found them to be reasonably challenging. Process evaluation data from pilot testing revealed almost all participants completed nearly all educational mini-games in a reasonable amount of time suggesting feasibility of this approach. Conclusions Future research should continue to explore the use of video games in educating children to achieve healthy behavior changes. PMID:27547019

  14. Image processing for improved eye-tracking accuracy

    NASA Technical Reports Server (NTRS)

    Mulligan, J. B.; Watson, A. B. (Principal Investigator)

    1997-01-01

    Video cameras provide a simple, noninvasive method for monitoring a subject's eye movements. An important concept is that of the resolution of the system, which is the smallest eye movement that can be reliably detected. While hardware systems are available that estimate direction of gaze in real-time from a video image of the pupil, such systems must limit image processing to attain real-time performance and are limited to a resolution of about 10 arc minutes. Two ways to improve resolution are discussed. The first is to improve the image processing algorithms that are used to derive an estimate. Off-line analysis of the data can improve resolution by at least one order of magnitude for images of the pupil. A second avenue by which to improve resolution is to increase the optical gain of the imaging setup (i.e., the amount of image motion produced by a given eye rotation). Ophthalmoscopic imaging of retinal blood vessels provides increased optical gain and improved immunity to small head movements but requires a highly sensitive camera. The large number of images involved in a typical experiment imposes great demands on the storage, handling, and processing of data. A major bottleneck had been the real-time digitization and storage of large amounts of video imagery, but recent developments in video compression hardware have made this problem tractable at a reasonable cost. Images of both the retina and the pupil can be analyzed successfully using a basic toolbox of image-processing routines (filtering, correlation, thresholding, etc.), which are, for the most part, well suited to implementation on vectorizing supercomputers.

  15. What Do Teachers Think and Feel when Analyzing Videos of Themselves and Other Teachers Teaching?

    ERIC Educational Resources Information Center

    Kleinknecht, Marc; Schneider, Jurgen

    2013-01-01

    Despite the widespread use of classroom videos in teacher professional development, little is known about the specific effects of various types of videos on teachers' cognitive, emotional, and motivational processes. This study investigates the processes experienced by 10 eighth-grade mathematics teachers while they analyzed videos of their own or…

  16. Video requirements for materials processing experiments in the space station US laboratory

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.

    1989-01-01

    Full utilization of the potential of the materials research on the Space Station can be achieved only if adequate means are available for interactive experimentation between the science facilities and ground-based investigators. Extensive video interfaces linking these three elements are the only alternative for establishing a viable relation. Because of the limit in the downlink capability, a comprehensive complement of on-board video processing, and video compression is needed. The application of video compression will be an absolute necessity since it's effectiveness will directly impact the quantity of data which will be available to ground investigator teams, and their ability to review the effects of process changes and the experiment progress. Video data compression utilization on the Space Station is discussed.

  17. Height Measuring System On Video Using Otsu Method

    NASA Astrophysics Data System (ADS)

    Sandy, C. L. M.; Meiyanti, R.

    2017-01-01

    A measurement of height is comparing the value of the magnitude of an object with a standard measuring tool. The problems that exist in the measurement are still the use of a simple apparatus in which one of them is by using a meter. This method requires a relatively long time. To overcome these problems, this research aims to create software with image processing that is used for the measurement of height. And subsequent that image is tested, where the object captured by the video camera can be known so that the height of the object can be measured using the learning method of Otsu. The system was built using Delphi 7 of Vision Lab VCL 4.5 component. To increase the quality of work of the system in future research, the developed system can be combined with other methods.

  18. Video markers tracking methods for bike fitting

    NASA Astrophysics Data System (ADS)

    Rajkiewicz, Piotr; Łepkowska, Katarzyna; Cygan, Szymon

    2015-09-01

    Sports cycling is becoming increasingly popular over last years. Obtaining and maintaining a proper position on the bike has been shown to be crucial for performance, comfort and injury avoidance. Various techniques of bike fitting are available - from rough settings based on body dimensions to professional services making use of sophisticated equipment and expert knowledge. Modern fitting techniques use mainly joint angles as a criterion of proper position. In this work we examine performance of two proposed methods for dynamic cyclist position assessment based on video data recorded during stationary cycling. Proposed methods are intended for home use, to help amateur cyclist improve their position on the bike, and therefore no professional equipment is used. As a result of data processing, ranges of angles in selected joints are provided. Finally strengths and weaknesses of both proposed methods are discussed.

  19. Effect and process evaluation of a kindergarten-based, family-involved intervention with a randomized cluster design on sedentary behaviour in 4- to 6- year old European preschool children: The ToyBox-study

    PubMed Central

    Latomme, Julie; Cardon, Greet; De Bourdeaudhuij, Ilse; Iotova, Violeta; Koletzko, Berthold; Socha, Piotr; Moreno, Luis; Androutsos, Odysseas; Manios, Yannis; De Craemer, Marieke

    2017-01-01

    Background The aim of the present study evaluated the effect and process of the ToyBox-intervention on proxy-reported sedentary behaviours in 4- to 6-year-old preschoolers from six European countries. Methods In total, 2434 preschoolers’ parents/primary caregivers (mean age: 4.7±0.4 years, 52.2% boys) filled out a questionnaire, assessing preschoolers’ sedentary behaviours (TV/DVD/video viewing, computer/video games use and quiet play) on weekdays and weekend days. Multilevel repeated measures analyses were conducted to measure the intervention effects. Additionally, process evaluation data were included to better understand the intervention effects. Results Positive intervention effects were found for computer/video games use. In the total sample, the intervention group showed a smaller increase in computer/video games use on weekdays (ß = -3.40, p = 0.06; intervention: +5.48 min/day, control: +8.89 min/day) and on weekend days (ß = -5.97, p = 0.05; intervention: +9.46 min/day, control: +15.43 min/day) from baseline to follow-up, compared to the control group. Country-specific analyses showed similar effects in Belgium and Bulgaria, while no significant intervention effects were found in the other countries. Process evaluation data showed relatively low teachers’ and low parents’ process evaluation scores for the sedentary behaviour component of the intervention (mean: 15.6/24, range: 2.5–23.5 and mean: 8.7/17, range: 0–17, respectively). Higher parents’ process evaluation scores were related to a larger intervention effect, but higher teachers’ process evaluation scores were not. Conclusions The ToyBox-intervention had a small, positive effect on European preschoolers’ computer/video games use on both weekdays and weekend days, but not on TV/DVD/video viewing or quiet play. The lack of larger effects can possibly be due to the fact that parents were only passively involved in the intervention and to the fact that the intervention was too demanding for the teachers. Future interventions targeting preschoolers' behaviours should involve parents more actively in both the development and the implementation of the intervention and, when involving schools, less demanding activities for teachers should be developed. Trial registration clinicaltrials.gov NCT02116296 PMID:28380053

  20. Novel Methods to Collect Meaningful Data From Adolescents for the Development of Health Interventions

    PubMed Central

    Hieftje, Kimberly; Duncan, Lindsay R.; Fiellin, Lynn E.

    2014-01-01

    Health interventions are increasingly focused on young adolescents, and as a result, discussions with this population have become a popular method in qualitative research. Traditional methods used to engage adults in discussions do not translate well to this population, who may have difficulty conceptualizing abstract thoughts and opinions and communicating them to others. As part of a larger project to develop and evaluate a video game for risk reduction and HIV prevention in young adolescents, we were seeking information and ideas from the priority audience that would help us create authentic story lines and character development in the video game. To accomplish this authenticity, we conducted in-depth interviews and focus groups with young adolescents aged 10 to 15 years and employed three novel methods: Storytelling Using Graphic Illustration, My Life, and Photo Feedback Project. These methods helped provide a thorough understanding of the adolescents’ experiences and perspectives regarding their environment and future aspirations, which we translated into active components of the video game intervention. This article describes the processes we used and the valuable data we generated using these three engaging methods. These three activities are effective tools for eliciting meaningful data from young adolescents for the development of health interventions. PMID:24519998

  1. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  2. Localizing wushu players on a platform based on a video recording

    NASA Astrophysics Data System (ADS)

    Peczek, Piotr M.; Zabołotny, Wojciech M.

    2017-08-01

    This article describes the development of a method to localize an athlete during sports performance on a platform, based on a static video recording. Considered sport for this method is wushu - martial art. However, any other discipline can be applied. There are specified requirements, and 2 algorithms of image processing are described. The next part presents an experiment that was held based on recordings from the Pan American Wushu Championship. Based on those recordings the steps of the algorithm are shown. Results are evaluated manually. The last part of the article concludes if the algorithm is applicable and what improvements have to be implemented to use it during sports competitions as well as for offline analysis.

  3. Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.

    PubMed

    Sainz-Costa, Nadir; Ribeiro, Angela; Burgos-Artizzu, Xavier P; Guijarro, María; Pajares, Gonzalo

    2011-01-01

    This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.

  4. Testimonials and Informational Videos on Branded Prescription Drug Websites: Experimental Study to Assess Influence on Consumer Knowledge and Perceptions

    PubMed Central

    O'Donoghue, Amie C; Gard Read, Jennifer; Amoozegar, Jacqueline B; Aikin, Kathryn J; Rupert, Douglas J

    2018-01-01

    Background Direct-to-consumer (DTC) promotion of prescription drugs can affect consumer behaviors and health outcomes, and Internet drug promotion is growing rapidly. Branded drug websites often capitalize on the multimedia capabilities of the Internet by using videos to emphasize drug benefits and characteristics. However, it is unknown how such videos affect consumer processing of drug information. Objective This study aimed to examine how videos on prescription drug websites, and the inclusion of risk information in those videos, influence consumer knowledge and perceptions. Methods We conducted an experimental study in which online panel participants with acid reflux (n=1070) or high blood pressure (n=1055) were randomly assigned to view 1 of the 10 fictitious prescription drug websites and complete a short questionnaire. On each website, we manipulated the type of video (patient testimonial, mechanism of action animation, or none) and whether the video mentioned drug risks. Results Participants who viewed any video were less likely to recognize drug risks presented only in the website text (P≤.01). Including risk information in videos increased participants’ recognition of the risks presented in the videos (P≤.01). However, in some cases, including risk information in videos decreased participants’ recognition of the risks not presented in the videos (ie, risks presented in text only; P≤.04). Participants who viewed a video without drug risk information thought that the website placed more emphasis on benefits, compared with participants who viewed the video with drug risk information (P≤.01). Compared with participants who viewed a video without drug risk information, participants who viewed a video with drug risk information thought that the drug was less effective in the high blood pressure sample (P=.03) and thought that risks were more serious in the acid reflux sample (P=.01). There were no significant differences between risk and nonrisk video conditions on other perception measures (P>.05). In addition, we noted a few differences among the types of videos. Conclusions Including risks in branded drug website videos may increase in-video risk retention at the expense of text-only risk retention. PMID:29362205

  5. Developing the Storyline for an Advance Care Planning Video for Surgery Patients: Patient-Centered Outcomes Research Engagement from Stakeholder Summit to State Fair.

    PubMed

    Aslakson, Rebecca A; Schuster, Anne L R; Lynch, Thomas J; Weiss, Matthew J; Gregg, Lydia; Miller, Judith; Isenberg, Sarina R; Crossnohere, Norah L; Conca-Cheng, Alison M; Volandes, Angelo E; Smith, Thomas J; Bridges, John F P

    2018-01-01

    Patient-centered outcomes research (PCOR) methods and social learning theory (SLT) require intensive interaction between researchers and stakeholders. Advance care planning (ACP) is valuable before major surgery, but a systematic review found no extant perioperative ACP tools. Consequently, PCOR methods and SLT can inform the development of an ACP educational video for patients and families preparing for major surgery. The objective is to develop and test acceptability of an ACP video storyline. The design is a stakeholder-guided development of the ACP video storyline. Design-thinking methods explored and prioritized stakeholder perspectives. Patients and family members evaluated storyboards containing the proposed storyline. The study was conducted at hospital outpatient surgical clinics, in-person stakeholder summit, and the 2014 Maryland State Fair. Measurements are done through stakeholder engagement and deidentified survey. Stakeholders evaluated and prioritized evidence from an environmental scan. A surgeon, family member, and palliative care physician team iteratively developed a script featuring 12 core themes and worked with a medical graphic designer to translate the script into storyboards. For 10 days, 359 attendees of the 2014 Maryland State Fair evaluated the storyboards and 87% noted that they would be "very comfortable" or "comfortable" seeing the storyboard before major surgery, 89% considered the storyboards "very helpful" or "helpful," and 89% would "definitely recommend" or "recommend" this story to others preparing for major surgery. Through an iterative process utilizing diverse PCOR engagement methods and informed by SLT, storyboards were developed for an ACP video. Field testing revealed the storyline to be highly meaningful for surgery patients and family members.

  6. Exploring Self-regulation of More or Less Expert College-Age Video Game Players: A Sequential Explanatory Design.

    PubMed

    Yilmaz Soylu, Meryem; Bruning, Roger H

    2016-01-01

    This study examined differences in self-regulation among college-age expert, moderately expert, and non-expert video game players in playing video games for fun. Winne's model of self-regulation (Winne, 2001) guided the study. The main assumption of this study was that expert video game players used more processes of self-regulation than the less-expert players. We surveyed 143 college students about their game playing frequency, habits, and use of self-regulation. Data analysis indicated that while playing recreational video games, expert gamers self-regulated more than moderately expert and non-expert players and moderately expert players used more processes of self-regulation than non-experts. Semi-structured interviews also were conducted with selected participants at each of the expertise levels. Qualitative follow-up analyses revealed five themes: (1) characteristics of expert video gamers, (2) conditions for playing a video game, (3) figuring out a game, (4) how gamers act and, (5) game context. Overall, findings indicated that playing a video game is a highly self-regulated activity and that becoming an expert video game player mobilizes multiple sets of self-regulation related skills and processes. These findings are seen as promising for educators desiring to encourage student self-regulation, because they indicate the possibility of supporting students via recreational video games by recognizing that their play includes processes of self-regulation.

  7. Exploring Self-regulation of More or Less Expert College-Age Video Game Players: A Sequential Explanatory Design

    PubMed Central

    Yilmaz Soylu, Meryem; Bruning, Roger H.

    2016-01-01

    This study examined differences in self-regulation among college-age expert, moderately expert, and non-expert video game players in playing video games for fun. Winne's model of self-regulation (Winne, 2001) guided the study. The main assumption of this study was that expert video game players used more processes of self-regulation than the less-expert players. We surveyed 143 college students about their game playing frequency, habits, and use of self-regulation. Data analysis indicated that while playing recreational video games, expert gamers self-regulated more than moderately expert and non-expert players and moderately expert players used more processes of self-regulation than non-experts. Semi-structured interviews also were conducted with selected participants at each of the expertise levels. Qualitative follow-up analyses revealed five themes: (1) characteristics of expert video gamers, (2) conditions for playing a video game, (3) figuring out a game, (4) how gamers act and, (5) game context. Overall, findings indicated that playing a video game is a highly self-regulated activity and that becoming an expert video game player mobilizes multiple sets of self-regulation related skills and processes. These findings are seen as promising for educators desiring to encourage student self-regulation, because they indicate the possibility of supporting students via recreational video games by recognizing that their play includes processes of self-regulation. PMID:27729881

  8. Use of Videos as Supplemental Education Tools Across the Cancer Trajectory.

    PubMed

    Frentsos, Jeanne M

    2015-12-01

    Patients who are dealing with life changes as a result of a cancer diagnosis often search for information about the disease and its treatment. Knowledge gained from this information helps patients with cancer during survivorship and improves their active participation with the healthcare team. To provide patients with the information they need, healthcare providers must offer various methods for the delivery of educational materials. The use of video as a delivery mechanism should be considered as one option for patient content acquisition. This article describes the use of videos as supplemental education tools before, during, or after one-on-one patient teaching interactions. A literature review was performed that focused on locating, reviewing, and synthesizing published data from clinical studies related to the use of video in patient education. Videos deliver material in a way that is flexible and often familiar to patients. For example, delivery can occur via smartphone, electronic health record, computer, DVD, or television, and it does not require reading or a high level of literacy. Healthcare providers in oncology settings should consider establishing a process for instructional video development as part of a multimedia patient education library.

  9. Issues and advances in research methods on video games and cognitive abilities.

    PubMed

    Sobczyk, Bart; Dobrowolski, Paweł; Skorko, Maciek; Michalak, Jakub; Brzezicka, Aneta

    2015-01-01

    The impact of video game playing on cognitive abilities has been the focus of numerous studies over the last 10 years. Some cross-sectional comparisons indicate the cognitive advantages of video game players (VGPs) over non-players (NVGPs) and the benefits of video game trainings, while others fail to replicate these findings. Though there is an ongoing discussion over methodological practices and their impact on observable effects, some elementary issues, such as the representativeness of recruited VGP groups and lack of genre differentiation have not yet been widely addressed. In this article we present objective and declarative gameplay time data gathered from large samples in order to illustrate how playtime is distributed over VGP populations. The implications of this data are then discussed in the context of previous studies in the field. We also argue in favor of differentiating video games based on their genre when recruiting study samples, as this form of classification reflects the core mechanics that they utilize and therefore provides a measure of insight into what cognitive functions are likely to be engaged most. Additionally, we present the Covert Video Game Experience Questionnaire as an example of how this sort of classification can be applied during the recruitment process.

  10. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  11. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  12. Three dimensional range geometry and texture data compression with space-filling curves.

