Sample records for video segment features

  1. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  2. News video story segmentation method using fusion of audio-visual features

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang

    2007-11-01

    News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.

  3. Multi-modal highlight generation for sports videos using an information-theoretic excitability measure

    NASA Astrophysics Data System (ADS)

    Hasan, Taufiq; Bořil, Hynek; Sangwan, Abhijeet; L Hansen, John H.

    2013-12-01

    The ability to detect and organize `hot spots' representing areas of excitement within video streams is a challenging research problem when techniques rely exclusively on video content. A generic method for sports video highlight selection is presented in this study which leverages both video/image structure as well as audio/speech properties. Processing begins where the video is partitioned into small segments and several multi-modal features are extracted from each segment. Excitability is computed based on the likelihood of the segmental features residing in certain regions of their joint probability density function space which are considered both exciting and rare. The proposed measure is used to rank order the partitioned segments to compress the overall video sequence and produce a contiguous set of highlights. Experiments are performed on baseball videos based on signal processing advancements for excitement assessment in the commentators' speech, audio energy, slow motion replay, scene cut density, and motion activity as features. Detailed analysis on correlation between user excitability and various speech production parameters is conducted and an effective scheme is designed to estimate the excitement level of commentator's speech from the sports videos. Subjective evaluation of excitability and ranking of video segments demonstrate a higher correlation with the proposed measure compared to well-established techniques indicating the effectiveness of the overall approach.

  4. An unsupervised video foreground co-localization and segmentation process by incorporating motion cues and frame features

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.

  5. Global-constrained hidden Markov model applied on wireless capsule endoscopy video segmentation

    NASA Astrophysics Data System (ADS)

    Wan, Yiwen; Duraisamy, Prakash; Alam, Mohammad S.; Buckles, Bill

    2012-06-01

    Accurate analysis of wireless capsule endoscopy (WCE) videos is vital but tedious. Automatic image analysis can expedite this task. Video segmentation of WCE into the four parts of the gastrointestinal tract is one way to assist a physician. The segmentation approach described in this paper integrates pattern recognition with statiscal analysis. Iniatially, a support vector machine is applied to classify video frames into four classes using a combination of multiple color and texture features as the feature vector. A Poisson cumulative distribution, for which the parameter depends on the length of segments, models a prior knowledge. A priori knowledge together with inter-frame difference serves as the global constraints driven by the underlying observation of each WCE video, which is fitted by Gaussian distribution to constrain the transition probability of hidden Markov model.Experimental results demonstrated effectiveness of the approach.

  6. Video content parsing based on combined audio and visual information

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-08-01

    While previous research on audiovisual data segmentation and indexing primarily focuses on the pictorial part, significant clues contained in the accompanying audio flow are often ignored. A fully functional system for video content parsing can be achieved more successfully through a proper combination of audio and visual information. By investigating the data structure of different video types, we present tools for both audio and visual content analysis and a scheme for video segmentation and annotation in this research. In the proposed system, video data are segmented into audio scenes and visual shots by detecting abrupt changes in audio and visual features, respectively. Then, the audio scene is categorized and indexed as one of the basic audio types while a visual shot is presented by keyframes and associate image features. An index table is then generated automatically for each video clip based on the integration of outputs from audio and visual analysis. It is shown that the proposed system provides satisfying video indexing results.

  7. Selecting salient frames for spatiotemporal video modeling and segmentation.

    PubMed

    Song, Xiaomu; Fan, Guoliang

    2007-12-01

    We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.

  8. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  9. Automated detection of videotaped neonatal seizures of epileptic origin.

    PubMed

    Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M

    2006-06-01

    This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.

  10. A content-based news video retrieval system: NVRS

    NASA Astrophysics Data System (ADS)

    Liu, Huayong; He, Tingting

    2009-10-01

    This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.

  11. Automated detection of videotaped neonatal seizures based on motion segmentation methods.

    PubMed

    Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M

    2006-07-01

    This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.

  12. Automated Music Video Generation Using Multi-level Feature-based Segmentation

    NASA Astrophysics Data System (ADS)

    Yoon, Jong-Chul; Lee, In-Kwon; Byun, Siwoo

    The expansion of the home video market has created a requirement for video editing tools to allow ordinary people to assemble videos from short clips. However, professional skills are still necessary to create a music video, which requires a stream to be synchronized with pre-composed music. Because the music and the video are pre-generated in separate environments, even a professional producer usually requires a number of trials to obtain a satisfactory synchronization, which is something that most amateurs are unable to achieve.

  13. Affective video retrieval: violence detection in Hollywood movies by large-scale segmental feature extraction.

    PubMed

    Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard

    2013-01-01

    Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology "out of the lab" to real-world, diverse data. In this contribution, we address the problem of finding "disturbing" scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis.

  14. Affective Video Retrieval: Violence Detection in Hollywood Movies by Large-Scale Segmental Feature Extraction

    PubMed Central

    Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard

    2013-01-01

    Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology “out of the lab” to real-world, diverse data. In this contribution, we address the problem of finding “disturbing” scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis. PMID:24391704

  15. WCE video segmentation using textons

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Granata, Eliana

    2010-03-01

    Wireless Capsule Endoscopy (WCE) integrates wireless transmission with image and video technology. It has been used to examine the small intestine non invasively. Medical specialists look for signicative events in the WCE video by direct visual inspection manually labelling, in tiring and up to one hour long sessions, clinical relevant frames. This limits the WCE usage. To automatically discriminate digestive organs such as esophagus, stomach, small intestine and colon is of great advantage. In this paper we propose to use textons for the automatic discrimination of abrupt changes within a video. In particular, we consider, as features, for each frame hue, saturation, value, high-frequency energy content and the responses to a bank of Gabor filters. The experiments have been conducted on ten video segments extracted from WCE videos, in which the signicative events have been previously labelled by experts. Results have shown that the proposed method may eliminate up to 70% of the frames from further investigations. The direct analysis of the doctors may hence be concentrated only on eventful frames. A graphical tool showing sudden changes in the textons frequencies for each frame is also proposed as a visual aid to find clinically relevant segments of the video.

  16. Adding Feminist Therapy to Videotape Demonstrations.

    ERIC Educational Resources Information Center

    Konrad, Jennifer L.; Yoder, Janice D.

    2000-01-01

    Provides directions for presenting a 32-minute series of four videotape segments that highlights the fundamental features of four approaches to psychotherapy, extending its reach to include a feminist perspective. Describes the approaches and included segments. Reports that students' comments demonstrate that the video sequence provided a helpful…

  17. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  18. Automatic topics segmentation for TV news video

    NASA Astrophysics Data System (ADS)

    Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.

  19. Segmentation of the Speaker's Face Region with Audiovisual Correlation

    NASA Astrophysics Data System (ADS)

    Liu, Yuyu; Sato, Yoichi

    The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.

  20. Video shot boundary detection using region-growing-based watershed method

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Patel, Nilesh; Grosky, William

    2004-10-01

    In this paper, a novel shot boundary detection approach is presented, based on the popular region growing segmentation method - Watershed segmentation. In image processing, gray-scale pictures could be considered as topographic reliefs, in which the numerical value of each pixel of a given image represents the elevation at that point. Watershed method segments images by filling up basins with water starting at local minima, and at points where water coming from different basins meet, dams are built. In our method, each frame in the video sequences is first transformed from the feature space into the topographic space based on a density function. Low-level features are extracted from frame to frame. Each frame is then treated as a point in the feature space. The density of each point is defined as the sum of the influence functions of all neighboring data points. The height function that is originally used in Watershed segmentation is then replaced by inverting the density at the point. Thus, all the highest density values are transformed into local minima. Subsequently, Watershed segmentation is performed in the topographic space. The intuitive idea under our method is that frames within a shot are highly agglomerative in the feature space and have higher possibilities to be merged together, while those frames between shots representing the shot changes are not, hence they have less density values and are less likely to be clustered by carefully extracting the markers and choosing the stopping criterion.

  1. Hierarchical video summarization

    NASA Astrophysics Data System (ADS)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  2. Developing assessment system for wireless capsule endoscopy videos based on event detection

    NASA Astrophysics Data System (ADS)

    Chen, Ying-ju; Yasen, Wisam; Lee, Jeongkyu; Lee, Dongha; Kim, Yongho

    2009-02-01

    Along with the advancing of technology in wireless and miniature camera, Wireless Capsule Endoscopy (WCE), the combination of both, enables a physician to diagnose patient's digestive system without actually perform a surgical procedure. Although WCE is a technical breakthrough that allows physicians to visualize the entire small bowel noninvasively, the video viewing time takes 1 - 2 hours. This is very time consuming for the gastroenterologist. Not only it sets a limit on the wide application of this technology but also it incurs considerable amount of cost. Therefore, it is important to automate such process so that the medical clinicians only focus on interested events. As an extension from our previous work that characterizes the motility of digestive tract in WCE videos, we propose a new assessment system for energy based events detection (EG-EBD) to classify the events in WCE videos. For the system, we first extract general features of a WCE video that can characterize the intestinal contractions in digestive organs. Then, the event boundaries are identified by using High Frequency Content (HFC) function. The segments are classified into WCE event by special features. In this system, we focus on entering duodenum, entering cecum, and active bleeding. This assessment system can be easily extended to discover more WCE events, such as detailed organ segmentation and more diseases, by using new special features. In addition, the system provides a score for every WCE image for each event. Using the event scores, the system helps a specialist to speedup the diagnosis process.

  3. Indexed Captioned Searchable Videos: A Learning Companion for STEM Coursework

    NASA Astrophysics Data System (ADS)

    Tuna, Tayfun; Subhlok, Jaspal; Barker, Lecia; Shah, Shishir; Johnson, Olin; Hovey, Christopher

    2017-02-01

    Videos of classroom lectures have proven to be a popular and versatile learning resource. A key shortcoming of the lecture video format is accessing the content of interest hidden in a video. This work meets this challenge with an advanced video framework featuring topical indexing, search, and captioning (ICS videos). Standard optical character recognition (OCR) technology was enhanced with image transformations for extraction of text from video frames to support indexing and search. The images and text on video frames is analyzed to divide lecture videos into topical segments. The ICS video player integrates indexing, search, and captioning in video playback providing instant access to the content of interest. This video framework has been used by more than 70 courses in a variety of STEM disciplines and assessed by more than 4000 students. Results presented from the surveys demonstrate the value of the videos as a learning resource and the role played by videos in a students learning process. Survey results also establish the value of indexing and search features in a video platform for education. This paper reports on the development and evaluation of ICS videos framework and over 5 years of usage experience in several STEM courses.

  4. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  5. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  6. Around Marshall

    NASA Image and Video Library

    2003-05-01

    Students at Williams Technology Middle School in Huntsville were featured in a new segment of NASA CONNECT, a video series aimed to enhance the teaching of math, science, and technology to middle school students. The segment premiered nationwide May 15, 2003, and helped viewers understand Sir Isaac Newton's first, second, and third laws of gravity and how they relate to NASA's efforts in developing the next generation of space transportation.

  7. Video rate color region segmentation for mobile robotic applications

    NASA Astrophysics Data System (ADS)

    de Cabrol, Aymeric; Bonnin, Patrick J.; Hugel, Vincent; Blazevic, Pierre; Chetto, Maryline

    2005-08-01

    Color Region may be an interesting image feature to extract for visual tasks in robotics, such as navigation and obstacle avoidance. But, whereas numerous methods are used for vision systems embedded on robots, only a few use this segmentation mainly because of the processing duration. In this paper, we propose a new real-time (ie. video rate) color region segmentation followed by a robust color classification and a merging of regions, dedicated to various applications such as RoboCup four-legged league or an industrial conveyor wheeled robot. Performances of this algorithm and confrontation with other methods, in terms of result quality and temporal performances are provided. For better quality results, the obtained speed up is between 2 and 4. For same quality results, the it is up to 10. We present also the outlines of the Dynamic Vision System of the CLEOPATRE Project - for which this segmentation has been developed - and the Clear Box Methodology which allowed us to create the new color region segmentation from the evaluation and the knowledge of other well known segmentations.

  8. Audio-guided audiovisual data segmentation, indexing, and retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1998-12-01

    While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.

  9. Contact-free determination of human body segment parameters by means of videometric image processing of an anthropomorphic body model

    NASA Astrophysics Data System (ADS)

    Hatze, Herbert; Baca, Arnold

    1993-01-01

    The development of noninvasive techniques for the determination of biomechanical body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers, etc.) receives increasing attention from the medical sciences (e,.g., orthopaedic gait analysis), bioengineering, sport biomechanics, and the various space programs. In the present paper, a novel method is presented for determining body segment parameters rapidly and accurately. It is based on the video-image processing of four different body configurations and a finite mass-element human body model. The four video images of the subject in question are recorded against a black background, thus permitting the application of shape recognition procedures incorporating edge detection and calibration algorithms. In this way, a total of 181 object space dimensions of the subject's body segments can be reconstructed and used as anthropometric input data for the mathematical finite mass- element body model. The latter comprises 17 segments (abdomino-thoracic, head-neck, shoulders, upper arms, forearms, hands, abdomino-pelvic, thighs, lower legs, feet) and enables the user to compute all the required segment parameters for each of the 17 segments by means of the associated computer program. The hardware requirements are an IBM- compatible PC (1 MB memory) operating under MS-DOS or PC-DOS (Version 3.1 onwards) and incorporating a VGA-board with a feature connector for connecting it to a super video windows framegrabber board for which there must be available a 16-bit large slot. In addition, a VGA-monitor (50 - 70 Hz, horizontal scan rate at least 31.5 kHz), a common video camera and recorder, and a simple rectangular calibration frame are required. The advantage of the new method lies in its ease of application, its comparatively high accuracy, and in the rapid availability of the body segment parameters, which is particularly useful in clinical practice. An example of its practical application illustrates the technique.

  10. Huntsville Area Students Appear in Episode of NASA CONNECT

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Students at Williams Technology Middle School in Huntsville were featured in a new segment of NASA CONNECT, a video series aimed to enhance the teaching of math, science, and technology to middle school students. The segment premiered nationwide May 15, 2003, and helped viewers understand Sir Isaac Newton's first, second, and third laws of gravity and how they relate to NASA's efforts in developing the next generation of space transportation.

  11. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  12. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  13. Multimedia and Understanding: Expert and Novice Responses To Different Representations of Chemical Phenomena.

    ERIC Educational Resources Information Center

    Kozma, Robert B.; Russell, Joel

    1997-01-01

    Examines how professional chemists and undergraduate chemistry students respond to chemistry-related video segments, graphs, animations, and equations. Discusses the role that surface features of representations play in the understanding of chemistry. Contains 36 references. (DDR)

  14. Hierarchical vs non-hierarchical audio indexation and classification for video genres

    NASA Astrophysics Data System (ADS)

    Dammak, Nouha; BenAyed, Yassine

    2018-04-01

    In this paper, Support Vector Machines (SVMs) are used for segmenting and indexing video genres based on only audio features extracted at block level, which has a prominent asset by capturing local temporal information. The main contribution of our study is to show the wide effect on the classification accuracies while using an hierarchical categorization structure based on Mel Frequency Cepstral Coefficients (MFCC) audio descriptor. In fact, the classification consists in three common video genres: sports videos, music clips and news scenes. The sub-classification may divide each genre into several multi-speaker and multi-dialect sub-genres. The validation of this approach was carried out on over 360 minutes of video span yielding a classification accuracy of over 99%.

  15. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  16. Video-assisted segmentation of speech and audio track

    NASA Astrophysics Data System (ADS)

    Pandit, Medha; Yusoff, Yusseri; Kittler, Josef; Christmas, William J.; Chilton, E. H. S.

    1999-08-01

    Video database research is commonly concerned with the storage and retrieval of visual information invovling sequence segmentation, shot representation and video clip retrieval. In multimedia applications, video sequences are usually accompanied by a sound track. The sound track contains potential cues to aid shot segmentation such as different speakers, background music, singing and distinctive sounds. These different acoustic categories can be modeled to allow for an effective database retrieval. In this paper, we address the problem of automatic segmentation of audio track of multimedia material. This audio based segmentation can be combined with video scene shot detection in order to achieve partitioning of the multimedia material into semantically significant segments.

  17. Audio-video feature correlation: faces and speech

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Montacie, Claude; Caraty, Marie-Jose; Faudemay, Pascal

    1999-08-01

    This paper presents a study of the correlation of features automatically extracted from the audio stream and the video stream of audiovisual documents. In particular, we were interested in finding out whether speech analysis tools could be combined with face detection methods, and to what extend they should be combined. A generic audio signal partitioning algorithm as first used to detect Silence/Noise/Music/Speech segments in a full length movie. A generic object detection method was applied to the keyframes extracted from the movie in order to detect the presence or absence of faces. The correlation between the presence of a face in the keyframes and of the corresponding voice in the audio stream was studied. A third stream, which is the script of the movie, is warped on the speech channel in order to automatically label faces appearing in the keyframes with the name of the corresponding character. We naturally found that extracted audio and video features were related in many cases, and that significant benefits can be obtained from the joint use of audio and video analysis methods.

  18. Retinal slit lamp video mosaicking.

    PubMed

    De Zanet, Sandro; Rudolph, Tobias; Richa, Rogerio; Tappeiner, Christoph; Sznitman, Raphael

    2016-06-01

    To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

  19. Blurry-frame detection and shot segmentation in colonoscopy videos

    NASA Astrophysics Data System (ADS)

    Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2003-12-01

    Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.

  20. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    NASA Astrophysics Data System (ADS)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  1. Small Moving Vehicle Detection in a Satellite Video of an Urban Area

    PubMed Central

    Yang, Tao; Wang, Xiwen; Yao, Bowei; Li, Jing; Zhang, Yanning; He, Zhannan; Duan, Wencheng

    2016-01-01

    Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. The achieved work generally focuses on aerial video with moderately-sized objects based on feature extraction. However, the moving vehicles in satellite video imagery range from just a few pixels to dozens of pixels and exhibit low contrast with respect to the background, which makes it hard to get available appearance or shape information. In this paper, we look into the problem of moving vehicle detection in satellite imagery. To the best of our knowledge, it is the first time to deal with moving vehicle detection from satellite videos. Our approach consists of two stages: first, through foreground motion segmentation and trajectory accumulation, the scene motion heat map is dynamically built. Following this, a novel saliency based background model which intensifies moving objects is presented to segment the vehicles in the hot regions. Qualitative and quantitative experiments on sequence from a recent Skybox satellite video dataset demonstrates that our approach achieves a high detection rate and low false alarm simultaneously. PMID:27657091

  2. Infrared video based gas leak detection method using modified FAST features

    NASA Astrophysics Data System (ADS)

    Wang, Min; Hong, Hanyu; Huang, Likun

    2018-03-01

    In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.

  3. Gamifying Video Object Segmentation.

    PubMed

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  4. [Evaluation of echocardiographic left ventricular wall motion analysis supported by internet picture viewing system].

    PubMed

    Hirano, Yutaka; Ikuta, Shin-Ichiro; Nakano, Manabu; Akiyama, Seita; Nakamura, Hajime; Nasu, Masataka; Saito, Futoshi; Nakagawa, Junichi; Matsuzaki, Masashi; Miyazaki, Shunichi

    2007-02-01

    Assessment of deterioration of regional wall motion by echocardiography is not only subjective but also features difficulties with interobserver agreement. Progress in digital communication technology has made it possible to send video images from a distant location via the Internet. The possibility of evaluating left ventricular wall motion using video images sent via the Internet to distant institutions was evaluated. Twenty-two subjects were randomly selected. Four sets of video images (parasternal long-axis view, parasternal short-axis view, apical four-chamber view, and apical two-chamber view) were taken for one cardiac cycle. The images were sent via the Internet to two institutions (observer C in facility A and observers D and E in facility B) for evaluation. Great care was taken to prevent disclosure of patient information to these observers. Parasternal long-axis images were divided into four segments, and the parasternal short-axis view, apical four-chamber view, and apical two-chamber view were divided into six segments. One of the following assessments, normokinesis, hypokinesis, akinesis, or dyskinesis, was assigned to each segment. The interobserver rates of agreement in judgments between observers C and D, observers C and E, and intraobserver agreement rate (for observer D) were calculated. The rate of interobserver agreement was 85.7% (394/460 segments; Kappa = 0.65) between observers C and D, 76.7% (353/460 segments; Kappa = 0.39) between observers D and E, and 76.3% (351/460 segments; Kappa = 0.36)between observers C and E, and intraobserver agreement was 94.3% (434/460; Kappa = 0.86). Segments of difference judgments between observers C and D were normokinesis-hypokinesis; 62.1%, hypokinesis-akinesis; 33.3%, akinesis-dyskinesis; 3.0%, and normokinesis-akinesis; 1.5%. Wall motion can be evaluated at remote institutions via the Internet.

  5. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  6. Motion-seeded object-based attention for dynamic visual imagery

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak; Kim, Kyungnam

    2017-05-01

    This paper† describes a novel system that finds and segments "objects of interest" from dynamic imagery (video) that (1) processes each frame using an advanced motion algorithm that pulls out regions that exhibit anomalous motion, and (2) extracts the boundary of each object of interest using a biologically-inspired segmentation algorithm based on feature contours. The system uses a series of modular, parallel algorithms, which allows many complicated operations to be carried out by the system in a very short time, and can be used as a front-end to a larger system that includes object recognition and scene understanding modules. Using this method, we show 90% accuracy with fewer than 0.1 false positives per frame of video, which represents a significant improvement over detection using a baseline attention algorithm.

  7. (abstract) Geological Tour of Southwestern Mexico

    NASA Technical Reports Server (NTRS)

    Adams, Steven L.; Lang, Harold R.

    1993-01-01

    Nineteen Landsat Themic Mapper quarter scenes, coregistered at 28.5 m spatial resolution with three arc second digital topographic data, were used to create a movie, simulating a flight over the Guerrero and Mixteco terrains of southwestern Mexico. The flight path was chosen to elucidate important structural, stratigraphic, and geomorphic features. The video, available in VHS format, is a 360 second animation consisting of 10 800 total frames. The simulated velocity during three 120 second flight segments of the video is approximately 37 000 km per hour, traversing approximately 1 000 km on the ground.

  8. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  9. Hey! What's Space Station Freedom?

    NASA Technical Reports Server (NTRS)

    Vonehrenfried, Dutch

    1992-01-01

    This video, 'Hey! What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  10. Hey] What's Space Station Freedom?

    NASA Astrophysics Data System (ADS)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  11. Segment scheduling method for reducing 360° video streaming latency

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.

  12. Surgical gesture classification from video and kinematic data.

    PubMed

    Zappella, Luca; Béjar, Benjamín; Hager, Gregory; Vidal, René

    2013-10-01

    Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic information not present in kinematic data), they are typically not used because of the difficulties associated with automatic video interpretation. In this paper, we propose several methods for automatic surgical gesture classification from video data. We assume that the video of a surgical task (e.g., suturing) has been segmented into video clips corresponding to a single gesture (e.g., grabbing the needle, passing the needle) and propose three methods to classify the gesture of each video clip. In the first one, we model each video clip as the output of a linear dynamical system (LDS) and use metrics in the space of LDSs to classify new video clips. In the second one, we use spatio-temporal features extracted from each video clip to learn a dictionary of spatio-temporal words, and use a bag-of-features (BoF) approach to classify new video clips. In the third one, we use multiple kernel learning (MKL) to combine the LDS and BoF approaches. Since the LDS approach is also applicable to kinematic data, we also use MKL to combine both types of data in order to exploit their complementarity. Our experiments on a typical surgical training setup show that methods based on video data perform equally well, if not better, than state-of-the-art approaches based on kinematic data. In turn, the combination of both kinematic and video data outperforms any other algorithm based on one type of data alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Surgical gesture segmentation and recognition.

    PubMed

    Tao, Lingling; Zappella, Luca; Hager, Gregory D; Vidal, René

    2013-01-01

    Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures is assumed to be known. In this paper, we propose a framework for joint segmentation and recognition of surgical gestures from kinematic and video data. Unlike prior work that relies on either frame-level kinematic cues, or segment-level kinematic or video cues, our approach exploits both cues by using a combined Markov/semi-Markov conditional random field (MsM-CRF) model. Our experiments show that the proposed model improves over a Markov or semi-Markov CRF when using video data alone, gives results that are comparable to state-of-the-art methods on kinematic data alone, and improves over state-of-the-art methods when combining kinematic and video data.

  14. Human visual system-based smoking event detection

    NASA Astrophysics Data System (ADS)

    Odetallah, Amjad D.; Agaian, Sos S.

    2012-06-01

    Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.

  15. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  16. Validity and reliability of naturalistic driving scene categorization Judgments from crowdsourcing.

    PubMed

    Cabrall, Christopher D D; Lu, Zhenji; Kyriakidis, Miltos; Manca, Laura; Dijksterhuis, Chris; Happee, Riender; de Winter, Joost

    2018-05-01

    A common challenge with processing naturalistic driving data is that humans may need to categorize great volumes of recorded visual information. By means of the online platform CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features (i.e., presence of other road users, straight road segments, etc.) at greater scale than a single person or a small team of researchers would be capable of. In total, 200 workers from 46 different countries participated in 1.5days. Validity and reliability were examined, both with and without embedding researcher generated control questions via the CrowdFlower mechanism known as Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and reliable (consistent) identification of driving scene items from external workers. Specifically, at a small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78% without. A difference in bias was found, where without GTQs, external workers returned more false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs, 12,862 three-second video segments were released for annotation. Infeasible (and self-defeating) to check the accuracy of each at this scale, a random subset of 1012 categorizations was validated and returned similar levels of accuracy (95%). In the small scale Job, where full video segments were repeated in triplicate, the percentage of unanimous agreement on the items was found significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the larger scale Job (where a single second of a video segment was overlapped by ratings of three sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability reported here may not be directly comparable. Nonetheless, such results are both indicative of high levels of obtained rating reliability. Overall, our results provide compelling evidence for CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced categorizations of naturalistic driving scene contents than when used without such a control mechanism. Such annotations in such short periods of time present a potentially powerful resource in driving research and driving automation development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification.

    PubMed

    Yi, Chucai; Tian, Yingli

    2012-09-01

    In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.

  18. Automatic video segmentation and indexing

    NASA Astrophysics Data System (ADS)

    Chahir, Youssef; Chen, Liming

    1999-08-01

    Indexing is an important aspect of video database management. Video indexing involves the analysis of video sequences, which is a computationally intensive process. However, effective management of digital video requires robust indexing techniques. The main purpose of our proposed video segmentation is twofold. Firstly, we develop an algorithm that identifies camera shot boundary. The approach is based on the use of combination of color histograms and block-based technique. Next, each temporal segment is represented by a color reference frame which specifies the shot similarities and which is used in the constitution of scenes. Experimental results using a variety of videos selected in the corpus of the French Audiovisual National Institute are presented to demonstrate the effectiveness of performing shot detection, the content characterization of shots and the scene constitution.

  19. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  20. Static hand gesture recognition from a video

    NASA Astrophysics Data System (ADS)

    Rokade, Rajeshree S.; Doye, Dharmpal

    2011-10-01

    A sign language (also signed language) is a language which, instead of acoustically conveyed sound patterns, uses visually transmitted sign patterns to convey meaning- "simultaneously combining hand shapes, orientation and movement of the hands". Sign languages commonly develop in deaf communities, which can include interpreters, friends and families of deaf people as well as people who are deaf or hard of hearing themselves. In this paper, we proposed a novel system for recognition of static hand gestures from a video, based on Kohonen neural network. We proposed algorithm to separate out key frames, which include correct gestures from a video sequence. We segment, hand images from complex and non uniform background. Features are extracted by applying Kohonen on key frames and recognition is done.

  1. Neural networks for sign language translation

    NASA Astrophysics Data System (ADS)

    Wilson, Beth J.; Anspach, Gretel

    1993-09-01

    A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.

  2. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

    NASA Astrophysics Data System (ADS)

    Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.

    2013-05-01

    Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.

  3. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  4. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  5. Dactyl Alphabet Gesture Recognition in a Video Sequence Using Microsoft Kinect

    NASA Astrophysics Data System (ADS)

    Artyukhin, S. G.; Mestetskiy, L. M.

    2015-05-01

    This paper presents an efficient framework for solving the problem of static gesture recognition based on data obtained from the web cameras and depth sensor Kinect (RGB-D - data). Each gesture given by a pair of images: color image and depth map. The database store gestures by it features description, genereated by frame for each gesture of the alphabet. Recognition algorithm takes as input a video sequence (a sequence of frames) for marking, put in correspondence with each frame sequence gesture from the database, or decide that there is no suitable gesture in the database. First, classification of the frame of the video sequence is done separately without interframe information. Then, a sequence of successful marked frames in equal gesture is grouped into a single static gesture. We propose a method combined segmentation of frame by depth map and RGB-image. The primary segmentation is based on the depth map. It gives information about the position and allows to get hands rough border. Then, based on the color image border is specified and performed analysis of the shape of the hand. Method of continuous skeleton is used to generate features. We propose a method of skeleton terminal branches, which gives the opportunity to determine the position of the fingers and wrist. Classification features for gesture is description of the position of the fingers relative to the wrist. The experiments were carried out with the developed algorithm on the example of the American Sign Language. American Sign Language gesture has several components, including the shape of the hand, its orientation in space and the type of movement. The accuracy of the proposed method is evaluated on the base of collected gestures consisting of 2700 frames.

  6. Model-based video segmentation for vision-augmented interactive games

    NASA Astrophysics Data System (ADS)

    Liu, Lurng-Kuo

    2000-04-01

    This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.

  7. A clinically viable capsule endoscopy video analysis platform for automatic bleeding detection

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Jiao, Heng; Xie, Jean; Mui, Peter; Leighton, Jonathan A.; Pasha, Shabana; Rentz, Lauri; Abedi, Mahmood

    2013-02-01

    In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.

  8. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  9. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  10. A Secure and Robust Object-Based Video Authentication System

    NASA Astrophysics Data System (ADS)

    He, Dajun; Sun, Qibin; Tian, Qi

    2004-12-01

    An object-based video authentication system, which combines watermarking, error correction coding (ECC), and digital signature techniques, is presented for protecting the authenticity between video objects and their associated backgrounds. In this system, a set of angular radial transformation (ART) coefficients is selected as the feature to represent the video object and the background, respectively. ECC and cryptographic hashing are applied to those selected coefficients to generate the robust authentication watermark. This content-based, semifragile watermark is then embedded into the objects frame by frame before MPEG4 coding. In watermark embedding and extraction, groups of discrete Fourier transform (DFT) coefficients are randomly selected, and their energy relationships are employed to hide and extract the watermark. The experimental results demonstrate that our system is robust to MPEG4 compression, object segmentation errors, and some common object-based video processing such as object translation, rotation, and scaling while securely preventing malicious object modifications. The proposed solution can be further incorporated into public key infrastructure (PKI).

  11. Video Segmentation Descriptors for Event Recognition

    DTIC Science & Technology

    2014-12-08

    Velastin, 3D Extended Histogram of Oriented Gradients (3DHOG) for Classification of Road Users in Urban Scenes , BMVC, 2009. [3] M.-Y. Chen and A. Hauptmann...computed on 3D volume outputted by the hierarchical segmentation . Each video is described as follows. Each supertube is temporally divided in n-frame...strength of these descriptors is their adaptability to the scene variations since they are grounded on a video segmentation . This makes them naturally robust

  12. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  13. Special-effect edit detection using VideoTrails: a comparison with existing techniques

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.

    1998-12-01

    Video segmentation plays an integral role in many multimedia applications, such as digital libraries, content management systems, and various other video browsing, indexing, and retrieval systems. Many algorithms for segmentation of video have appeared within the past few years. Most of these algorithms perform well on cuts, but yield poor performance on gradual transitions or special effects edits. A complete video segmentation system must also achieve good performance on special effect edit detection. In this paper, we discuss the performance of our Video Trails-based algorithms, with other existing special effect edit-detection algorithms within the literature. Results from experiments testing for the ability to detect edits from TV programs, ranging from commercials to news magazine programs, including diverse special effect edits, which we have introduced.

  14. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  15. Effects of Segmenting, Signalling, and Weeding on Learning from Educational Video

    ERIC Educational Resources Information Center

    Ibrahim, Mohamed; Antonenko, Pavlo D.; Greenwood, Carmen M.; Wheeler, Denna

    2012-01-01

    Informed by the cognitive theory of multimedia learning, this study examined the effects of three multimedia design principles on undergraduate students' learning outcomes and perceived learning difficulty in the context of learning entomology from an educational video. These principles included segmenting the video into smaller units, signalling…

  16. Robotic Vision-Based Localization in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Mchenry, Michael; Cheng, Yang; Matthies

    2007-01-01

    A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.

  17. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  18. A new method for sperm characterization for infertility treatment: hypothesis testing by using combination of watershed segmentation and graph theory.

    PubMed

    Shojaedini, Seyed Vahab; Heydari, Masoud

    2014-10-01

    Shape and movement features of sperms are important parameters for infertility study and treatment. In this article, a new method is introduced for characterization sperms in microscopic videos. In this method, first a hypothesis framework is defined to distinguish sperms from other particles in captured video. Then decision about each hypothesis is done in following steps: Selecting some primary regions as candidates for sperms by watershed-based segmentation, pruning of some false candidates during successive frames using graph theory concept and finally confirming correct sperms by using their movement trajectories. Performance of the proposed method is evaluated on real captured images belongs to semen with high density of sperms. The obtained results show the proposed method may detect 97% of sperms in presence of 5% false detections and track 91% of moving sperms. Furthermore, it can be shown that better characterization of sperms in proposed algorithm doesn't lead to extracting more false sperms compared to some present approaches.

  19. Real-time skin feature identification in a time-sequential video stream

    NASA Astrophysics Data System (ADS)

    Kramberger, Iztok

    2005-04-01

    Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.

  20. A bio-inspired method and system for visual object-based attention and segmentation

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  1. Crowdsourcing for identification of polyp-free segments in virtual colonoscopy videos

    NASA Astrophysics Data System (ADS)

    Park, Ji Hwan; Mirhosseini, Seyedkoosha; Nadeem, Saad; Marino, Joseph; Kaufman, Arie; Baker, Kevin; Barish, Matthew

    2017-03-01

    Virtual colonoscopy (VC) allows a physician to virtually navigate within a reconstructed 3D colon model searching for colorectal polyps. Though VC is widely recognized as a highly sensitive and specific test for identifying polyps, one limitation is the reading time, which can take over 30 minutes per patient. Large amounts of the colon are often devoid of polyps, and a way of identifying these polyp-free segments could be of valuable use in reducing the required reading time for the interrogating radiologist. To this end, we have tested the ability of the collective crowd intelligence of non-expert workers to identify polyp candidates and polyp-free regions. We presented twenty short videos flying through a segment of a virtual colon to each worker, and the crowd was asked to determine whether or not a possible polyp was observed within that video segment. We evaluated our framework on Amazon Mechanical Turk and found that the crowd was able to achieve a sensitivity of 80.0% and specificity of 86.5% in identifying video segments which contained a clinically proven polyp. Since each polyp appeared in multiple consecutive segments, all polyps were in fact identified. Using the crowd results as a first pass, 80% of the video segments could in theory be skipped by the radiologist, equating to a significant time savings and enabling more VC examinations to be performed.

  2. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  3. Multilevel analysis of sports video sequences

    NASA Astrophysics Data System (ADS)

    Han, Jungong; Farin, Dirk; de With, Peter H. N.

    2006-01-01

    We propose a fully automatic and flexible framework for analysis and summarization of tennis broadcast video sequences, using visual features and specific game-context knowledge. Our framework can analyze a tennis video sequence at three levels, which provides a broad range of different analysis results. The proposed framework includes novel pixel-level and object-level tennis video processing algorithms, such as a moving-player detection taking both the color and the court (playing-field) information into account, and a player-position tracking algorithm based on a 3-D camera model. Additionally, we employ scene-level models for detecting events, like service, base-line rally and net-approach, based on a number real-world visual features. The system can summarize three forms of information: (1) all court-view playing frames in a game, (2) the moving trajectory and real-speed of each player, as well as relative position between the player and the court, (3) the semantic event segments in a game. The proposed framework is flexible in choosing the level of analysis that is desired. It is effective because the framework makes use of several visual cues obtained from the real-world domain to model important events like service, thereby increasing the accuracy of the scene-level analysis. The paper presents attractive experimental results highlighting the system efficiency and analysis capabilities.

  4. Automatic movie skimming with general tempo analysis

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Hung; Yeh, Chia-Hung; Kuo, C. C. J.

    2003-11-01

    Story units are extracted by general tempo analysis including tempos analysis including tempos of audio and visual information in this research. Although many schemes have been proposed to successfully segment video data into shots using basic low-level features, how to group shots into meaningful units called story units is still a challenging problem. By focusing on a certain type of video such as sport or news, we can explore models with the specific application domain knowledge. For movie contents, many heuristic rules based on audiovisual clues have been proposed with limited success. We propose a method to extract story units using general tempo analysis. Experimental results are given to demonstrate the feasibility and efficiency of the proposed technique.

  5. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  6. Exploring the dark energy biosphere, 15 seconds at a time

    NASA Astrophysics Data System (ADS)

    Petrone, C.; Tossey, L.; Biddle, J.

    2016-12-01

    Science communication often suffers from numerous pitfalls including jargon, complexity, ageneral lack of (science) education of the audience, and short attention spans. With the Center for Dark EnergyBiosphere Investigations (C-DEBI), Delaware Sea Grant is expanding its collection of 15 Second Science videos, whichdeliver complex science topics, with visually stimulating footage and succinct audio. Featuring a diverse cast of scientistsand educators in front of the camera, we are expanded our reach into the public and classrooms. We're alsoexperimenting with smartphone-based virtual reality, for a more immersive experience into the deep! We will show youthe process for planning, producing, and posting our #15secondscience videos and VR segments, and how we areevaluating effectiveness.

  7. Beef quality grading using machine vision

    NASA Astrophysics Data System (ADS)

    Jeyamkondan, S.; Ray, N.; Kranzler, Glenn A.; Biju, Nisha

    2000-12-01

    A video image analysis system was developed to support automation of beef quality grading. Forty images of ribeye steaks were acquired. Fat and lean meat were differentiated using a fuzzy c-means clustering algorithm. Muscle longissimus dorsi (l.d.) was segmented from the ribeye using morphological operations. At the end of each iteration of erosion and dilation, a convex hull was fitted to the image and compactness was measured. The number of iterations was selected to yield the most compact l.d. Match between the l.d. muscle traced by an expert grader and that segmented by the program was 95.9%. Marbling and color features were extracted from the l.d. muscle and were used to build regression models to predict marbling and color scores. Quality grade was predicted using another regression model incorporating all features. Grades predicted by the model were statistically equivalent to the grades assigned by expert graders.

  8. STS-114 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Flight Day 10 of the STS-114 mission the International Space Station (ISS) is seen in low lighting while the Space Station Remote Manipulator System (SSRMS), also known as Canadarm 2 grapples the Raffaello Multipurpose Logistics Module (MPLM) in preparation for its undocking the following day. Members of the shuttle crew (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS read statements in English and Russian in a ceremony for astronauts who gave their lives. Interview segments include one of Collins, Robinson, and Camarda, wearing red shirts to commemorate the STS-107 Columbia crew, and one of Collins and Noguchi on board the ISS, which features voice over from an interpreter translating questions from the Japanese prime minister. The video also features a segment showing gap fillers on board Discovery after being removed from underneath the orbiter, and another segment which explains an experimental plug for future shuttle repairs being tested onboard the mid deck.

  9. Real-time image sequence segmentation using curve evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Weisong

    2001-04-01

    In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.

  10. Video-based noncooperative iris image segmentation.

    PubMed

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  11. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  12. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  13. Automatic generation of pictorial transcripts of video programs

    NASA Astrophysics Data System (ADS)

    Shahraray, Behzad; Gibbon, David C.

    1995-03-01

    An automatic authoring system for the generation of pictorial transcripts of video programs which are accompanied by closed caption information is presented. A number of key frames, each of which represents the visual information in a segment of the video (i.e., a scene), are selected automatically by performing a content-based sampling of the video program. The textual information is recovered from the closed caption signal and is initially segmented based on its implied temporal relationship with the video segments. The text segmentation boundaries are then adjusted, based on lexical analysis and/or caption control information, to account for synchronization errors due to possible delays in the detection of scene boundaries or the transmission of the caption information. The closed caption text is further refined through linguistic processing for conversion to lower- case with correct capitalization. The key frames and the related text generate a compact multimedia presentation of the contents of the video program which lends itself to efficient storage and transmission. This compact representation can be viewed on a computer screen, or used to generate the input to a commercial text processing package to generate a printed version of the program.

  14. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    NASA Astrophysics Data System (ADS)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  15. Video Salient Object Detection via Fully Convolutional Networks.

    PubMed

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).

  16. Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.

    2017-03-01

    Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.

  17. Smoke regions extraction based on two steps segmentation and motion detection in early fire

    NASA Astrophysics Data System (ADS)

    Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan

    2018-03-01

    Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.

  18. Markerless video analysis for movement quantification in pediatric epilepsy monitoring.

    PubMed

    Lu, Haiping; Eng, How-Lung; Mandal, Bappaditya; Chan, Derrick W S; Ng, Yen-Ling

    2011-01-01

    This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient's body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  19. Science documentary video slides to enhance education and communication

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Little, L. J.; Dodgson, K.

    2010-12-01

    Documentary production can convey powerful messages using a combination of authentic science and reinforcing video imagery. Conventional documentary production contains too much information for many viewers to follow; hence many powerful points may be lost. But documentary productions that are re-edited into short video sequences and made available through web based video servers allow the teacher/viewer to access the material as video slides. Each video slide contains one critical discussion segment of the larger documentary. A teacher/viewer can review the documentary one segment at a time in a class room, public forum, or in the comfort of home. The sequential presentation of the video slides allows the viewer to best absorb the documentary message. The website environment provides space for additional questions and discussion to enhance the video message.

  20. Video Skimming and Characterization through the Combination of Image and Language Understanding Techniques

    NASA Technical Reports Server (NTRS)

    Smith, Michael A.; Kanade, Takeo

    1997-01-01

    Digital video is rapidly becoming important for education, entertainment, and a host of multimedia applications. With the size of the video collections growing to thousands of hours, technology is needed to effectively browse segments in a short time without losing the content of the video. We propose a method to extract the significant audio and video information and create a "skim" video which represents a very short synopsis of the original. The goal of this work is to show the utility of integrating language and image understanding techniques for video skimming by extraction of significant information, such as specific objects, audio keywords and relevant video structure. The resulting skim video is much shorter, where compaction is as high as 20:1, and yet retains the essential content of the original segment.

  1. Algorithm for Automatic Behavior Quantification of Laboratory Mice Using High-Frame-Rate Videos

    NASA Astrophysics Data System (ADS)

    Nie, Yuman; Takaki, Takeshi; Ishii, Idaku; Matsuda, Hiroshi

    In this paper, we propose an algorithm for automatic behavior quantification in laboratory mice to quantify several model behaviors. The algorithm can detect repetitive motions of the fore- or hind-limbs at several or dozens of hertz, which are too rapid for the naked eye, from high-frame-rate video images. Multiple repetitive motions can always be identified from periodic frame-differential image features in four segmented regions — the head, left side, right side, and tail. Even when a mouse changes its posture and orientation relative to the camera, these features can still be extracted from the shift- and orientation-invariant shape of the mouse silhouette by using the polar coordinate system and adjusting the angle coordinate according to the head and tail positions. The effectiveness of the algorithm is evaluated by analyzing long-term 240-fps videos of four laboratory mice for six typical model behaviors: moving, rearing, immobility, head grooming, left-side scratching, and right-side scratching. The time durations for the model behaviors determined by the algorithm have detection/correction ratios greater than 80% for all the model behaviors. This shows good quantification results for actual animal testing.

  2. Information processing of motion in facial expression and the geometry of dynamical systems

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; McMenamin, Brenton W.

    2005-01-01

    An interesting problem in analysis of video data concerns design of algorithms that detect perceptually significant features in an unsupervised manner, for instance methods of machine learning for automatic classification of human expression. A geometric formulation of this genre of problems could be modeled with help of perceptual psychology. In this article, we outline one approach for a special case where video segments are to be classified according to expression of emotion or other similar facial motions. The encoding of realistic facial motions that convey expression of emotions for a particular person P forms a parameter space XP whose study reveals the "objective geometry" for the problem of unsupervised feature detection from video. The geometric features and discrete representation of the space XP are independent of subjective evaluations by observers. While the "subjective geometry" of XP varies from observer to observer, levels of sensitivity and variation in perception of facial expressions appear to share a certain level of universality among members of similar cultures. Therefore, statistical geometry of invariants of XP for a sample of population could provide effective algorithms for extraction of such features. In cases where frequency of events is sufficiently large in the sample data, a suitable framework could be provided to facilitate the information-theoretic organization and study of statistical invariants of such features. This article provides a general approach to encode motion in terms of a particular genre of dynamical systems and the geometry of their flow. An example is provided to illustrate the general theory.

  3. Common and Innovative Visuals: A sparsity modeling framework for video.

    PubMed

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  4. Video segmentation and camera motion characterization using compressed data

    NASA Astrophysics Data System (ADS)

    Milanese, Ruggero; Deguillaume, Frederic; Jacot-Descombes, Alain

    1997-10-01

    We address the problem of automatically extracting visual indexes from videos, in order to provide sophisticated access methods to the contents of a video server. We focus on tow tasks, namely the decomposition of a video clip into uniform segments, and the characterization of each shot by camera motion parameters. For the first task we use a Bayesian classification approach to detecting scene cuts by analyzing motion vectors. For the second task a least- squares fitting procedure determines the pan/tilt/zoom camera parameters. In order to guarantee the highest processing speed, all techniques process and analyze directly MPEG-1 motion vectors, without need for video decompression. Experimental results are reported for a database of news video clips.

  5. Temporally coherent 4D video segmentation for teleconferencing

    NASA Astrophysics Data System (ADS)

    Ehmann, Jana; Guleryuz, Onur G.

    2013-09-01

    We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.

  6. Lip reading using neural networks

    NASA Astrophysics Data System (ADS)

    Kalbande, Dhananjay; Mishra, Akassh A.; Patil, Sanjivani; Nirgudkar, Sneha; Patel, Prashant

    2011-10-01

    Computerized lip reading, or speech reading, is concerned with the difficult task of converting a video signal of a speaking person to written text. It has several applications like teaching deaf and dumb to speak and communicate effectively with the other people, its crime fighting potential and invariance to acoustic environment. We convert the video of the subject speaking vowels into images and then images are further selected manually for processing. However, several factors like fast speech, bad pronunciation, and poor illumination, movement of face, moustaches and beards make lip reading difficult. Contour tracking methods and Template matching are used for the extraction of lips from the face. K Nearest Neighbor algorithm is then used to classify the 'speaking' images and the 'silent' images. The sequence of images is then transformed into segments of utterances. Feature vector is calculated on each frame for all the segments and is stored in the database with properly labeled class. Character recognition is performed using modified KNN algorithm which assigns more weight to nearer neighbors. This paper reports the recognition of vowels using KNN algorithms

  7. Causal Video Object Segmentation From Persistence of Occlusions

    DTIC Science & Technology

    2015-05-01

    Precision, recall, and F-measure are reported on the ground truth anno - tations converted to binary masks. Note we cannot evaluate “number of...to lack of occlusions. References [1] P. Arbelaez, M. Maire, C. Fowlkes, and J . Malik. Con- tour detection and hierarchical image segmentation. TPAMI...X. Bai, J . Wang, D. Simons, and G. Sapiro. Video snapcut: robust video object cutout using localized classifiers. In ACM Transactions on Graphics

  8. Video Object Segmentation through Spatially Accurate and Temporally Dense Extraction of Primary Object Regions (Open Access)

    DTIC Science & Technology

    2013-10-03

    fol- low the setup in the literature ([13, 14]), and use 5 (birdfall, cheetah , girl, monkeydog and parachute) of the videos for evaluation (since the...segmentation labeling results of the method, GT is the ground-truth labeling of the video, and F is the (a) Birdfall (b) Cheetah (c) Girl (d) Monkeydog...Video Ours [14] [13] [20] [6] birdfall 155 189 288 252 454 cheetah 633 806 905 1142 1217 girl 1488 1698 1785 1304 1755 monkeydog 365 472 521 563 683

  9. Multilevel wireless capsule endoscopy video segmentation

    NASA Astrophysics Data System (ADS)

    Hwang, Sae; Celebi, M. Emre

    2010-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. WCE transmits more than 50,000 video frames per examination and the visual inspection of the resulting video is a highly time-consuming task even for the experienced gastroenterologist. Typically, a medical clinician spends one or two hours to analyze a WCE video. To reduce the assessment time, it is critical to develop a technique to automatically discriminate digestive organs and shots each of which consists of the same or similar shots. In this paper a multi-level WCE video segmentation methodology is presented to reduce the examination time.

  10. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  11. Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis.

    PubMed

    Derpanis, Konstantinos G; Sizintsev, Mikhail; Cannons, Kevin J; Wildes, Richard P

    2013-03-01

    This paper provides a unified framework for the interrelated topics of action spotting, the spatiotemporal detection and localization of human actions in video, and action recognition, the classification of a given video into one of several predefined categories. A novel compact local descriptor of video dynamics in the context of action spotting and recognition is introduced based on visual spacetime oriented energy measurements. This descriptor is efficiently computed directly from raw image intensity data and thereby forgoes the problems typically associated with flow-based features. Importantly, the descriptor allows for the comparison of the underlying dynamics of two spacetime video segments irrespective of spatial appearance, such as differences induced by clothing, and with robustness to clutter. An associated similarity measure is introduced that admits efficient exhaustive search for an action template, derived from a single exemplar video, across candidate video sequences. The general approach presented for action spotting and recognition is amenable to efficient implementation, which is deemed critical for many important applications. For action spotting, details of a real-time GPU-based instantiation of the proposed approach are provided. Empirical evaluation of both action spotting and action recognition on challenging datasets suggests the efficacy of the proposed approach, with state-of-the-art performance documented on standard datasets.

  12. Integrated approach to multimodal media content analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-12-01

    In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.