    PubMed

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  13. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos

    PubMed Central

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-01-01

    Objective Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today’s keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users’ information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. Materials and Methods The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively. Results The authors produced a prototype implementation of the proposed system, which is publicly accessible at https://patentq.njit.edu/oer. To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Conclusion Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. PMID:26335986

  14. Learning Process and Learning Outcomes of Video Podcasts Including the Instructor and PPT Slides: A Chinese Case

    ERIC Educational Resources Information Center

    Pi, Zhongling; Hong, Jianzhong

    2016-01-01

    Video podcasts have become one of the fastest developing trends in learning and teaching. The study explored the effect of the presenting mode of educational video podcasts on the learning process and learning outcomes. Prior to viewing a video podcast, the 94 Chinese undergraduates participating in the study completed a demographic questionnaire…

  15. Algorithm for Video Summarization of Bronchoscopy Procedures

    PubMed Central

    2011-01-01

    Background The duration of bronchoscopy examinations varies considerably depending on the diagnostic and therapeutic procedures used. It can last more than 20 minutes if a complex diagnostic work-up is included. With wide access to videobronchoscopy, the whole procedure can be recorded as a video sequence. Common practice relies on an active attitude of the bronchoscopist who initiates the recording process and usually chooses to archive only selected views and sequences. However, it may be important to record the full bronchoscopy procedure as documentation when liability issues are at stake. Furthermore, an automatic recording of the whole procedure enables the bronchoscopist to focus solely on the performed procedures. Video recordings registered during bronchoscopies include a considerable number of frames of poor quality due to blurry or unfocused images. It seems that such frames are unavoidable due to the relatively tight endobronchial space, rapid movements of the respiratory tract due to breathing or coughing, and secretions which occur commonly in the bronchi, especially in patients suffering from pulmonary disorders. Methods The use of recorded bronchoscopy video sequences for diagnostic, reference and educational purposes could be considerably extended with efficient, flexible summarization algorithms. Thus, the authors developed a prototype system to create shortcuts (called summaries or abstracts) of bronchoscopy video recordings. Such a system, based on models described in previously published papers, employs image analysis methods to exclude frames or sequences of limited diagnostic or education value. Results The algorithm for the selection or exclusion of specific frames or shots from video sequences recorded during bronchoscopy procedures is based on several criteria, including automatic detection of "non-informative", frames showing the branching of the airways and frames including pathological lesions. Conclusions The paper focuses on the challenge of generating summaries of bronchoscopy video recordings. PMID:22185344

  16. Video-based real-time on-street parking occupancy detection system

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  17. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  18. Analysis Of The IJCNN 2011 UTL Challenge

    DTIC Science & Technology

    2012-01-13

    large datasets from various application domains: handwriting recognition, image recognition, video processing, text processing, and ecology. The goal...validation and final evaluation sets consist of 4096 examples each. Dataset Domain Features Sparsity Devel. Transf. AVICENNA Handwriting 120 0% 150205...documents [3]. Transfer learning methods could accelerate the application of handwriting recognizers to historical manuscript by reducing the need for

  19. Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.

    PubMed

    Sakaino, Hidetomo

    2016-09-01

    Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost.

  20. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  1. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  2. The Video Interaction Guidance approach applied to teaching communication skills in dentistry.

    PubMed

    Quinn, S; Herron, D; Menzies, R; Scott, L; Black, R; Zhou, Y; Waller, A; Humphris, G; Freeman, R

    2016-05-01

    To examine dentists' views of a novel video review technique to improve communication skills in complex clinical situations. Dentists (n = 3) participated in a video review known as Video Interaction Guidance to encourage more attuned interactions with their patients (n = 4). Part of this process is to identify where dentists and patients reacted positively and effectively. Each dentist was presented with short segments of video footage taken during an appointment with a patient with intellectual disabilities and communication difficulties. Having observed their interactions with patients, dentists were asked to reflect on their communication strategies with the assistance of a trained VIG specialist. Dentists reflected that their VIG session had been insightful and considered the review process as beneficial to communication skills training in dentistry. They believed that this technique could significantly improve the way dentists interact and communicate with patients. The VIG sessions increased their awareness of the communication strategies they use with their patients and were perceived as neither uncomfortable nor threatening. The VIG session was beneficial in this exploratory investigation because the dentists could identify when their interactions were most effective. Awareness of their non-verbal communication strategies and the need to adopt these behaviours frequently were identified as key benefits of this training approach. One dentist suggested that the video review method was supportive because it was undertaken by a behavioural scientist rather than a professional counterpart. Some evidence supports the VIG approach in this specialist area of communication skills and dental training. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Data compression techniques applied to high resolution high frame rate video technology

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  4. Video Analytics for Indexing, Summarization and Searching of Video Archives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Harold E.; Trease, Lynn L.

    This paper will be submitted to the proceedings The Eleventh IASTED International Conference on. Signal and Image Processing. Given a video or video archive how does one effectively and quickly summarize, classify, and search the information contained within the data? This paper addresses these issues by describing a process for the automated generation of a table-of-contents and keyword, topic-based index tables that can be used to catalogue, summarize, and search large amounts of video data. Having the ability to index and search the information contained within the videos, beyond just metadata tags, provides a mechanism to extract and identify "useful"more » content from image and video data.« less

  5. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  6. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  7. Virtual viewpoint synthesis in multi-view video system

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yang, Shiqiang

    2005-07-01

    In this paper, we present a virtual viewpoint video synthesis algorithm to satisfy the following three aims: low computing consuming; real time interpolation and acceptable video quality. In contrast with previous technologies, this method obtain incompletely 3D structure using neighbor video sources instead of getting total 3D information with all video sources, so that the computation is reduced greatly. So we demonstrate our interactive multi-view video synthesis algorithm in a personal computer. Furthermore, adopting the method of choosing feature points to build the correspondence between the frames captured by neighbor cameras, we need not require camera calibration. Finally, our method can be used when the angle between neighbor cameras is 25-30 degrees that it is much larger than common computer vision experiments. In this way, our method can be applied into many applications such as sports live, video conference, etc.

  8. Overview of image processing tools to extract physical information from JET videos

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Gelfusa, M.; Tiseanu, I.; Zoita, V.; EFDA Contributors, JET

    2014-11-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the automatic detection of MARFE (multifaceted asymmetric radiation from the edge) occurrences, which precede disruptions in density limit discharges. An original spot detection method has been developed for large surveys of videos in JET, and for the assessment of the long term trends in their evolution. The analysis of JET IR videos, recorded during JET operation with the ITER-like wall, allows the retrieval of data and hence correlation of the evolution of spots properties with macroscopic events, in particular series of intentional disruptions.

  9. Video Processes in Teacher Education Programs; Scope, Techniques, and Assessment. Multi-State Teacher Education Project, Monograph III.

    ERIC Educational Resources Information Center

    Bosley, Howard E.; And Others

    "Video Processes Are Changing Teacher Education" by Howard Bosley (the first of five papers comprising this document) discusses the Multi-State Teacher Education Project (M-STEP) experimentation with media; it lists various uses of video processes, concentrating specifically on microteaching and the use of simulation and critical…

  10. Cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events: an event-related potential study.

    PubMed

    Liu, B; Wang, Z; Wu, G; Meng, X

    2011-04-28

    In this paper, we aim to study the cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events. Videos with asynchronous semantically consistent or inconsistent natural sound or speech were used as stimuli in order to compare the difference and similarity between multisensory integrations of videos with asynchronous natural sound and speech. The event-related potential (ERP) results showed that N1 and P250 components were elicited irrespective of whether natural sounds were consistent or inconsistent with critical actions in videos. Videos with inconsistent natural sound could elicit N400-P600 effects compared to videos with consistent natural sound, which was similar to the results from unisensory visual studies. Videos with semantically consistent or inconsistent speech could both elicit N1 components. Meanwhile, videos with inconsistent speech would elicit N400-LPN effects in comparison with videos with consistent speech, which showed that this semantic processing was probably related to recognition memory. Moreover, the N400 effect elicited by videos with semantically inconsistent speech was larger and later than that elicited by videos with semantically inconsistent natural sound. Overall, multisensory integration of videos with natural sound or speech could be roughly divided into two stages. For the videos with natural sound, the first stage might reflect the connection between the received information and the stored information in memory; and the second one might stand for the evaluation process of inconsistent semantic information. For the videos with speech, the first stage was similar to the first stage of videos with natural sound; while the second one might be related to recognition memory process. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. [Detecting fire smoke based on the multispectral image].

    PubMed

    Wei, Ying-Zhuo; Zhang, Shao-Wu; Liu, Yan-Wei

    2010-04-01

    Smoke detection is very important for preventing forest-fire in the fire early process. Because the traditional technologies based on video and image processing are easily affected by the background dynamic information, three limitations exist in these technologies, i. e. lower anti-interference ability, higher false detection rate and the fire smoke and water fog being not easily distinguished. A novel detection method for detecting smoke based on the multispectral image was proposed in the present paper. Using the multispectral digital imaging technique, the multispectral image series of fire smoke and water fog were obtained in the band scope of 400 to 720 nm, and the images were divided into bins. The Euclidian distance among the bins was taken as a measurement for showing the difference of spectrogram. After obtaining the spectral feature vectors of dynamic region, the regions of fire smoke and water fog were extracted according to the spectrogram feature difference between target and background. The indoor and outdoor experiments show that the smoke detection method based on multispectral image can be applied to the smoke detection, which can effectively distinguish the fire smoke and water fog. Combined with video image processing method, the multispectral image detection method can also be applied to the forest fire surveillance, reducing the false alarm rate in forest fire detection.

  12. Concerning the Video Drift Method to Measure Double Stars

    NASA Astrophysics Data System (ADS)

    Nugent, Richard L.; Iverson, Ernest W.

    2015-05-01

    Classical methods to measure position angles and separations of double stars rely on just a few measurements either from visual observations or photographic means. Visual and photographic CCD observations are subject to errors from the following sources: misalignments from eyepiece/camera/barlow lens/micrometer/focal reducers, systematic errors from uncorrected optical distortions, aberrations from the telescope system, camera tilt, magnitude and color effects. Conventional video methods rely on calibration doubles and graphically calculating the east-west direction plus careful choice of select video frames stacked for measurement. Atmospheric motion is one of the larger sources of error in any exposure/measurement method which is on the order of 0.5-1.5. Ideally, if a data set from a short video can be used to derive position angle and separation, with each data set self-calibrating independent of any calibration doubles or star catalogues, this would provide measurements of high systematic accuracy. These aims are achieved by the video drift method first proposed by the authors in 2011. This self calibrating video method automatically analyzes 1,000's of measurements from a short video clip.

  13. Video Creation: A Tool for Engaging Students to Learn Science

    NASA Astrophysics Data System (ADS)

    Courtney, A. R.

    2016-12-01

    Students today process information very differently than those of previous generations. They are used to getting their news from 140-character tweets, being entertained by You-Tube videos, and Googling everything. Thus, traditional passive methods of content delivery do not work well for many of these millennials. All students, regardless of career goals, need to become scientifically literate to be able to function in a world where scientific issues are of increasing importance. Those who have had experience applying scientific reasoning to real-world problems in the classroom will be better equipped to make informed decisions in the future. The problem to be solved is how to present scientific content in a manner that fosters student learning in today's world. This presentation will describe how the appeal of technology and social communication via creation of documentary-style videos has been used to engage students to learn scientific concepts in a university non-science major course focused on energy and the environment. These video projects place control of the learning experience into the hands of the learner and provide an opportunity to develop critical thinking skills. Students discover how to locate scientifically reliable information by limiting searches to respected sources and synthesize the information through collaborative content creation to generate a "story". Video projects have a number of advantages over research paper writing. They allow students to develop collaboration skills and be creative in how they deliver the scientific content. Research projects are more effective when the audience is larger than just a teacher. Although our videos are used as peer-teaching tools in the classroom, they also are shown to a larger audience in a public forum to increase the challenge. Video will be the professional communication tool of the future. This presentation will cover the components of the video production process and instructional lessons learned over a seven-year period.

  14. A semi-automated software tool to study treadmill locomotion in the rat: from experiment videos to statistical gait analysis.

    PubMed

    Gravel, P; Tremblay, M; Leblond, H; Rossignol, S; de Guise, J A

    2010-07-15

    A computer-aided method for the tracking of morphological markers in fluoroscopic images of a rat walking on a treadmill is presented and validated. The markers correspond to bone articulations in a hind leg and are used to define the hip, knee, ankle and metatarsophalangeal joints. The method allows a user to identify, using a computer mouse, about 20% of the marker positions in a video and interpolate their trajectories from frame-to-frame. This results in a seven-fold speed improvement in detecting markers. This also eliminates confusion problems due to legs crossing and blurred images. The video images are corrected for geometric distortions from the X-ray camera, wavelet denoised, to preserve the sharpness of minute bone structures, and contrast enhanced. From those images, the marker positions across video frames are extracted, corrected for rat "solid body" motions on the treadmill, and used to compute the positional and angular gait patterns. Robust Bootstrap estimates of those gait patterns and their prediction and confidence bands are finally generated. The gait patterns are invaluable tools to study the locomotion of healthy animals or the complex process of locomotion recovery in animals with injuries. The method could, in principle, be adapted to analyze the locomotion of other animals as long as a fluoroscopic imager and a treadmill are available. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  16. Children as ethnobotanists: methods and local impact of a participatory research project with children on wild plant gathering in the Grosses Walsertal Biosphere Reserve, Austria.

    PubMed

    Grasser, Susanne; Schunko, Christoph; Vogl, Christian R

    2016-10-10

    Ethically sound research in applied ethnobiology should benefit local communities by giving them full access to research processes and results. Participatory research may ensure such access, but there has been little discussion on methodological details of participatory approaches in ethnobiological research. This paper presents and discusses the research processes and methods developed in the course of a three-year research project on wild plant gathering, the involvement of children as co-researchers and the project's indications for local impact. Research was conducted in the Grosses Walsertal Biosphere Reserve, Austria, between 2008 and 2010 in four research phases. In phase 1, 36 freelist interviews with local people and participant observation was conducted. In phase 2 school workshops were held in 14 primary school classes and their 189 children interviewed 506 family members with structured questionnaires. In phase 3, 27 children and two researchers co-produced participatory videos. In phase 4 indications for the impact of the project were investigated with questionnaires from ten children and with participant observation. Children participated in various ways in the research process and the scientific output and local impact of the project was linked to the phases, degrees and methods of children's involvement. Children were increasingly involved in the project, from non-participation to decision-making. Scientific output was generated from participatory and non-participatory activities whereas local impact - on personal, familial, communal and institutional levels - was mainly generated through the participatory involvement of children as interviewers and as co-producers of videos. Creating scientific outputs from participatory video is little developed in ethnobiology, whereas bearing potential. As ethnobotanists and ethnobiologists, if we are truly concerned about the impact and benefits of our research processes and results to local communities, the details of the research processes need to be deliberately planned and evaluated and then reported and discussed in academic publications.

  17. Real-time fluorescence target/background (T/B) ratio calculation in multimodal endoscopy for detecting GI tract cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Yang; Gong, Yuanzheng; Wang, Thomas D.; Seibel, Eric J.

    2017-02-01

    Multimodal endoscopy, with fluorescence-labeled probes binding to overexpressed molecular targets, is a promising technology to visualize early-stage cancer. T/B ratio is the quantitative analysis used to correlate fluorescence regions to cancer. Currently, T/B ratio calculation is post-processing and does not provide real-time feedback to the endoscopist. To achieve real-time computer assisted diagnosis (CAD), we establish image processing protocols for calculating T/B ratio and locating high-risk fluorescence regions for guiding biopsy and therapy in Barrett's esophagus (BE) patients. Methods: Chan-Vese algorithm, an active contour model, is used to segment high-risk regions in fluorescence videos. A semi-implicit gradient descent method was applied to minimize the energy function of this algorithm and evolve the segmentation. The surrounding background was then identified using morphology operation. The average T/B ratio was computed and regions of interest were highlighted based on user-selected thresholding. Evaluation was conducted on 50 fluorescence videos acquired from clinical video recordings using a custom multimodal endoscope. Results: With a processing speed of 2 fps on a laptop computer, we obtained accurate segmentation of high-risk regions examined by experts. For each case, the clinical user could optimize target boundary by changing the penalty on area inside the contour. Conclusion: Automatic and real-time procedure of calculating T/B ratio and identifying high-risk regions of early esophageal cancer was developed. Future work will increase processing speed to <5 fps, refine the clinical interface, and apply to additional GI cancers and fluorescence peptides.

  18. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  19. Desktop Video Productions. ICEM Guidelines Publications No. 6.

    ERIC Educational Resources Information Center

    Taufour, P. A.