  13. Computer aided diagnosis of diabetic peripheral neuropathy

    NASA Astrophysics Data System (ADS)

    Chekh, Viktor; Soliz, Peter; McGrew, Elizabeth; Barriga, Simon; Burge, Mark; Luan, Shuang

    2014-03-01

    Diabetic peripheral neuropathy (DPN) refers to the nerve damage that can occur in diabetes patients. It most often affects the extremities, such as the feet, and can lead to peripheral vascular disease, deformity, infection, ulceration, and even amputation. The key to managing diabetic foot is prevention and early detection. Unfortunately, current existing diagnostic techniques are mostly based on patient sensations and exhibit significant inter- and intra-observer differences. We have developed a computer aided diagnostic (CAD) system for diabetic peripheral neuropathy. The thermal response of the feet of diabetic patients following cold stimulus is captured using an infrared camera. The plantar foot in the images from a thermal video are segmented and registered for tracking points or specific regions. The temperature recovery of each point on the plantar foot is extracted using our bio-thermal model and analyzed. The regions that exhibit abnormal ability to recover are automatically identified to aid the physicians to recognize problematic areas. The key to our CAD system is the segmentation of infrared video. The main challenges for segmenting infrared video compared to normal digital video are (1) as the foot warms up, it also warms up the surrounding, creating an ever changing contrast; and (2) there may be significant motion during imaging. To overcome this, a hybrid segmentation algorithm was developed based on a number of techniques such as continuous max-flow, model based segmentation, shape preservation, convex hull, and temperature normalization. Verifications of the automatic segmentation and registration using manual segmentation and markers show good agreement.

  14. Multi-dimension feature fusion for action recognition

    NASA Astrophysics Data System (ADS)

    Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin

    2018-04-01

    Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.

  15. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  16. Video segmentation using keywords

    NASA Astrophysics Data System (ADS)

    Ton-That, Vinh; Vong, Chi-Tai; Nguyen-Dao, Xuan-Truong; Tran, Minh-Triet

    2018-04-01

    At DAVIS-2016 Challenge, many state-of-art video segmentation methods achieve potential results, but they still much depend on annotated frames to distinguish between background and foreground. It takes a lot of time and efforts to create these frames exactly. In this paper, we introduce a method to segment objects from video based on keywords given by user. First, we use a real-time object detection system - YOLOv2 to identify regions containing objects that have labels match with the given keywords in the first frame. Then, for each region identified from the previous step, we use Pyramid Scene Parsing Network to assign each pixel as foreground or background. These frames can be used as input frames for Object Flow algorithm to perform segmentation on entire video. We conduct experiments on a subset of DAVIS-2016 dataset in half the size of its original size, which shows that our method can handle many popular classes in PASCAL VOC 2012 dataset with acceptable accuracy, about 75.03%. We suggest widely testing by combining other methods to improve this result in the future.

  17. A Content-Adaptive Analysis and Representation Framework for Audio Event Discovery from "Unscripted" Multimedia

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Regunathan; Divakaran, Ajay; Xiong, Ziyou; Otsuka, Isao

    2006-12-01

    We propose a content-adaptive analysis and representation framework to discover events using audio features from "unscripted" multimedia such as sports and surveillance for summarization. The proposed analysis framework performs an inlier/outlier-based temporal segmentation of the content. It is motivated by the observation that "interesting" events in unscripted multimedia occur sparsely in a background of usual or "uninteresting" events. We treat the sequence of low/mid-level features extracted from the audio as a time series and identify subsequences that are outliers. The outlier detection is based on eigenvector analysis of the affinity matrix constructed from statistical models estimated from the subsequences of the time series. We define the confidence measure on each of the detected outliers as the probability that it is an outlier. Then, we establish a relationship between the parameters of the proposed framework and the confidence measure. Furthermore, we use the confidence measure to rank the detected outliers in terms of their departures from the background process. Our experimental results with sequences of low- and mid-level audio features extracted from sports video show that "highlight" events can be extracted effectively as outliers from a background process using the proposed framework. We proceed to show the effectiveness of the proposed framework in bringing out suspicious events from surveillance videos without any a priori knowledge. We show that such temporal segmentation into background and outliers, along with the ranking based on the departure from the background, can be used to generate content summaries of any desired length. Finally, we also show that the proposed framework can be used to systematically select "key audio classes" that are indicative of events of interest in the chosen domain.

  18. STS-114: Discovery Return to Flight: Langley Engineers Analysis Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This video features a briefing on NASA Langley Research Center (LaRC) contributions to the Space Shuttle fleet's Return to Flight (RTF). The briefing is split into two sections, which LaRC Shuttle Project Manager Robert Barnes and Deputy Manager Harry Belvin deliver in the form of a viewgraph presentation. Barnes speaks about LaRC contributions to the STS-114 mission of Space Shuttle Discovery, and Belvin speaks about LaRC contributions to subsequent Shuttle missions. In both sections of the briefing, LaRC contributions are in the following areas: External Tank (ET), Orbiter, Systems Integration, and Corrosion/Aging. The managers discuss nondestructive and destructive tests performed on ET foam, wing leading edge reinforced carbon-carbon (RCC) composites, on-orbit tile repair, aerothermodynamic simulation of reentry effects, Mission Management Team (MMT) support, and landing gear tests. The managers briefly answer questions from reporters, and the video concludes with several short video segments about LaRC contributions to the RTF effort.

  19. Echocardiogram video summarization

    NASA Astrophysics Data System (ADS)

    Ebadollahi, Shahram; Chang, Shih-Fu; Wu, Henry D.; Takoma, Shin

    2001-05-01

    This work aims at developing innovative algorithms and tools for summarizing echocardiogram videos. Specifically, we summarize the digital echocardiogram videos by temporally segmenting them into the constituent views and representing each view by the most informative frame. For the segmentation we take advantage of the well-defined spatio- temporal structure of the echocardiogram videos. Two different criteria are used: presence/absence of color and the shape of the region of interest (ROI) in each frame of the video. The change in the ROI is due to different modes of echocardiograms present in one study. The representative frame is defined to be the frame corresponding to the end- diastole of the heart cycle. To locate the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the R-wave. The corresponding frame is chosen to be the key-frame. The entire echocardiogram video can be summarized into either a static summary, which is a storyboard type of summary and a dynamic summary, which is a concatenation of the selected segments of the echocardiogram video. To the best of our knowledge, this if the first automated system for summarizing the echocardiogram videos base don visual content.

  20. The video watermarking container: efficient real-time transaction watermarking

    NASA Astrophysics Data System (ADS)

    Wolf, Patrick; Hauer, Enrico; Steinebach, Martin

    2008-02-01

    When transaction watermarking is used to secure sales in online shops by embedding transaction specific watermarks, the major challenge is embedding efficiency: Maximum speed by minimal workload. This is true for all types of media. Video transaction watermarking presents a double challenge. Video files not only are larger than for example music files of the same playback time. In addition, video watermarking algorithms have a higher complexity than algorithms for other types of media. Therefore online shops that want to protect their videos by transaction watermarking are faced with the problem that their servers need to work harder and longer for every sold medium in comparison to audio sales. In the past, many algorithms responded to this challenge by reducing their complexity. But this usually results in a loss of either robustness or transparency. This paper presents a different approach. The container technology separates watermark embedding into two stages: A preparation stage and the finalization stage. In the preparation stage, the video is divided into embedding segments. For each segment one copy marked with "0" and anther one marked with "1" is created. This stage is computationally expensive but only needs to be done once. In the finalization stage, the watermarked video is assembled from the embedding segments according to the watermark message. This stage is very fast and involves no complex computations. It thus allows efficient creation of individually watermarked video files.

  1. Telesign: a videophone system for sign language distant communication

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Preteux, Francoise J.; Viallet, Jean-Emmanuel

    1998-09-01

    This paper presents a low bit rate videophone system for deaf people communicating by means of sign language. Classic video conferencing systems have focused on head and shoulders sequences which are not well-suited for sign language video transmission since hearing impaired people also use their hands and arms to communicate. To address the above-mentioned functionality, we have developed a two-step content-based video coding system based on: (1) A segmentation step. Four or five video objects (VO) are extracted using a cooperative approach between color-based and morphological segmentation. (2) VO coding are achieved by using a standardized MPEG-4 video toolbox. Results of encoded sign language video sequences, presented for three target bit rates (32 kbits/s, 48 kbits/s and 64 kbits/s), demonstrate the efficiency of the approach presented in this paper.

  2. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  3. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping

    PubMed Central

    Lentle, Roger G.; Hulls, Corrin M.

    2018-01-01

    The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps. PMID:29686624

  4. Detection of illegal transfer of videos over the Internet

    NASA Astrophysics Data System (ADS)

    Chaisorn, Lekha; Sainui, Janya; Manders, Corey

    2010-07-01

    In this paper, a method for detecting infringements or modifications of a video in real-time is proposed. The method first segments a video stream into shots, after which it extracts some reference frames as keyframes. This process is performed employing a Singular Value Decomposition (SVD) technique developed in this work. Next, for each input video (represented by its keyframes), ordinal-based signature and SIFT (Scale Invariant Feature Transform) descriptors are generated. The ordinal-based method employs a two-level bitmap indexing scheme to construct the index for each video signature. The first level clusters all input keyframes into k clusters while the second level converts the ordinal-based signatures into bitmap vectors. On the other hand, the SIFT-based method directly uses the descriptors as the index. Given a suspect video (being streamed or transferred on the Internet), we generate the signature (ordinal and SIFT descriptors) then we compute similarity between its signature and those signatures in the database based on ordinal signature and SIFT descriptors separately. For similarity measure, besides the Euclidean distance, Boolean operators are also utilized during the matching process. We have tested our system by performing several experiments on 50 videos (each about 1/2 hour in duration) obtained from the TRECVID 2006 data set. For experiments set up, we refer to the conditions provided by TRECVID 2009 on "Content-based copy detection" task. In addition, we also refer to the requirements issued in the call for proposals by MPEG standard on the similar task. Initial result shows that our framework is effective and robust. As compared to our previous work, on top of the achievement we obtained by reducing the storage space and time taken in the ordinal based method, by introducing the SIFT features, we could achieve an overall accuracy in F1 measure of about 96% (improved about 8%).

  5. Tracking cells in Life Cell Imaging videos using topological alignments.

    PubMed

    Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing

    2009-07-16

    With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.

  6. Towards a Video Passive Content Fingerprinting Method for Partial-Copy Detection Robust against Non-Simulated Attacks

    PubMed Central

    2016-01-01

    Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness). Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes it suitable for partial-copy detection; that is, by processing only short segments of 1 second length. PMID:27861492

  7. An improvement analysis on video compression using file segmentation

    NASA Astrophysics Data System (ADS)

    Sharma, Shubhankar; Singh, K. John; Priya, M.

    2017-11-01

    From the past two decades the extreme evolution of the Internet has lead a massive rise in video technology and significantly video consumption over the Internet which inhabits the bulk of data traffic in general. Clearly, video consumes that so much data size on the World Wide Web, to reduce the burden on the Internet and deduction of bandwidth consume by video so that the user can easily access the video data.For this, many video codecs are developed such as HEVC/H.265 and V9. Although after seeing codec like this one gets a dilemma of which would be improved technology in the manner of rate distortion and the coding standard.This paper gives a solution about the difficulty for getting low delay in video compression and video application e.g. ad-hoc video conferencing/streaming or observation by surveillance. Also this paper describes the benchmark of HEVC and V9 technique of video compression on subjective oral estimations of High Definition video content, playback on web browsers. Moreover, this gives the experimental ideology of dividing the video file into several segments for compression and putting back together to improve the efficiency of video compression on the web as well as on the offline mode.

  8. Stochastic modeling of soundtrack for efficient segmentation and indexing of video

    NASA Astrophysics Data System (ADS)

    Naphade, Milind R.; Huang, Thomas S.

    1999-12-01

    Tools for efficient and intelligent management of digital content are essential for digital video data management. An extremely challenging research area in this context is that of multimedia analysis and understanding. The capabilities of audio analysis in particular for video data management are yet to be fully exploited. We present a novel scheme for indexing and segmentation of video by analyzing the audio track. This analysis is then applied to the segmentation and indexing of movies. We build models for some interesting events in the motion picture soundtrack. The models built include music, human speech and silence. We propose the use of hidden Markov models to model the dynamics of the soundtrack and detect audio-events. Using these models we segment and index the soundtrack. A practical problem in motion picture soundtracks is that the audio in the track is of a composite nature. This corresponds to the mixing of sounds from different sources. Speech in foreground and music in background are common examples. The coexistence of multiple individual audio sources forces us to model such events explicitly. Experiments reveal that explicit modeling gives better result than modeling individual audio events separately.

  9. Video Modeling by Experts with Video Feedback to Enhance Gymnastics Skills

    ERIC Educational Resources Information Center

    Boyer, Eva; Miltenberger, Raymond G.; Batsche, Catherine; Fogel, Victoria

    2009-01-01

    The effects of combining video modeling by experts with video feedback were analyzed with 4 female competitive gymnasts (7 to 10 years old) in a multiple baseline design across behaviors. During the intervention, after the gymnast performed a specific gymnastics skill, she viewed a video segment showing an expert gymnast performing the same skill…

  10. Automated Visual Event Detection, Tracking, and Data Management System for Cabled- Observatory Video

    NASA Astrophysics Data System (ADS)

    Edgington, D. R.; Cline, D. E.; Schlining, B.; Raymond, E.

    2008-12-01

    Ocean observatories and underwater video surveys have the potential to unlock important discoveries with new and existing camera systems. Yet the burden of video management and analysis often requires reducing the amount of video recorded through time-lapse video or similar methods. It's unknown how many digitized video data sets exist in the oceanographic community, but we suspect that many remain under analyzed due to lack of good tools or human resources to analyze the video. To help address this problem, the Automated Visual Event Detection (AVED) software and The Video Annotation and Reference System (VARS) have been under development at MBARI. For detecting interesting events in the video, the AVED software has been developed over the last 5 years. AVED is based on a neuromorphic-selective attention algorithm, modeled on the human vision system. Frames are decomposed into specific feature maps that are combined into a unique saliency map. This saliency map is then scanned to determine the most salient locations. The candidate salient locations are then segmented from the scene using algorithms suitable for the low, non-uniform light and marine snow typical of deep underwater video. For managing the AVED descriptions of the video, the VARS system provides an interface and database for describing, viewing, and cataloging the video. VARS was developed by the MBARI for annotating deep-sea video data and is currently being used to describe over 3000 dives by our remotely operated vehicles (ROV), making it well suited to this deepwater observatory application with only a few modifications. To meet the compute and data intensive job of video processing, a distributed heterogeneous network of computers is managed using the Condor workload management system. This system manages data storage, video transcoding, and AVED processing. Looking to the future, we see high-speed networks and Grid technology as an important element in addressing the problem of processing and accessing large video data sets.

  11. Creating and Using Video Segments for Rural Teacher Education.

    ERIC Educational Resources Information Center

    Ludlow, Barbara L.; Duff, Michael C.

    This paper provides guidelines for using video presentations in teacher education programs in special education. The simplest use of video is to provide students with illustrations of basic concepts, demonstrations of specific skills, or examples of model programs and practices. Video can also deliver contextually rich case studies to stimulate…

  12. Learning Outcomes Afforded by Self-Assessed, Segmented Video-Print Combinations

    ERIC Educational Resources Information Center

    Koumi, Jack

    2015-01-01

    Learning affordances of video and print are examined in order to assess the learning outcomes afforded by hybrid video-print learning packages. The affordances discussed for print are: navigability, surveyability and legibility. Those discussed for video are: design for constructive reflection, provision of realistic experiences, presentational…

  13. Optimizing Educational Video through Comparative Trials in Clinical Environments

    ERIC Educational Resources Information Center

    Aronson, Ian David; Plass, Jan L.; Bania, Theodore C.

    2012-01-01

    Although video is increasingly used in public health education, studies generally do not implement randomized trials of multiple video segments in clinical environments. Therefore, the specific configurations of educational videos that will have the greatest impact on outcome measures ranging from increased knowledge of important public health…

  14. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  15. On continuous user authentication via typing behavior.

    PubMed

    Roth, Joseph; Liu, Xiaoming; Metaxas, Dimitris

    2014-10-01

    We hypothesize that an individual computer user has a unique and consistent habitual pattern of hand movements, independent of the text, while typing on a keyboard. As a result, this paper proposes a novel biometric modality named typing behavior (TB) for continuous user authentication. Given a webcam pointing toward a keyboard, we develop real-time computer vision algorithms to automatically extract hand movement patterns from the video stream. Unlike the typical continuous biometrics, such as keystroke dynamics (KD), TB provides a reliable authentication with a short delay, while avoiding explicit key-logging. We collect a video database where 63 unique subjects type static text and free text for multiple sessions. For one typing video, the hands are segmented in each frame and a unique descriptor is extracted based on the shape and position of hands, as well as their temporal dynamics in the video sequence. We propose a novel approach, named bag of multi-dimensional phrases, to match the cross-feature and cross-temporal pattern between a gallery sequence and probe sequence. The experimental results demonstrate a superior performance of TB when compared with KD, which, together with our ultrareal-time demo system, warrant further investigation of this novel vision application and biometric modality.

  16. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  17. Detection of unknown targets from aerial camera and extraction of simple object fingerprints for the purpose of target reacquisition

    NASA Astrophysics Data System (ADS)

    Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri

    2012-01-01

    An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.

  18. Asteroid Composite Tape

    NASA Astrophysics Data System (ADS)

    1998-07-01

    This is a composite tape showing 10 short segments primarily about asteroids. The segments have short introductory slides, which include brief descriptions about the shots. The segments are: (1) Radar movie of asteroid 1620 Geographos; (2) Animation of the trajectories of Toutatis and Earth (3) Animation of a landing on Toutatis; (4) Simulated encounter of an asteroid with Earth, includes a simulated impact trajectory; (5) An animated overview of the Manrover vehicle; (6) The Near Earth Asteroid Tracking project, includes a photograph of USAF Station in Hawaii, and animation of Earth approaching 4179 Toutatis and the asteroid Gaspara; (7) live video of the anchor tests of the Champoleon anchoring apparatus; (8) a second live video of the Champoleon anchor tests showing anchoring spikes, and collision rings; (9) An animated segment with narration about the Stardust mission with sound, which describes the mission to fly close to a comet, and capture cometary material for return to Earth; (10) live video of the drop test of a Stardust replica from a hot air balloon; this includes sound but is not narrated.

  19. Movement Analysis of Flexion and Extension of Honeybee Abdomen Based on an Adaptive Segmented Structure

    PubMed Central

    Zhao, Jieliang; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated. PMID:26223946

  20. IBES: a tool for creating instructions based on event segmentation

    PubMed Central

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-01-01

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool. PMID:24454296

  1. IBES: a tool for creating instructions based on event segmentation.

    PubMed

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-12-26

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  2. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  3. Analysis and segmentation of images in case of solving problems of detecting and tracing objects on real-time video

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton

    2016-04-01

    The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.

  4. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection for non-small cell lung cancer.

    PubMed

    Li, Shuben; Chai, Huiping; Huang, Jun; Zeng, Guangqiao; Shao, Wenlong; He, Jianxing

    2014-04-01

    The purpose of the current study is to present the clinical and surgical results in patients who underwent hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection. Thirty-one patients, 27 men and 4 women, underwent segmental-main bronchial sleeve anastomoses for non-small cell lung cancer between May 2004 and May 2011. Twenty-six (83.9%) patients had squamous cell carcinoma, and 5 patients had adenocarcinoma. Six patients were at stage IIB, 24 patients at stage IIIA, and 1 patient at stage IIIB. Secondary sleeve anastomosis was performed in 18 patients, and Y-shaped multiple sleeve anastomosis was performed in 8 patients. Single segmental bronchiole anastomosis was performed in 5 cases. The average time for chest tube removal was 5.6 days. The average length of hospital stay was 11.8 days. No anastomosis fistula developed in any of the patients. The 1-, 2-, and 3-year survival rates were 83.9%, 71.0%, and 41.9%, respectively. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection is a complex technique that requires training and experience, but it is an effective and safe operation for selected patients.

  5. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  6. Race and Emotion in Computer-Based HIV Prevention Videos for Emergency Department Patients

    ERIC Educational Resources Information Center

    Aronson, Ian David; Bania, Theodore C.

    2011-01-01

    Computer-based video provides a valuable tool for HIV prevention in hospital emergency departments. However, the type of video content and protocol that will be most effective remain underexplored and the subject of debate. This study employs a new and highly replicable methodology that enables comparisons of multiple video segments, each based on…

  7. Adventure Racing and Organizational Behavior: Using Eco Challenge Video Clips to Stimulate Learning

    ERIC Educational Resources Information Center

    Kenworthy-U'Ren, Amy; Erickson, Anthony

    2009-01-01

    In this article, the Eco Challenge race video is presented as a teaching tool for facilitating theory-based discussion and application in organizational behavior (OB) courses. Before discussing the intricacies of the video series itself, the authors present a pedagogically based rationale for using reality TV-based video segments in a classroom…

  8. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    PubMed Central

    Escalera, Sergio; Baró, Xavier; Vitrià, Jordi; Radeva, Petia; Raducanu, Bogdan

    2012-01-01

    Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. PMID:22438733

  9. Region-Based Prediction for Image Compression in the Cloud.

    PubMed

    Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine

    2018-04-01

    Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.

  10. A holistic image segmentation framework for cloud detection and extraction

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  11. Scene Segmentation For Autonomous Robotic Navigation Using Sequential Laser Projected Structured Light

    NASA Astrophysics Data System (ADS)

    Brown, C. David; Ih, Charles S.; Arce, Gonzalo R.; Fertell, David A.

    1987-01-01

    Vision systems for mobile robots or autonomous vehicles navigating in an unknown terrain environment must provide a rapid and accurate method of segmenting the scene ahead into regions of pathway and background. A major distinguishing feature between the pathway and background is the three dimensional texture of these two regions. Typical methods of textural image segmentation are very computationally intensive, often lack the required robustness, and are incapable of sensing the three dimensional texture of various regions of the scene. A method is presented where scanned laser projected lines of structured light, viewed by a stereoscopically located single video camera, resulted in an image in which the three dimensional characteristics of the scene were represented by the discontinuity of the projected lines. This image was conducive to processing with simple regional operators to classify regions as pathway or background. Design of some operators and application methods, and demonstration on sample images are presented. This method provides rapid and robust scene segmentation capability that has been implemented on a microcomputer in near real time, and should result in higher speed and more reliable robotic or autonomous navigation in unstructured environments.

  12. Identification of hand motion using background subtraction method and extraction of image binary with backpropagation neural network on skeleton model

    NASA Astrophysics Data System (ADS)

    Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati

    2018-03-01

    Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.

  13. STS-112 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  14. STS-112 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  15. TRECVID: the utility of a content-based video retrieval evaluation

    NASA Astrophysics Data System (ADS)

    Hauptmann, Alexander G.

    2006-01-01

    TRECVID, an annual retrieval evaluation benchmark organized by NIST, encourages research in information retrieval from digital video. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of semantic features, and the automatic segmentation of TV news broadcasts. Evaluations done in the context of the TRECVID benchmarks show that generally, speech transcripts and annotations provide the single most important clue for successful retrieval. However, automatically finding the individual images is still a tremendous and unsolved challenge. The evaluations repeatedly found that none of the multimedia analysis and retrieval techniques provide a significant benefit over retrieval using only textual information such as from automatic speech recognition transcripts or closed captions. In interactive systems, we do find significant differences among the top systems, indicating that interfaces can make a huge difference for effective video/image search. For interactive tasks efficient interfaces require few key clicks, but display large numbers of images for visual inspection by the user. The text search finds the right context region in the video in general, but to select specific relevant images we need good interfaces to easily browse the storyboard pictures. In general, TRECVID has motivated the video retrieval community to be honest about what we don't know how to do well (sometimes through painful failures), and has focused us to work on the actual task of video retrieval, as opposed to flashy demos based on technological capabilities.

  16. User-oriented summary extraction for soccer video based on multimodal analysis

    NASA Astrophysics Data System (ADS)

    Liu, Huayong; Jiang, Shanshan; He, Tingting

    2011-11-01

    An advanced user-oriented summary extraction method for soccer video is proposed in this work. Firstly, an algorithm of user-oriented summary extraction for soccer video is introduced. A novel approach that integrates multimodal analysis, such as extraction and analysis of the stadium features, moving object features, audio features and text features is introduced. By these features the semantic of the soccer video and the highlight mode are obtained. Then we can find the highlight position and put them together by highlight degrees to obtain the video summary. The experimental results for sports video of world cup soccer games indicate that multimodal analysis is effective for soccer video browsing and retrieval.

  17. Informative frame detection from wireless capsule video endoscopic images

    NASA Astrophysics Data System (ADS)

    Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito

    2008-03-01

    Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).

  18. Action recognition in depth video from RGB perspective: A knowledge transfer manner

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen

    2018-03-01

    Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.

  19. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  20. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  1. Development and Evaluation of a Culturally Tailored Educational Video: Changing Breast Cancer-Related Behaviors in Chinese Women

    ERIC Educational Resources Information Center

    Wang, Judy H.; Liang, Wenchi; Schwartz, Marc D.; Lee, Marion M.; Kreling, Barbara; Mandelblatt, Jeanne S.

    2008-01-01

    This study developed and evaluated a culturally tailored video guided by the health belief model to improve Chinese women's low rate of mammography use. Focus-group discussions and an advisory board meeting guided the video development. A 17-min video, including a soap opera and physician-recommendation segment, was made in Chinese languages. A…

  2. Bilayer segmentation of webcam videos using tree-based classifiers.

    PubMed

    Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan

    2011-01-01

    This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.

  3. Towards a next generation open-source video codec

    NASA Astrophysics Data System (ADS)

    Bankoski, Jim; Bultje, Ronald S.; Grange, Adrian; Gu, Qunshan; Han, Jingning; Koleszar, John; Mukherjee, Debargha; Wilkins, Paul; Xu, Yaowu

    2013-02-01

    Google has recently been developing a next generation opensource video codec called VP9, as part of the experimental branch of the libvpx repository included in the WebM project (http://www.webmproject.org/). Starting from the VP8 video codec released by Google in 2010 as the baseline, a number of enhancements and new tools have been added to improve the coding efficiency. This paper provides a technical overview of the current status of this project along with comparisons and other stateoftheart video codecs H. 264/AVC and HEVC. The new tools that have been added so far include: larger prediction block sizes up to 64x64, various forms of compound INTER prediction, more modes for INTRA prediction, ⅛pel motion vectors and 8tap switchable subpel interpolation filters, improved motion reference generation and motion vector coding, improved entropy coding and framelevel entropy adaptation for various symbols, improved loop filtering, incorporation of Asymmetric Discrete Sine Transforms and larger 16x16 and 32x32 DCTs, frame level segmentation to group similar areas together, etc. Other tools and various bitstream features are being actively worked on as well. The VP9 bitstream is expected to be finalized by earlyto mid2013. Results show VP9 to be quite competitive in performance with mainstream stateoftheart codecs.

  4. Potential markets for advanced satellite communications

    NASA Astrophysics Data System (ADS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  5. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  6. Digital Audio/Video for Computer- and Web-Based Instruction for Training Rural Special Education Personnel.

    ERIC Educational Resources Information Center

    Ludlow, Barbara L.; Foshay, John B.; Duff, Michael C.

    Video presentations of teaching episodes in home, school, and community settings and audio recordings of parents' and professionals' views can be important adjuncts to personnel preparation in special education. This paper describes instructional applications of digital media and outlines steps in producing audio and video segments. Digital audio…

  7. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.

    PubMed

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.

  8. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis

    PubMed Central

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189

  9. Self Occlusion and Disocclusion in Causal Video Object Segmentation

    DTIC Science & Technology

    2015-12-18

    computation is parameter- free in contrast to [4, 32, 10]. Taylor et al . [30] perform layer segmentation in longer video sequences leveraging occlusion cues...shows that our method recovers from errors in the first frame (short of failed detection). 4413 image ground truth Lee et al . [19] Grundman et al . [14...Ochs et al . [23] Taylor et al . [30] ours Figure 7. Sample Visual Results on FBMS-59. Comparison of various state-of-the-art methods. Only a single

  10. Efficient depth intraprediction method for H.264/AVC-based three-dimensional video coding

    NASA Astrophysics Data System (ADS)

    Oh, Kwan-Jung; Oh, Byung Tae

    2015-04-01

    We present an intracoding method that is applicable to depth map coding in multiview plus depth systems. Our approach combines skip prediction and plane segmentation-based prediction. The proposed depth intraskip prediction uses the estimated direction at both the encoder and decoder, and does not need to encode residual data. Our plane segmentation-based intraprediction divides the current block into biregions, and applies a different prediction scheme for each segmented region. This method avoids incorrect estimations across different regions, resulting in higher prediction accuracy. Simulation results demonstrate that the proposed scheme is superior to H.264/advanced video coding intraprediction and has the ability to improve the subjective rendering quality.

  11. Do the Depictions of Sexual Attire and Sexual Behavior in Music Videos Differ Based on Video Network and Character Gender?

    ERIC Educational Resources Information Center

    King, Keith; Laake, Rebecca A.; Bernard, Amy

    2006-01-01

    This study examined the sexual messages depicted in music videos aired on MTV, MTV2, BET, and GAC from August 2, 2004 to August 15, 2004. One-hour segments of music videos were taped daily for two weeks. Depictions of sexual attire and sexual behavior were analyzed via a four-page coding sheet (interrater-reliability = 0.93). Results indicated…

  12. Bayesian Modeling of Temporal Coherence in Videos for Entity Discovery and Summarization.

    PubMed

    Mitra, Adway; Biswas, Soma; Bhattacharyya, Chiranjib

    2017-03-01

    A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning 10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.

  13. VIDEO MODELING BY EXPERTS WITH VIDEO FEEDBACK TO ENHANCE GYMNASTICS SKILLS

    PubMed Central

    Boyer, Eva; Miltenberger, Raymond G; Batsche, Catherine; Fogel, Victoria

    2009-01-01

    The effects of combining video modeling by experts with video feedback were analyzed with 4 female competitive gymnasts (7 to 10 years old) in a multiple baseline design across behaviors. During the intervention, after the gymnast performed a specific gymnastics skill, she viewed a video segment showing an expert gymnast performing the same skill and then viewed a video replay of her own performance of the skill. The results showed that all gymnasts demonstrated improved performance across three gymnastics skills following exposure to the intervention. PMID:20514194

  14. Video modeling by experts with video feedback to enhance gymnastics skills.

    PubMed

    Boyer, Eva; Miltenberger, Raymond G; Batsche, Catherine; Fogel, Victoria

    2009-01-01

    The effects of combining video modeling by experts with video feedback were analyzed with 4 female competitive gymnasts (7 to 10 years old) in a multiple baseline design across behaviors. During the intervention, after the gymnast performed a specific gymnastics skill, she viewed a video segment showing an expert gymnast performing the same skill and then viewed a video replay of her own performance of the skill. The results showed that all gymnasts demonstrated improved performance across three gymnastics skills following exposure to the intervention.

  15. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  16. Sensor-oriented feature usability evaluation in fingerprint segmentation

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yin, Yilong; Yang, Gongping

    2013-06-01

    Existing fingerprint segmentation methods usually process fingerprint images captured by different sensors with the same feature or feature set. We propose to improve the fingerprint segmentation result in view of an important fact that images from different sensors have different characteristics for segmentation. Feature usability evaluation, which means to evaluate the usability of features to find the personalized feature or feature set for different sensors to improve the performance of segmentation. The need for feature usability evaluation for fingerprint segmentation is raised and analyzed as a new issue. To address this issue, we present a decision-tree-based feature-usability evaluation method, which utilizes a C4.5 decision tree algorithm to evaluate and pick the best suitable feature or feature set for fingerprint segmentation from a typical candidate feature set. We apply the novel method on the FVC2002 database of fingerprint images, which are acquired by four different respective sensors and technologies. Experimental results show that the accuracy of segmentation is improved, and time consumption for feature extraction is dramatically reduced with selected feature(s).

  17. Extraction of Blebs in Human Embryonic Stem Cell Videos.

    PubMed

    Guan, Benjamin X; Bhanu, Bir; Talbot, Prue; Weng, Nikki Jo-Hao

    2016-01-01

    Blebbing is an important biological indicator in determining the health of human embryonic stem cells (hESC). Especially, areas of a bleb sequence in a video are often used to distinguish two cell blebbing behaviors in hESC: dynamic and apoptotic blebbings. This paper analyzes various segmentation methods for bleb extraction in hESC videos and introduces a bio-inspired score function to improve the performance in bleb extraction. Full bleb formation consists of bleb expansion and retraction. Blebs change their size and image properties dynamically in both processes and between frames. Therefore, adaptive parameters are needed for each segmentation method. A score function derived from the change of bleb area and orientation between consecutive frames is proposed which provides adaptive parameters for bleb extraction in videos. In comparison to manual analysis, the proposed method provides an automated fast and accurate approach for bleb sequence extraction.

  18. Joint modality fusion and temporal context exploitation for semantic video analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Georgios Th; Mezaris, Vasileios; Kompatsiaris, Ioannis; Strintzis, Michael G.

    2011-12-01

    In this paper, a multi-modal context-aware approach to semantic video analysis is presented. Overall, the examined video sequence is initially segmented into shots and for every resulting shot appropriate color, motion and audio features are extracted. Then, Hidden Markov Models (HMMs) are employed for performing an initial association of each shot with the semantic classes that are of interest separately for each modality. Subsequently, a graphical modeling-based approach is proposed for jointly performing modality fusion and temporal context exploitation. Novelties of this work include the combined use of contextual information and multi-modal fusion, and the development of a new representation for providing motion distribution information to HMMs. Specifically, an integrated Bayesian Network is introduced for simultaneously performing information fusion of the individual modality analysis results and exploitation of temporal context, contrary to the usual practice of performing each task separately. Contextual information is in the form of temporal relations among the supported classes. Additionally, a new computationally efficient method for providing motion energy distribution-related information to HMMs, which supports the incorporation of motion characteristics from previous frames to the currently examined one, is presented. The final outcome of this overall video analysis framework is the association of a semantic class with every shot. Experimental results as well as comparative evaluation from the application of the proposed approach to four datasets belonging to the domains of tennis, news and volleyball broadcast video are presented.

  19. A Video Game-Based Framework for Analyzing Human-Robot Interaction: Characterizing Interface Design in Real-Time Interactive Multimedia Applications

    DTIC Science & Technology

    2006-01-01

    segments video game interaction into domain-independent components which together form a framework that can be used to characterize real-time interactive...multimedia applications in general and HRI in particular. We provide examples of using the components in both the video game and the Unmanned Aerial

  20. The Effects of Video Self-Modeling on the Decoding Skills of Children at Risk for Reading Disabilities

    ERIC Educational Resources Information Center

    Ayala, Sandra M.

    2010-01-01

    Ten first grade students, participating in a Tier II response to intervention (RTI) reading program received an intervention of video self modeling to improve decoding skills and sight word recognition. The students were video recorded blending and segmenting decodable words, and reading sight words taken directly from their curriculum…

  1. Model-Based Analysis of Flow-Mediated Dilation and Intima-Media Thickness

    PubMed Central

    Bartoli, G.; Menegaz, G.; Lisi, M.; Di Stolfo, G.; Dragoni, S.; Gori, T.

    2008-01-01

    We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness (IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline model (deformable template) is fitted to the data to detect the artery boundaries and track them all along the video sequence. The a priori knowledge about the image features and its content is exploited. Preprocessing is performed to improve both the visual quality of video frames for visual inspection and the performance of the segmentation algorithm without affecting the accuracy of the measurements. The system allows real-time processing as well as a high level of interactivity with the user. This is obtained by a graphical user interface (GUI) enabling the cardiologist to supervise the whole process and to eventually reset the contour extraction at any point in time. The system was validated and the accuracy, reproducibility, and repeatability of the measurements were assessed with extensive in vivo experiments. Jointly with the user friendliness, low cost, and robustness, this makes the system suitable for both research and daily clinical use. PMID:19360110

  2. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Segmented cold cathode display panel

    NASA Technical Reports Server (NTRS)

    Payne, Leslie (Inventor)

    1998-01-01

    The present invention is a video display device that utilizes the novel concept of generating an electronically controlled pattern of electron emission at the output of a segmented photocathode. This pattern of electron emission is amplified via a channel plate. The result is that an intense electronic image can be accelerated toward a phosphor thus creating a bright video image. This novel arrangement allows for one to provide a full color flat video display capable of implementation in large formats. In an alternate arrangement, the present invention is provided without the channel plate and a porous conducting surface is provided instead. In this alternate arrangement, the brightness of the image is reduced but the cost of the overall device is significantly lowered because fabrication complexity is significantly decreased.

  4. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  5. Tri-state delta modulation system for Space Shuttle digital TV downlink

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1981-01-01

    Future requirements for Shuttle Orbiter downlink communication may include transmission of digital video which, in addition to black and white, may also be either field-sequential or NTSC color format. The use of digitized video could provide for picture privacy at the expense of additional onboard hardware, together with an increased bandwidth due to the digitization process. A general objective for the Space Shuttle application is to develop a digitization technique that is compatible with data rates in the 20-30 Mbps range but still provides good quality pictures. This paper describes a tri-state delta modulation/demodulation (TSDM) technique which is a good compromise between implementation complexity and performance. The unique feature of TSDM is that it provides for efficient run-length encoding of constant-intensity segments of a TV picture. Axiomatix has developed a hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV and field-sequential color. The hardware complexity of this TSDM implementation is summarized in the paper.

  6. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  7. Activity Detection and Retrieval for Image and Video Data with Limited Training

    DTIC Science & Technology

    2015-06-10

    applications. Here we propose two techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a... automata . For our second approach to segmentation, we employ a region based segmentation technique that is capable of handling intensity inhomogeneity...techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a mixture of Gaussian is fitted to the

  8. Nonscience Majors' Perceptions on the Use of YouTube Video to Support Learning in an Integrated Science Lecture

    ERIC Educational Resources Information Center

    Eick, Charles Joseph; King, David T., Jr.

    2012-01-01

    The instructor of an integrated science course for nonscience majors embedded content-related video segments from YouTube and other similar internet sources into lecture. Through this study, the instructor wanted to know students' perceptions of how video use engaged them and increased their interest and understanding of science. Written survey…

  9. Testing with feedback improves recall of information in informed consent: A proof of concept study.

    PubMed

    Roberts, Katherine J; Revenson, Tracey A; Urken, Mark L; Fleszar, Sara; Cipollina, Rebecca; Rowe, Meghan E; Reis, Laura L Dos; Lepore, Stephen J

    2016-08-01

    This study investigates whether applying educational testing approaches to an informed consent video for a medical procedure can lead to greater recall of the information presented. Undergraduate students (n=120) were randomly assigned to watch a 20-min video on informed consent under one of three conditions: 1) tested using multiple-choice knowledge questions and provided with feedback on their answers after each 5-min segment; 2) tested with multiple choice knowledge questions but not provided feedback after each segment; or 3) watched the video without knowledge testing. Participants who were tested and provided feedback had significantly greater information recall compared to those who were tested but not provided feedback and to those not tested. The effect of condition was stronger for moderately difficult questions versus easy questions. Inserting knowledge tests and providing feedback about the responses at timed intervals in videos can be effective in improving recall of information. Providing informed consent information through a video not only standardizes the material, but using testing with feedback inserted within the video has the potential to increase recall and retention of this material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  11. A motion compensation technique using sliced blocks and its application to hybrid video coding

    NASA Astrophysics Data System (ADS)

    Kondo, Satoshi; Sasai, Hisao

    2005-07-01

    This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.

  12. Identifying sports videos using replay, text, and camera motion features

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.

    1999-12-01

    Automated classification of digital video is emerging as an important piece of the puzzle in the design of content management systems for digital libraries. The ability to classify videos into various classes such as sports, news, movies, or documentaries, increases the efficiency of indexing, browsing, and retrieval of video in large databases. In this paper, we discuss the extraction of features that enable identification of sports videos directly from the compressed domain of MPEG video. These features include detecting the presence of action replays, determining the amount of scene text in vide, and calculating various statistics on camera and/or object motion. The features are derived from the macroblock, motion,and bit-rate information that is readily accessible from MPEG video with very minimal decoding, leading to substantial gains in processing speeds. Full-decoding of selective frames is required only for text analysis. A decision tree classifier built using these features is able to identify sports clips with an accuracy of about 93 percent.

  13. Highlight summarization in golf videos using audio signals

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Kim, Jin Young

    2008-01-01

    In this paper, we present an automatic summarization of highlights in golf videos based on audio information alone without video information. The proposed highlight summarization system is carried out based on semantic audio segmentation and detection on action units from audio signals. Studio speech, field speech, music, and applause are segmented by means of sound classification. Swing is detected by the methods of impulse onset detection. Sounds like swing and applause form a complete action unit, while studio speech and music parts are used to anchor the program structure. With the advantage of highly precise detection of applause, highlights are extracted effectively. Our experimental results obtain high classification precision on 18 golf games. It proves that the proposed system is very effective and computationally efficient to apply the technology to embedded consumer electronic devices.

  14. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  15. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  16. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  17. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  18. (abstract) Synthesis of Speaker Facial Movements to Match Selected Speech Sequences

    NASA Technical Reports Server (NTRS)

    Scott, Kenneth C.

    1994-01-01

    We are developing a system for synthesizing image sequences the simulate the facial motion of a speaker. To perform this synthesis, we are pursuing two major areas of effort. We are developing the necessary computer graphics technology to synthesize a realistic image sequence of a person speaking selected speech sequences. Next, we are developing a model that expresses the relation between spoken phonemes and face/mouth shape. A subject is video taped speaking an arbitrary text that contains expression of the full list of desired database phonemes. The subject is video taped from the front speaking normally, recording both audio and video detail simultaneously. Using the audio track, we identify the specific video frames on the tape relating to each spoken phoneme. From this range we digitize the video frame which represents the extreme of mouth motion/shape. Thus, we construct a database of images of face/mouth shape related to spoken phonemes. A selected audio speech sequence is recorded which is the basis for synthesizing a matching video sequence; the speaker need not be the same as used for constructing the database. The audio sequence is analyzed to determine the spoken phoneme sequence and the relative timing of the enunciation of those phonemes. Synthesizing an image sequence corresponding to the spoken phoneme sequence is accomplished using a graphics technique known as morphing. Image sequence keyframes necessary for this processing are based on the spoken phoneme sequence and timing. We have been successful in synthesizing the facial motion of a native English speaker for a small set of arbitrary speech segments. Our future work will focus on advancement of the face shape/phoneme model and independent control of facial features.

  19. Cell Phone Video Recording Feature as a Language Learning Tool: A Case Study

    ERIC Educational Resources Information Center

    Gromik, Nicolas A.

    2012-01-01

    This paper reports on a case study conducted at a Japanese national university. Nine participants used the video recording feature on their cell phones to produce weekly video productions. The task required that participants produce one 30-second video on a teacher-selected topic. Observations revealed the process of video creation with a cell…

  20. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  1. Depth Extraction from Videos Using Geometric Context and Occlusion Boundaries (Open Access)

    DTIC Science & Technology

    2014-09-05

    RAZA ET AL .: DEPTH EXTRACTION FROM VIDEOS 1 Depth Extraction from Videos Using Geometric Context and Occlusion Boundaries S. Hussain Raza1...electronic forms. ar X iv :1 51 0. 07 31 7v 1 [ cs .C V ] 2 5 O ct 2 01 5 2 RAZA ET AL .: DEPTH EXTRACTION FROM VIDEOS Frame Ground Truth Depth...temporal segmentation using the method proposed by Grundmann et al . [4]. estimation and triangulation to estimate depth maps [17, 27](see Figure 1). In

  2. Computer-mediated instructional video: a randomised controlled trial comparing a sequential and a segmented instructional video in surgical hand wash.

    PubMed

    Schittek Janda, M; Tani Botticelli, A; Mattheos, N; Nebel, D; Wagner, A; Nattestad, A; Attström, R

    2005-05-01

    Video-based instructions for clinical procedures have been used frequently during the preceding decades. To investigate in a randomised controlled trial the learning effectiveness of fragmented videos vs. the complete sequential video and to analyse the attitudes of the user towards video as a learning aid. An instructional video on surgical hand wash was produced. The video was available in two different forms in two separate web pages: one as a sequential video and one fragmented into eight short clips. Twenty-eight dental students in the second semester were randomised into an experimental (n = 15) and a control group (n = 13). The experimental group used the fragmented form of the video and the control group watched the complete one. The use of the videos was logged and the students were video taped whilst undertaking a test hand wash. The videos were analysed systematically and blindly by two independent clinicians. The students also performed a written test concerning learning outcome from the videos as well as they answered an attitude questionnaire. The students in the experimental group watched the video significantly longer than the control group. There were no significant differences between the groups with regard to the ratings and scores when performing the hand wash. The experimental group had significantly better results in the written test compared with those of the control group. There was no significant difference between the groups with regard to attitudes towards the use of video for learning, as measured by the Visual Analogue Scales. Most students in both groups expressed satisfaction with the use of video for learning. The students demonstrated positive attitudes and acceptable learning outcome from viewing CAL videos as a part of their pre-clinical training. Videos that are part of computer-based learning settings would ideally be presented to the students both as a segmented and as a whole video to give the students the option to choose the form of video which suits the individual student's learning style.

  3. Embedded security system for multi-modal surveillance in a railway carriage

    NASA Astrophysics Data System (ADS)

    Zouaoui, Rhalem; Audigier, Romaric; Ambellouis, Sébastien; Capman, François; Benhadda, Hamid; Joudrier, Stéphanie; Sodoyer, David; Lamarque, Thierry

    2015-10-01

    Public transport security is one of the main priorities of the public authorities when fighting against crime and terrorism. In this context, there is a great demand for autonomous systems able to detect abnormal events such as violent acts aboard passenger cars and intrusions when the train is parked at the depot. To this end, we present an innovative approach which aims at providing efficient automatic event detection by fusing video and audio analytics and reducing the false alarm rate compared to classical stand-alone video detection. The multi-modal system is composed of two microphones and one camera and integrates onboard video and audio analytics and fusion capabilities. On the one hand, for detecting intrusion, the system relies on the fusion of "unusual" audio events detection with intrusion detections from video processing. The audio analysis consists in modeling the normal ambience and detecting deviation from the trained models during testing. This unsupervised approach is based on clustering of automatically extracted segments of acoustic features and statistical Gaussian Mixture Model (GMM) modeling of each cluster. The intrusion detection is based on the three-dimensional (3D) detection and tracking of individuals in the videos. On the other hand, for violent events detection, the system fuses unsupervised and supervised audio algorithms with video event detection. The supervised audio technique detects specific events such as shouts. A GMM is used to catch the formant structure of a shout signal. Video analytics use an original approach for detecting aggressive motion by focusing on erratic motion patterns specific to violent events. As data with violent events is not easily available, a normality model with structured motions from non-violent videos is learned for one-class classification. A fusion algorithm based on Dempster-Shafer's theory analyses the asynchronous detection outputs and computes the degree of belief of each probable event.

  4. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago

    2015-11-01

    Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.

  5. Extraction of composite visual objects from audiovisual materials

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal

    1999-08-01

    An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.

  6. Photos of Measles and People with Measles

    MedlinePlus

    ... children. Viewing discretion is advised. Measles Clinical Features Video CDC’s Dr. Raymond Strikas, MD, describes clinical features of measles infection. Video, 3:15 minutes Video transcript [1 page] Measles ...

  7. Use of videos for Distribution Construction and Maintenance (DC M) training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, G.M.

    This paper presents the results of a survey taken among members of the American Gas Association (AGA)'s Distribution Construction and Maintenance (DC M) committee to gauge the extent, sources, mode of use, and degree of satisfaction with videos as a training aid in distribution construction and maintenance skills. Also cites AGA Engineering Technical Note, DCM-88-3-1, as a catalog of the videos listed by respondents to the survey. Comments on the various sources of training videos and the characteristics of videos from each. Conference presentation included showing of a sampling of video segments from these various sources. 1 fig.

  8. PCA feature extraction for change detection in multidimensional unlabeled data.

    PubMed

    Kuncheva, Ludmila I; Faithfull, William J

    2014-01-01

    When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.

  9. Classification and Weakly Supervised Pain Localization using Multiple Segment Representation.

    PubMed

    Sikka, Karan; Dhall, Abhinav; Bartlett, Marian Stewart

    2014-10-01

    Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain systems have highlighted two major challenges: (1) ground truth is provided for the sequence, but the presence or absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain expression event(s) in each video are unknown. To address these issues we propose a novel framework (referred to as MS-MIL) where each sequence is represented as a bag containing multiple segments, and multiple instance learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning window, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the idea of detecting facial expressions through 'concept frames' to 'concept segments' and argues through extensive experiments that algorithms such as MIL are needed to reap the benefits of such representation. The key advantages of our approach are: (1) joint detection and localization of painful frames using only sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL. The paper also includes the visualization of discriminative facial patches, important for pain detection, as discovered by our algorithm and relates them to Action Units that have been associated with pain expression. We conclude the paper by demonstrating that MS-MIL yields a significant improvement on another spontaneous facial expression dataset, the FEEDTUM dataset.

  10. ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.

    PubMed

    Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José

    2012-02-01

    We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  12. Object class segmentation of RGB-D video using recurrent convolutional neural networks.

    PubMed

    Pavel, Mircea Serban; Schulz, Hannes; Behnke, Sven

    2017-04-01

    Object class segmentation is a computer vision task which requires labeling each pixel of an image with the class of the object it belongs to. Deep convolutional neural networks (DNN) are able to learn and take advantage of local spatial correlations required for this task. They are, however, restricted by their small, fixed-sized filters, which limits their ability to learn long-range dependencies. Recurrent Neural Networks (RNN), on the other hand, do not suffer from this restriction. Their iterative interpretation allows them to model long-range dependencies by propagating activity. This property is especially useful when labeling video sequences, where both spatial and temporal long-range dependencies occur. In this work, a novel RNN architecture for object class segmentation is presented. We investigate several ways to train such a network. We evaluate our models on the challenging NYU Depth v2 dataset for object class segmentation and obtain competitive results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.

    PubMed

    Spiers, Adam J; Resnik, Linda; Dollar, Aaron M

    2017-07-01

    New upper limb prosthetic devices are continuously being developed by a variety of industrial, academic, and hobbyist groups. Yet, little research has evaluated the long term use of currently available prostheses in daily life activities, beyond laboratory or survey studies. We seek to objectively measure how experienced unilateral upper limb prosthesis-users employ their prosthetic devices and unaffected limb for manipulation during everyday activities. In particular, our goal is to create a method for evaluating all types of amputee manipulation, including non-prehensile actions beyond conventional grasp functions, as well as to examine the relative use of both limbs in unilateral and bilateral cases. This study employs a head-mounted video camera to record participant's hands and arms as they complete unstructured domestic tasks within their own homes. A new 'Unilateral Prosthesis-User Manipulation Taxonomy' is presented based observations from 10 hours of recorded videos. The taxonomy addresses manipulation actions of the intact hand, prostheses, bilateral activities, and environmental feature-use (aiïordances). Our preliminary results involved tagging 23 minute segments of the full videos from 3 amputee participants using the taxonomy. This resulted in over 2,300 tag instances. Observations included that non-prehensile interactions outnumbered prehensile interactions in the affected limb for users with more distal amputation that allowed arm mobility.