    Desktop video consists of integrating the processing of the video signal in a microcomputer. This definition implies that desktop video can take multiple forms such as virtual editing or digital video. Desktop video, which does not imply any particular technology, has been approached in different ways in different technical fields. It remains a…

  20. The Relationship Between Method of Viewing Lectures, Course Ratings, and Course Timing

    PubMed Central

    Burton, William B; Ma, Terence P; Grayson, Martha S

    2017-01-01

    Background: In recent years, medical schools have provided students access to video recordings of course lectures, but few studies have investigated the impact of this on ratings of courses and teachers. This study investigated whether the method of viewing lectures was related to student ratings of the course and its components and whether the method used changed over time. Methods: Preclinical medical students indicated whether ratings of course lectures were based primarily on lecture attendance, video capture, or both. Students were categorized into Lecture, Video, or Both groups based on their responses to this question. The data consisted of 7584 student evaluations collected over 2 years. Results: Students who attended live lectures rated the course and its components higher than students who only viewed the video or used both methods, although these differences were very small. Students increasingly watched lectures exclusively by video over time: in comparison with first-year students, second-year students were more likely to watch lectures exclusively by video; in comparison with students in the first half of the academic year, students in the second half of the academic year were more likely to watch lectures exclusively by video. Conclusions: With the increase in use of lecture video recordings across medical schools, attention must be paid to student attitudes regarding these methods. PMID:29349337

  1. Evaluation of EPE Videos in Different Phases of a Learning Process

    ERIC Educational Resources Information Center

    Kolas, Line; Munkvold, Robin; Nordseth, Hugo

    2012-01-01

    The goal of the paper is to present possible use of EPE videos in different phases of a learning and teaching process. The paper is based on an evaluation of EPE (easy production educational) videos. The evaluation framework used in this study, divides the teaching and learning process into four main phases: 1) The preparation phase, 2) The…

  2. Adaptive correlation filter-based video stabilization without accumulative global motion estimation

    NASA Astrophysics Data System (ADS)

    Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil

    2014-12-01

    We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.

  3. HEVC optimizations for medical environments

    NASA Astrophysics Data System (ADS)

    Fernández, D. G.; Del Barrio, A. A.; Botella, Guillermo; García, Carlos; Meyer-Baese, Uwe; Meyer-Baese, Anke

    2016-05-01

    HEVC/H.265 is the most interesting and cutting-edge topic in the world of digital video compression, allowing to reduce by half the required bandwidth in comparison with the previous H.264 standard. Telemedicine services and in general any medical video application can benefit from the video encoding advances. However, the HEVC is computationally expensive to implement. In this paper a method for reducing the HEVC complexity in the medical environment is proposed. The sequences that are typically processed in this context contain several homogeneous regions. Leveraging these regions, it is possible to simplify the HEVC flow while maintaining a high-level quality. In comparison with the HM16.2 standard, the encoding time is reduced up to 75%, with a negligible quality loss. Moreover, the algorithm is straightforward to implement in any hardware platform.

  4. System on a chip with MPEG-4 capability

    NASA Astrophysics Data System (ADS)

    Yassa, Fathy; Schonfeld, Dan

    2002-12-01

    Current products supporting video communication applications rely on existing computer architectures. RISC processors have been used successfully in numerous applications over several decades. DSP processors have become ubiquitous in signal processing and communication applications. Real-time applications such as speech processing in cellular telephony rely extensively on the computational power of these processors. Video processors designed to implement the computationally intensive codec operations have also been used to address the high demands of video communication applications (e.g., cable set-top boxes and DVDs). This paper presents an overview of a system-on-chip (SOC) architecture used for real-time video in wireless communication applications. The SOC specifications answer to the system requirements imposed by the application environment. A CAM-based video processor is used to accelerate data intensive video compression tasks such as motion estimations and filtering. Other components are dedicated to system level data processing and audio processing. A rich set of I/Os allows the SOC to communicate with other system components such as baseband and memory subsystems.

  5. A novel method to reduce time investment when processing videos from camera trap studies.

    PubMed

    Swinnen, Kristijn R R; Reijniers, Jonas; Breno, Matteo; Leirs, Herwig

    2014-01-01

    Camera traps have proven very useful in ecological, conservation and behavioral research. Camera traps non-invasively record presence and behavior of animals in their natural environment. Since the introduction of digital cameras, large amounts of data can be stored. Unfortunately, processing protocols did not evolve as fast as the technical capabilities of the cameras. We used camera traps to record videos of Eurasian beavers (Castor fiber). However, a large number of recordings did not contain the target species, but instead empty recordings or other species (together non-target recordings), making the removal of these recordings unacceptably time consuming. In this paper we propose a method to partially eliminate non-target recordings without having to watch the recordings, in order to reduce workload. Discrimination between recordings of target species and non-target recordings was based on detecting variation (changes in pixel values from frame to frame) in the recordings. Because of the size of the target species, we supposed that recordings with the target species contain on average much more movements than non-target recordings. Two different filter methods were tested and compared. We show that a partial discrimination can be made between target and non-target recordings based on variation in pixel values and that environmental conditions and filter methods influence the amount of non-target recordings that can be identified and discarded. By allowing a loss of 5% to 20% of recordings containing the target species, in ideal circumstances, 53% to 76% of non-target recordings can be identified and discarded. We conclude that adding an extra processing step in the camera trap protocol can result in large time savings. Since we are convinced that the use of camera traps will become increasingly important in the future, this filter method can benefit many researchers, using it in different contexts across the globe, on both videos and photographs.

  6. Video error concealment using block matching and frequency selective extrapolation algorithms

    NASA Astrophysics Data System (ADS)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  7. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    NASA Astrophysics Data System (ADS)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  8. An embedded processor for real-time atmoshperic compensation

    NASA Astrophysics Data System (ADS)

    Bodnar, Michael R.; Curt, Petersen F.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-05-01

    Imaging over long distances is crucial to a number of defense and security applications, such as homeland security and launch tracking. However, the image quality obtained from current long-range optical systems can be severely degraded by the turbulent atmosphere in the path between the region under observation and the imager. While this obscured image information can be recovered using post-processing techniques, the computational complexity of such approaches has prohibited deployment in real-time scenarios. To overcome this limitation, we have coupled a state-of-the-art atmospheric compensation algorithm, the average-bispectrum speckle method, with a powerful FPGA-based embedded processing board. The end result is a light-weight, lower-power image processing system that improves the quality of long-range imagery in real-time, and uses modular video I/O to provide a flexible interface to most common digital and analog video transport methods. By leveraging the custom, reconfigurable nature of the FPGA, a 20x speed increase over a modern desktop PC was achieved in a form-factor that is compact, low-power, and field-deployable.

  9. Understanding Narrative Effects: The Impact of Breast Cancer Survivor Stories on Message Processing, Attitudes, and Beliefs among African American Women

    PubMed Central

    McQueen, Amy; Kreuter, Matthew W.; Kalesan, Bindu; Alcaraz, Kassandra I.

    2011-01-01

    OBJECTIVE Examine the longitudinal effects of personal narratives about mammography and breast cancer compared with a traditional informational approach. METHOD African American women (n=489) ages 40 and older were recruited from low-income neighborhoods in St. Louis, MO and randomized to watch a narrative video comprised of stories from African American breast cancer survivors or a content-equivalent informational video. Effects were measured immediately post-exposure (T2) and at 3- (T3) and 6-month (T4) follow-up. T2 measures of initial reaction included positive and negative affect, trust, identification, and engagement. T3 message-processing variables included arguing against the messages (counterarguing) and talking to family members about the information (cognitive rehearsal). T4 behavioral correlates included perceived breast cancer risk, cancer fear, cancer fatalism, perceived barriers to mammography, and recall of core messages. Structural equation modeling examined inter-relations among constructs. RESULTS Women who watched the narrative video (n=244) compared to the informational video (n=245) experienced more positive and negative affect, identified more with the message source, and were more engaged with the video. Narratives, negative affect, identification, and engagement influenced counterarguing, which in turn influenced perceived barriers and cancer fatalism. More engaged women talked with family members more, which increased message recall. Narratives also increased risk perceptions and fear via increased negative affect. CONCLUSIONS Narratives produced stronger cognitive and affective responses immediately, which in turn influenced message processing and behavioral correlates. Narratives reduced counterarguing and increased cognitive rehearsal, which may increase acceptance and motivation to act on health information in populations most adversely affected by cancer disparities. PMID:21895370

  10. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE PAGES

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    2015-09-11

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  11. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  12. Automatic polyp detection in colonoscopy videos

    NASA Astrophysics Data System (ADS)

    Yuan, Zijie; IzadyYazdanabadi, Mohammadhassan; Mokkapati, Divya; Panvalkar, Rujuta; Shin, Jae Y.; Tajbakhsh, Nima; Gurudu, Suryakanth; Liang, Jianming

    2017-02-01

    Colon cancer is the second cancer killer in the US [1]. Colonoscopy is the primary method for screening and prevention of colon cancer, but during colonoscopy, a significant number (25% [2]) of polyps (precancerous abnormal growths inside of the colon) are missed; therefore, the goal of our research is to reduce the polyp miss-rate of colonoscopy. This paper presents a method to detect polyp automatically in a colonoscopy video. Our system has two stages: Candidate generation and candidate classification. In candidate generation (stage 1), we chose 3,463 frames (including 1,718 with-polyp frames) from real-time colonoscopy video database. We first applied processing procedures, namely intensity adjustment, edge detection and morphology operations, as pre-preparation. We extracted each connected component (edge contour) as one candidate patch from the pre-processed image. With the help of ground truth (GT) images, 2 constraints were implemented on each candidate patch, dividing and saving them into polyp group and non-polyp group. In candidate classification (stage 2), we trained and tested convolutional neural networks (CNNs) with AlexNet architecture [3] to classify each candidate into with-polyp or non-polyp class. Each with-polyp patch was processed by rotation, translation and scaling for invariant to get a much robust CNNs system. We applied leave-2-patients-out cross-validation on this model (4 of 6 cases were chosen as training set and the rest 2 were as testing set). The system accuracy and sensitivity are 91.47% and 91.76%, respectively.

  13. [How to produce a video to promote HIV testing in men who have sex with men?].

    PubMed

    Menacho, Luis A; Blas, Magaly M

    2015-01-01

    The aim of the study was to describe the process of designing and producing a video to promote HIV testing in Peruvian men who have sex with men (MSM). The process involved the following steps: identification of the theories of behavior change; identifying key messages and video features; developing a script that would captivate the target audience; working with an experienced production company; and piloting the video. A video with everyday situations of risk associated with HIV infection was the one preferred by participants. Key messages identified, and theoretical constructs models chosen were used to create the video scenes. Participants identified with the main, 9 minute video which they considered to be clear and dynamic. It is necessary to work with the target population to design a video according to their preferences.

  14. Robust Observation Detection for Single Object Tracking: Deterministic and Probabilistic Patch-Based Approaches

    PubMed Central

    Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill

    2012-01-01

    In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226

  15. Detection of Upscale-Crop and Partial Manipulation in Surveillance Video Based on Sensor Pattern Noise

    PubMed Central

    Hyun, Dai-Kyung; Ryu, Seung-Jin; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-01-01

    In many court cases, surveillance videos are used as significant court evidence. As these surveillance videos can easily be forged, it may cause serious social issues, such as convicting an innocent person. Nevertheless, there is little research being done on forgery of surveillance videos. This paper proposes a forensic technique to detect forgeries of surveillance video based on sensor pattern noise (SPN). We exploit the scaling invariance of the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to reliably unveil traces of upscaling in videos. By excluding the high-frequency components of the investigated video and adaptively choosing the size of the local search window, the proposed method effectively localizes partially manipulated regions. Empirical evidence from a large database of test videos, including RGB (Red, Green, Blue)/infrared video, dynamic-/static-scene video and compressed video, indicates the superior performance of the proposed method. PMID:24051524

  16. Flight State Information Inference with Application to Helicopter Cockpit Video Data Analysis Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Shin, Sanghyun

    The National Transportation Safety Board (NTSB) has recently emphasized the importance of analyzing flight data as one of the most effective methods to improve eciency and safety of helicopter operations. By analyzing flight data with Flight Data Monitoring (FDM) programs, the safety and performance of helicopter operations can be evaluated and improved. In spite of the NTSB's effort, the safety of helicopter operations has not improved at the same rate as the safety of worldwide airlines, and the accident rate of helicopters continues to be much higher than that of fixed-wing aircraft. One of the main reasons is that the participation rates of the rotorcraft industry in the FDM programs are low due to the high costs of the Flight Data Recorder (FDR), the need of a special readout device to decode the FDR, anxiety of punitive action, etc. Since a video camera is easily installed, accessible, and inexpensively maintained, cockpit video data could complement the FDR in the presence of the FDR or possibly replace the role of the FDR in the absence of the FDR. Cockpit video data is composed of image and audio data: image data contains outside views through cockpit windows and activities on the flight instrument panels, whereas audio data contains sounds of the alarms within the cockpit. The goal of this research is to develop, test, and demonstrate a cockpit video data analysis algorithm based on data mining and signal processing techniques that can help better understand situations in the cockpit and the state of a helicopter by efficiently and accurately inferring the useful flight information from cockpit video data. Image processing algorithms based on data mining techniques are proposed to estimate a helicopter's attitude such as the bank and pitch angles, identify indicators from a flight instrument panel, and read the gauges and the numbers in the analogue gauge indicators and digital displays from cockpit image data. In addition, an audio processing algorithm based on signal processing and abrupt change detection techniques is proposed to identify types of warning alarms and to detect the occurrence times of individual alarms from cockpit audio data. Those proposed algorithms are then successfully applied to simulated and real helicopter cockpit video data to demonstrate and validate their performance.

  17. Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Khan, Waqar Ahmad; Gondal, Muhammad Asif; Hussain, Iqtadar

    2013-07-01

    The aim of this work is to make use of the mean of absolute deviation (MAD) method for the evaluation process of substitution boxes used in the advanced encryption standard. In this paper, we use the MAD technique to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, MAD is applied to advanced encryption standard (AES), affine power affine (APA), Gray, Lui J., Residue Prime, S8 AES, SKIPJACK, and Xyi substitution boxes.

  18. Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish

    NASA Astrophysics Data System (ADS)

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2006-11-01

    A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.

  19. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  20. Tensor Factorization for Low-Rank Tensor Completion.

    PubMed

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  1. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  2. Visual analysis of trash bin processing on garbage trucks in low resolution video

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Loibner, Gernot

    2015-03-01

    We present a system for trash can detection and counting from a camera which is mounted on a garbage collection truck. A working prototype has been successfully implemented and tested with several hours of real-world video. The detection pipeline consists of HOG detectors for two trash can sizes, and meanshift tracking and low level image processing for the analysis of the garbage disposal process. Considering the harsh environment and unfavorable imaging conditions, the process works already good enough so that very useful measurements from video data can be extracted. The false positive/false negative rate of the full processing pipeline is about 5-6% at fully automatic operation. Video data of a full day (about 8 hrs) can be processed in about 30 minutes on a standard PC.

  3. Dynamic Textures Modeling via Joint Video Dictionary Learning.

    PubMed

    Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng

    2017-04-06

    Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.

  4. The influence of motion quality on responses towards video playback stimuli.

    PubMed

    Ware, Emma; Saunders, Daniel R; Troje, Nikolaus F

    2015-05-11

    Visual motion, a critical cue in communication, can be manipulated and studied using video playback methods. A primary concern for the video playback researcher is the degree to which objects presented on video appear natural to the non-human subject. Here we argue that the quality of motion cues on video, as determined by the video's image presentation rate (IPR), are of particular importance in determining a subject's social response behaviour. We present an experiment testing the effect of variations in IPR on pigeon (Columbia livia) response behaviour towards video images of courting opposite sex partners. Male and female pigeons were presented with three video playback stimuli, each containing a different social partner. Each stimulus was then modified to appear at one of three IPRs: 15, 30 or 60 progressive (p) frames per second. The results showed that courtship behaviour became significantly longer in duration as IPR increased. This finding implies that the IPR significantly affects the perceived quality of motion cues impacting social behaviour. In males we found that the duration of courtship also depended on the social partner viewed and that this effect interacted with the effects of IPR on behaviour. Specifically, the effect of social partner reached statistical significance only when the stimuli were displayed at 60 p, demonstrating the potential for erroneous results when insufficient IPRs are used. In addition to demonstrating the importance of IPR in video playback experiments, these findings help to highlight and describe the role of visual motion processing in communication behaviour. © 2015. Published by The Company of Biologists Ltd.

  5. PixonVision real-time video processor

    NASA Astrophysics Data System (ADS)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  6. Digital Signal Processing For Low Bit Rate TV Image Codecs

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  7. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  8. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos.

    PubMed

    Moghaddasi, Hanie; Nourian, Saeed

    2016-06-01

    Heart disease is the major cause of death as well as a leading cause of disability in the developed countries. Mitral Regurgitation (MR) is a common heart disease which does not cause symptoms until its end stage. Therefore, early diagnosis of the disease is of crucial importance in the treatment process. Echocardiography is a common method of diagnosis in the severity of MR. Hence, a method which is based on echocardiography videos, image processing techniques and artificial intelligence could be helpful for clinicians, especially in borderline cases. In this paper, we introduce novel features to detect micro-patterns of echocardiography images in order to determine the severity of MR. Extensive Local Binary Pattern (ELBP) and Extensive Volume Local Binary Pattern (EVLBP) are presented as image descriptors which include details from different viewpoints of the heart in feature vectors. Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Template Matching techniques are used as classifiers to determine the severity of MR based on textural descriptors. The SVM classifier with Extensive Uniform Local Binary Pattern (ELBPU) and Extensive Volume Local Binary Pattern (EVLBP) have the best accuracy with 99.52%, 99.38%, 99.31% and 99.59%, respectively, for the detection of Normal, Mild MR, Moderate MR and Severe MR subjects among echocardiography videos. The proposed method achieves 99.38% sensitivity and 99.63% specificity for the detection of the severity of MR and normal subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Complex Event Processing for Content-Based Text, Image, and Video Retrieval

    DTIC Science & Technology

    2016-06-01

    NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval

  10. An unsupervised video foreground co-localization and segmentation process by incorporating motion cues and frame features

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.