  14. National network television news coverage of contraception - a content analysis.

    PubMed

    Patton, Elizabeth W; Moniz, Michelle H; Hughes, Lauren S; Buis, Lorraine; Howell, Joel

    2017-01-01

    The objective was to describe and analyze national network television news framing of contraception, recognizing that onscreen news can influence the public's knowledge and beliefs. We used the Vanderbilt Television News Archives and LexisNexis Database to obtain video and print transcripts of all relevant national network television news segments covering contraception from January 2010 to June 2014. We conducted a content analysis of 116 TV news segments covering contraception during the rollout of the Affordable Care Act. Segments were quantitatively coded for contraceptive methods covered, story sources used, and inclusion of medical and nonmedical content (intercoder reliability using Krippendorf's alpha ranged 0.6-1 for coded categories). Most (55%) news stories focused on contraception in general rather than specific methods. The most effective contraceptive methods were rarely discussed (implant, 1%; intrauterine device, 4%). The most frequently used sources were political figures (40%), advocates (25%), the general public (25%) and Catholic Church leaders (16%); medical professionals (11%) and health researchers (4%) appeared in a minority of stories. A minority of stories (31%) featured medical content. National network news coverage of contraception frequently focuses on contraception in political and social terms and uses nonmedical figures such as politicians and church leaders as sources. This focus deemphasizes the public health aspect of contraception, leading medical professionals and health content to be rarely featured. Media coverage of contraception may influence patients' views about contraception. Understanding the content, sources and medical accuracy of current media portrayals of contraception may enable health care professionals to dispel popular misperceptions. Published by Elsevier Inc.

  15. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  16. Linguistic Characteristics of Individuals with High Functioning Autism and Asperger Syndrome

    ERIC Educational Resources Information Center

    Seung, Hye Kyeung

    2007-01-01

    This study examined the linguistic characteristics of high functioning individuals with autism and Asperger syndrome. Each group consisted of 10 participants who were matched on sex, chronological age, and intelligence scores. Participants generated a narrative after watching a brief video segment of the Social Attribution Task video. Each…

  17. Subjective evaluation of H.265/HEVC based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2015-02-01

    The Dynamic Adaptive Streaming over HTTP (DASH) standard is becoming increasingly popular for real-time adaptive HTTP streaming of internet video in response to unstable network conditions. Integration of DASH streaming techniques with the new H.265/HEVC video coding standard is a promising area of research. The performance of HEVC-DASH systems has been previously evaluated by a few researchers using objective metrics, however subjective evaluation would provide a better measure of the user's Quality of Experience (QoE) and overall performance of the system. This paper presents a subjective evaluation of an HEVC-DASH system implemented in a hardware testbed. Previous studies in this area have focused on using the current H.264/AVC (Advanced Video Coding) or H.264/SVC (Scalable Video Coding) codecs and moreover, there has been no established standard test procedure for the subjective evaluation of DASH adaptive streaming. In this paper, we define a test plan for HEVC-DASH with a carefully justified data set employing longer video sequences that would be sufficient to demonstrate the bitrate switching operations in response to various network condition patterns. We evaluate the end user's real-time QoE online by investigating the perceived impact of delay, different packet loss rates, fluctuating bandwidth, and the perceived quality of using different DASH video stream segment sizes on a video streaming session using different video sequences. The Mean Opinion Score (MOS) results give an insight into the performance of the system and expectation of the users. The results from this study show the impact of different network impairments and different video segments on users' QoE and further analysis and study may help in optimizing system performance.

  18. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  19. Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI.

    PubMed

    Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo

    2011-03-01

    Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.

  20. What Makes a Message Stick? The Role of Content and Context in Social Media Epidemics

    DTIC Science & Technology

    2013-09-23

    First, we propose visual memes , or frequently re-posted short video segments, for detecting and monitoring latent video interactions at scale. Content...interactions (such as quoting, or remixing, parts of a video). Visual memes are extracted by scalable detection algorithms that we develop, with...high accuracy. We further augment visual memes with text, via a statistical model of latent topics. We model content interactions on YouTube with

  1. Multiclass feature selection for improved pediatric brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaheen; Iftekharuddin, Khan M.

    2012-03-01

    In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.

  2. 47 CFR 79.109 - Activating accessibility features.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.109 Activating accessibility features. (a) Requirements... video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in digital format using Internet protocol, with...

  3. Robust and efficient fiducial tracking for augmented reality in HD-laparoscopic video streams

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Groch, A.; Baumhauer, M.; Maier-Hein, L.; Teber, D.; Rassweiler, J.; Meinzer, H.-P.; Wegner, In.

    2012-02-01

    Augmented Reality (AR) is a convenient way of porting information from medical images into the surgical field of view and can deliver valuable assistance to the surgeon, especially in laparoscopic procedures. In addition, high definition (HD) laparoscopic video devices are a great improvement over the previously used low resolution equipment. However, in AR applications that rely on real-time detection of fiducials from video streams, the demand for efficient image processing has increased due to the introduction of HD devices. We present an algorithm based on the well-known Conditional Density Propagation (CONDENSATION) algorithm which can satisfy these new demands. By incorporating a prediction around an already existing and robust segmentation algorithm, we can speed up the whole procedure while leaving the robustness of the fiducial segmentation untouched. For evaluation purposes we tested the algorithm on recordings from real interventions, allowing for a meaningful interpretation of the results. Our results show that we can accelerate the segmentation by a factor of 3.5 on average. Moreover, the prediction information can be used to compensate for fiducials that are temporarily occluded or out of scope, providing greater stability.

  4. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  5. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  6. Video Comprehensibility and Attention in Very Young Children

    PubMed Central

    Pempek, Tiffany A.; Kirkorian, Heather L.; Richards, John E.; Anderson, Daniel R.; Lund, Anne F.; Stevens, Michael

    2010-01-01

    Earlier research established that preschool children pay less attention to television that is sequentially or linguistically incomprehensible. This study determines the youngest age for which this effect can be found. One-hundred and three 6-, 12-, 18-, and 24-month-olds’ looking and heart rate were recorded while they watched Teletubbies, a television program designed for very young children. Comprehensibility was manipulated by either randomly ordering shots or reversing dialogue to become backward speech. Infants watched one normal segment and one distorted version of the same segment. Only 24-month-olds, and to some extent 18-month-olds, distinguished between normal and distorted video by looking for longer durations towards the normal stimuli. The results suggest that it may not be until the middle of the second year that children demonstrate the earliest beginnings of comprehension of video as it is currently produced. PMID:20822238

  7. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  8. Hierarchical video summarization based on context clustering

    NASA Astrophysics Data System (ADS)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  9. The Great War. [Teaching Materials].

    ERIC Educational Resources Information Center

    Public Broadcasting Service, Washington, DC.

    This package of teaching materials is intended to accompany an eight-part film series entitled "The Great War" (i.e., World War I), produced for public television. The package consists of a "teacher's guide,""video segment index,""student resource" materials, and approximately 40 large photographs. The video series is not a war story of battles,…

  10. Optimizing Instructional Video for Preservice Teachers in an Online Technology Integration Course

    ERIC Educational Resources Information Center

    Ibrahim, Mohamed; Callaway, Rebecca; Bell, David

    2014-01-01

    This study assessed the effect of design instructional video based on the Cognitive Theory of Multimedia Learning by applying segmentation and signaling on the learning outcome of students in an online technology integration course. The study assessed the correlation between students' personal preferences (preferred learning styles and area…

  11. Television en classe!: L'experience "FDM video plus" (Television in Class!; The FDM Video Plus Experiment).

    ERIC Educational Resources Information Center

    di Giura, Marcella Beacco

    1994-01-01

    The problems and value of television as instructional material for the second-language classroom are discussed, and a new videocassette series produced by the journal "Francais dans le Monde" is described. Criteria for topic and segment selection are outlined, and suggestions are made for classroom use. (MSE)

  12. Human Motion Capture Data Tailored Transform Coding.

    PubMed

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  13. Survey of contemporary trends in color image segmentation

    NASA Astrophysics Data System (ADS)

    Vantaram, Sreenath Rao; Saber, Eli

    2012-10-01

    In recent years, the acquisition of image and video information for processing, analysis, understanding, and exploitation of the underlying content in various applications, ranging from remote sensing to biomedical imaging, has grown at an unprecedented rate. Analysis by human observers is quite laborious, tiresome, and time consuming, if not infeasible, given the large and continuously rising volume of data. Hence the need for systems capable of automatically and effectively analyzing the aforementioned imagery for a variety of uses that span the spectrum from homeland security to elderly care. In order to achieve the above, tools such as image segmentation provide the appropriate foundation for expediting and improving the effectiveness of subsequent high-level tasks by providing a condensed and pertinent representation of image information. We provide a comprehensive survey of color image segmentation strategies adopted over the last decade, though notable contributions in the gray scale domain will also be discussed. Our taxonomy of segmentation techniques is sampled from a wide spectrum of spatially blind (or feature-based) approaches such as clustering and histogram thresholding as well as spatially guided (or spatial domain-based) methods such as region growing/splitting/merging, energy-driven parametric/geometric active contours, supervised/unsupervised graph cuts, and watersheds, to name a few. In addition, qualitative and quantitative results of prominent algorithms on several images from the Berkeley segmentation dataset are shown in order to furnish a fair indication of the current quality of the state of the art. Finally, we provide a brief discussion on our current perspective of the field as well as its associated future trends.

  14. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  15. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  16. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    PubMed Central

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  17. Evolving discriminators for querying video sequences

    NASA Astrophysics Data System (ADS)

    Iyengar, Giridharan; Lippman, Andrew B.

    1997-01-01

    In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.

  18. A deep learning pipeline for Indian dance style classification

    NASA Astrophysics Data System (ADS)

    Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti

    2018-04-01

    In this paper, we address the problem of dance style classification to classify Indian dance or any dance in general. We propose a 3-step deep learning pipeline. First, we extract 14 essential joint locations of the dancer from each video frame, this helps us to derive any body region location within the frame, we use this in the second step which forms the main part of our pipeline. Here, we divide the dancer into regions of important motion in each video frame. We then extract patches centered at these regions. Main discriminative motion is captured in these patches. We stack the features from all such patches of a frame into a single vector and form our hierarchical dance pose descriptor. Finally, in the third step, we build a high level representation of the dance video using the hierarchical descriptors and train it using a Recurrent Neural Network (RNN) for classification. Our novelty also lies in the way we use multiple representations for a single video. This helps us to: (1) Overcome the RNN limitation of learning small sequences over big sequences such as dance; (2) Extract more data from the available dataset for effective deep learning by training multiple representations. Our contributions in this paper are three-folds: (1) We provide a deep learning pipeline for classification of any form of dance; (2) We prove that a segmented representation of a dance video works well with sequence learning techniques for recognition purposes; (3) We extend and refine the ICD dataset and provide a new dataset for evaluation of dance. Our model performs comparable or better in some cases than the state-of-the-art on action recognition benchmarks.

  19. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  20. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  1. How Is Marijuana Vaping Portrayed on YouTube? Content, Features, Popularity and Retransmission of Vaping Marijuana YouTube Videos.

    PubMed

    Yang, Qinghua; Sangalang, Angeline; Rooney, Molly; Maloney, Erin; Emery, Sherry; Cappella, Joseph N

    2018-01-01

    The purpose of the study is to investigate how vaping marijuana, a novel but emerging risky health behavior, is portrayed on YouTube, and how the content and features of these YouTube videos influence their popularity and retransmission. A content analysis of vaping marijuana YouTube videos published between July 2014 to June 2015 (n = 214) was conducted. Video genre, valence, promotional and warning arguments, emotional appeals, message sensation value, presence of misinformation and misleading information, and user-generated statistics, including number of views, comments, shares, likes and dislikes, were coded. The results showed that these videos were predominantly pro-marijuana-vaping, with the most frequent videos being user-sharing. The genre and message features influenced the popularity, evaluations, and retransmission of vaping marijuana YouTube videos. Theoretical and practical implications are discussed.

  2. Content-based management service for medical videos.

    PubMed

    Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre

    2013-01-01

    Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access.

  3. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  4. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    PubMed

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Portrayal of Alcohol Brands Popular Among Underage Youth on YouTube: A Content Analysis.

    PubMed

    Primack, Brian A; Colditz, Jason B; Rosen, Eva B; Giles, Leila M; Jackson, Kristina M; Kraemer, Kevin L

    2017-09-01

    We characterized leading YouTube videos featuring alcohol brand references and examined video characteristics associated with each brand and video category. We systematically captured the 137 most relevant and popular videos on YouTube portraying alcohol brands that are popular among underage youth. We used an iterative process to codebook development. We coded variables within domains of video type, character sociodemographics, production quality, and negative and positive associations with alcohol use. All variables were double coded, and Cohen's kappa was greater than .80 for all variables except age, which was eliminated. There were 96,860,936 combined views for all videos. The most common video type was "traditional advertisements," which comprised 40% of videos. Of the videos, 20% were "guides" and 10% focused on chugging a bottle of distilled spirits. While 95% of videos featured males, 40% featured females. Alcohol intoxication was present in 19% of videos. Aggression, addiction, and injuries were uncommonly identified (2%, 3%, and 4%, respectively), but 47% of videos contained humor. Traditional advertisements represented the majority of videos related to Bud Light (83%) but only 18% of Grey Goose and 8% of Hennessy videos. Intoxication was most present in chugging demonstrations (77%), whereas addiction was only portrayed in music videos (22%). Videos containing humor ranged from 11% for music-related videos to 77% for traditional advertisements. YouTube videos depicting the alcohol brands favored by underage youth are heavily viewed, and the majority are traditional or narrative advertisements. Understanding characteristics associated with different brands and video categories may aid in intervention development.

  6. Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema

    PubMed Central

    Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina

    2015-01-01

    Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978

  7. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.

    PubMed

    Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina

    2015-01-29

    To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  8. Video indexing based on image and sound

    NASA Astrophysics Data System (ADS)

    Faudemay, Pascal; Montacie, Claude; Caraty, Marie-Jose

    1997-10-01

    Video indexing is a major challenge for both scientific and economic reasons. Information extraction can sometimes be easier from sound channel than from image channel. We first present a multi-channel and multi-modal query interface, to query sound, image and script through 'pull' and 'push' queries. We then summarize the segmentation phase, which needs information from the image channel. Detection of critical segments is proposed. It should speed-up both automatic and manual indexing. We then present an overview of the information extraction phase. Information can be extracted from the sound channel, through speaker recognition, vocal dictation with unconstrained vocabularies, and script alignment with speech. We present experiment results for these various techniques. Speaker recognition methods were tested on the TIMIT and NTIMIT database. Vocal dictation as experimented on newspaper sentences spoken by several speakers. Script alignment was tested on part of a carton movie, 'Ivanhoe'. For good quality sound segments, error rates are low enough for use in indexing applications. Major issues are the processing of sound segments with noise or music, and performance improvement through the use of appropriate, low-cost architectures or networks of workstations.

  9. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  10. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

    PubMed

    Costa, Marta; Manton, James D; Ostrovsky, Aaron D; Prohaska, Steffen; Jefferis, Gregory S X E

    2016-07-20

    Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT. Copyright © 2016 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  11. Early Synthetic Prototyping: The Use of Video After-Action Reports for Harvesting Useful Feedback In Early Design

    DTIC Science & Technology

    2016-06-01

    and material developers use an online game to crowdsource ideas from online players in order to increase viable synthetic prototypes. In entertainment... games , players often create videos of their game play to share with other players to demonstrate how to complete a segment of a game . This thesis...explores similar self-recorded videos of ESP game play and determines if they provide useful data to capability and material developers that can

  12. Vodcasts and Captures: Using Multimedia to Improve Student Learning in Introductory Biology

    ERIC Educational Resources Information Center

    Walker, J. D.; Cotner, Sehoya; Beermann, Nicholas

    2011-01-01

    This study investigated the use of multimedia materials to enhance student learning in a large, introductory biology course. Two sections of this course were taught by the same instructor in the same semester. In one section, video podcasts or "vodcasts" were created which combined custom animation and video segments with music and…

  13. Making History: An Indiana Teacher Uses Technology to Feel the History

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    Jon Carl's vision is simple: get students passionate about history by turning them into historians. To accomplish this, he created a class centered on documentary film-making. Students choose a topic, conduct research at local libraries, write a script, film video interviews, and create video segments of four to 15 minutes. District technology…

  14. Selective Set Effects Produced by Television Adjunct in Learning from Text.

    ERIC Educational Resources Information Center

    Yi, Julie C.

    This study used television segments to investigate the impact of multimedia in establishing context for text learning. Adult participants (n=128) were shown a video either before or after reading a story. The video shown before reading was intended to create a "set" for either a burglar or buyer perspective contained in the story. The…

  15. A no-reference bitstream-based perceptual model for video quality estimation of videos affected by coding artifacts and packet losses

    NASA Astrophysics Data System (ADS)

    Pandremmenou, K.; Shahid, M.; Kondi, L. P.; Lövström, B.

    2015-03-01

    In this work, we propose a No-Reference (NR) bitstream-based model for predicting the quality of H.264/AVC video sequences, affected by both compression artifacts and transmission impairments. The proposed model is based on a feature extraction procedure, where a large number of features are calculated from the packet-loss impaired bitstream. Many of the features are firstly proposed in this work, and the specific set of the features as a whole is applied for the first time for making NR video quality predictions. All feature observations are taken as input to the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. LASSO indicates the most important features, and using only them, it is possible to estimate the Mean Opinion Score (MOS) with high accuracy. Indicatively, we point out that only 13 features are able to produce a Pearson Correlation Coefficient of 0.92 with the MOS. Interestingly, the performance statistics we computed in order to assess our method for predicting the Structural Similarity Index and the Video Quality Metric are equally good. Thus, the obtained experimental results verified the suitability of the features selected by LASSO as well as the ability of LASSO in making accurate predictions through sparse modeling.

  16. Gradual cut detection using low-level vision for digital video

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae

    1996-09-01

    Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.

  17. Psychovisual masks and intelligent streaming RTP techniques for the MPEG-4 standard

    NASA Astrophysics Data System (ADS)

    Mecocci, Alessandro; Falconi, Francesco

    2003-06-01

    In today multimedia audio-video communication systems, data compression plays a fundamental role by reducing the bandwidth waste and the costs of the infrastructures and equipments. Among the different compression standards, the MPEG-4 is becoming more and more accepted and widespread. Even if one of the fundamental aspects of this standard is the possibility of separately coding video objects (i.e. to separate moving objects from the background and adapt the coding strategy to the video content), currently implemented codecs work only at the full-frame level. In this way, many advantages of the flexible MPEG-4 syntax are missed. This lack is due both to the difficulties in properly segmenting moving objects in real scenes (featuring an arbitrary motion of the objects and of the acquisition sensor), and to the current use of these codecs, that are mainly oriented towards the market of DVD backups (a full-frame approach is enough for these applications). In this paper we propose a codec for MPEG-4 real-time object streaming, that codes separately the moving objects and the scene background. The proposed codec is capable of adapting its strategy during the transmission, by analysing the video currently transmitted and setting the coder parameters and modalities accordingly. For example, the background can be transmitted as a whole or by dividing it into "slightly-detailed" and "highly detailed" zones that are coded in different ways to reduce the bit-rate while preserving the perceived quality. The coder can automatically switch in real-time, from one modality to the other during the transmission, depending on the current video content. Psychovisual masks and other video-content based measurements have been used as inputs for a Self Learning Intelligent Controller (SLIC) that changes the parameters and the transmission modalities. The current implementation is based on the ISO 14496 standard code that allows Video Objects (VO) transmission (other Open Source Codes like: DivX, Xvid, and Cisco"s Mpeg-4IP, have been analyzed but, as for today, they do not support VO). The original code has been deeply modified to integrate the SLIC and to adapt it for real-time streaming. A personal RTP (Real Time Protocol) has been defined and a Client-Server application has been developed. The viewer can decode and demultiplex the stream in real-time, while adapting to the changing modalities adopted by the Server according to the current video content. The proposed codec works as follows: the image background is separated by means of a segmentation module and it is transmitted by means of a wavelet compression scheme similar to that used in the JPEG2000. The VO are coded separately and multiplexed with the background stream. At the receiver the stream is demultiplexed to obtain the background and the VO that are subsequently pasted together. The final quality depends on many factors, in particular: the quantization parameters, the Group Of Video Object (GOV) length, the GOV structure (i.e. the number of I-P-B VOP), the search area for motion compensation. These factors are strongly related to the following measurement parameters (that have been defined during the development): the Objects Apparent Size (OAS) in the scene, the Video Object Incidence factor (VOI), the temporal correlation (measured through the Normalized Mean SAD, NMSAD). The SLIC module analyzes the currently transmitted video and selects the most appropriate settings by choosing from a predefined set of transmission modalities. For example, in the case of a highly temporal correlated sequence, the number of B-VOP is increased to improve the compression ratio. The strategy for the selection of the number of B-VOP turns out to be very different from those reported in the literature for B-frames (adopted for MPEG-1 and MPEG-2), due to the different behaviour of the temporal correlation when limited only to moving objects. The SLIC module also decides how to transmit the background. In our implementation we adopted the Visual Brain theory i.e. the study of what the "psychic eye" can get from a scene. According to this theory, a Psychomask Image Analysis (PIA) module has been developed to extract the visually homogeneous regions of the background. The PIA module produces two complementary masks one for the visually low variance zones and one for the higly variable zones; these zones are compressed with different strategies and encoded into two multiplexed streams. From practical experiments it turned out that the separate coding is advantageous only if the low variance zones exceed 50% of the whole background area (due to the overhead given by the need of transmitting the zone masks). The SLIC module takes care of deciding the appropriate transmission modality by analyzing the results produced by the PIA module. The main features of this codec are: low bitrate, good image quality and coding speed. The current implementation runs in real-time on standard PC platforms, the major limitation being the fixed position of the acquisition sensor. This limitation is due to the difficulties in separating moving objects from the background when the acquisition sensor moves. Our current real-time segmentation module does not produce suitable results if the acquisition sensor moves (only slight oscillatory movements are tolerated). In any case, the system is particularly suitable for tele surveillance applications at low bit-rates, where the camera is usually fixed or alternates among some predetermined positions (our segmentation module is capable of accurately separate moving objects from the static background when the acquisition sensor stops, even if different scenes are seen as a result of the sensor displacements). Moreover, the proposed architecture is general, in the sense that when real-time, robust segmentation systems (capable of separating objects in real-time from the background while the sensor itself is moving) will be available, they can be easily integrated while leaving the rest of the system unchanged. Experimental results related to real sequences for traffic monitoring and for people tracking and afety control are reported and deeply discussed in the paper. The whole system has been implemented in standard ANSI C code and currently runs on standard PCs under Microsoft Windows operating system (Windows 2000 pro and Windows XP).

  18. Automated fall detection on privacy-enhanced video.

    PubMed

    Edgcomb, Alex; Vahid, Frank

    2012-01-01

    A privacy-enhanced video obscures the appearance of a person in the video. We consider four privacy enhancements: blurring of the person, silhouetting of the person, covering the person with a graphical box, and covering the person with a graphical oval. We demonstrate that an automated video-based fall detection algorithm can be as accurate on privacy-enhanced video as on raw video. The algorithm operated on video from a stationary in-home camera, using a foreground-background segmentation algorithm to extract a minimum bounding rectangle (MBR) around the motion in the video, and using time series shapelet analysis on the height and width of the rectangle to detect falls. We report accuracy applying fall detection on 23 scenarios depicted as raw video and privacy-enhanced videos involving a sole actor portraying normal activities and various falls. We found that fall detection on privacy-enhanced video, except for the common approach of blurring of the person, was competitive with raw video, and in particular that the graphical oval privacy enhancement yielded the same accuracy as raw video, namely 0.91 sensitivity and 0.92 specificity.

  19. A unified framework for gesture recognition and spatiotemporal gesture segmentation.

    PubMed

    Alon, Jonathan; Athitsos, Vassilis; Yuan, Quan; Sclaroff, Stan

    2009-09-01

    Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).

  20. DIY Video Abstracts: Lessons from an ultimately successful experience

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.

    2013-12-01

    A great video abstract can come together in as little as two days with only a laptop and a sense of adventure. From script to setup, here are tips to make the process practically pain-free. The content of every abstract is unique, but some pointers for writing a video script are universal. Keeping it short and clarifying the message into 4 or 5 single-issue segments make any video better. Making the video itself can be intimidating, but it doesn't have to be! Practical ideas to be discussed include setting up the script as a narrow column to avoid the appearance of reading and hunting for a colored backdrop. A lot goes into just two minutes of video, but for not too much effort the payoff is tremendous.

  1. Image segmentation-based robust feature extraction for color image watermarking

    NASA Astrophysics Data System (ADS)

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  2. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  3. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  4. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching

    PubMed Central

    Guo, Yanrong; Gao, Yaozong

    2016-01-01

    Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods. PMID:26685226

  5. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  6. ESPN2 Sports Figures Makes Math and Physics a Ball! 1996-97 Educator's Curriculum.

    ERIC Educational Resources Information Center

    Rusczyk, Richard; Lehoczky, Sandor

    This guide is designed to accompany ESPN's SportsFigures video segments which were created to enhance the interest and learning progress of high school students in mathematics, physics, and physical science. Using actual, re-enacted, or staged events, the problems presented in each of the 16 Sports Figures segments illustrate the relationship…

  7. Leveraging Automatic Speech Recognition Errors to Detect Challenging Speech Segments in TED Talks

    ERIC Educational Resources Information Center

    Mirzaei, Maryam Sadat; Meshgi, Kourosh; Kawahara, Tatsuya

    2016-01-01

    This study investigates the use of Automatic Speech Recognition (ASR) systems to epitomize second language (L2) listeners' problems in perception of TED talks. ASR-generated transcripts of videos often involve recognition errors, which may indicate difficult segments for L2 listeners. This paper aims to discover the root-causes of the ASR errors…

  8. Topic Transition in Educational Videos Using Visually Salient Words

    ERIC Educational Resources Information Center

    Gandhi, Ankit; Biswas, Arijit; Deshmukh, Om

    2015-01-01

    In this paper, we propose a visual saliency algorithm for automatically finding the topic transition points in an educational video. First, we propose a method for assigning a saliency score to each word extracted from an educational video. We design several mid-level features that are indicative of visual saliency. The optimal feature combination…

  9. Classification of a wetland area along the upper Mississippi River with aerial videography

    USGS Publications Warehouse

    Jennings, C.A.; Vohs, P.A.; Dewey, M.R.

    1992-01-01

    We evaluated the use of aerial videography for classifying wetland habitats along the upper Mississippi River and found the prompt availability of habitat feature maps to be the major advantage of the video imagery technique. We successfully produced feature maps from digitized video images that generally agreed with the known distribution and areal coverages of the major habitat types independently identified and quantified with photointerpretation techniques. However, video images were not sufficiently detailed to allow us to consistently discriminate among the classes of aquatic macrophytes present or to quantify their areal coverage. Our inability to consistently distinguish among emergent, floating, and submergent macrophytes from the feature maps may have been related to the structural complexity of the site, to our limited vegetation sampling, and to limitations in video imagery. We expect that careful site selection (i.e., the desired level of resolution is available from video imagery) and additional vegetation samples (e.g., along a transect) will allow improved assignment of spectral values to specific plant types and enhance plant classification from feature maps produced from video imagery.

  10. Unsupervised motion-based object segmentation refined by color

    NASA Astrophysics Data System (ADS)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the chance of the wrong position producing a good match. Consequently, a number of methods exist which combine motion and colour segmentation. These methods use colour segmentation as a base for the motion segmentation and estimation or perform an independent colour segmentation in parallel which is in some way combined with the motion segmentation. The presented method uses both techniques to complement each other by first segmenting on motion cues and then refining the segmentation with colour. To our knowledge few methods exist which adopt this approach. One example is te{meshrefine}. This method uses an irregular mesh, which hinders its efficient implementation in consumer electronics devices. Furthermore, the method produces a foreground/background segmentation, while our applications call for the segmentation of multiple objects. NEW METHOD As mentioned above we start with motion segmentation and refine the edges of this segmentation with a pixel resolution colour segmentation method afterwards. There are several reasons for this approach: + Motion segmentation does not produce the oversegmentation which colour segmentation methods normally produce, because objects are more likely to have colour discontinuities than motion discontinuities. In this way, the colour segmentation only has to be done at the edges of segments, confining the colour segmentation to a smaller part of the image. In such a part, it is more likely that the colour of an object is homogeneous. + This approach restricts the computationally expensive pixel resolution colour segmentation to a subset of the image. Together with the very efficient 3DRS motion estimation algorithm, this helps to reduce the computational complexity. + The motion cue alone is often enough to reliably distinguish objects from one another and the background. To obtain the motion vector fields, a variant of the 3DRS block-based motion estimator which analyses three frames of input was used. The 3DRS motion estimator is known for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems. The presented method has no problems with bifurcations. For the pixel resolution segmentation itself we reclassify pixels such that we optimize an error norm which favour similarly coloured regions and straight edges. SEGMENTATION MEASURE To assist in the evaluation of the proposed algorithm we developed a quality metric. Because the problem does not have an exact specification, we decided to define a ground truth output which we find desirable for a given input. We define the measure for the segmentation quality as being how different the segmentation is from the ground truth. Our measure enables us to evaluate oversegmentation and undersegmentation seperately. Also, it allows us to evaluate which parts of a frame suffer from oversegmentation or undersegmentation. The proposed algorithm has been tested on several typical sequences. CONCLUSIONS In this abstract we presented a new video segmentation method which performs well in the segmentation of multiple independently moving foreground objects from each other and the background. It combines the strong points of both colour and motion segmentation in the way we expected. One of the weak points is that the segmentation method suffers from undersegmentation when adjacent objects display similar motion. In sequences with detailed backgrounds the segmentation will sometimes display noisy edges. Apart from these results, we think that some of the techniques, and in particular the K-regions technique, may be useful for other two-dimensional data segmentation problems.

  11. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  12. Astrometric and Photometric Analysis of the September 2008 ATV-1 Re-Entry Event

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Barker, Edwin S.; Maley, Paul D.; Beaulieu, Kevin R.; Stokely, Christopher L.

    2008-01-01

    NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming.

  13. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  14. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  15. MPEG-7 audio-visual indexing test-bed for video retrieval

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Foucher, Samuel; Gouaillier, Valerie; Brun, Christelle; Brousseau, Julie; Boulianne, Gilles; Osterrath, Frederic; Chapdelaine, Claude; Dutrisac, Julie; St-Onge, Francis; Champagne, Benoit; Lu, Xiaojian

    2003-12-01

    This paper reports on the development status of a Multimedia Asset Management (MAM) test-bed for content-based indexing and retrieval of audio-visual documents within the MPEG-7 standard. The project, called "MPEG-7 Audio-Visual Document Indexing System" (MADIS), specifically targets the indexing and retrieval of video shots and key frames from documentary film archives, based on audio-visual content like face recognition, motion activity, speech recognition and semantic clustering. The MPEG-7/XML encoding of the film database is done off-line. The description decomposition is based on a temporal decomposition into visual segments (shots), key frames and audio/speech sub-segments. The visible outcome will be a web site that allows video retrieval using a proprietary XQuery-based search engine and accessible to members at the Canadian National Film Board (NFB) Cineroute site. For example, end-user will be able to ask to point on movie shots in the database that have been produced in a specific year, that contain the face of a specific actor who tells a specific word and in which there is no motion activity. Video streaming is performed over the high bandwidth CA*net network deployed by CANARIE, a public Canadian Internet development organization.

  16. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  18. Fast and efficient search for MPEG-4 video using adjacent pixel intensity difference quantization histogram feature

    NASA Astrophysics Data System (ADS)

    Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro

    2010-02-01

    In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.

  19. Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.

    PubMed

    Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K

    2004-07-01

    Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.

  20. Automatic colonic lesion detection and tracking in endoscopic videos

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif

    2011-03-01

    The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.

  1. Video2vec Embeddings Recognize Events When Examples Are Scarce.

    PubMed

    Habibian, Amirhossein; Mensink, Thomas; Snoek, Cees G M

    2017-10-01

    This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, we propose to learn the entire representation from freely available web videos and their descriptions using an embedding between video features and term vectors. In our proposed embedding, which we call Video2vec, the correlations between the words are utilized to learn a more effective representation by optimizing a joint objective balancing descriptiveness and predictability. We show how learning the Video2vec embedding using a multimodal predictability loss, including appearance, motion and audio features, results in a better predictable representation. We also propose an event specific variant of Video2vec to learn a more accurate representation for the words, which are indicative of the event, by introducing a term sensitive descriptiveness loss. Our experiments on three challenging collections of web videos from the NIST TRECVID Multimedia Event Detection and Columbia Consumer Videos datasets demonstrate: i) the advantages of Video2vec over representations using attributes or alternative embeddings, ii) the benefit of fusing video modalities by an embedding over common strategies, iii) the complementarity of term sensitive descriptiveness and multimodal predictability for event recognition. By its ability to improve predictability of present day audio-visual video features, while at the same time maximizing their semantic descriptiveness, Video2vec leads to state-of-the-art accuracy for both few- and zero-example recognition of events in video.

  2. A study of school mathematics curriculum enacted by competent teachers in Singapore secondary schools

    NASA Astrophysics Data System (ADS)

    Kaur, Berinderjeet; Tay, Eng Guan; Toh, Tin Lam; Leong, Yew Hoong; Lee, Ngan Hoe

    2018-03-01

    A study of school mathematics curriculum enacted by competent teachers in Singapore secondary schools is a programmatic research project at the National Institute of Education (NIE) funded by the Ministry of Education (MOE) in Singapore through the Office of Education Research (OER) at NIE. The main goal of the project is to collect a set of data that would be used by two studies to research the enacted secondary school mathematics curriculum. The project aims to examine how competent experienced secondary school teachers implement the designated curriculum prescribed by the MOE in the 2013 revision of curriculum. It does this firstly by examining the video recordings of the classroom instruction and interactions between secondary school mathematics teachers and their students, as it is these interactions that fundamentally determine the nature of the actual mathematics learning and teaching that take place in the classroom. It also examines content through the instructional materials used—their preparation, use in classroom and as homework. The project comprises a video segment and a survey segment. Approximately 630 secondary mathematics teachers and 600 students are participating in the project. The data collection for the video segment of the project is guided by the renowned complementary accounts methodology while the survey segment adopts a self-report questionnaire approach. The findings of the project will serve several purposes. They will provide timely feedback to mathematics specialists in the MOE, inform pre-service and professional development programmes for mathematics teachers at the NIE and contribute towards articulation of "Mathematics pedagogy in Singapore secondary schools" that is evidence based.

  3. Bayesian Fusion of Color and Texture Segmentations

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto

    2000-01-01

    In many applications one would like to use information from both color and texture features in order to segment an image. We propose a novel technique to combine "soft" segmentations computed for two or more features independently. Our algorithm merges models according to a mean entropy criterion, and allows to choose the appropriate number of classes for the final grouping. This technique also allows to improve the quality of supervised classification based on one feature (e.g. color) by merging information from unsupervised segmentation based on another feature (e.g., texture.)

  4. Automatic comparison of striation marks and automatic classification of shoe prints

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac

    1995-09-01

    A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.

  5. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  6. Video repairing under variable illumination using cyclic motions.

    PubMed

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  7. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  8. Constructing storyboards based on hierarchical clustering analysis

    NASA Astrophysics Data System (ADS)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  9. Study on the Feasibility of RGB Substitute CIR for Automatic Removal Vegetation Occlusion Based on Ground Close-Range Building Images

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, F.; Liu, Y.; Li, X.; Liu, P.; Xiao, B.

    2012-07-01

    Building 3D reconstruction based on ground remote sensing data (image, video and lidar) inevitably faces the problem that buildings are always occluded by vegetation, so how to automatically remove and repair vegetation occlusion is a very important preprocessing work for image understanding, compute vision and digital photogrammetry. In the traditional multispectral remote sensing which is achieved by aeronautics and space platforms, the Red and Near-infrared (NIR) bands, such as NDVI (Normalized Difference Vegetation Index), are useful to distinguish vegetation and clouds, amongst other targets. However, especially in the ground platform, CIR (Color Infra Red) is little utilized by compute vision and digital photogrammetry which usually only take true color RBG into account. Therefore whether CIR is necessary for vegetation segmentation or not has significance in that most of close-range cameras don't contain such NIR band. Moreover, the CIE L*a*b color space, which transform from RGB, seems not of much interest by photogrammetrists despite its powerfulness in image classification and analysis. So, CIE (L, a, b) feature and support vector machine (SVM) is suggested for vegetation segmentation to substitute for CIR. Finally, experimental results of visual effect and automation are given. The conclusion is that it's feasible to remove and segment vegetation occlusion without NIR band. This work should pave the way for texture reconstruction and repair for future 3D reconstruction.

  10. SuBSENSE: a universal change detection method with local adaptive sensitivity.

    PubMed

    St-Charles, Pierre-Luc; Bilodeau, Guillaume-Alexandre; Bergevin, Robert

    2015-01-01

    Foreground/background segmentation via change detection in video sequences is often used as a stepping stone in high-level analytics and applications. Despite the wide variety of methods that have been proposed for this problem, none has been able to fully address the complex nature of dynamic scenes in real surveillance tasks. In this paper, we present a universal pixel-level segmentation method that relies on spatiotemporal binary features as well as color information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, we use pixel-level feedback loops to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity and local segmentation noise levels. This new approach enables us to outperform all 32 previously tested state-of-the-art methods on the 2012 and 2014 versions of the ChangeDetection.net dataset in terms of overall F-Measure. The use of local binary image descriptors for pixel-level modeling also facilitates high-speed parallel implementations: our own version, which used no low-level or architecture-specific instruction, reached real-time processing speed on a midlevel desktop CPU. A complete C++ implementation based on OpenCV is available online.

  11. Efficacy of texture, shape, and intensity features for robust posterior-fossa tumor segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.

    2009-02-01

    Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.

  12. Image segmentation using joint spatial-intensity-shape features: application to CT lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Ye, Xujiong; Siddique, Musib; Douiri, Abdel; Beddoe, Gareth; Slabaugh, Greg

    2009-02-01

    Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel feature-guided method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial-intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.

  13. Activity-based exploitation of Full Motion Video (FMV)

    NASA Astrophysics Data System (ADS)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  14. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    PubMed

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  15. Video quality assessment using motion-compensated temporal filtering and manifold feature similarity

    PubMed Central

    Yu, Mei; Jiang, Gangyi; Shao, Feng; Peng, Zongju

    2017-01-01

    Well-performed Video quality assessment (VQA) method should be consistent with human visual systems for better prediction accuracy. In this paper, we propose a VQA method using motion-compensated temporal filtering (MCTF) and manifold feature similarity. To be more specific, a group of frames (GoF) is first decomposed into a temporal high-pass component (HPC) and a temporal low-pass component (LPC) by MCTF. Following this, manifold feature learning (MFL) and phase congruency (PC) are used to predict the quality of temporal LPC and temporal HPC respectively. The quality measures of the LPC and the HPC are then combined as GoF quality. A temporal pooling strategy is subsequently used to integrate GoF qualities into an overall video quality. The proposed VQA method appropriately processes temporal information in video by MCTF and temporal pooling strategy, and simulate human visual perception by MFL. Experiments on publicly available video quality database showed that in comparison with several state-of-the-art VQA methods, the proposed VQA method achieves better consistency with subjective video quality and can predict video quality more accurately. PMID:28445489

  16. Remote, non-contacting personnel bio-identification using microwave radiation

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2011-01-01

    A system to remotely identify a person by utilizing a microwave cardiogram, where some embodiments segment a signal representing cardiac beats into segments, extract features from the segments, and perform pattern identification of the segments and features with a pre-existing data set. Other embodiments are described and claimed.

  17. Evaluation of educational content of YouTube videos relating to neurogenic bladder and intermittent catheterization.

    PubMed

    Ho, Matthew; Stothers, Lynn; Lazare, Darren; Tsang, Brian; Macnab, Andrew

    2015-01-01

    Many patients conduct internet searches to manage their own health problems, to decide if they need professional help, and to corroborate information given in a clinical encounter. Good information can improve patients' understanding of their condition and their self-efficacy. Patients with spinal cord injury (SCI) featuring neurogenic bladder (NB) require knowledge and skills related to their condition and need for intermittent catheterization (IC). Information quality was evaluated in videos accessed via YouTube relating to NB and IC using search terms "neurogenic bladder intermittent catheter" and "spinal cord injury intermittent catheter." Video content was independently rated by 3 investigators using criteria based on European Urological Association (EAU) guidelines and established clinical practice. In total, 71 videos met the inclusion criteria. Of these, 12 (17%) addressed IC and 50 (70%) contained information on NB. The remaining videos met inclusion criteria, but did not contain information relevant to either IC or NB. Analysis indicated poor overall quality of information, with some videos with information contradictory to EAU guidelines for IC. High-quality videos were randomly distributed by YouTube. IC videos featuring a healthcare narrator scored significantly higher than patient-narrated videos, but not higher than videos with a merchant narrator. About half of the videos contained commercial content. Some good-quality educational videos about NB and IC are available on YouTube, but most are poor. The videos deemed good quality were not prominently ranked by the YouTube search algorithm, consequently user access is less likely. Study limitations include the limit of 50 videos per category and the use of a de novo rating tool. Information quality in videos with healthcare narrators was not higher than in those featuring merchant narrators. Better material is required to improve patients' understanding of their condition.

  18. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  19. The Use of Video-Tacheometric Technology for Documenting and Analysing Geometric Features of Objects

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Świerczyńska, Ewa; Jastrzębski, Sławomir

    2015-12-01

    This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining "point cloud" acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.

  20. A new software tool for 3D motion analyses of the musculo-skeletal system.

    PubMed

    Leardini, A; Belvedere, C; Astolfi, L; Fantozzi, S; Viceconti, M; Taddei, F; Ensini, A; Benedetti, M G; Catani, F

    2006-10-01

    Many clinical and biomechanical research studies, particularly in orthopaedics, nowadays involve forms of movement analysis. Gait analysis, video-fluoroscopy of joint replacement, pre-operative planning, surgical navigation, and standard radiostereometry would require tools for easy access to three-dimensional graphical representations of rigid segment motion. Relevant data from this variety of sources need to be organised in structured forms. Registration, integration, and synchronisation of segment position data are additional necessities. With this aim, the present work exploits the features of a software tool recently developed within a EU-funded project ('Multimod') in a series of different research studies. Standard and advanced gait analysis on a normal subject, in vivo fluoroscopy-based three-dimensional motion of a replaced knee joint, patellar and ligament tracking on a knee specimen by a surgical navigation system, stem-to-femur migration pattern on a patient operated on total hip replacement, were analysed with standard techniques and all represented by this innovative software tool. Segment pose data were eventually obtained from these different techniques, and were successfully imported and organised in a hierarchical tree within the tool. Skeletal bony segments, prosthesis component models and ligament links were registered successfully to corresponding marker position data for effective three-dimensional animations. These were shown in various combinations, in different views, from different perspectives, according to possible specific research interests. Bioengineering and medical professionals would be much facilitated in the interpretation of the motion analysis measurements necessary in their research fields, and would benefit therefore from this software tool.

  1. Indexed Captioned Searchable Videos: A Learning Companion for STEM Coursework

    ERIC Educational Resources Information Center

    Tuna, Tayfun; Subhlok, Jaspal; Barker, Lecia; Shah, Shishir; Johnson, Olin; Hovey, Christopher

    2017-01-01

    Videos of classroom lectures have proven to be a popular and versatile learning resource. A key shortcoming of the lecture video format is accessing the content of interest hidden in a video. This work meets this challenge with an advanced video framework featuring topical indexing, search, and captioning (ICS videos). Standard optical character…

  2. Extraction and analysis of neuron firing signals from deep cortical video microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Blundon, Jay

    We introduce a method for extracting and analyzing neuronal activity time signals from video of the cortex of a live animal. The signals correspond to the firing activity of individual cortical neurons. Activity signals are based on the changing fluorescence of calcium indicators in the cells over time. We propose a cell segmentation method that relies on a user-specified center point, from which the signal extraction method proceeds. A stabilization approach is used to reduce tissue motion in the video. The extracted signal is then processed to flatten the baseline and detect action potentials. We show results from applying themore » method to a cortical video of a live mouse.« less

  3. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  4. Automatic and quantitative measurement of laryngeal video stroboscopic images.

    PubMed

    Kuo, Chung-Feng Jeffrey; Kuo, Joseph; Hsiao, Shang-Wun; Lee, Chi-Lung; Lee, Jih-Chin; Ke, Bo-Han

    2017-01-01

    The laryngeal video stroboscope is an important instrument for physicians to analyze abnormalities and diseases in the glottal area. Stroboscope has been widely used around the world. However, without quantized indices, physicians can only make subjective judgment on glottal images. We designed a new laser projection marking module and applied it onto the laryngeal video stroboscope to provide scale conversion reference parameters for glottal imaging and to convert the physiological parameters of glottis. Image processing technology was used to segment the important image regions of interest. Information of the glottis was quantified, and the vocal fold image segmentation system was completed to assist clinical diagnosis and increase accuracy. Regarding image processing, histogram equalization was used to enhance glottis image contrast. The center weighted median filters image noise while retaining the texture of the glottal image. Statistical threshold determination was used for automatic segmentation of a glottal image. As the glottis image contains saliva and light spots, which are classified as the noise of the image, noise was eliminated by erosion, expansion, disconnection, and closure techniques to highlight the vocal area. We also used image processing to automatically identify an image of vocal fold region in order to quantify information from the glottal image, such as glottal area, vocal fold perimeter, vocal fold length, glottal width, and vocal fold angle. The quantized glottis image database was created to assist physicians in diagnosing glottis diseases more objectively.

  5. Ranking Highlights in Personal Videos by Analyzing Edited Videos.

    PubMed

    Sun, Min; Farhadi, Ali; Chen, Tseng-Hung; Seitz, Steve

    2016-11-01

    We present a fully automatic system for ranking domain-specific highlights in unconstrained personal videos by analyzing online edited videos. A novel latent linear ranking model is proposed to handle noisy training data harvested online. Specifically, given a targeted domain such as "surfing," our system mines the YouTube database to find pairs of raw and their corresponding edited videos. Leveraging the assumption that an edited video is more likely to contain highlights than the trimmed parts of the raw video, we obtain pair-wise ranking constraints to train our model. The learning task is challenging due to the amount of noise and variation in the mined data. Hence, a latent loss function is incorporated to mitigate the issues caused by the noise. We efficiently learn the latent model on a large number of videos (about 870 min in total) using a novel EM-like procedure. Our latent ranking model outperforms its classification counterpart and is fairly competitive compared with a fully supervised ranking system that requires labels from Amazon Mechanical Turk. We further show that a state-of-the-art audio feature mel-frequency cepstral coefficients is inferior to a state-of-the-art visual feature. By combining both audio-visual features, we obtain the best performance in dog activity, surfing, skating, and viral video domains. Finally, we show that impressive highlights can be detected without additional human supervision for seven domains (i.e., skating, surfing, skiing, gymnastics, parkour, dog activity, and viral video) in unconstrained personal videos.

  6. Video Game Structural Characteristics: A New Psychological Taxonomy

    ERIC Educational Resources Information Center

    King, Daniel; Delfabbro, Paul; Griffiths, Mark

    2010-01-01

    Excessive video game playing behaviour may be influenced by a variety of factors including the structural characteristics of video games. Structural characteristics refer to those features inherent within the video game itself that may facilitate initiation, development and maintenance of video game playing over time. Numerous structural…

  7. MPEG-4 ASP SoC receiver with novel image enhancement techniques for DAB networks

    NASA Astrophysics Data System (ADS)

    Barreto, D.; Quintana, A.; García, L.; Callicó, G. M.; Núñez, A.

    2007-05-01

    This paper presents a system for real-time video reception in low-power mobile devices using Digital Audio Broadcast (DAB) technology for transmission. A demo receiver terminal is designed into a FPGA platform using the Advanced Simple Profile (ASP) MPEG-4 standard for video decoding. In order to keep the demanding DAB requirements, the bandwidth of the encoded sequence must be drastically reduced. In this sense, prior to the MPEG-4 coding stage, a pre-processing stage is performed. It is firstly composed by a segmentation phase according to motion and texture based on the Principal Component Analysis (PCA) of the input video sequence, and secondly by a down-sampling phase, which depends on the segmentation results. As a result of the segmentation task, a set of texture and motion maps are obtained. These motion and texture maps are also included into the bit-stream as user data side-information and are therefore known to the receiver. For all bit-rates, the whole encoder/decoder system proposed in this paper exhibits higher image visual quality than the alternative encoding/decoding method, assuming equal image sizes. A complete analysis of both techniques has also been performed to provide the optimum motion and texture maps for the global system, which has been finally validated for a variety of video sequences. Additionally, an optimal HW/SW partition for the MPEG-4 decoder has been studied and implemented over a Programmable Logic Device with an embedded ARM9 processor. Simulation results show that a throughput of 15 QCIF frames per second can be achieved with low area and low power implementation.

  8. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian

    2016-02-01

    In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.

  9. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  10. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data.

    PubMed

    Li, Yachun; Charalampaki, Patra; Liu, Yong; Yang, Guang-Zhong; Giannarou, Stamatia

    2018-06-13

    Probe-based confocal laser endomicroscopy (pCLE) enables in vivo, in situ tissue characterisation without changes in the surgical setting and simplifies the oncological surgical workflow. The potential of this technique in identifying residual cancer tissue and improving resection rates of brain tumours has been recently verified in pilot studies. The interpretation of endomicroscopic information is challenging, particularly for surgeons who do not themselves routinely review histopathology. Also, the diagnosis can be examiner-dependent, leading to considerable inter-observer variability. Therefore, automatic tissue characterisation with pCLE would support the surgeon in establishing diagnosis as well as guide robot-assisted intervention procedures. The aim of this work is to propose a deep learning-based framework for brain tissue characterisation for context aware diagnosis support in neurosurgical oncology. An efficient representation of the context information of pCLE data is presented by exploring state-of-the-art CNN models with different tuning configurations. A novel video classification framework based on the combination of convolutional layers with long-range temporal recursion has been proposed to estimate the probability of each tumour class. The video classification accuracy is compared for different network architectures and data representation and video segmentation methods. We demonstrate the application of the proposed deep learning framework to classify Glioblastoma and Meningioma brain tumours based on endomicroscopic data. Results show significant improvement of our proposed image classification framework over state-of-the-art feature-based methods. The use of video data further improves the classification performance, achieving accuracy equal to 99.49%. This work demonstrates that deep learning can provide an efficient representation of pCLE data and accurately classify Glioblastoma and Meningioma tumours. The performance evaluation analysis shows the potential clinical value of the technique.

  11. Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path

    PubMed Central

    Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki

    2017-01-01

    Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622

  12. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  13. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  14. Rapid Characterization of Shorelines using a Georeferenced Video Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael G.; Judd, Chaeli; Marcoe, K.