  11. Development and Pilot Testing of a Video-Assisted Informed Consent Process

    PubMed Central

    Sonne, Susan C.; Andrews, Jeannette O.; Gentilin, Stephanie M.; Oppenheimer, Stephanie; Obeid, Jihad; Brady, Kathleen; Wolf, Sharon; Davis, Randal; Magruder, Kathryn

    2013-01-01

    The informed consent process for research has come under scrutiny, as consent documents are increasingly long and difficult to understand. Innovations are needed to improve comprehension in order to make the consent process truly informed. We report on the development and pilot testing of video clips that could be used during the consent process to better explain research procedures to potential participants. Based on input from researchers and community partners, 15 videos of common research procedures/concepts were produced. The utility of the videos was then tested by embedding them in mock informed consent documents that were presented via an online electronic consent system designed for delivery via iPad. Three mock consents were developed, each containing five videos. All participants (n=61) read both a paper version and the video-assisted iPad version of the same mock consent and were randomized to which format they reviewed first. Participants were given a competency quiz that posed specific questions about the information in the consent after reviewing the first consent document to which they were exposed. Most participants (78.7%) preferred the video-assisted format compared to paper (12.9%). Nearly all (96.7%) reported that the videos improved their understanding of the procedures described in the consent document; however, comprehension of material did not significantly differ by consent format. Results suggest videos may be helpful in providing participants with information about study procedures in a way that is easy to understand. Additional testing of video consents for complex protocols and with subjects of lower literacy is warranted. PMID:23747986

  12. Development and pilot testing of a video-assisted informed consent process.

    PubMed

    Sonne, Susan C; Andrews, Jeannette O; Gentilin, Stephanie M; Oppenheimer, Stephanie; Obeid, Jihad; Brady, Kathleen; Wolf, Sharon; Davis, Randal; Magruder, Kathryn

    2013-09-01

    The informed consent process for research has come under scrutiny, as consent documents are increasingly long and difficult to understand. Innovations are needed to improve comprehension in order to make the consent process truly informed. We report on the development and pilot testing of video clips that could be used during the consent process to better explain research procedures to potential participants. Based on input from researchers and community partners, 15 videos of common research procedures/concepts were produced. The utility of the videos was then tested by embedding them in mock-informed consent documents that were presented via an online electronic consent system designed for delivery via iPad. Three mock consents were developed, each containing five videos. All participants (n = 61) read both a paper version and the video-assisted iPad version of the same mock consent and were randomized to which format they reviewed first. Participants were given a competency quiz that posed specific questions about the information in the consent after reviewing the first consent document to which they were exposed. Most participants (78.7%) preferred the video-assisted format compared to paper (12.9%). Nearly all (96.7%) reported that the videos improved their understanding of the procedures described in the consent document; however, the comprehension of material did not significantly differ by consent format. Results suggest videos may be helpful in providing participants with information about study procedures in a way that is easy to understand. Additional testing of video consents for complex protocols and with subjects of lower literacy is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Issues and advances in research methods on video games and cognitive abilities

    PubMed Central

    Sobczyk, Bart; Dobrowolski, Paweł; Skorko, Maciek; Michalak, Jakub; Brzezicka, Aneta

    2015-01-01

    The impact of video game playing on cognitive abilities has been the focus of numerous studies over the last 10 years. Some cross-sectional comparisons indicate the cognitive advantages of video game players (VGPs) over non-players (NVGPs) and the benefits of video game trainings, while others fail to replicate these findings. Though there is an ongoing discussion over methodological practices and their impact on observable effects, some elementary issues, such as the representativeness of recruited VGP groups and lack of genre differentiation have not yet been widely addressed. In this article we present objective and declarative gameplay time data gathered from large samples in order to illustrate how playtime is distributed over VGP populations. The implications of this data are then discussed in the context of previous studies in the field. We also argue in favor of differentiating video games based on their genre when recruiting study samples, as this form of classification reflects the core mechanics that they utilize and therefore provides a measure of insight into what cognitive functions are likely to be engaged most. Additionally, we present the Covert Video Game Experience Questionnaire as an example of how this sort of classification can be applied during the recruitment process. PMID:26483717

  14. Where's Maria? A video to increase awareness about breast cancer and mammography screening among low-literacy Latinas.

    PubMed

    Borrayo, Evelinn A

    2004-07-01

    The need exists to educate and motivate medically disadvantaged Latinas to engage in regular mammography screening to reduce their high breast cancer (BC) mortality risk due to the illness' late detection. Qualitative research methods [e.g., focus groups, key informants] were primarily used during the basic and formative research phases in preproducing and producing a breast cancer educational video for low-literacy Latinas. An 8-min video was created in an Entertainment-Education soap opera format. The purpose of the video is to create awareness about breast cancer and to motivate low-literacy Latinas who are at the precontemplation stage of behavior change to consider engaging in mammography screening. Thus, the video presents a compelling story of a Latina with whom the target audience can identify and become involved with the unfolding events of her story as she realizes her risk for breast cancer and struggles with the decision to engage in mammography. The content and format of the video include culturally relevant clues and modeling to influence Latinas' cognitive and subjective processes involved in making the decision to change. Complex attitudinal and behavioral issues can be effectively targeted to decrease the influence that psychological barriers exert in Latinas low breast cancer screening rates. Copyright 2004 The Institute for Cancer Prevention and Elsevier Inc.

  15. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  16. Video-Stimulated Accounts: Young Children Accounting for Interactional Matters in Front of Peers

    ERIC Educational Resources Information Center

    Theobald, Maryanne

    2012-01-01

    Research in the early years places increasing importance on participatory methods to engage children. The playback of video-recording to stimulate conversation is a research method that enables children's accounts to be heard and attends to a participatory view. During video-stimulated sessions, participants watch an extract of video-recording of…

  17. Video-guided calibration of an augmented reality mobile C-arm.

    PubMed

    Chen, Xin; Naik, Hemal; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-11-01

    The augmented reality (AR) fluoroscope augments an X-ray image by video and provides the surgeon with a real-time in situ overlay of the anatomy. The overlay alignment is crucial for diagnostic and intra-operative guidance, so precise calibration of the AR fluoroscope is required. The first and most complex step of the calibration procedure is the determination of the X-ray source position. Currently, this is achieved using a biplane phantom with movable metallic rings on its top layer and fixed X-ray opaque markers on its bottom layer. The metallic rings must be moved to positions where at least two pairs of rings and markers are isocentric in the X-ray image. The current "trial and error" calibration process currently requires acquisition of many X-ray images, a task that is both time consuming and radiation intensive. An improved process was developed and tested for C-arm calibration. Video guidance was used to drive the calibration procedure to minimize both X-ray exposure and the time involved. For this, a homography between X-ray and video images is estimated. This homography is valid for the plane at which the metallic rings are positioned and is employed to guide the calibration procedure. Eight users having varying calibration experience (i.e., 2 experts, 2 semi-experts, 4 novices) were asked to participate in the evaluation. The video-guided technique reduced the number of intra-operative X-ray calibration images by 89% and decreased the total time required by 59%. A video-based C-arm calibration method has been developed that improves the usability of the AR fluoroscope with a friendlier interface, reduced calibration time and clinically acceptable radiation doses.

  18. Rapid mask prototyping for microfluidics.

    PubMed

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  19. Rapid mask prototyping for microfluidics

    PubMed Central

    Maisonneuve, B. G. C.; Honegger, T.; Cordeiro, J.; Lecarme, O.; Thiry, T.; Fuard, D.; Berton, K.; Picard, E.; Zelsmann, M.; Peyrade, D.

    2016-01-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks. PMID:27014396

  20. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  1. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  2. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  3. The Relationship Between Method of Viewing Lectures, Course Ratings, and Course Timing.

    PubMed

    Burton, William B; Ma, Terence P; Grayson, Martha S

    2017-01-01

    In recent years, medical schools have provided students access to video recordings of course lectures, but few studies have investigated the impact of this on ratings of courses and teachers. This study investigated whether the method of viewing lectures was related to student ratings of the course and its components and whether the method used changed over time. Preclinical medical students indicated whether ratings of course lectures were based primarily on lecture attendance, video capture, or both. Students were categorized into Lecture, Video, or Both groups based on their responses to this question. The data consisted of 7584 student evaluations collected over 2 years. Students who attended live lectures rated the course and its components higher than students who only viewed the video or used both methods, although these differences were very small. Students increasingly watched lectures exclusively by video over time: in comparison with first-year students, second-year students were more likely to watch lectures exclusively by video; in comparison with students in the first half of the academic year, students in the second half of the academic year were more likely to watch lectures exclusively by video. With the increase in use of lecture video recordings across medical schools, attention must be paid to student attitudes regarding these methods.

  4. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    NASA Astrophysics Data System (ADS)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  5. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis

    PubMed Central

    Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-01-01

    Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122

  6. Assessment of the use and feasibility of video to supplement the genetic counseling process: a cancer genetic counseling perspective.

    PubMed

    Axilbund, J E; Hamby, L A; Thompson, D B; Olsen, S J; Griffin, C A

    2005-06-01

    Cancer genetic counselors use a variety of teaching modalities for patient education. This survey of cancer genetic counselors assessed their use of educational videos and their recommendations for content of future videos. Thirty percent of respondents use videos for patient education. Cited benefits included reinforcement of information for clients and increased counselor efficiency. Of the 70% who do not use videos, predominant barriers included the perceived lack of an appropriate video, lack of space and/or equipment, and concern that videos are impersonal. Most respondents desired a video that is representative of the genetic counseling session, but emphasized the importance of using broad information. Content considered critical included the pros and cons of genetic testing, associated psychosocial implications, and genetic discrimination. The results of this exploratory study provide data relevant for the development of a cancer genetics video for patient education, and suggestions are made based on aspects of information processing and communication theories.

  7. Review of passive-blind detection in digital video forgery based on sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Tao, Junjie; Jia, Lili; You, Ying

    2016-01-01

    Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.

  8. Digital Video (DV): A Primer for Developing an Enterprise Video Strategy

    NASA Astrophysics Data System (ADS)

    Talovich, Thomas L.

    2002-09-01

    The purpose of this thesis is to provide an overview of digital video production and delivery. The thesis presents independent research demonstrating the educational value of incorporating video and multimedia content in training and education programs. The thesis explains the fundamental concepts associated with the process of planning, preparing, and publishing video content and assists in the development of follow-on strategies for incorporation of video content into distance training and education programs. The thesis provides an overview of the following technologies: Digital Video, Digital Video Editors, Video Compression, Streaming Video, and Optical Storage Media.

  9. Healthcare personnel's experiences using video consultation in primary healthcare in rural areas.

    PubMed

    Johansson, Annette M; Lindberg, Inger; Söderberg, Siv

    2017-01-01

    Patients living in rural areas often need to travel long distances for access to specialist care. To increase access to specialist care, video consultation between patients in primary healthcare and specialist care has been used. In order for this new method to be developed and used to the fullest, it is important to understand healthcare personnel's experiences with this intervention. The aim of this study was to describe healthcare personnel's experiences using video consultation in their work in primary healthcare. A mixed methods design was used, and the data were analysed using qualitative and quantitative analysis methods. Interviews were conducted with eight general practitioners and one district nurse, all of whom had conducted a video consultation with a patient and a specialist physician or a cardiac specialist nurse. After each video consultation, the participants completed a consultation report/questionnaire. Healthcare personnel considered video consultation to provide quicker access to specialist care for the patient, and greater security when the video consultation encounter was conducted at their own primary healthcare centre. They considered video consultation an opportunity to provide education and for the patients to ask questions. Video consultation is a satisfactory tool for healthcare personnel, and the technology is a new, useful method, especially for the district nurses. Further, video consultation is an opportunity for healthcare personnel to learn. However, for it to work as an accepted method, the technology must function well and be user friendly. It must also be clear that it is beneficial for the patients and the healthcare personnel.

  10. Quality metric for spherical panoramic video

    NASA Astrophysics Data System (ADS)

    Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon

    2016-09-01

    Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.

  11. Assessing instrument handling and operative consequences simultaneously: a simple method for creating synced multicamera videos for endosurgical or microsurgical skills assessments.

    PubMed

    Jabbour, Noel; Sidman, James

    2011-10-01

    There has been an increasing interest in assessment of technical skills in most medical and surgical disciplines. Many of these assessments involve microscopy or endoscopy and are thus amenable to video recording for post hoc review. An ideal skills assessment video would provide the reviewer with a simultaneous view of the examinee's instrument handling and the operative field. Ideally, a reviewer should be blinded to the identity of the examinee and whether the assessment was performed as a pretest or posttest examination, when given in conjunction with an educational intervention. We describe a simple method for reliably creating deidentified, multicamera, time-synced videos, which may be used in technical skills assessments. We pilot tested this method in a pediatric airway endoscopy Objective Assessment of Technical Skills (OSATS). Total video length was compared with the OSATS administration time. Thirty-nine OSATS were administered. There were no errors encountered in time-syncing the videos using this method. Mean duration of OSATS videos was 11 minutes and 20 seconds, which was significantly less than the time needed for an expert to be present at the administration of each 30-minute OSATS (P < 0.001). The described method for creating time-synced, multicamera skills assessment videos is reliable and may be used in endosurgical or microsurgical skills assessments. Compared with live review, post hoc video review using this method can save valuable expert reviewer time. Most importantly, this method allows a reviewer to simultaneously evaluate an examinee's instrument handling and the operative field while being blinded to the examinee's identity and timing of examination administration.

  12. Video Recording and the Research Process

    ERIC Educational Resources Information Center

    Leung, Constant; Hawkins, Margaret R.

    2011-01-01

    This is a two-part discussion. Part 1 is entitled "English Language Learning in Subject Lessons", and Part 2 is titled "Video as a Research Tool/Counterpoint". Working with different research concerns, the authors attempt to draw attention to a set of methodological and theoretical issues that have emerged in the research process using video data.…

  13. Gamifying Video Object Segmentation.

    PubMed

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  14. Action video games and improved attentional control: Disentangling selection- and response-based processes.

    PubMed

    Chisholm, Joseph D; Kingstone, Alan

    2015-10-01

    Research has demonstrated that experience with action video games is associated with improvements in a host of cognitive tasks. Evidence from paradigms that assess aspects of attention has suggested that action video game players (AVGPs) possess greater control over the allocation of attentional resources than do non-video-game players (NVGPs). Using a compound search task that teased apart selection- and response-based processes (Duncan, 1985), we required participants to perform an oculomotor capture task in which they made saccades to a uniquely colored target (selection-based process) and then produced a manual directional response based on information within the target (response-based process). We replicated the finding that AVGPs are less susceptible to attentional distraction and, critically, revealed that AVGPs outperform NVGPs on both selection-based and response-based processes. These results not only are consistent with the improved-attentional-control account of AVGP benefits, but they suggest that the benefit of action video game playing extends across the full breadth of attention-mediated stimulus-response processes that impact human performance.

  15. Enhanced learning of proportional math through music training and spatial-temporal training.

    PubMed

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  16. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    PubMed Central

    Simons, Monique; Brug, Johannes; Chinapaw, Mai J. M.; de Boer, Michiel; Seidell, Jaap; de Vet, Emely

    2015-01-01

    Objective The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of healthy weight. Methods We assigned 270 gaming (i.e. ≥2 hours/week non-active video game time) adolescents randomly to an intervention group (n = 140) (receiving active video games and encouragement to play) or a waiting-list control group (n = 130). BMI-SDS (SDS = adjusted for mean standard deviation score), waist circumference-SDS, hip circumference and sum of skinfolds were measured at baseline, at four and ten months follow-up (primary outcomes). Sedentary screen time, physical activity, consumption of sugar-sweetened beverages and snacks, and process measures (not at baseline) were assessed with self-reports at baseline, one, four and ten months follow-up. Multi-level-intention to treat-regression analyses were conducted. Results The control group decreased significantly more than the intervention group on BMI-SDS (β = 0.074, 95%CI: 0.008;0.14), and sum of skinfolds (β = 3.22, 95%CI: 0.27;6.17) (overall effects). The intervention group had a significantly higher decrease in self-reported non-active video game time (β = -1.76, 95%CI: -3.20;-0.32) and total sedentary screen time (Exp (β = 0.81, 95%CI: 0.74;0.88) than the control group (overall effects). The process evaluation showed that 14% of the adolescents played the Move video games every week ≥1 hour/week during the whole intervention period. Conclusions The active video game intervention did not result in lower values on anthropometrics in a group of ‘excessive’ non-active video gamers (mean ~ 14 hours/week) who primarily were of healthy weight compared to a control group throughout a ten-month-period. Even some effects in the unexpected direction were found, with the control group showing lower BMI-SDS and skin folds than the intervention group. The intervention did result in less self-reported sedentary screen time, although these results are likely biased by social desirability. Trial Registration Dutch Trial Register NTR3228 PMID:26153884

  17. Video training with peer feedback in real-time consultation: acceptability and feasibility in a general-practice setting

    PubMed Central

    Eeckhout, Thomas; Gerits, Michiel; Bouquillon, Dries; Schoenmakers, Birgitte

    2016-01-01

    Objective Since many years, teaching and training in communication skills are cornerstones in the medical education curriculum. Although video recording in a real-time consultation is expected to positively contribute to the learning process, research on this topic is scarce. This study will focus on the feasibility and acceptability of video recording during real-time patient encounters performed by general practitioner (GP) trainees. Method The primary research question addressed the experiences (defined as feasibility and acceptability) of GP trainees in video-recorded vocational training in a general practice. The second research question addressed the appraisal of this training. The procedure of video-recorded training is developed, refined and validated by the Academic Teaching Practice of Leuven since 1974 (Faculty of Medicine of the University of Leuven). The study is set up as a cross-sectional survey without follow-up. Outcome measures were defined as ‘feasibility and acceptability’ (experiences of trainees) of the video-recorded training and were approached by a structured questionnaire with the opportunity to add free text comments. The studied sample consisted of all first-phase trainees of the GP Master 2011–2012 at the University of Leuven. Results Almost 70% of the trainees were positive about recording consultations. Nevertheless, over 60% believed that patients felt uncomfortable during the video-recorded encounter. Almost 90% noticed an improvement of own communication skills through the observation and evaluation of. Most students (85%) experienced the logistical issues as major barrier to perform video consultations on a regular base. Conclusions This study lays the foundation stone for further exploration of the video training in real-time consultations. Both students and teachers on the field acknowledge that the power of imaging is underestimated in the training of communication and vocational skills. The development of supportive material and protocols will lower thresholds. Practice implications Time investment for teachers could be tempered by bringing up students to peer tutors and by an accurate scheduling of the video training. The development of supportive material and protocols will lower thresholds. Further research should finally focus on long-term efficacy and efficiency in terms of learning outcomes and on the facilitation of the technical process. PMID:26842970

  18. Video integrated measurement system. [Diagnostic display devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, B.; Eilbert, L.; Finando, S.