    Increased understanding of shoreline conditions is needed, yet current approaches are limited in ability to characterize remote areas or document features at a finer resolution. Documentation using video mapping may provide a rapid and repeatable method for assessing the current state of the environment and determining changes to the shoreline over time. In this study, we compare two studies using boat-based, georeferenced video mapping in coastal Washington and the Columbia River Estuary to map and characterize coastal stressors and functional data. In both areas, mapping multiple features along the shoreline required approximation of the coastline. However, characterization of vertically orientedmore » features such as shoreline armoring and small features such as pilings and large woody debris was possible. In addition, end users noted that geovideo provides a permanent record to allow a user to examine recorded video anywhere along a transect or at discrete points.« less

  15. Video and accelerometer-based motion analysis for automated surgical skills assessment.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan

    2018-03-01

    Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

  16. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  17. A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation

    NASA Astrophysics Data System (ADS)

    Vadiveloo, Mogana; Abdullah, Rosni; Rajeswari, Mandava

    2015-12-01

    In this paper, we have addressed the issue of over-segmented regions produced in watershed by merging the regions using global feature. The global feature information is obtained from clustering the image in its feature space using Fuzzy C-Means (FCM) clustering. The over-segmented regions produced by performing watershed on the gradient of the image are then mapped to this global information in the feature space. Further to this, the global feature information is optimized using Simulated Annealing (SA). The optimal global feature information is used to derive the similarity criterion to merge the over-segmented watershed regions which are represented by the region adjacency graph (RAG). The proposed method has been tested on digital brain phantom simulated dataset to segment white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) soft tissues regions. The experiments showed that the proposed method performs statistically better, with average of 95.242% regions are merged, than the immersion watershed and average accuracy improvement of 8.850% in comparison with RAG-based immersion watershed merging using global and local features.

  18. Prostate segmentation in MR images using discriminant boundary features.

    PubMed

    Yang, Meijuan; Li, Xuelong; Turkbey, Baris; Choyke, Peter L; Yan, Pingkun

    2013-02-01

    Segmentation of the prostate in magnetic resonance image has become more in need for its assistance to diagnosis and surgical planning of prostate carcinoma. Due to the natural variability of anatomical structures, statistical shape model has been widely applied in medical image segmentation. Robust and distinctive local features are critical for statistical shape model to achieve accurate segmentation results. The scale invariant feature transformation (SIFT) has been employed to capture the information of the local patch surrounding the boundary. However, when SIFT feature being used for segmentation, the scale and variance are not specified with the location of the point of interest. To deal with it, the discriminant analysis in machine learning is introduced to measure the distinctiveness of the learned SIFT features for each landmark directly and to make the scale and variance adaptive to the locations. As the gray values and gradients vary significantly over the boundary of the prostate, separate appearance descriptors are built for each landmark and then optimized. After that, a two stage coarse-to-fine segmentation approach is carried out by incorporating the local shape variations. Finally, the experiments on prostate segmentation from MR image are conducted to verify the efficiency of the proposed algorithms.

  19. Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band

    NASA Astrophysics Data System (ADS)

    Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.

    2015-09-01

    In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.

  20. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization.

    PubMed

    Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2016-12-01

    Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness). Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [ 11 C]choline were more robust than [ 18 F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.

  1. 3D Texture Features Mining for MRI Brain Tumor Identification

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra

    2014-03-01

    Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.

  2. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  3. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  4. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  5. Automated video feature extraction : workshop summary report October 10-11 2012.

    DOT National Transportation Integrated Search

    2012-12-01

    This report summarizes a 2-day workshop on automated video feature extraction. Discussion focused on the Naturalistic Driving : Study, funded by the second Strategic Highway Research Program, and also involved the companion roadway inventory dataset....

  6. MedlinePlus FAQ: Is audio description available for videos on MedlinePlus?

    MedlinePlus

    ... audiodescription.html Question: Is audio description available for videos on MedlinePlus? To use the sharing features on ... page, please enable JavaScript. Answer: Audio description of videos helps make the content of videos accessible to ...

  7. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  8. No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.

    PubMed

    Li, Xuelong; Guo, Qun; Lu, Xiaoqiang

    2016-05-13

    It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.

  9. Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software

    PubMed Central

    Lee, Myungeun; Woo, Boyeong; Kuo, Michael D.; Jamshidi, Neema

    2017-01-01

    Objective The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. Materials and Methods MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Results Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. Conclusion The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics. PMID:28458602

  10. Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.

    PubMed

    Lee, Myungeun; Woo, Boyeong; Kuo, Michael D; Jamshidi, Neema; Kim, Jong Hyo

    2017-01-01

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.

  11. Multi-Modal Surrogates for Retrieving and Making Sense of Videos: Is Synchronization between the Multiple Modalities Optimal?

    ERIC Educational Resources Information Center

    Song, Yaxiao

    2010-01-01

    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on…

  12. a Preliminary Work on Layout Slam for Reconstruction of Indoor Corridor Environments

    NASA Astrophysics Data System (ADS)

    Baligh Jahromi, A.; Sohn, G.; Shahbazi, M.; Kang, J.

    2017-09-01

    We propose a real time indoor corridor layout estimation method based on visual Simultaneous Localization and Mapping (SLAM). The proposed method adopts the Manhattan World Assumption at indoor spaces and uses the detected single image straight line segments and their corresponding orthogonal vanishing points to improve the feature matching scheme in the adopted visual SLAM system. Using the proposed real time indoor corridor layout estimation method, the system is able to build an online sparse map of structural corner point features. The challenges presented by abrupt camera rotation in the 3D space are successfully handled through matching vanishing directions of consecutive video frames on the Gaussian sphere. Using the single image based indoor layout features for initializing the system, permitted the proposed method to perform real time layout estimation and camera localization in indoor corridor areas. For layout structural corner points matching, we adopted features which are invariant under scale, translation, and rotation. We proposed a new feature matching cost function which considers both local and global context information. The cost function consists of a unary term, which measures pixel to pixel orientation differences of the matched corners, and a binary term, which measures the amount of angle differences between directly connected layout corner features. We have performed the experiments on real scenes at York University campus buildings and the available RAWSEEDS dataset. The incoming results depict that the proposed method robustly performs along with producing very limited position and orientation errors.

  13. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  14. Satisfaction with Online Teaching Videos: A Quantitative Approach

    ERIC Educational Resources Information Center

    Meseguer-Martinez, Angel; Ros-Galvez, Alejandro; Rosa-Garcia, Alfonso

    2017-01-01

    We analyse the factors that determine the number of clicks on the "Like" button in online teaching videos, with a sample of teaching videos in the area of Microeconomics across Spanish-speaking countries. The results show that users prefer short online teaching videos. Moreover, some features of the videos have a significant impact on…

  15. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  16. [MODERN INSTRUMENTS FOR EAR, NOSE AND THROAT RENDERING AND EVALUATION IN RESEARCHES ON RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION].

    PubMed

    Popova, I I; Orlov, O I; Matsnev, E I; Revyakin, Yu G

    2016-01-01

    The paper reports the results of testing some diagnostic video systems enabling digital rendering of TNT teeth and jaws. The authors substantiate the criteria of choosing and integration of imaging systems in future on Russian segment of the International space station kit LOR developed for examination and download of high-quality images of cosmonauts' TNT, parodentium and teeth.

  17. Mobile, portable lightweight wireless video recording solutions for homeland security, defense, and law enforcement applications

    NASA Astrophysics Data System (ADS)

    Sandy, Matt; Goldburt, Tim; Carapezza, Edward M.

    2015-05-01

    It is desirable for executive officers of law enforcement agencies and other executive officers in homeland security and defense, as well as first responders, to have some basic information about the latest trend on mobile, portable lightweight wireless video recording solutions available on the market. This paper reviews and discusses a number of studies on the use and effectiveness of wireless video recording solutions. It provides insights into the features of wearable video recording devices that offer excellent applications for the category of security agencies listed in this paper. It also provides answers to key questions such as: how to determine the type of video recording solutions most suitable for the needs of your agency, the essential features to look for when selecting a device for your video needs, and the privacy issues involved with wearable video recording devices.

  18. A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos.

    PubMed

    Arbelle, Assaf; Reyes, Jose; Chen, Jia-Yun; Lahav, Galit; Riklin Raviv, Tammy

    2018-04-22

    We present a novel computational framework for the analysis of high-throughput microscopy videos of living cells. The proposed framework is generally useful and can be applied to different datasets acquired in a variety of laboratory settings. This is accomplished by tying together two fundamental aspects of cell lineage construction, namely cell segmentation and tracking, via a Bayesian inference of dynamic models. In contrast to most existing approaches, which aim to be general, no assumption of cell shape is made. Spatial, temporal, and cross-sectional variation of the analysed data are accommodated by two key contributions. First, time series analysis is exploited to estimate the temporal cell shape uncertainty in addition to cell trajectory. Second, a fast marching (FM) algorithm is used to integrate the inferred cell properties with the observed image measurements in order to obtain image likelihood for cell segmentation, and association. The proposed approach has been tested on eight different time-lapse microscopy data sets, some of which are high-throughput, demonstrating promising results for the detection, segmentation and association of planar cells. Our results surpass the state of the art for the Fluo-C2DL-MSC data set of the Cell Tracking Challenge (Maška et al., 2014). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System

    PubMed Central

    Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael

    2018-01-01

    This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078

  20. Multifractal texture estimation for detection and segmentation of brain tumors.

    PubMed

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  1. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors

    PubMed Central

    Islam, Atiq; Reza, Syed M. S.

    2016-01-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424

  2. Evaluation of educational content of YouTube videos relating to neurogenic bladder and intermittent catheterization

    PubMed Central

    Ho, Matthew; Stothers, Lynn; Lazare, Darren; Tsang, Brian; Macnab, Andrew

    2015-01-01

    Introduction: Many patients conduct internet searches to manage their own health problems, to decide if they need professional help, and to corroborate information given in a clinical encounter. Good information can improve patients’ understanding of their condition and their self-efficacy. Patients with spinal cord injury (SCI) featuring neurogenic bladder (NB) require knowledge and skills related to their condition and need for intermittent catheterization (IC). Methods: Information quality was evaluated in videos accessed via YouTube relating to NB and IC using search terms “neurogenic bladder intermittent catheter” and “spinal cord injury intermittent catheter.” Video content was independently rated by 3 investigators using criteria based on European Urological Association (EAU) guidelines and established clinical practice. Results: In total, 71 videos met the inclusion criteria. Of these, 12 (17%) addressed IC and 50 (70%) contained information on NB. The remaining videos met inclusion criteria, but did not contain information relevant to either IC or NB. Analysis indicated poor overall quality of information, with some videos with information contradictory to EAU guidelines for IC. High-quality videos were randomly distributed by YouTube. IC videos featuring a healthcare narrator scored significantly higher than patient-narrated videos, but not higher than videos with a merchant narrator. About half of the videos contained commercial content. Conclusions: Some good-quality educational videos about NB and IC are available on YouTube, but most are poor. The videos deemed good quality were not prominently ranked by the YouTube search algorithm, consequently user access is less likely. Study limitations include the limit of 50 videos per category and the use of a de novo rating tool. Information quality in videos with healthcare narrators was not higher than in those featuring merchant narrators. Better material is required to improve patients’ understanding of their condition. PMID:26644803

  3. Intuitive color-based visualization of multimedia content as large graphs

    NASA Astrophysics Data System (ADS)

    Delest, Maylis; Don, Anthony; Benois-Pineau, Jenny

    2004-06-01

    Data visualization techniques are penetrating in various technological areas. In the field of multimedia such as information search and retrieval in multimedia archives, or digital media production and post-production, data visualization methodologies based on large graphs give an exciting alternative to conventional storyboard visualization. In this paper we develop a new approach to visualization of multimedia (video) documents based both on large graph clustering and preliminary video segmenting and indexing.

  4. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  5. Changes of cerebral current source by audiovisual erotic stimuli in premature ejaculation patients.

    PubMed

    Hyun, Jae-Seog; Kam, Sung-Chul; Kwon, Oh-Young

    2008-06-01

    Premature ejaculation (PE) is one of the most common forms of male sexual dysfunction. The mechanisms of PE remain poorly understood, despite its high prevalence. To investigate the pathophysiology and causes of PE in the central nervous system, we tried to observe the changes in brain current source distribution by audiovisual induction of sexual arousal. Electroencephalograpies were recorded in patients with PE (45.0 +/- 10.3 years old, N = 18) and in controls (45.6 +/- 9.8 years old, N = 18) during four 10-minute segments of resting, watching a music video excerpt, resting, and watching an erotic video excerpt. Five artifact-free 5-second segments were used to obtain cross-spectral low-resolution brain electromagnetic tomography (LORETA) images. Statistical nonparametric maps (SnPM) were obtained to detect the current density changes of six frequency bands between the erotic video session and the music video session in each group. Comparisons were also made between the two groups in the erotic video session. In the SnPM of each spectrum in patients with PE, the current source density of the alpha band was significantly reduced in the right precentral gyrus, the right insula, and both superior parietal lobules (P < 0.01). Comparing the two groups in the erotic video session, the current densities of the beta-2 and -3 bands in the PE group were significantly decreased in the right parahippocampal gyrus and left middle temporal gyrus (P < 0.01). Neuronal activity in the right precental gyrus, the right insula, both the superior parietal lobule, the right parahippocampal gyrus, and the left middle temporal gyrus may be decreased in PE patients upon sexual arousal. Further studies are needed to evaluate the meaning of decreased neuronal activities in PE patients.

  6. Transesophageal Echocardiography-Guided Epicardial Left Ventricular Lead Placement by Video-Assisted Thoracoscopic Surgery in Nonresponders to Biventricular Pacing and Previous Chest Surgery.

    PubMed

    Schroeder, Carsten; Chung, Jane M; Mackall, Judith A; Cakulev, Ivan T; Patel, Aaron; Patel, Sunny J; Hoit, Brian D; Sahadevan, Jayakumar

    2018-06-14

    The aim of the study was to study the feasibility, safety, and efficacy of transesophageal echocardiography-guided intraoperative left ventricular lead placement via a video-assisted thoracoscopic surgery approach in patients with failed conventional biventricular pacing. Twelve patients who could not have the left ventricular lead placed conventionally underwent epicardial left ventricular lead placement by video-assisted thoracoscopic surgery. Eight patients had previous chest surgery (66%). Operative positioning was a modified far lateral supine exposure with 30-degree bed tilt, allowing for groin and sternal access. To determine the optimal left ventricular location for lead placement, the left ventricular surface was divided arbitrarily into nine segments. These segments were transpericardially paced using a hand-held malleable pacing probe identifying the optimal site verified by transesophageal echocardiography. The pacing leads were screwed into position via a limited pericardiotomy. The video-assisted thoracoscopic surgery approach was successful in all patients. Biventricular pacing was achieved in all patients and all reported symptomatic benefit with reduction in New York Heart Association class from III to I-II (P = 0.016). Baseline ejection fraction was 23 ± 3%; within 1-year follow-up, the ejection fraction increased to 32 ± 10% (P = 0.05). The mean follow-up was 566 days. The median length of hospital stay was 7 days with chest tube removal between postoperative days 2 and 5. In patients who are nonresponders to conventional biventricular pacing, intraoperative left ventricular lead placement using anatomical and functional characteristics via a video-assisted thoracoscopic surgery approach is effective in improving heart failure symptoms. This optimized left ventricular lead placement is feasible and safe. Previous chest surgery is no longer an exclusion criterion for a video-assisted thoracoscopic surgery approach.

  7. Image Mosaic Method Based on SIFT Features of Line Segment

    PubMed Central

    Zhu, Jun; Ren, Mingwu

    2014-01-01

    This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling. PMID:24511326

  8. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  9. Brain activity and desire for internet video game play

    PubMed Central

    Han, Doug Hyun; Bolo, Nicolas; Daniels, Melissa A.; Arenella, Lynn; Lyoo, In Kyoon; Renshaw, Perry F.

    2010-01-01

    Objective Recent studies have suggested that the brain circuitry mediating cue induced desire for video games is similar to that elicited by cues related to drugs and alcohol. We hypothesized that desire for internet video games during cue presentation would activate similar brain regions to those which have been linked with craving for drugs or pathological gambling. Methods This study involved the acquisition of diagnostic MRI and fMRI data from 19 healthy male adults (ages 18–23 years) following training and a standardized 10-day period of game play with a specified novel internet video game, “War Rock” (K-network®). Using segments of videotape consisting of five contiguous 90-second segments of alternating resting, matched control and video game-related scenes, desire to play the game was assessed using a seven point visual analogue scale before and after presentation of the videotape. Results In responding to internet video game stimuli, compared to neutral control stimuli, significantly greater activity was identified in left inferior frontal gyrus, left parahippocampal gyrus, right and left parietal lobe, right and left thalamus, and right cerebellum (FDR <0.05, p<0.009243). Self-reported desire was positively correlated with the beta values of left inferior frontal gyrus, left parahippocampal gyrus, and right and left thalamus. Compared to the general players, members who played more internet video game (MIGP) cohort showed significantly greater activity in right medial frontal lobe, right and left frontal pre-central gyrus, right parietal post-central gyrus, right parahippocampal gyrus, and left parietal precuneus gyrus. Controlling for total game time, reported desire for the internet video game in the MIGP cohort was positively correlated with activation in right medial frontal lobe and right parahippocampal gyrus. Discussion The present findings suggest that cue-induced activation to internet video game stimuli may be similar to that observed during cue presentation in persons with substance dependence or pathological gambling. In particular, cues appear to commonly elicit activity in the dorsolateral prefrontal, orbitofrontal cortex, parahippocampal gyrus, and thalamus. PMID:21220070

  10. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  11. The Joint Chiefs of Staff Video Collections

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Home : Media : Videos Featured Videos Gen

  12. Video Player Keyboard Shortcuts

    MedlinePlus

    ... of this page: https://medlineplus.gov/hotkeys.html Video Player Keyboard Shortcuts To use the sharing features ... of accessible keyboard shortcuts for our latest Health videos on the MedlinePlus site. These shortcuts allow you ...

  13. Online coupled camera pose estimation and dense reconstruction from video

    DOEpatents

    Medioni, Gerard; Kang, Zhuoliang

    2016-11-01

    A product may receive each image in a stream of video image of a scene, and before processing the next image, generate information indicative of the position and orientation of an image capture device that captured the image at the time of capturing the image. The product may do so by identifying distinguishable image feature points in the image; determining a coordinate for each identified image feature point; and for each identified image feature point, attempting to identify one or more distinguishable model feature points in a three dimensional (3D) model of at least a portion of the scene that appears likely to correspond to the identified image feature point. Thereafter, the product may find each of the following that, in combination, produce a consistent projection transformation of the 3D model onto the image: a subset of the identified image feature points for which one or more corresponding model feature points were identified; and, for each image feature point that has multiple likely corresponding model feature points, one of the corresponding model feature points. The product may update a 3D model of at least a portion of the scene following the receipt of each video image and before processing the next video image base on the generated information indicative of the position and orientation of the image capture device at the time of capturing the received image. The product may display the updated 3D model after each update to the model.

  14. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    PubMed Central

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  15. Scene segmentation of natural images using texture measures and back-propagation

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Phatak, Anil; Chatterji, Gano

    1993-01-01

    Knowledge of the three-dimensional world is essential for many guidance and navigation applications. A sequence of images from an electro-optical sensor can be processed using optical flow algorithms to provide a sparse set of ranges as a function of azimuth and elevation. A natural way to enhance the range map is by interpolation. However, this should be undertaken with care since interpolation assumes continuity of range. The range is continuous in certain parts of the image and can jump at object boundaries. In such situations, the ability to detect homogeneous object regions by scene segmentation can be used to determine regions in the range map that can be enhanced by interpolation. The use of scalar features derived from the spatial gray-level dependence matrix for texture segmentation is explored. Thresholding of histograms of scalar texture features is done for several images to select scalar features which result in a meaningful segmentation of the images. Next, the selected scalar features are used with a neural net to automate the segmentation procedure. Back-propagation is used to train the feed forward neural network. The generalization of the network approach to subsequent images in the sequence is examined. It is shown that the use of multiple scalar features as input to the neural network result in a superior segmentation when compared with a single scalar feature. It is also shown that the scalar features, which are not useful individually, result in a good segmentation when used together. The methodology is applied to both indoor and outdoor images.

  16. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  17. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-04

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  19. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2006-05-01

    correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The

  20. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Jani, A

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  1. Computational Thinking in Constructionist Video Games

    ERIC Educational Resources Information Center

    Weintrop, David; Holbert, Nathan; Horn, Michael S.; Wilensky, Uri

    2016-01-01

    Video games offer an exciting opportunity for learners to engage in computational thinking in informal contexts. This paper describes a genre of learning environments called constructionist video games that are especially well suited for developing learners' computational thinking skills. These games blend features of conventional video games with…

  2. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  3. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE PAGES

    Yuan, Jiangye; Cheriyadat, Anil M.

    2015-10-19

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  4. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jiangye; Cheriyadat, Anil M.

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  5. Modeling Concept Dependencies for Event Detection

    DTIC Science & Technology

    2014-04-04

    Gaussian Mixture Model (GMM). Jiang et al . [8] provide a summary of experiments for TRECVID MED 2010 . They employ low-level features such as SIFT and...event detection literature. Ballan et al . [2] present a method to introduce temporal information for video event detection with a BoW (bag-of-words...approach. Zhou et al . [24] study video event detection by encoding a video with a set of bag of SIFT feature vectors and describe the distribution with a

  6. The impact of video technology on learning: A cooking skills experiment.

    PubMed

    Surgenor, Dawn; Hollywood, Lynsey; Furey, Sinéad; Lavelle, Fiona; McGowan, Laura; Spence, Michelle; Raats, Monique; McCloat, Amanda; Mooney, Elaine; Caraher, Martin; Dean, Moira

    2017-07-01

    This study examines the role of video technology in the development of cooking skills. The study explored the views of 141 female participants on whether video technology can promote confidence in learning new cooking skills to assist in meal preparation. Prior to each focus group participants took part in a cooking experiment to assess the most effective method of learning for low-skilled cooks across four experimental conditions (recipe card only; recipe card plus video demonstration; recipe card plus video demonstration conducted in segmented stages; and recipe card plus video demonstration whereby participants freely accessed video demonstrations as and when needed). Focus group findings revealed that video technology was perceived to assist learning in the cooking process in the following ways: (1) improved comprehension of the cooking process; (2) real-time reassurance in the cooking process; (3) assisting the acquisition of new cooking skills; and (4) enhancing the enjoyment of the cooking process. These findings display the potential for video technology to promote motivation and confidence as well as enhancing cooking skills among low-skilled individuals wishing to cook from scratch using fresh ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations

    PubMed Central

    2016-01-01

    Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140

  8. Logo recognition in video by line profile classification

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Hanjalic, Alan

    2003-12-01

    We present an extension to earlier work on recognizing logos in video stills. The logo instances considered here are rigid planar objects observed at a distance in the scene, so the possible perspective transformation can be approximated by an affine transformation. For this reason we can classify the logos by matching (invariant) line profiles. We enhance our previous method by considering multiple line profiles instead of a single profile of the logo. The positions of the lines are based on maxima in the Hough transform space of the segmented logo foreground image. Experiments are performed on MPEG1 sport video sequences to show the performance of the proposed method.

  9. Detection of stress/anxiety state from EEG features during video watching.

    PubMed

    Giannakakis, Giorgos; Grigoriadis, Dimitris; Tsiknakis, Manolis

    2015-01-01

    This paper studies the effect of stress/anxiety states on EEG signals during video sessions. The levels of arousal and valence that are induced to each subject while watching each video are self rated. These levels are mapped in stress and relaxed states and subjects that fufill criteria of adequate anxiety/stress scale were chosen leading to a subset of 18 subjects. Then, temporal, spectral and non linear EEG features are evaluated for being able to represent accurately states under investigation. Feature selection schemes choose the most significant of them in order to provide increased discrimination ability between relaxed and anxiety/stress states.

  10. The Simple Video Coder: A free tool for efficiently coding social video data.

    PubMed

    Barto, Daniel; Bird, Clark W; Hamilton, Derek A; Fink, Brandi C

    2017-08-01

    Videotaping of experimental sessions is a common practice across many disciplines of psychology, ranging from clinical therapy, to developmental science, to animal research. Audio-visual data are a rich source of information that can be easily recorded; however, analysis of the recordings presents a major obstacle to project completion. Coding behavior is time-consuming and often requires ad-hoc training of a student coder. In addition, existing software is either prohibitively expensive or cumbersome, which leaves researchers with inadequate tools to quickly process video data. We offer the Simple Video Coder-free, open-source software for behavior coding that is flexible in accommodating different experimental designs, is intuitive for students to use, and produces outcome measures of event timing, frequency, and duration. Finally, the software also offers extraction tools to splice video into coded segments suitable for training future human coders or for use as input for pattern classification algorithms.

  11. An improved method for pancreas segmentation using SLIC and interactive region merging

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.

  12. Six characteristics of nutrition education videos that support learning and motivation to learn.

    PubMed

    Ramsay, Samantha A; Holyoke, Laura; Branen, Laurel J; Fletcher, Janice

    2012-01-01

    To identify characteristics in nutrition education video vignettes that support learning and motivation to learn about feeding children. Nine focus group interviews were conducted with child care providers in child care settings from 4 states in the western United States: California, Idaho, Oregon, and Washington. At each focus group interview, 3-8 participants (n = 37) viewed video vignettes and participated in a facilitated focus group discussion that was audiorecorded, transcribed, and analyzed. Primary characteristics of video vignettes child care providers perceived as supporting learning and motivation to learn about feeding young children were identified: (1) use real scenarios; (2) provide short segments; (3) present simple, single messages; (4) convey a skill-in-action; (5) develop the videos so participants can relate to the settings; and (6) support participants' ability to conceptualize the information. These 6 characteristics can be used by nutrition educators in selecting and developing videos in nutrition education. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  13. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  14. Left Transsylvian Transcisternal and Transinferior Insular Sulcus Approach for Resection of Uncohippocampal Tumor: 3-Dimensional Operative Video.