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides anmore » innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.« less

  19. Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach

    NASA Astrophysics Data System (ADS)

    Burnecki, K.; Muszkieta, M.; Sikora, G.; Weron, A.

    2012-04-01

    Golding and Cox (Phys. Rev. Lett., 96 (2006) 098102) tracked the motion of individual fluorescently labelled mRNA molecules inside live E. coli cells. They found that in the set of 23 trajectories from 3 different experiments, the automatically recognized motion is subdiffusive and published an intriguing microscopy video. Here, we extract the corresponding time series from this video by image segmentation method and present its detailed statistical analysis. We find that this trajectory was not included in the data set already studied and has different statistical properties. It is best fitted by a fractional autoregressive integrated moving average (FARIMA) process with the normal-inverse Gaussian (NIG) noise and the negative memory. In contrast to earlier studies, this shows that the fractional Brownian motion is not the best model for the dynamics documented in this video.

  20. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  1. High-performance software-only H.261 video compression on PC

    NASA Astrophysics Data System (ADS)

    Kasperovich, Leonid

    1996-03-01

    This paper describes an implementation of a software H.261 codec for PC, that takes an advantage of the fast computational algorithms for DCT-based video compression, which have been presented by the author at the February's 1995 SPIE/IS&T meeting. The motivation for developing the H.261 prototype system is to demonstrate a feasibility of real time software- only videoconferencing solution to operate across a wide range of network bandwidth, frame rate, and resolution of the input video. As the bandwidths of current network technology will be increased, the higher frame rate and resolution of video to be transmitted is allowed, that requires, in turn, a software codec to be able to compress pictures of CIF (352 X 288) resolution at up to 30 frame/sec. Running on Pentium 133 MHz PC the codec presented is capable to compress video in CIF format at 21 - 23 frame/sec. This result is comparable to the known hardware-based H.261 solutions, but it doesn't require any specific hardware. The methods to achieve high performance, the program optimization technique for Pentium microprocessor along with the performance profile, showing the actual contribution of the different encoding/decoding stages to the overall computational process, are presented.

  2. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    NASA Astrophysics Data System (ADS)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  3. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  4. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  5. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  6. SWCD: a sliding window and self-regulated learning-based background updating method for change detection in videos

    NASA Astrophysics Data System (ADS)

    Işık, Şahin; Özkan, Kemal; Günal, Serkan; Gerek, Ömer Nezih

    2018-03-01

    Change detection with background subtraction process remains to be an unresolved issue and attracts research interest due to challenges encountered on static and dynamic scenes. The key challenge is about how to update dynamically changing backgrounds from frames with an adaptive and self-regulated feedback mechanism. In order to achieve this, we present an effective change detection algorithm for pixelwise changes. A sliding window approach combined with dynamic control of update parameters is introduced for updating background frames, which we called sliding window-based change detection. Comprehensive experiments on related test videos show that the integrated algorithm yields good objective and subjective performance by overcoming illumination variations, camera jitters, and intermittent object motions. It is argued that the obtained method makes a fair alternative in most types of foreground extraction scenarios; unlike case-specific methods, which normally fail for their nonconsidered scenarios.

  7. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  8. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    PubMed Central

    Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933

  9. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  10. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    PubMed Central

    2010-01-01

    Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897

  11. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  12. Automated vehicle counting using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  13. How to freak a Black & Mild: a multi-study analysis of YouTube videos illustrating cigar product modification.

    PubMed

    Nasim, Aashir; Blank, Melissa D; Cobb, Caroline O; Berry, Brittany M; Kennedy, May G; Eissenberg, Thomas

    2014-02-01

    Cigar smoking is increasingly common among adolescents who perceive cigars as less harmful than cigarettes. This perception of reduced harm is especially true for cigars that are user-modified by removing the tobacco binder through a process called 'freaking'. Little is known about 'freaking' and this multi-study, mixed-methods analysis sought to understand better the rationale and prevailing beliefs about this smoking practice using YouTube videos. In Study 1, we conducted a descriptive content analysis on the characteristics of 26 randomly sampled cigar product modification (CPM) videos posted during 2006-10. In Study 2, a thematic analysis was performed on the transcripts of commentary associated with each video to characterize viewers' comments about video content. Study 1 results revealed that 90% of videos illustrated a four-step CPM technique: 'Loosening the tobacco'; 'Dumping the tobacco'; 'Removing the cigar binder' and 'Repacking the tobacco'. Four themes related to the purpose of CPM were also derived from video content: 'Easier to smoke' (54%), 'Beliefs in reduction of health risks' (31%), 'Changing the burn rate' (15%) and 'Taste enhancement' (12%). Study 2 results concerning the content characteristics of video comments were categorized into three themes: 'Disseminating information/answering questions' (81%), 'Seeking advice/asking questions' (69%) and 'Learning cigar modification techniques' (35%). Favorable comments were more common (81%) compared to unfavorable (58%) and comment content suggested low-risk perceptions and poor understanding of smoking harms. These findings highlight a novel means for youth to access information concerning CPM that may have important implications for tobacco control policy and prevention.

  14. Effects of Viewing an Evidence-Based Video Decision Aid on Patients’ Treatment Preferences for Spine Surgery

    PubMed Central

    Lurie, Jon D.; Spratt, Kevin F.; Blood, Emily A.; Tosteson, Tor D.; Tosteson, Anna N. A.; Weinstein, James N.

    2011-01-01

    Study Design Secondary analysis within a large clinical trial Objective To evaluate the changes in treatment preference before and after watching a video decision aid as part of an informed consent process. Summary of Background Data A randomized trial with a similar decision aid in herniated disc patients had shown decreased rate of surgery in the video group, but the effect of the video on expressed preferences is not known. Methods Subjects enrolling in the Spine Patient Outcomes Research Trial (SPORT) with intervertebral disc herniation (IDH), spinal stenosis (SPS), or degenerative spondylolisthesis (DS) at thirteen multidisciplinary spine centers across the US were given an evidence-based videotape decision aid viewed prior to enrollment as part of informed consent. Results Of the 2505 patients, 86% (n=2151) watched the video and 14% (n=354) did not. Watchers shifted their preference more often than non-watchers(37.9% vs. 20.8%, p < 0.0001) and more often demonstrated a strengthened preference (26.2% vs. 11.1%, p < 0.0001). Among the 806 patients whose preference shifted after watching the video, 55% shifted toward surgery (p=0.003). Among the 617 who started with no preference, after the video 27% preferred non-operative care, 22% preferred surgery, and 51% remained uncertain. Conclusion After watching the evidence-based patient decision aid (video) used in SPORT, patients with specific lumbar spine disorders formed and/or strengthened their treatment preferences in a balanced way that did not appear biased toward or away from surgery. PMID:21358485

  15. Noise-Riding Video Signal Threshold Generation Scheme for a Plurality of Video Signal Channels

    DTIC Science & Technology

    2007-02-12

    on the selected one signal channel to generate a new video signal threshold . The processing resource has an output to provide the new video signal threshold to the comparator circuit corresponding to the selected signal channel.

  16. Method and System for Producing Full Motion Media to Display on a Spherical Surface

    NASA Technical Reports Server (NTRS)

    Starobin, Michael A. (Inventor)

    2015-01-01

    A method and system for producing full motion media for display on a spherical surface is described. The method may include selecting a subject of full motion media for display on a spherical surface. The method may then include capturing the selected subject as full motion media (e.g., full motion video) in a rectilinear domain. The method may then include processing the full motion media in the rectilinear domain for display on a spherical surface, such as by orienting the full motion media, adding rotation to the full motion media, processing edges of the full motion media, and/or distorting the full motion media in the rectilinear domain for instance. After processing the full motion media, the method may additionally include providing the processed full motion media to a spherical projection system, such as a Science on a Sphere system.

  17. Cell Phone Video Recording Feature as a Language Learning Tool: A Case Study

    ERIC Educational Resources Information Center

    Gromik, Nicolas A.

    2012-01-01

    This paper reports on a case study conducted at a Japanese national university. Nine participants used the video recording feature on their cell phones to produce weekly video productions. The task required that participants produce one 30-second video on a teacher-selected topic. Observations revealed the process of video creation with a cell…

  18. Using Mixed Methods to Analyze Video Data: A Mathematics Teacher Professional Development Example

    ERIC Educational Resources Information Center

    DeCuir-Gunby, Jessica T.; Marshall, Patricia L.; McCulloch, Allison W.

    2012-01-01

    This article uses data from 65 teachers participating in a K-2 mathematics professional development research project as an example of how to analyze video recordings of teachers' classroom lessons using mixed methods. Through their discussion, the authors demonstrate how using a mixed methods approach to classroom video analysis allows researchers…

  19. Modeling Perceptual Decision Processes

    DTIC Science & Technology

    2014-09-17

    Ratcliff, & Wagenmakers, in press). Previous research suggests that playing action video games improves performance on sensory, perceptual, and...estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster...third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the

  20. Analysis of the IJCNN 2011 UTL Challenge

    DTIC Science & Technology

    2012-01-13

    large datasets from various application domains: handwriting recognition, image recognition, video processing, text processing, and ecology. The goal...http //clopinet.com/ul). We made available large datasets from various application domains handwriting recognition, image recognition, video...evaluation sets consist of 4096 examples each. Dataset Domain Features Sparsity Devel. Transf. AVICENNA Handwriting 120 0% 150205 50000 HARRY Video 5000 98.1

  1. Pre-processing SAR image stream to facilitate compression for transport on bandwidth-limited-link

    DOEpatents

    Rush, Bobby G.; Riley, Robert

    2015-09-29

    Pre-processing is applied to a raw VideoSAR (or similar near-video rate) product to transform the image frame sequence into a product that resembles more closely the type of product for which conventional video codecs are designed, while sufficiently maintaining utility and visual quality of the product delivered by the codec.

  2. Video denoising using low rank tensor decomposition

    NASA Astrophysics Data System (ADS)

    Gui, Lihua; Cui, Gaochao; Zhao, Qibin; Wang, Dongsheng; Cichocki, Andrzej; Cao, Jianting

    2017-03-01

    Reducing noise in a video sequence is of vital important in many real-world applications. One popular method is block matching collaborative filtering. However, the main drawback of this method is that noise standard deviation for the whole video sequence is known in advance. In this paper, we present a tensor based denoising framework that considers 3D patches instead of 2D patches. By collecting the similar 3D patches non-locally, we employ the low-rank tensor decomposition for collaborative filtering. Since we specify the non-informative prior over the noise precision parameter, the noise variance can be inferred automatically from observed video data. Therefore, our method is more practical, which does not require knowing the noise variance. The experimental on video denoising demonstrates the effectiveness of our proposed method.

  3. CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Vaahteranoksa, Mikko; Vuori, Tero; Oittinen, Pirkko; Hakkinen, Jukka

    2016-07-01

    In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  4. Video techniques and data compared with observation in emergency trauma care

    PubMed Central

    Mackenzie, C; Xiao, Y

    2003-01-01

    Video recording is underused in improving patient safety and understanding performance shaping factors in patient care. We report our experience of using video recording techniques in a trauma centre, including how to gain cooperation of clinicians for video recording of their workplace performance, identify strengths of video compared with observation, and suggest processes for consent and maintenance of confidentiality of video records. Video records are a rich source of data for documenting clinician performance which reveal safety and systems issues not identified by observation. Emergency procedures and video records of critical events identified patient safety, clinical, quality assurance, systems failures, and ergonomic issues. Video recording is a powerful feedback and training tool and provides a reusable record of events that can be repeatedly reviewed and used as research data. It allows expanded analyses of time critical events, trauma resuscitation, anaesthesia, and surgical tasks. To overcome some of the key obstacles in deploying video recording techniques, researchers should (1) develop trust with video recorded subjects, (2) obtain clinician participation for introduction of a new protocol or line of investigation, (3) report aggregated video recorded data and use clinician reviews for feedback on covert processes and cognitive analyses, and (4) involve multidisciplinary experts in medicine and nursing. PMID:14645896

  5. The Use of Video-Tacheometric Technology for Documenting and Analysing Geometric Features of Objects

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Świerczyńska, Ewa; Jastrzębski, Sławomir

    2015-12-01

    This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining "point cloud" acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.

  6. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats

    USGS Publications Warehouse

    Hayman, David T.S.; Cryan, Paul; Fricker, Paul D.; Dannemiller, Nicholas G.

    2017-01-01

    Understanding natural behaviours is essential to determining how animals deal with new threats (e.g. emerging diseases). However, natural behaviours of animals with cryptic lifestyles, like hibernating bats, are often poorly characterized. White-nose syndrome (WNS) is an unprecedented disease threatening multiple species of hibernating bats, and pathogen-induced changes to host behaviour may contribute to mortality. To better understand the behaviours of hibernating bats and how they might relate to WNS, we developed new ways of studying hibernation across entire seasons.We used thermal-imaging video surveillance cameras to observe little brown bats (Myotis lucifugus) and Indiana bats (M. sodalis) in two caves over multiple winters. We developed new, sharable software to test for autocorrelation and periodicity of arousal signals in recorded video.We processed 740 days (17,760 hr) of video at a rate of >1,000 hr of video imagery in less than 1 hr using a desktop computer with sufficient resolution to detect increases in arousals during midwinter in both species and clear signals of daily arousal periodicity in infected M. sodalis.Our unexpected finding of periodic synchronous group arousals in hibernating bats demonstrate the potential for video methods and suggest some bats may have innate behavioural strategies for coping with WNS. Surveillance video and accessible analysis software make it now practical to investigate long-term behaviours of hibernating bats and other hard-to-study animals.

  7. Video-based face recognition via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming

    2017-06-01

    Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.

  8. Joint Attributes and Event Analysis for Multimedia Event Detection.

    PubMed

    Ma, Zhigang; Chang, Xiaojun; Xu, Zhongwen; Sebe, Nicu; Hauptmann, Alexander G

    2017-06-15

    Semantic attributes have been increasingly used the past few years for multimedia event detection (MED) with promising results. The motivation is that multimedia events generally consist of lower level components such as objects, scenes, and actions. By characterizing multimedia event videos with semantic attributes, one could exploit more informative cues for improved detection results. Much existing work obtains semantic attributes from images, which may be suboptimal for video analysis since these image-inferred attributes do not carry dynamic information that is essential for videos. To address this issue, we propose to learn semantic attributes from external videos using their semantic labels. We name them video attributes in this paper. In contrast with multimedia event videos, these external videos depict lower level contents such as objects, scenes, and actions. To harness video attributes, we propose an algorithm established on a correlation vector that correlates them to a target event. Consequently, we could incorporate video attributes latently as extra information into the event detector learnt from multimedia event videos in a joint framework. To validate our method, we perform experiments on the real-world large-scale TRECVID MED 2013 and 2014 data sets and compare our method with several state-of-the-art algorithms. The experiments show that our method is advantageous for MED.

  9. Student perceptions of a video-based blended learning approach for improving pediatric physical examination skills.

    PubMed

    Lehmann, Ronny; Seitz, Anke; Bosse, Hans Martin; Lutz, Thomas; Huwendiek, Sören

    2016-11-01

    Physical examination skills are crucial for a medical doctor. The physical examination of children differs significantly from that of adults. Students often have only limited contact with pediatric patients to practice these skills. In order to improve the acquisition of pediatric physical examination skills during bedside teaching, we have developed a combined video-based training concept, subsequently evaluating its use and perception. Fifteen videos were compiled, demonstrating defined physical examination sequences in children of different ages. Students were encouraged to use these videos as preparation for bedside teaching during their pediatric clerkship. After bedside teaching, acceptance of this approach was evaluated using a 10-item survey, asking for the frequency of video use and the benefits to learning, self-confidence, and preparation of bedside teaching as well as the concluding OSCE. N=175 out of 299 students returned survey forms (58.5%). Students most frequently used videos, either illustrating complete examination sequences or corresponding focus examinations frequently assessed in the OSCE. Students perceived the videos as a helpful method of conveying the practical process and preparation for bedside teaching as well as the OSCE, and altogether considered them a worthwhile learning experience. Self-confidence at bedside teaching was enhanced by preparation with the videos. The demonstration of a defined standardized procedural sequence, explanatory comments, and demonstration of infrequent procedures and findings were perceived as particularly supportive. Long video segments, poor alignment with other curricular learning activities, and technical problems were perceived as less helpful. Students prefer an optional individual use of the videos, with easy technical access, thoughtful combination with the bedside teaching, and consecutive standardized practice of demonstrated procedures. Preparation with instructional videos combined with bedside teaching, were perceived to improve the acquisition of pediatric physical examination skills. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing

    NASA Astrophysics Data System (ADS)

    Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.

    2014-12-01

    After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.

  11. Method and apparatus for reading meters from a video image

    DOEpatents

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  12. [Violent video games and aggression: long-term impact and selection effects].

    PubMed

    Staude-Müller, Frithjof

    2011-01-01

    This study applied social-cognitive models of aggression in order to examine relations between video game use and aggressive tendencies and biases in social information processing. To this end, 499 secondary school students (aged 12-16) completed a survey on two occasions one year apart. Hierarchical regression analysis probed media effects and selection effects and included relevant contextual variables (parental monitoring of media consumption, impulsivity, and victimization). Results revealed that it was not the consumption of violent video games but rather an uncontrolled pattern of video game use that was associated with increasing aggressive tendencies. This increase was partly mediated by a hostile attribution bias in social information processing. The influence of aggressive tendencies on later video game consumption was also examined (selection path). Adolescents with aggressive traits intensified their video game behavior only in terms of their uncontrolled video game use. This was found even after controlling for sensation seeking and parental media control.

  13. 2011 Tohoku tsunami hydrographs, currents, flow velocities and ship tracks based on video and TLS measurements

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Phillips, David A.; Okayasu, Akio; Shimozono, Takenori; Liu, Haijiang; Takeda, Seiichi; Mohammed, Fahad; Skanavis, Vassilis; Synolakis, Costas E.; Takahashi, Tomoyuki

    2013-04-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life to a tsunami aware population. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided fragmented spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible (Fritz et al., 2012). Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to minus 10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities. Lastly a perspective on the recovery and reconstruction process is provided based on numerous revisits of identical sites between April 2011 and July 2012.

  14. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  15. A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database.

    PubMed

    Huang, Zhiwu; Shan, Shiguang; Wang, Ruiping; Zhang, Haihong; Lao, Shihong; Kuerban, Alifu; Chen, Xilin

    2015-12-01

    Face recognition with still face images has been widely studied, while the research on video-based face recognition is inadequate relatively, especially in terms of benchmark datasets and comparisons. Real-world video-based face recognition applications require techniques for three distinct scenarios: 1) Videoto-Still (V2S); 2) Still-to-Video (S2V); and 3) Video-to-Video (V2V), respectively, taking video or still image as query or target. To the best of our knowledge, few datasets and evaluation protocols have benchmarked for all the three scenarios. In order to facilitate the study of this specific topic, this paper contributes a benchmarking and comparative study based on a newly collected still/video face database, named COX(1) Face DB. Specifically, we make three contributions. First, we collect and release a largescale still/video face database to simulate video surveillance with three different video-based face recognition scenarios (i.e., V2S, S2V, and V2V). Second, for benchmarking the three scenarios designed on our database, we review and experimentally compare a number of existing set-based methods. Third, we further propose a novel Point-to-Set Correlation Learning (PSCL) method, and experimentally show that it can be used as a promising baseline method for V2S/S2V face recognition on COX Face DB. Extensive experimental results clearly demonstrate that video-based face recognition needs more efforts, and our COX Face DB is a good benchmark database for evaluation.

  16. Delegating Mathematical Authority as a Means to Strive toward Equity

    ERIC Educational Resources Information Center

    Dunleavy, Teresa K.

    2015-01-01

    In this article, the author provides insight into the pedagogical processes for delegating mathematical authority to students, through the use of specific classroom structures, as a means to strive toward equity. Employing qualitative methods, the author analyzes transcripts of classroom video, along with field notes and teacher and student…

  17. How the “Understanding Research Evidence” Web-Based Video Series From the National Collaborating Centre for Methods and Tools Contributes to Public Health Capacity to Practice Evidence-Informed Decision Making: Mixed-Methods Evaluation

    PubMed Central

    Chan, Linda; Mackintosh, Jeannie

    2017-01-01

    Background The National Collaborating Centre for Methods and Tools (NCCMT) offers workshops and webinars to build public health capacity for evidence-informed decision-making. Despite positive feedback for NCCMT workshops and resources, NCCMT users found key terms used in research papers difficult to understand. The Understanding Research Evidence (URE) videos use plain language, cartoon visuals, and public health examples to explain complex research concepts. The videos are posted on the NCCMT website and YouTube channel. Objective The first four videos in the URE web-based video series, which explained odds ratios (ORs), confidence intervals (CIs), clinical significance, and forest plots, were evaluated. The evaluation examined how the videos affected public health professionals’ practice. A mixed-methods approach was used to examine the delivery mode and the content of the videos. Specifically, the evaluation explored (1) whether the videos were effective at increasing knowledge on the four video topics, (2) whether public health professionals were satisfied with the videos, and (3) how public health professionals applied the knowledge gained from the videos in their work. Methods A three-part evaluation was conducted to determine the effectiveness of the first four URE videos. The evaluation included a Web-based survey, telephone interviews, and pretest and posttests, which evaluated public health professionals’ experience with the videos and how the videos affected their public health work. Participants were invited to participate in this evaluation through various open access, public health email lists, through informational flyers and posters at the Canadian Public Health Association (CPHA) conference, and through targeted recruitment to NCCMT’s network. Results In the Web-based surveys (n=46), participants achieved higher scores on the knowledge assessment questions from watching the OR (P=.04), CI (P=.04), and clinical significance (P=.05) videos but not the forest plot (P=.12) video, as compared with participants who had not watched the videos. The pretest and posttest (n=124) demonstrated that participants had a better understanding of forest plots (P<.001) and CIs (P<.001) after watching the videos. Due to small sample size numbers, there were insufficient pretest and posttest data to conduct meaningful analyses on the clinical significance and OR videos. Telephone interview participants (n=18) thought the videos’ use of animation, narration, and plain language was appropriate for people with different levels of understanding and learning styles. Participants felt that by increasing their understanding of research evidence, they could develop better interventions and design evaluations to measure the impact of public health initiatives. Conclusions Overall, the results of the evaluation showed that watching the videos resulted in an increase in knowledge, and participants had an overall positive experience with the URE videos. With increased competence in using the best available evidence, professionals are empowered to contribute to decisions that can improve health outcomes of communities. PMID:28958986

  18. Characterizing the uncertainty of classification methods and its impact on the performance of crowdsourcing

    NASA Astrophysics Data System (ADS)

    Ribera, Javier; Tahboub, Khalid; Delp, Edward J.

    2015-03-01

    Video surveillance systems are widely deployed for public safety. Real-time monitoring and alerting are some of the key requirements for building an intelligent video surveillance system. Real-life settings introduce many challenges that can impact the performance of real-time video analytics. Video analytics are desired to be resilient to adverse and changing scenarios. In this paper we present various approaches to characterize the uncertainty of a classifier and incorporate crowdsourcing at the times when the method is uncertain about making a particular decision. Incorporating crowdsourcing when a real-time video analytic method is uncertain about making a particular decision is known as online active learning from crowds. We evaluate our proposed approach by testing a method we developed previously for crowd flow estimation. We present three different approaches to characterize the uncertainty of the classifier in the automatic crowd flow estimation method and test them by introducing video quality degradations. Criteria to aggregate crowdsourcing results are also proposed and evaluated. An experimental evaluation is conducted using a publicly available dataset.

  19. Tactile Cueing for Target Acquisition and Identification

    DTIC Science & Technology

    2005-09-01

    method of coding tactile information, and the method of presenting elevation information were studied. Results: Subjects were divided into video game experienced...VGP) subjects and non- video game (NVGP) experienced subjects. VGPs showed a significantly lower’ target acquisition time with the 12...that video game players performed better with the highest level of tactile resolution, while non- video game players performed better with simpler pattern and a lower resolution display.

  20. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  1. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  2. The Effect of Normalization in Violence Video Classification Performance

    NASA Astrophysics Data System (ADS)

    Ali, Ashikin; Senan, Norhalina

    2017-08-01

    Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.

  3. Selecting salient frames for spatiotemporal video modeling and segmentation.

    PubMed

    Song, Xiaomu; Fan, Guoliang

    2007-12-01

    We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.

  4. Evidence-Based Scripted Videos on Handling Student Misbehavior: The Development and Evaluation of Video Cases for Teacher Education

    ERIC Educational Resources Information Center

    Piwowar, Valentina; Barth, Victoria L.; Ophardt, Diemut; Thiel, Felicitas

    2018-01-01

    Scripted videos are based on a screenplay and are a viable and widely used tool for learning. Yet, reservations exist due to limited authenticity and high production costs. The present paper comprehensively describes a video production process for scripted videos on the topic of student misbehavior in the classroom. In a three step…

  5. Surgical gesture classification from video and kinematic data.

    PubMed

    Zappella, Luca; Béjar, Benjamín; Hager, Gregory; Vidal, René

    2013-10-01

    Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic information not present in kinematic data), they are typically not used because of the difficulties associated with automatic video interpretation. In this paper, we propose several methods for automatic surgical gesture classification from video data. We assume that the video of a surgical task (e.g., suturing) has been segmented into video clips corresponding to a single gesture (e.g., grabbing the needle, passing the needle) and propose three methods to classify the gesture of each video clip. In the first one, we model each video clip as the output of a linear dynamical system (LDS) and use metrics in the space of LDSs to classify new video clips. In the second one, we use spatio-temporal features extracted from each video clip to learn a dictionary of spatio-temporal words, and use a bag-of-features (BoF) approach to classify new video clips. In the third one, we use multiple kernel learning (MKL) to combine the LDS and BoF approaches. Since the LDS approach is also applicable to kinematic data, we also use MKL to combine both types of data in order to exploit their complementarity. Our experiments on a typical surgical training setup show that methods based on video data perform equally well, if not better, than state-of-the-art approaches based on kinematic data. In turn, the combination of both kinematic and video data outperforms any other algorithm based on one type of data alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  7. Real-time video signal processing by generalized DDA and control memories: three-dimensional rotation and mapping

    NASA Astrophysics Data System (ADS)

    Hama, Hiromitsu; Yamashita, Kazumi

    1991-11-01

    A new method for video signal processing is described in this paper. The purpose is real-time image transformations at low cost, low power, and small size hardware. This is impossible without special hardware. Here generalized digital differential analyzer (DDA) and control memory (CM) play a very important role. Then indentation, which is called jaggy, is caused on the boundary of a background and a foreground accompanied with the processing. Jaggy does not occur inside the transformed image because of adopting linear interpretation. But it does occur inherently on the boundary of the background and the transformed images. It causes deterioration of image quality, and must be avoided. There are two well-know ways to improve image quality, blurring and supersampling. The former does not have much effect, and the latter has the much higher cost of computing. As a means of settling such a trouble, a method is proposed, which searches for positions that may arise jaggy and smooths such points. Computer simulations based on the real data from VTR, one scene of a movie, are presented to demonstrate our proposed scheme using DDA and CMs and to confirm the effectiveness on various transformations.

  8. 47 CFR 64.617 - Neutral Video Communication Service Platform.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...

  9. 47 CFR 64.617 - Neutral Video Communication Service Platform.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...

  10. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms.

    PubMed

    Maggioni, Matteo; Boracchi, Giacomo; Foi, Alessandro; Egiazarian, Karen

    2012-09-01

    We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e., self-similarity) along the fourth dimension of the group. Collaborative filtering is then realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, the collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original positions in the video. The proposed filtering procedure addresses several video processing applications, such as denoising, deblocking, and enhancement of both grayscale and color data. Experimental results prove the effectiveness of our method in terms of both subjective and objective visual quality, and show that it outperforms the state of the art in video denoising.

  11. A Video Game for Learning Brain Evolution: A Resource or a Strategy?

    ERIC Educational Resources Information Center

    Barbosa Gomez, Luisa Fernanda; Bohorquez Sotelo, Maria Cristina; Roja Higuera, Naydu Shirley; Rodriguez Mendoza, Brigitte Julieth

    2016-01-01

    Learning resources are part of the educational process of students. However, how video games act as learning resources in a population that has not selected the virtual formation as their main methodology? The aim of this study was to identify the influence of a video game in the learning process of brain evolution. For this purpose, the opinions…

  12. Enhanced visual short-term memory in action video game players.

    PubMed

    Blacker, Kara J; Curby, Kim M

    2013-08-01

    Visual short-term memory (VSTM) is critical for acquiring visual knowledge and shows marked individual variability. Previous work has illustrated a VSTM advantage among action video game players (Boot et al. Acta Psychologica 129:387-398, 2008). A growing body of literature has suggested that action video game playing can bolster visual cognitive abilities in a domain-general manner, including abilities related to visual attention and the speed of processing, providing some potential bases for this VSTM advantage. In the present study, we investigated the VSTM advantage among video game players and assessed whether enhanced processing speed can account for this advantage. Experiment 1, using simple colored stimuli, revealed that action video game players demonstrate a similar VSTM advantage over nongamers, regardless of whether they are given limited or ample time to encode items into memory. Experiment 2, using complex shapes as the stimuli to increase the processing demands of the task, replicated this VSTM advantage, irrespective of encoding duration. These findings are inconsistent with a speed-of-processing account of this advantage. An alternative, attentional account, grounded in the existing literature on the visuo-cognitive consequences of video game play, is discussed.

  13. Action video games do not improve the speed of information processing in simple perceptual tasks.

    PubMed

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2014-10-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.

  14. Action Video Games Do Not Improve the Speed of Information Processing in Simple Perceptual Tasks

    PubMed Central

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U.; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2015-01-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517

  15. Keyhole imaging method for dynamic objects behind the occlusion area

    NASA Astrophysics Data System (ADS)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  16. Dynamic frame resizing with convolutional neural network for efficient video compression

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon

    2017-09-01

    In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.

  17. Bitstream decoding processor for fast entropy decoding of variable length coding-based multiformat videos

    NASA Astrophysics Data System (ADS)

    Jo, Hyunho; Sim, Donggyu

    2014-06-01

    We present a bitstream decoding processor for entropy decoding of variable length coding-based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.

  18. Content-based TV sports video retrieval using multimodal analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  19. Multimedia applications in nursing curriculum: the process of producing streaming videos for medication administration skills.

    PubMed

    Sowan, Azizeh K

    2014-07-01

    Streaming videos (SVs) are commonly used multimedia applications in clinical health education. However, there are several negative aspects related to the production and delivery of SVs. Only a few published studies have included sufficient descriptions of the videos and the production process and design innovations. This paper describes the production of innovative SVs for medication administration skills for undergraduate nursing students at a public university in Jordan and focuses on the ethical and cultural issues in producing this type of learning resource. The curriculum development committee approved the modification of educational techniques for medication administration procedures to include SVs within an interactive web-based learning environment. The production process of the videos adhered to established principles for "protecting patients' rights when filming and recording" and included: preproduction, production and postproduction phases. Medication administration skills were videotaped in a skills laboratory where they are usually taught to students and also in a hospital setting with real patients. The lab videos included critical points and Do's and Don'ts and the hospital videos fostered real-world practices. The range of time of the videos was reasonable to eliminate technical difficulty in access. Eight SVs were produced that covered different types of the medication administration skills. The production of SVs required the collaborative efforts of experts in IT, multimedia, nursing and informatics educators, and nursing care providers. Results showed that the videos were well-perceived by students, and the instructors who taught the course. The process of producing the videos in this project can be used as a valuable framework for schools considering utilizing multimedia applications in teaching. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. A cognitive approach for design of a multimedia informed consent video and website in pediatric research.

    PubMed

    Antal, Holly; Bunnell, H Timothy; McCahan, Suzanne M; Pennington, Chris; Wysocki, Tim; Blake, Kathryn V

    2017-02-01

    Poor participant comprehension of research procedures following the conventional face-to-face consent process for biomedical research is common. We describe the development of a multimedia informed consent video and website that incorporates cognitive strategies to enhance comprehension of study related material directed to parents and adolescents. A multidisciplinary team was assembled for development of the video and website that included human subjects professionals; psychologist researchers; institutional video and web developers; bioinformaticians and programmers; and parent and adolescent stakeholders. Five learning strategies that included Sensory-Modality view, Coherence, Signaling, Redundancy, and Personalization were integrated into a 15-min video and website material that describes a clinical research trial. A diverse team collaborated extensively over 15months to design and build a multimedia platform for obtaining parental permission and adolescent assent for participant in as asthma clinical trial. Examples of the learning principles included, having a narrator describe what was being viewed on the video (sensory-modality); eliminating unnecessary text and graphics (coherence); having the initial portion of the video explain the sections of the video to be viewed (signaling); avoiding simultaneous presentation of text and graphics (redundancy); and having a consistent narrator throughout the video (personalization). Existing conventional and multimedia processes for obtaining research informed consent have not actively incorporated basic principles of human cognition and learning in the design and implementation of these processes. The present paper illustrates how this can be achieved, setting the stage for rigorous evaluation of potential benefits such as improved comprehension, satisfaction with the consent process, and completion of research objectives. New consent strategies that have an integrated cognitive approach need to be developed and tested in controlled trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Content Based Lecture Video Retrieval Using Speech and Video Text Information

    ERIC Educational Resources Information Center

    Yang, Haojin; Meinel, Christoph

    2014-01-01

    In the last decade e-lecturing has become more and more popular. The amount of lecture video data on the "World Wide Web" (WWW) is growing rapidly. Therefore, a more efficient method for video retrieval in WWW or within large lecture video archives is urgently needed. This paper presents an approach for automated video indexing and video…

  2. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.

    PubMed

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.

  3. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder

    NASA Astrophysics Data System (ADS)

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.

  4. A systematic review of methods for studying consumer health YouTube videos, with implications for systematic reviews.

    PubMed

    Sampson, Margaret; Cumber, Jordi; Li, Claudia; Pound, Catherine M; Fuller, Ann; Harrison, Denise

    2013-01-01

    Background. YouTube is an increasingly important medium for consumer health information - with content provided by healthcare professionals, government and non-government organizations, industry, and consumers themselves. It is a rapidly developing area of study for healthcare researchers. We examine the methods used in reviews of YouTube consumer health videos to identify trends and best practices. Methods and Materials. Published reviews of consumer-oriented health-related YouTube videos were identified through PubMed. Data extracted from these studies included type of journal, topic, characteristics of the search, methods of review including number of reviewers and method to achieve consensus between reviewers, inclusion and exclusion criteria, characteristics of the videos reported, ethical oversight, and follow-up. Results. Thirty-three studies were identified. Most were recent and published in specialty journals. Typically, these included more than 100 videos, and were examined by multiple reviewers. Most studies described characteristics of the videos, number of views, and sometime characteristics of the viewers. Accuracy of portrayal of the health issue under consideration was a common focus. Conclusion. Optimal transparency and reproducibility of studies of YouTube health-related videos can be achieved by following guidance designed for systematic review reporting, with attention to several elements specific to the video medium. Particularly when seeking to replicate consumer viewing behavior, investigators should consider the method used to select search terms, and use a snowballing rather than a sequential screening approach. Discontinuation protocols for online screening of relevance ranked search results is an area identified for further development.

  5. A systematic review of methods for studying consumer health YouTube videos, with implications for systematic reviews

    PubMed Central

    Cumber, Jordi; Li, Claudia; Pound, Catherine M.; Fuller, Ann; Harrison, Denise

    2013-01-01

    Background. YouTube is an increasingly important medium for consumer health information – with content provided by healthcare professionals, government and non-government organizations, industry, and consumers themselves. It is a rapidly developing area of study for healthcare researchers. We examine the methods used in reviews of YouTube consumer health videos to identify trends and best practices. Methods and Materials. Published reviews of consumer-oriented health-related YouTube videos were identified through PubMed. Data extracted from these studies included type of journal, topic, characteristics of the search, methods of review including number of reviewers and method to achieve consensus between reviewers, inclusion and exclusion criteria, characteristics of the videos reported, ethical oversight, and follow-up. Results. Thirty-three studies were identified. Most were recent and published in specialty journals. Typically, these included more than 100 videos, and were examined by multiple reviewers. Most studies described characteristics of the videos, number of views, and sometime characteristics of the viewers. Accuracy of portrayal of the health issue under consideration was a common focus. Conclusion. Optimal transparency and reproducibility of studies of YouTube health-related videos can be achieved by following guidance designed for systematic review reporting, with attention to several elements specific to the video medium. Particularly when seeking to replicate consumer viewing behavior, investigators should consider the method used to select search terms, and use a snowballing rather than a sequential screening approach. Discontinuation protocols for online screening of relevance ranked search results is an area identified for further development. PMID:24058879

  6. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  7. Data streaming in telepresence environments.

    PubMed

    Lamboray, Edouard; Würmlin, Stephan; Gross, Markus

    2005-01-01

    In this paper, we discuss data transmission in telepresence environments for collaborative virtual reality applications. We analyze data streams in the context of networked virtual environments and classify them according to their traffic characteristics. Special emphasis is put on geometry-enhanced (3D) video. We review architectures for real-time 3D video pipelines and derive theoretical bounds on the minimal system latency as a function of the transmission and processing delays. Furthermore, we discuss bandwidth issues of differential update coding for 3D video. In our telepresence system-the blue-c-we use a point-based 3D video technology which allows for differentially encoded 3D representations of human users. While we discuss the considerations which lead to the design of our three-stage 3D video pipeline, we also elucidate some critical implementation details regarding decoupling of acquisition, processing and rendering frame rates, and audio/video synchronization. Finally, we demonstrate the communication and networking features of the blue-c system in its full deployment. We show how the system can possibly be controlled to face processing or networking bottlenecks by adapting the multiple system components like audio, application data, and 3D video.

  8. Lights, camera and action in the implementation of central venous catheter dressing1

    PubMed Central

    Ferreira, Maria Verônica Ferrareze; de Godoy, Simone; de Góes, Fernanda dos Santos Nogueira; Rossini, Fernanda de Paula; de Andrade, Denise

    2015-01-01

    Objective: to develop and validate an educational digital video on changing the dressing of short-term, non-cuffed, non-tunneled central venous catheters in hospitalized adult patients. Method: this is a descriptive, methodological study based on Paulo Freire's assumptions. The development of the script and video storyboard were based on scientific evidence, on the researchers' experience, and that of nurse experts, as well as on a virtual learning environment. Results: the items related to the script were approved by 97.2% of the nurses and the video was approved by 96.1%. Conclusion: the educational instrument was considered to be appropriate and we believe it will contribute to professional training in the nursing field, the updating of human resources, focusing on the educational process, including distance education. We believe it will consequently improve the quality of care provided to patients with central venous catheters. PMID:26626011

  9. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  10. Video flow active control by means of adaptive shifted foveal geometries

    NASA Astrophysics Data System (ADS)

    Urdiales, Cristina; Rodriguez, Juan A.; Bandera, Antonio J.; Sandoval, Francisco

    2000-10-01

    This paper presents a control mechanism for video transmission that relies on transmitting non-uniform resolution images depending on the delay of the communication channel. These images are built in an active way to keep the areas of interest of the image at the highest resolution available. In order to shift the area of high resolution over the image and to achieve a data structure easy to process by using conventional algorithms, a shifted fovea multi resolution geometry of adaptive size is used. Besides, if delays are nevertheless too high, the different areas of resolution of the image can be transmitted at different rates. A functional system has been developed for corridor surveillance with static cameras. Tests with real video images have proven that the method allows an almost constant rate of images per second as long as the channel is not collapsed.

  11. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  12. An improved multi-paths optimization method for video stabilization

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Zhong, Sheng

    2018-03-01

    For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.

  13. Webcam Stories

    ERIC Educational Resources Information Center

    Clidas, Jeanne

    2011-01-01

    Stories, steeped in science content and full of specific information, can be brought into schools and homes through the power of live video streaming. Video streaming refers to the process of viewing video over the internet. These videos may be live (webcam feeds) or recorded. These stories are engaging and inspiring. They offer opportunities to…

  14. Hypervideo.

    ERIC Educational Resources Information Center

    Locatis, Craig; And Others

    1990-01-01

    Discusses methods for incorporating video into hypermedia programs. Knowledge representation in hypermedia is explained; video production techniques are discussed; comparisons between linear video, interactive video, and hypervideo are presented; appropriate conditions for hypervideo use are examined; and a need for new media research is…

  15. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  16. Gradual cut detection using low-level vision for digital video

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae

    1996-09-01

    Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.

  17. A new metric to assess temporal coherence for video retargeting

    NASA Astrophysics Data System (ADS)

    Li, Ke; Yan, Bo; Yuan, Binhang

    2014-10-01

    In video retargeting, how to assess the performance in maintaining temporal coherence has become the prominent challenge. In this paper, we will present a new objective measurement to assess temporal coherence after video retargeting. It's a general metric to assess jittery artifact for both discrete and continuous video retargeting methods, the accuracy of which is verified by psycho-visual tests. As a result, our proposed assessment method possesses huge practical significance.

  18. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1995-12-31

    A method and system enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusivemore » manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.« less

  19. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1997-09-30

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relativelymore » non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower. 1 fig.« less

  20. Real-time heart rate measurement for multi-people using compressive tracking

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Dong, Liquan; Ma, Feilong; Pang, Zongguang; Cai, Zhi; Zhang, Yachu; Hua, Peng; Yuan, Ruifeng

    2017-09-01

    The rise of aging population has created a demand for inexpensive, unobtrusive, automated health care solutions. Image PhotoPlethysmoGraphy(IPPG) aids in the development of these solutions by allowing for the extraction of physiological signals from video data. However, the main deficiencies of the recent IPPG methods are non-automated, non-real-time and susceptible to motion artifacts(MA). In this paper, a real-time heart rate(HR) detection method for multiple subjects simultaneously was proposed and realized using the open computer vision(openCV) library, which consists of getting multiple subjects' facial video automatically through a Webcam, detecting the region of interest (ROI) in the video, reducing the false detection rate by our improved Adaboost algorithm, reducing the MA by our improved compress tracking(CT) algorithm, wavelet noise-suppression algorithm for denoising and multi-threads for higher detection speed. For comparison, HR was measured simultaneously using a medical pulse oximetry device for every subject during all sessions. Experimental results on a data set of 30 subjects show that the max average absolute error of heart rate estimation is less than 8 beats per minute (BPM), and the processing speed of every frame has almost reached real-time: the experiments with video recordings of ten subjects under the condition of the pixel resolution of 600× 800 pixels show that the average HR detection time of 10 subjects was about 17 frames per second (fps).

  1. Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Lequan Yu; Hao Chen; Qi Dou; Jing Qin; Pheng Ann Heng

    2017-01-01

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer prevention and diagnosis. Traditional manual screening is time consuming, operator dependent, and error prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intraclass variations in polyp size, color, shape, and texture, and low interclass variations between polyps and hard mimics. In this paper, we propose a novel offline and online three-dimensional (3-D) deep learning integration framework by leveraging the 3-D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with the previous methods employing hand-crafted features or 2-D convolutional neural network, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  2. Does Video-Autotutorial Instruction Improve College Student Achievement?

    ERIC Educational Resources Information Center

    Fisher, K. M.; And Others

    1977-01-01

    Compares student achievement in an upper-division college introductory course taught by the video-autotutorial method with that in two comparable courses taught by the lecture-discussion method. Pre-post tests of 623 students reveal that video-autotutorial students outperform lecture/discussion participants at all ability levels and that in…

  3. A novel video recommendation system based on efficient retrieval of human actions

    NASA Astrophysics Data System (ADS)

    Ramezani, Mohsen; Yaghmaee, Farzin

    2016-09-01

    In recent years, fast growth of online video sharing eventuated new issues such as helping users to find their requirements in an efficient way. Hence, Recommender Systems (RSs) are used to find the users' most favorite items. Finding these items relies on items or users similarities. Though, many factors like sparsity and cold start user impress the recommendation quality. In some systems, attached tags are used for searching items (e.g. videos) as personalized recommendation. Different views, incomplete and inaccurate tags etc. can weaken the performance of these systems. Considering the advancement of computer vision techniques can help improving RSs. To this end, content based search can be used for finding items (here, videos are considered). In such systems, a video is taken from the user to find and recommend a list of most similar videos to the query one. Due to relating most videos to humans, we present a novel low complex scalable method to recommend videos based on the model of included action. This method has recourse to human action retrieval approaches. For modeling human actions, some interest points are extracted from each action and their motion information are used to compute the action representation. Moreover, a fuzzy dissimilarity measure is presented to compare videos for ranking them. The experimental results on HMDB, UCFYT, UCF sport and KTH datasets illustrated that, in most cases, the proposed method can reach better results than most used methods.

  4. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  5. Heterogeneity image patch index and its application to consumer video summarization.

    PubMed

    Dang, Chinh T; Radha, Hayder

    2014-06-01

    Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.

  6. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.

    PubMed

    Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-03-01

    Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.

  8. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  9. Complexity control algorithm based on adaptive mode selection for interframe coding in high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong

    2017-07-01

    The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.

  10. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  11. Is video gaming, or video game addiction, associated with depression, academic achievement, heavy episodic drinking, or conduct problems?

    PubMed Central

    Brunborg, Geir Scott; Mentzoni, Rune Aune; Frøyland, Lars Roar

    2014-01-01

    Background and aims: While the relationships between video game use and negative consequences are debated, the relationships between video game addiction and negative consequences are fairly well established. However, previous studies suffer from methodological weaknesses that may have caused biased results. There is need for further investigation that benefits from the use of methods that avoid omitted variable bias. Methods: Two wave panel data was used from two surveys of 1,928 Norwegian adolescents aged 13 to 17 years. The surveys included measures of video game use, video game addiction, depression, heavy episodic drinking, academic achievement, and conduct problems. The data was analyzed using first-differencing, a regression method that is unbiased by time invariant individual factors. Results: Video game addiction was related to depression, lower academic achievement, and conduct problems, but time spent on video games was not related to any of the studied negative outcomes. Discussion: The findings were in line with a growing number of studies that have failed to find relationships between time spent on video games and negative outcomes. The current study is also consistent with previous studies in that video game addiction was related to other negative outcomes, but it made the added contribution that the relationships are unbiased by time invariant individual effects. However, future research should aim at establishing the temporal order of the supposed causal effects. Conclusions: Spending time playing video games does not involve negative consequences, but adolescents who experience problems related to video games are likely to also experience problems in other facets of life. PMID:25215212

  12. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  13. An objective method for a video quality evaluation in a 3DTV service

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2015-09-01

    The following article describes proposed objective method for a 3DTV video quality evaluation, a Compressed Average Image Intensity (CAII) method. Identification of the 3DTV service's content chain nodes enables to design a versatile, objective video quality metric. It is based on an advanced approach to the stereoscopic videostream analysis. Insights towards designed metric mechanisms, as well as the evaluation of performance of the designed video quality metric, in the face of the simulated environmental conditions are herein discussed. As a result, created CAII metric might be effectively used in a variety of service quality assessment applications.

  14. Deriving video content type from HEVC bitstream semantics

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio R.

    2014-05-01

    As network service providers seek to improve customer satisfaction and retention levels, they are increasingly moving from traditional quality of service (QoS) driven delivery models to customer-centred quality of experience (QoE) delivery models. QoS models only consider metrics derived from the network however, QoE models also consider metrics derived from within the video sequence itself. Various spatial and temporal characteristics of a video sequence have been proposed, both individually and in combination, to derive methods of classifying video content either on a continuous scale or as a set of discrete classes. QoE models can be divided into three broad categories, full reference, reduced reference and no-reference models. Due to the need to have the original video available at the client for comparison, full reference metrics are of limited practical value in adaptive real-time video applications. Reduced reference metrics often require metadata to be transmitted with the bitstream, while no-reference metrics typically operate in the decompressed domain at the client side and require significant processing to extract spatial and temporal features. This paper proposes a heuristic, no-reference approach to video content classification which is specific to HEVC encoded bitstreams. The HEVC encoder already makes use of spatial characteristics to determine partitioning of coding units and temporal characteristics to determine the splitting of prediction units. We derive a function which approximates the spatio-temporal characteristics of the video sequence by using the weighted averages of the depth at which the coding unit quadtree is split and the prediction mode decision made by the encoder to estimate spatial and temporal characteristics respectively. Since the video content type of a sequence is determined by using high level information parsed from the video stream, spatio-temporal characteristics are identified without the need for full decoding and can be used in a timely manner to aid decision making in QoE oriented adaptive real time streaming.

  15. Synchronization-insensitive video watermarking using structured noise pattern

    NASA Astrophysics Data System (ADS)

    Setyawan, Iwan; Kakes, Geerd; Lagendijk, Reginald L.

    2002-04-01

    For most watermarking methods, preserving the synchronization between the watermark embedded in a digital data (image, audio or video) and the watermark detector is critical to the success of the watermark detection process. Many digital watermarking attacks exploit this fact by disturbing the synchronization of the watermark and the watermark detector, and thus disabling proper watermark detection without having to actually remove the watermark from the data. Some techniques have been proposed in the literature to deal with this problem. Most of these techniques employ methods to reverse the distortion caused by the attack and then try to detect the watermark from the repaired data. In this paper, we propose a watermarking technique that is not sensitive to synchronization. This technique uses a structured noise pattern and embeds the watermark payload into the geometrical structure of the embedded pattern.

  16. The student with a thousand faces: from the ethics in video games to becoming a citizen

    NASA Astrophysics Data System (ADS)

    Muñoz, Yupanqui J.; El-Hani, Charbel N.

    2012-12-01

    Video games, as technological and cultural artifacts of considerable influence in the contemporary society, play an important role in the construction of identities, just as other artifacts (e.g., books, newspapers, television) played for a long time. In this paper, we discuss this role by considering video games under two concepts, othering and technopoly, and focus on how these concepts demand that we deepen our understanding of the ethics of video games. We address here how the construction of identities within video games involves othering process, that is, processes through which, when signifying and identifying `Ourselves', we create and marginalize `Others'. Moreover, we discuss how video games can play an important role in the legitimation of the technopoly, understood as a totalitarian regime related to science, technology and their place in our societies. Under these two concepts, understanding the ethics of video games goes beyond the controversy about their violence. The main focus of discussion should lie in how the ethics of video games is related to their part in the formation of the players' citizenship. Examining several examples of electronic games, we consider how video games provide a rich experience in which the player has the opportunity to develop a practical wisdom ( phronesis), which can lead her to be a virtuous being. However, they can be also harmful to the moral experiences of the subjects when they show unethical contents related to othering processes that are not so clearly and openly condemned as violence, as in the cases of sexism, racism or xenophobia. Rather than leading us to conclude that video games needed to be banned or censored, this argument makes us highlight their role in the (science) education of critical, socially responsible, ethical, and politically active citizens, precisely because they encompass othering processes and science, technology, and society relationships.

  17. Video image stabilization and registration--plus

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor)

    2009-01-01

    A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.

  18. The effects of an action video game on visual and affective information processing.

    PubMed

    Bailey, Kira; West, Robert

    2013-04-04

    Playing action video games can have beneficial effects on visuospatial cognition and negative effects on social information processing. However, these two effects have not been demonstrated in the same individuals in a single study. The current study used event-related brain potentials (ERPs) to examine the effects of playing an action or non-action video game on the processing of emotion in facial expression. The data revealed that 10h of playing an action or non-action video game had differential effects on the ERPs relative to a no-contact control group. Playing an action game resulted in two effects: one that reflected an increase in the amplitude of the ERPs following training over the right frontal and posterior regions that was similar for angry, happy, and neutral faces; and one that reflected a reduction in the allocation of attention to happy faces. In contrast, playing a non-action game resulted in changes in slow wave activity over the central-parietal and frontal regions that were greater for targets (i.e., angry and happy faces) than for non-targets (i.e., neutral faces). These data demonstrate that the contrasting effects of action video games on visuospatial and emotion processing occur in the same individuals following the same level of gaming experience. This observation leads to the suggestion that caution should be exercised when using action video games to modify visual processing, as this experience could also have unintended effects on emotion processing. Published by Elsevier B.V.

  19. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  20. Development of a decision aid to inform patients’ and families’ renal replacement therapy selection decisions

    PubMed Central

    2012-01-01

    Background Few educational resources have been developed to inform patients’ renal replacement therapy (RRT) selection decisions. Patients progressing toward end stage renal disease (ESRD) must decide among multiple treatment options with varying characteristics. Complex information about treatments must be adequately conveyed to patients with different educational backgrounds and informational needs. Decisions about treatment options also require family input, as families often participate in patients’ treatment and support patients’ decisions. We describe the development, design, and preliminary evaluation of an informational, evidence-based, and patient-and family-centered decision aid for patients with ESRD and varying levels of health literacy, health numeracy, and cognitive function. Methods We designed a decision aid comprising a complementary video and informational handbook. We based our development process on data previously obtained from qualitative focus groups and systematic literature reviews. We simultaneously developed the video and handbook in “stages.” For the video, stages included (1) directed interviews with culturally appropriate patients and families and preliminary script development, (2) video production, and (3) screening the video with patients and their families. For the handbook, stages comprised (1) preliminary content design, (2) a mixed-methods pilot study among diverse patients to assess comprehension of handbook material, and (3) screening the handbook with patients and their families. Results The video and handbook both addressed potential benefits and trade-offs of treatment selections. The 50-minute video consisted of demographically diverse patients and their families describing their positive and negative experiences with selecting a treatment option. The video also incorporated health professionals’ testimonials regarding various considerations that might influence patients’ and families’ treatment selections. The handbook was comprised of written words, pictures of patients and health care providers, and diagrams describing the findings and quality of scientific studies comparing treatments. The handbook text was written at a 4th to 6th grade reading level. Pilot study results demonstrated that a majority of patients could understand information presented in the handbook. Patient and families screening the nearly completed video and handbook reviewed the materials favorably. Conclusions This rigorously designed decision aid may help patients and families make informed decisions about their treatment options for RRT that are well aligned with their values. PMID:23198793

  1. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  2. A novel visual saliency detection method for infrared video sequences

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Yuzhen; Ning, Chen

    2017-12-01

    Infrared video applications such as target detection and recognition, moving target tracking, and so forth can benefit a lot from visual saliency detection, which is essentially a method to automatically localize the ;important; content in videos. In this paper, a novel visual saliency detection method for infrared video sequences is proposed. Specifically, for infrared video saliency detection, both the spatial saliency and temporal saliency are considered. For spatial saliency, we adopt a mutual consistency-guided spatial cues combination-based method to capture the regions with obvious luminance contrast and contour features. For temporal saliency, a multi-frame symmetric difference approach is proposed to discriminate salient moving regions of interest from background motions. Then, the spatial saliency and temporal saliency are combined to compute the spatiotemporal saliency using an adaptive fusion strategy. Besides, to highlight the spatiotemporal salient regions uniformly, a multi-scale fusion approach is embedded into the spatiotemporal saliency model. Finally, a Gestalt theory-inspired optimization algorithm is designed to further improve the reliability of the final saliency map. Experimental results demonstrate that our method outperforms many state-of-the-art saliency detection approaches for infrared videos under various backgrounds.

  3. Technological Convergence: A Brief Review of Some of the Developments in the Integrated Storage and Retrieval of Text, Data, Sound and Image.

    ERIC Educational Resources Information Center

    Forrest, Charles

    1988-01-01

    Reviews technological developments centered around microcomputers that have led to the design of integrated workstations. Topics discussed include methods of information storage, information retrieval, telecommunications networks, word processing, data management, graphics, interactive video, sound, interfaces, artificial intelligence, hypermedia,…

  4. Technology in the Classroom: Using Video Links to Enable Long Distance Experiential Learning

    ERIC Educational Resources Information Center

    Chilton, Michael A.

    2012-01-01

    The experiential learning process is a method by which students learn from direct exposure to relevant applications within the discipline being taught. One way in which MIS students can benefit from experiential learning occurs when organizations in some way sponsor curricular outcomes. Sponsorship can range from classroom visits during which…

  5. New instrument expanding individual tree stem analysis

    Treesearch

    Neil A. Clark

    2001-01-01

    Forest health, vitality, and productivity are interrelated and are maintained by using sound forest management. There are some standard indicators that are measured to assess the extent and severity of damage inflicted by biotic and abiotic agents. Assessment of these indicators using affordable methods is a subjective process. A video rangefinder instrument is...

  6. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  7. Motivational Engagement and Video Gaming: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Hoffman, Bobby; Nadelson, Louis

    2010-01-01

    A mixed methods design was used to identify factors associated with motivational engagement in video gaming. Self-report instruments were administered to 189 video game players to assess goal orientations, affect, need for cognition, and perceptions of engagement and flow. Simultaneously, a sub-set of 25 participants were interviewed and results…

  8. “Kinect-ing” With Clinicians: A Knowledge Translation Resource to Support Decision Making About Video Game Use in Rehabilitation

    PubMed Central

    Levac, Danielle; Espy, Deborah; Fox, Emily; Pradhan, Sujata

    2015-01-01

    Microsoft's Kinect for Xbox 360 virtual reality (VR) video games are promising rehabilitation options because they involve motivating, full-body movement practice. However, these games were designed for recreational use, which creates challenges for clinical implementation. Busy clinicians require decision-making support to inform game selection and implementation that address individual therapeutic goals. This article describes the development and preliminary evaluation of a knowledge translation (KT) resource to support clinical decision making about selection and use of Kinect games in physical therapy. The knowledge-to-action framework guided the development of the Kinecting With Clinicians (KWiC) resource. Five physical therapists with VR and video game expertise analyzed the Kinect Adventure games. A consensus-building method was used to arrive at categories to organize clinically relevant attributes guiding game selection and game play. The process and results of an exploratory usability evaluation of the KWiC resource by clinicians through interviews and focus groups at 4 clinical sites is described. Subsequent steps in the evaluation and KT process are proposed, including making the KWiC resource Web-based and evaluating the utility of the online resource in clinical practice. PMID:25256741

  9. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  10. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  11. "Kinect-ing" with clinicians: a knowledge translation resource to support decision making about video game use in rehabilitation.

    PubMed

    Levac, Danielle; Espy, Deborah; Fox, Emily; Pradhan, Sujata; Deutsch, Judith E

    2015-03-01

    Microsoft's Kinect for Xbox 360 virtual reality (VR) video games are promising rehabilitation options because they involve motivating, full-body movement practice. However, these games were designed for recreational use, which creates challenges for clinical implementation. Busy clinicians require decision-making support to inform game selection and implementation that address individual therapeutic goals. This article describes the development and preliminary evaluation of a knowledge translation (KT) resource to support clinical decision making about selection and use of Kinect games in physical therapy. The knowledge-to-action framework guided the development of the Kinecting With Clinicians (KWiC) resource. Five physical therapists with VR and video game expertise analyzed the Kinect Adventure games. A consensus-building method was used to arrive at categories to organize clinically relevant attributes guiding game selection and game play. The process and results of an exploratory usability evaluation of the KWiC resource by clinicians through interviews and focus groups at 4 clinical sites is described. Subsequent steps in the evaluation and KT process are proposed, including making the KWiC resource Web-based and evaluating the utility of the online resource in clinical practice. © 2015 American Physical Therapy Association.

  12. Modeling Meteor Flares for Spacecraft Safety

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven

    2017-01-01

    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  13. High definition in minimally invasive surgery: a review of methods for recording, editing, and distributing video.

    PubMed

    Kelly, Christopher R; Hogle, Nancy J; Landman, Jaime; Fowler, Dennis L

    2008-09-01

    The use of high-definition cameras and monitors during minimally invasive procedures can provide the surgeon and operating team with more than twice the resolution of standard definition systems. Although this dramatic improvement in visualization offers numerous advantages, the adoption of high definition cameras in the operating room can be challenging because new recording equipment must be purchased, and several new technologies are required to edit and distribute video. The purpose of this review article is to provide an overview of the popular methods for recording, editing, and distributing high-definition video. This article discusses the essential technical concepts of high-definition video, reviews the different kinds of equipment and methods most often used for recording, and describes several options for video distribution.

  14. Effects of video-game play on information processing: a meta-analytic investigation.

    PubMed

    Powers, Kasey L; Brooks, Patricia J; Aldrich, Naomi J; Palladino, Melissa A; Alfieri, Louis

    2013-12-01

    Do video games enhance cognitive functioning? We conducted two meta-analyses based on different research designs to investigate how video games impact information-processing skills (auditory processing, executive functions, motor skills, spatial imagery, and visual processing). Quasi-experimental studies (72 studies, 318 comparisons) compare habitual gamers with controls; true experiments (46 studies, 251 comparisons) use commercial video games in training. Using random-effects models, video games led to improved information processing in both the quasi-experimental studies, d = 0.61, 95% CI [0.50, 0.73], and the true experiments, d = 0.48, 95% CI [0.35, 0.60]. Whereas the quasi-experimental studies yielded small to large effect sizes across domains, the true experiments yielded negligible effects for executive functions, which contrasted with the small to medium effect sizes in other domains. The quasi-experimental studies appeared more susceptible to bias than were the true experiments, with larger effects being reported in higher-tier than in lower-tier journals, and larger effects reported by the most active research groups in comparison with other labs. The results are further discussed with respect to other moderators and limitations in the extant literature.

  15. Getting Inside the Expert's Head: An Analysis of Physician Cognitive Processes During Trauma Resuscitations.

    PubMed

    White, Matthew R; Braund, Heather; Howes, Daniel; Egan, Rylan; Gegenfurtner, Andreas; van Merrienboer, Jeroen J G; Szulewski, Adam

    2018-04-23

    Crisis resource management skills are integral to leading the resuscitation of a critically ill patient. Despite their importance, crisis resource management skills (and their associated cognitive processes) have traditionally been difficult to study in the real world. The objective of this study was to derive key cognitive processes underpinning expert performance in resuscitation medicine, using a new eye-tracking-based video capture method during clinical cases. During an 18-month period, a sample of 10 trauma resuscitations led by 4 expert trauma team leaders was analyzed. The physician team leaders were outfitted with mobile eye-tracking glasses for each case. After each resuscitation, participants were debriefed with a modified cognitive task analysis, based on a cued-recall protocol, augmented by viewing their own first-person perspective eye-tracking video from the clinical encounter. Eye-tracking technology was successfully applied as a tool to aid in the qualitative analysis of expert performance in a clinical setting. All participants stated that using these methods helped uncover previously unconscious aspects of their cognition. Overall, 5 major themes were derived from the interviews: logistic awareness, managing uncertainty, visual fixation behaviors, selective attendance to information, and anticipatory behaviors. The novel approach of cognitive task analysis augmented by eye tracking allowed the derivation of 5 unique cognitive processes underpinning expert performance in leading a resuscitation. An understanding of these cognitive processes has the potential to enhance educational methods and to create new assessment modalities of these previously tacit aspects of expertise in this field. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  16. Ubiquitous UAVs: a cloud based framework for storing, accessing and processing huge amount of video footage in an efficient way

    NASA Astrophysics Data System (ADS)

    Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos

    2017-09-01

    Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.

  17. Solar greenhouse workshop; video documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, B.; Devine B.; Taylor, C.

    1980-01-01

    A 38 minute video-tape documentary of the building of an attached solar greenhouse is presented. The tape follows the construction process from foundation preparation to greenhouse completion. The tape allows greater outreach to potential builders of solar greenhouses than a conventional construction workshop. It allows viewers to appreciate the simplicity of construction, and encourages, by example, interested people to start building. The process of making the documentary is briefly described, as are its potential uses. Copies of the video-tape are available, for the cost of the tape alone, from Antioch Video, Antioch College, Yellow Springs, Ohio 45387.

  18. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  19. Using Digital Time-Lapse Videos to Teach Geomorphic Processes to Undergraduates

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Linneman, S. R.; Fuller, J.

    2004-12-01

    We demonstrate the use of relatively low-cost, computer-based digital imagery to create time-lapse videos of two distinct geomorphic processes in order to help students grasp the significance of the rates, styles, and temporal dependence of geologic phenomena. Student interviews indicate that such videos help them to understand the relationship between processes and landform development. Time-lapse videos have been used extensively in some sciences (e.g., biology - http://sbcf.iu.edu/goodpract/hangarter.html, meteorology - http://www.apple.com/education/hed/aua0101s/meteor/, chemistry - http://www.chem.yorku.ca/profs/hempsted/chemed/home.html) to demonstrate gradual processes that are difficult for many students to visualize. Most geologic processes are slower still, and are consequently even more difficult for students to grasp, yet time-lapse videos are rarely used in earth science classrooms. The advent of inexpensive web-cams and computers provides a new means to explore the temporal dimension of earth surface processes. To test the use of time-lapse videos in geoscience education, we are developing time-lapse movies that record the evolution of two landforms: a stream-table delta and a large, natural, active landslide. The former involves well-known processes in a controlled, repeatable laboratory experiment, whereas the latter tracks the developing dynamics of an otherwise poorly understood slope failure. The stream-table delta is small and grows in ca. 2 days; we capture a frame on an overhead web-cam every 3 minutes. Before seeing the video, students are asked to hypothesize how the delta will grow through time. The final time-lapse video, ca. 20-80 MB, elegantly shows channel migration, progradation rates, and formation of major geomorphic elements (topset, foreset, bottomset beds). The web-cam can also be "zoomed-in" to show smaller-scale processes, such as bedload transfer, and foreset slumping. Post-lab tests and interviews with students indicate that these time-lapse videos significantly improve student interest in the material, and comprehension of the processes. In contrast, the natural landslide is relatively unconstrained, and its processes of movement, both gradual and catastrophic, are essentially impossible to observe directly without the aid of time-lapse imagery. We are constructing a remote digital camera, mounted in a tree, which will capture 1-2 photos/day of the toe. The toe is extremely active geomorphically, and the time-lapse movie should help us (and the students) to constrain the style, frequency, and rates of movement, surface slumping, and debris-flow generation. Because we have also installed a remote weather station on the landslide, we will be able to test the links between these processes and local climate conditions.

  20. Comparing High Definition Live Interactive and Store-and-Forward Consultations to In-Person Examinations.

    PubMed

    Marchell, Richard; Locatis, Craig; Burges, Gene; Maisiak, Richard; Liu, Wei-Li; Ackerman, Michael

    2017-03-01

    There is little teledermatology research directly comparing remote methods, even less research with two in-person dermatologist agreement providing a baseline for comparing remote methods, and no research using high definition video as a live interactive method. To compare in-person consultations with store-and-forward and live interactive methods, the latter having two levels of image quality. A controlled study was conducted where patients were examined in-person, by high definition video, and by store-and-forward methods. The order patients experienced methods and residents assigned methods rotated, although an attending always saw patients in-person. The type of high definition video employed, lower resolution compressed or higher resolution uncompressed, was alternated between clinics. Primary and differential diagnoses, biopsy recommendations, and diagnostic and biopsy confidence ratings were recorded. Concordance and confidence were significantly better for in-person versus remote methods and biopsy recommendations were lower. Store-and-forward and higher resolution uncompressed video results were similar and better than those for lower resolution compressed video. Dermatology residents took store-and-forward photos and their quality was likely superior to those normally taken in practice. There were variations in expertise between the attending and second and third year residents. The superiority of in-person consultations suggests the tendencies to order more biopsies or still see patients in-person are often justified in teledermatology and that high resolution uncompressed video can close the resolution gap between store-and-forward and live interactive methods.

Top