    PubMed

    Fernandez-Miranda, Juan C

    2018-06-07

    The medial temporal lobe can be divided in anterior, middle, and posterior segments. The anterior segment is formed by the uncus and hippocampal head, and it has extra and intraventricular structures. There are 2 main approaches to the uncohippocampal region, the anteromedial temporal lobectomy (Spencer's technique) and the transsylvian selective amygdalohippocampectomy (Yasargil's technique).In this video, we present the case of a 29-yr-old man with new onset of generalized seizures and a contrast-enhancing lesion in the left anterior segment of the medial temporal lobe compatible with high-grade glioma. He had a medical history of cervical astrocytoma at age 8 requiring craniospinal radiation therapy and ventriculoperitoneal shunt placement.The tumor was approached using a combined transsylvian transcisternal and transinferior insular sulcus approach to the extra and intraventricular aspects of the uncohippocampal region. It was resected completely, and the patient was neurologically intact after resection with no further seizures at 6-mo follow-up. The diagnosis was glioblastoma IDH-wild type, for which he underwent adjuvant therapy.Surgical anatomy and technical nuances of this approach are illustrated using a 3-dimensional video and anatomic dissections. The selective approach, when compared to an anteromedial temporal lobectomy, has the advantage of preserving the anterolateral temporal cortex, which is particularly relevant in dominant-hemisphere lesions, and the related fiber tracts, including the inferior fronto-occipital and inferior longitudinal fascicles, and most of the optic radiation fibers. The transsylvian approach, however, is technically and anatomically more challenging and potentially carries a higher risk of vascular injury and vasospasm.Page 1 and figures from Fernández-Miranda JC et al, Microvascular Anatomy of the Medial Temporal Region: Part 1: Its Application to Arteriovenous Malformation Surgery, Operative Neurosurgery, 2010, Volume 67, issue 3, ons237-ons276, by permission of the Congress of Neurological Surgeons (1:26-1:37 in video).Page 1 from Fernández-Miranda JC et al, Three-Dimensio-nal Microsurgical and Tractographic Anatomy of the White Matter of the Human Brain, Neurosurgery, 2008, Volume 62, issue suppl_3, SHC989-SHC1028, by permission of the Congress of Neurological Surgeons (1:54-1:56 in video).

  15. The distinguishing motor features of cataplexy: a study from video-recorded attacks.

    PubMed

    Pizza, Fabio; Antelmi, Elena; Vandi, Stefano; Meletti, Stefano; Erro, Roberto; Baumann, Christian R; Bhatia, Kailash P; Dauvilliers, Yves; Edwards, Mark J; Iranzo, Alex; Overeem, Sebastiaan; Tinazzi, Michele; Liguori, Rocco; Plazzi, Giuseppe

    2018-05-01

    To describe the motor pattern of cataplexy and to determine its phenomenological differences from pseudocataplexy in the differential diagnosis of episodic falls. We selected 30 video-recorded cataplexy and 21 pseudocataplexy attacks in 17 and 10 patients evaluated for suspected narcolepsy and with final diagnosis of narcolepsy type 1 and conversion disorder, respectively, together with self-reported attacks features, and asked expert neurologists to blindly evaluate the motor features of the attacks. Video documented and self-reported attack features of cataplexy and pseudocataplexy were contrasted. Video-recorded cataplexy can be positively differentiated from pseudocataplexy by the occurrence of facial hypotonia (ptosis, mouth opening, tongue protrusion) intermingled by jerks and grimaces abruptly interrupting laughter behavior (i.e. smile, facial expression) and postural control (head drops, trunk fall) under clear emotional trigger. Facial involvement is present in both partial and generalized cataplexy. Conversely, generalized pseudocataplexy is associated with persistence of deep tendon reflexes during the attack. Self-reported features confirmed the important role of positive emotions (laughter, telling a joke) in triggering the attacks, as well as the more frequent occurrence of partial body involvement in cataplexy compared with pseudocataplexy. Cataplexy is characterized by abrupt facial involvement during laughter behavior. Video recording of suspected cataplexy attacks allows the identification of positive clinical signs useful for diagnosis and, possibly in the future, for severity assessment.

  16. The Design of Video-Based Professional Development: An Exploratory Experiment Intended to Identify Effective Features

    ERIC Educational Resources Information Center

    Beisiegel, Mary; Mitchell, Rebecca; Hill, Heather C.

    2018-01-01

    Although video cases and video clubs have become popular forms of teacher professional development, there have been few systematic investigations of designs for such programs. Programs may vary according to (a) whether teachers watch videos of their own/their peers' instruction, or whether teachers watch stock video of unknown teachers; and (b)…

  17. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  18. Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura

    2017-02-01

    Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.

  19. Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2016-12-01

    This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected bymore » high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.« less

  1. Video Spectroscopy with the RSpec Explorer

    ERIC Educational Resources Information Center

    Lincoln, James

    2018-01-01

    The January 2018 issue of "The Physics Teacher" saw two articles that featured the RSpec Explorer as a supplementary lab apparatus. The RSpec Explorer provides live video spectrum analysis with which teachers can demonstrate how to investigate features of a diffracted light source. In this article I provide an introduction to the device…

  2. Teacher Explanation of Physics Concepts: A Video Study

    ERIC Educational Resources Information Center

    Geelan, David

    2013-01-01

    Video recordings of Year 11 physics lessons were analyzed to identify key features of teacher explanations. Important features of the explanations used included teachers' ability to move between qualitative and quantitative modes of discussion, attention to what students require to succeed in high stakes examinations, thoughtful use of…

  3. Identifying the optimal segmentors for mass classification in mammograms

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tomuro, Noriko; Furst, Jacob; Raicu, Daniela S.

    2015-03-01

    In this paper, we present the results of our investigation on identifying the optimal segmentor(s) from an ensemble of weak segmentors, used in a Computer-Aided Diagnosis (CADx) system which classifies suspicious masses in mammograms as benign or malignant. This is an extension of our previous work, where we used various parameter settings of image enhancement techniques to each suspicious mass (region of interest (ROI)) to obtain several enhanced images, then applied segmentation to each image to obtain several contours of a given mass. Each segmentation in this ensemble is essentially a "weak segmentor" because no single segmentation can produce the optimal result for all images. Then after shape features are computed from the segmented contours, the final classification model was built using logistic regression. The work in this paper focuses on identifying the optimal segmentor(s) from an ensemble mix of weak segmentors. For our purpose, optimal segmentors are those in the ensemble mix which contribute the most to the overall classification rather than the ones that produced high precision segmentation. To measure the segmentors' contribution, we examined weights on the features in the derived logistic regression model and computed the average feature weight for each segmentor. The result showed that, while in general the segmentors with higher segmentation success rates had higher feature weights, some segmentors with lower segmentation rates had high classification feature weights as well.

  4. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.

    PubMed

    Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G

    2017-11-01

    Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV 1 -MTV 2 , MTV 1 -GBSV, MTV 2 -GBSV; gray-levels: 64-32, 64-128, and 64-256; reconstruction algorithms: OSEM-FORE-OSEM, OSEM-FOREFBP, and OSEM-3DRP). We used |d¯| as a measure of radiomic feature reproducibility level, where any feature scored |d¯| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland-Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High- ±1% ≤ U/LRL ≤ ±30%; Intermediate- ±30% < U/LRL ≤ ±45%; Low- ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic feature reproducibility among segmentation pair MTV 1 -GBSV than MTV 2 -GBSV, gray-level pairs of 64-32 and 64-128 than 64-256, and reconstruction algorithm pairs of OSEM-FOREIR and OSEM-FOREFBP than OSEM-3DRP. Although the choice of cervical tumor segmentation method, gray-level value, and reconstruction algorithm may affect radiomic features, some features were characterized by high reproducibility through all testing parameters. The number of radiomic features that showed insensitivity to variations in segmentation methods, gray-level discretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respectively. These results suggest that a careful analysis of the effects of these parameters is essential prior to any radiomics clinical application. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  6. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    NASA Astrophysics Data System (ADS)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  7. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    PubMed Central

    Wang, Changjian; Liu, Xiaohui; Jin, Shiyao

    2018-01-01

    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227

  8. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  9. Factorization-based texture segmentation

    DOE PAGES

    Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.

    2015-06-17

    This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less

  10. Correction of Line Interleaving Displacement in Frame Captured Aerial Video Imagery

    Treesearch

    B. Cooke; A. Saucier

    1995-01-01

    Scientists with the USDA Forest Service are currently assessing the usefulness of aerial video imagery for various purposes including midcycle inventory updates. The potential of video image data for these purposes may be compromised by scan line interleaving displacement problems. Interleaving displacement problems cause features in video raster datasets to have...

  11. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2004-12-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  12. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2005-01-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  13. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  14. Biometric recognition via fixation density maps

    NASA Astrophysics Data System (ADS)

    Rigas, Ioannis; Komogortsev, Oleg V.

    2014-05-01

    This work introduces and evaluates a novel eye movement-driven biometric approach that employs eye fixation density maps for person identification. The proposed feature offers a dynamic representation of the biometric identity, storing rich information regarding the behavioral and physical eye movement characteristics of the individuals. The innate ability of fixation density maps to capture the spatial layout of the eye movements in conjunction with their probabilistic nature makes them a particularly suitable option as an eye movement biometrical trait in cases when free-viewing stimuli is presented. In order to demonstrate the effectiveness of the proposed approach, the method is evaluated on three different datasets containing a wide gamut of stimuli types, such as static images, video and text segments. The obtained results indicate a minimum EER (Equal Error Rate) of 18.3 %, revealing the perspectives on the utilization of fixation density maps as an enhancing biometrical cue during identification scenarios in dynamic visual environments.

  15. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  16. Real-Life Stories About Addiction Struggles | NIH MedlinePlus the Magazine

    MedlinePlus

    ... NIH CLICK IMAGE TO PLAY THE VIDEO NIHSeniorHealth Videos Offer Real-Life Stories About Addiction Struggles—and ... the National Institute on Aging, feature free, short videos for the public that complement the information in ...

  17. Robust vehicle detection in different weather conditions: Using MIPM

    PubMed Central

    Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664

  18. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  19. Change Detection in Uav Video Mosaics Combining a Feature Based Approach and Extended Image Differencing

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang

    2016-06-01

    Change detection is an important task when using unmanned aerial vehicles (UAV) for video surveillance. We address changes of short time scale using observations in time distances of a few hours. Each observation (previous and current) is a short video sequence acquired by UAV in near-Nadir view. Relevant changes are, e.g., recently parked or moved vehicles. Examples for non-relevant changes are parallaxes caused by 3D structures of the scene, shadow and illumination changes, and compression or transmission artifacts. In this paper we present (1) a new feature based approach to change detection, (2) a combination with extended image differencing (Saur et al., 2014), and (3) the application to video sequences using temporal filtering. In the feature based approach, information about local image features, e.g., corners, is extracted in both images. The label "new object" is generated at image points, where features occur in the current image and no or weaker features are present in the previous image. The label "vanished object" corresponds to missing or weaker features in the current image and present features in the previous image. This leads to two "directed" change masks and differs from image differencing where only one "undirected" change mask is extracted which combines both label types to the single label "changed object". The combination of both algorithms is performed by merging the change masks of both approaches. A color mask showing the different contributions is used for visual inspection by a human image interpreter.

  20. "Harder and Harder"? Is Mainstream Pornography Becoming Increasingly Violent and Do Viewers Prefer Violent Content?

    PubMed

    Shor, Eran; Seida, Kimberly

    2018-04-18

    It is a common notion among many scholars and pundits that the pornography industry becomes "harder and harder" with every passing year. Some have suggested that porn viewers, who are mostly men, become desensitized to "soft" pornography, and producers are happy to generate videos that are more hard core, resulting in a growing demand for and supply of violent and degrading acts against women in mainstream pornographic videos. We examined this accepted wisdom by utilizing a sample of 269 popular videos uploaded to PornHub over the past decade. More specifically, we tested two related claims: (1) aggressive content in videos is on the rise and (2) viewers prefer such content, reflected in both the number of views and the rankings for videos containing aggression. Our results offer no support for these contentions. First, we did not find any consistent uptick in aggressive content over the past decade; in fact, the average video today contains shorter segments showing aggression. Second, videos containing aggressive acts are both less likely to receive views and less likely to be ranked favorably by viewers, who prefer videos where women clearly perform pleasure.

  1. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    NASA Astrophysics Data System (ADS)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus on presenting what they're passionate about, not get bogged down by basic groundwork. Vlogs and short video bios showcase the enthusiasm and personality of the scientists, an important ingredient in crafting compelling videos. Featured scientists become better communicators, and learn to bring their research to life. When viewers see that genuine wonder, they can be motivated to ask questions and pursue more information about the topic, broadening community participation. The website interface opens the door to audience discussion. Digital media is a community builder, an inclusive tool that lets people continents-apart engage with compelling stories and then interact. Internet videos have become a means of supplementing face-to-face education; video reaches people, it's informal self-education from the comfort of one's own computer screen. FS uses videos and social media as part of an education outreach effort directed at lifelong learners. We feature not only scientists, but also teachers who've gone into the field to add to their own science knowledge, and to bring back new lessons for their students. Students who are exposed to FS videos see science in action in the professional world, which might inspire them in a STEM academic and career path, encouraging the next generation of researchers, as well as scientific and environmental literacy.

  2. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  3. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  4. Video-Based Grocery Shopping Intervention Effect on Purchasing Behaviors Among Latina Shoppers.

    PubMed

    Amaro, Hortensia; Cortés, Dharma E; Garcia, Samantha; Duan, Lei; Black, David S

    2017-05-01

    To compare changes in food-purchasing knowledge, self-efficacy, and behavior after viewing nutrition education videos among Los Angeles, California Latinas responsible for household grocery shopping. From February to May 2015, a convenience sample of 113 Latinas watched 1 video (El Carrito Saludable) featuring MyPlate guidelines applied to grocery shopping (1-video intervention) and another convenience sample of 105 Latinas watched 2 videos (El Carrito Saludable and Ser Consciente), the latter featuring mindfulness to support attention and overcome distractions while grocery shopping (2-video intervention). We administered questionnaires before and after intervention. A preselected sample in each intervention condition (n = 72) completed questionnaires at 2-months after intervention and provided grocery receipts (before and 2-months after intervention). Knowledge improved in both intervention groups (P < .001). The 2-video group improved more in self-efficacy and use of a shopping list (both P < .05) and purchased more healthy foods (d = 0.60; P < .05) at 2 months than did the 1-video group. Culturally tailored videos that model food-purchasing behavior and mindfulness show promise for improving the quality of foods that Latinas bring into the home.

  5. Video-Based Grocery Shopping Intervention Effect on Purchasing Behaviors Among Latina Shoppers

    PubMed Central

    Cortés, Dharma E.; Garcia, Samantha; Duan, Lei; Black, David S.

    2017-01-01

    Objectives. To compare changes in food-purchasing knowledge, self-efficacy, and behavior after viewing nutrition education videos among Los Angeles, California Latinas responsible for household grocery shopping. Methods. From February to May 2015, a convenience sample of 113 Latinas watched 1 video (El Carrito Saludable) featuring MyPlate guidelines applied to grocery shopping (1-video intervention) and another convenience sample of 105 Latinas watched 2 videos (El Carrito Saludable and Ser Consciente), the latter featuring mindfulness to support attention and overcome distractions while grocery shopping (2-video intervention). We administered questionnaires before and after intervention. A preselected sample in each intervention condition (n = 72) completed questionnaires at 2-months after intervention and provided grocery receipts (before and 2-months after intervention). Results. Knowledge improved in both intervention groups (P < .001). The 2-video group improved more in self-efficacy and use of a shopping list (both P < .05) and purchased more healthy foods (d = 0.60; P < .05) at 2 months than did the 1-video group. Conclusions. Culturally tailored videos that model food-purchasing behavior and mindfulness show promise for improving the quality of foods that Latinas bring into the home. PMID:28323473

  6. Automated assessment of levodopa-induced dyskinesia: Evaluating the responsiveness of video-based features.

    PubMed

    Li, Michael H; Mestre, Tiago A; Fox, Susan H; Taati, Babak

    2018-05-05

    Technological solutions for quantifying Parkinson's disease (PD) symptoms may provide an objective means to track response to treatment, including side effects such as levodopa-induced dyskinesia. Vision-based systems are advantageous as they do not require physical contact with the body and have minimal instrumentation compared to wearables. We have developed a vision-based system to quantify a change in dyskinesia as reported by patients using 2D videos of clinical assessments during acute levodopa infusions. Nine participants with PD completed a total of 16 levodopa infusions, where they were asked to report important changes in dyskinesia (i.e. onset and remission). Participants were simultaneously rated using the UDysRS Part III (from video recordings analyzed post-hoc). Body joint positions and movements were tracked using a state-of-the-art deep learning pose estimation algorithm applied to the videos. 416 features (e.g. kinematics, frequency distribution) were extracted to characterize movements. The sensitivity and specificity of each feature to patient-reported changes in dyskinesia severity was computed and compared with physician-rated results. Features achieved similar or superior performance to the UDysRS for detecting the onset and remission of dyskinesia. The best AUC for detecting onset of dyskinesia was 0.822 and for remission of dyskinesia was 0.958, compared to 0.826 and 0.802 for the UDysRS. Video-based features may provide an objective means of quantifying the severity of levodopa-induced dyskinesia, and have responsiveness as good or better than the clinically-rated UDysRS. The results demonstrate encouraging evidence for future integration of video-based technology into clinical research and eventually clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, D; Zhang, L; Fave, X

    Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Featuremore » values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). This suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.« less

  8. Indexing and retrieval of MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.

    1998-04-01

    To keep pace with the increased popularity of digital video as an archival medium, the development of techniques for fast and efficient analysis of ideo streams is essential. In particular, solutions to the problems of storing, indexing, browsing, and retrieving video data from large multimedia databases are necessary to a low access to these collections. Given that video is often stored efficiently in a compressed format, the costly overhead of decompression can be reduced by analyzing the compressed representation directly. In earlier work, we presented compressed domain parsing techniques which identified shots, subshots, and scenes. In this article, we present efficient key frame selection, feature extraction, indexing, and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame type independent representation which normalizes spatial and temporal features including frame type, frame size, macroblock encoding, and motion compensation vectors. Features for indexing are derived directly from this representation and mapped to a low- dimensional space where they can be accessed using standard database techniques. Spatial information is used as primary index into the database and temporal information is used to rank retrieved clips and enhance the robustness of the system. The techniques presented enable efficient indexing, querying, and retrieval of compressed video as demonstrated by our system which typically takes a fraction of a second to retrieve similar video scenes from a database, with over 95 percent recall.

  9. Influence of nuclei segmentation on breast cancer malignancy classification

    NASA Astrophysics Data System (ADS)

    Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam

    2009-02-01

    Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.

  10. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    PubMed

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  11. Palliative Care: Video Tells a Mother's Story of Caring Support

    MedlinePlus

    ... page please turn JavaScript on. Feature: Palliative Care Video Tells a Mother's Story of Caring Support Past Issues / Spring 2014 Table of Contents YouTube embedded video: http://www.youtube-nocookie.com/embed/-hOBYFS_Z68 ...

  12. Identification of GHB and morphine in hair in a case of drug-facilitated sexual assault.

    PubMed

    Rossi, Riccardo; Lancia, Massimo; Gambelunghe, Cristiana; Oliva, Antonio; Fucci, Nadia

    2009-04-15

    The authors present the case of a 24-year-old girl who was sexually assaulted after administration of gamma-hydroxybutyrate (GHB) and morphine. She had been living in an international college for foreign students for about 1 year and often complained of a general unhealthy feeling in the morning. At the end of the college period she returned to Italy and received at home some video clips shot by a mobile phone camera. In these videos she was having sex with a boy she met when she was studying abroad. Toxicological analysis of her hair was done: the hair was 20-cm long. A 2/3-cm segmentation of all the length of the hair was performed. Morphine and GHB were detected in hair segments related to the period of time she was abroad. The analyses of hair segments were performed by gas chromatography/mass spectrometry (GC/MS) and the concentration of morphine and GHB were calculated. A higher value of GHB was found in the period associated with the possible criminal activity and was also associated with the presence of morphine in the same period.

  13. Kinematics of the field hockey penalty corner push-in.

    PubMed

    Kerr, Rebecca; Ness, Kevin

    2006-01-01

    The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.

  14. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  15. Real-time fluorescence target/background (T/B) ratio calculation in multimodal endoscopy for detecting GI tract cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Yang; Gong, Yuanzheng; Wang, Thomas D.; Seibel, Eric J.

    2017-02-01

    Multimodal endoscopy, with fluorescence-labeled probes binding to overexpressed molecular targets, is a promising technology to visualize early-stage cancer. T/B ratio is the quantitative analysis used to correlate fluorescence regions to cancer. Currently, T/B ratio calculation is post-processing and does not provide real-time feedback to the endoscopist. To achieve real-time computer assisted diagnosis (CAD), we establish image processing protocols for calculating T/B ratio and locating high-risk fluorescence regions for guiding biopsy and therapy in Barrett's esophagus (BE) patients. Methods: Chan-Vese algorithm, an active contour model, is used to segment high-risk regions in fluorescence videos. A semi-implicit gradient descent method was applied to minimize the energy function of this algorithm and evolve the segmentation. The surrounding background was then identified using morphology operation. The average T/B ratio was computed and regions of interest were highlighted based on user-selected thresholding. Evaluation was conducted on 50 fluorescence videos acquired from clinical video recordings using a custom multimodal endoscope. Results: With a processing speed of 2 fps on a laptop computer, we obtained accurate segmentation of high-risk regions examined by experts. For each case, the clinical user could optimize target boundary by changing the penalty on area inside the contour. Conclusion: Automatic and real-time procedure of calculating T/B ratio and identifying high-risk regions of early esophageal cancer was developed. Future work will increase processing speed to <5 fps, refine the clinical interface, and apply to additional GI cancers and fluorescence peptides.

  16. Microsurgical Clipping of an Unruptured Carotid Cave Aneurysm: 3-Dimensional Operative Video.

    PubMed

    Tabani, Halima; Yousef, Sonia; Burkhardt, Jan-Karl; Gandhi, Sirin; Benet, Arnau; Lawton, Michael T

    2017-08-01

    Most aneurysms originating from the clinoidal segment of the internal carotid artery (ICA) are nowadays managed conservatively, treated endovascularly with coiling (with or without stenting) or flow diverters. However, microsurgical clip occlusion remains an alternative. This video demonstrates clip occlusion of an unruptured right carotid cave aneurysm measuring 7 mm in a 39-year-old woman. The patient opted for surgery because of concerns about prolonged antiplatelet use associated with endovascular therapy. After patient consent, a standard pterional craniotomy was performed followed by extradural anterior clinoidectomy. After dural opening and sylvian fissure split, a clinoidal flap was opened to enter the extradural space around the clinoidal segment. The dural ring was dissected circumferentially, freeing the medial wall of the ICA down to the sellar region and mobilizing the ICA out of its canal of the clinoidal segment. With the aneurysm neck in view, the aneurysm was clipped with a 45° angled fenestrated clip over the ICA. Indocyanine green angiography confirmed no further filling of the aneurysm and patency of the ICA. Complete aneurysm occlusion was confirmed with postoperative angiography, and the patient had no neurologic deficits (Video 1). This case demonstrates the importance of anterior clinoidectomy and thorough distal dural ring dissection for effective clipping of carotid cave aneurysms. Control of venous bleeding from the cavernous sinus with fibrin glue injection simplifies the dissection, which should minimize manipulation of the optic nerve. Knowledge of this anatomy and proficiency with these techniques is important in an era of declining open aneurysm cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  18. Intensity Accents in French 2 Year Olds' Speech.

    ERIC Educational Resources Information Center

    Allen, George D.

    The acoustic features and functions of accentuation in French are discussed, and features of accentuation in the speech of French 2-year-olds are explored. The four major acoustic features used to signal accentual distinctions are fundamental frequency of voicing, duration of segments and syllables, intensity of segments and syllables, and…

  19. Video-based face recognition via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming

    2017-06-01

    Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.

  20. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.

    2018-05-01

    In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.

  1. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Theotokas, Ioannis; Zoumpoulis, Pavlos; Hazle, John D; Kagadis, George C

    2015-07-01

    Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.

  2. Videos for Teachers: Successful Teaching Strategies in Middle and High School Classrooms. [CD-ROM].

    ERIC Educational Resources Information Center

    Teachers Network, New York, NY.

    This CD-ROM presents six videos that feature veteran middle and high school teachers in action in their classrooms. Each video offers links to supplemental education resources, including innovative lesson plans. The six videos are: "Monsters and Myths" (a humanities unit for middle school students); "The Bleeding Edge" (a thematic…

  3. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  4. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  5. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.

    PubMed

    Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger

    2016-05-01

    We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.

  6. Narrowcasting.

    ERIC Educational Resources Information Center

    Lawrence, Michael A.

    1985-01-01

    "Narrowcasting" is information and entertainment aimed at specific population segments, including previously ignored minorities. Cable, satellite, videodisc, low-power television, and video cassette recorders may all help keep minorities from being "information poor." These elements, however, are expensive, and study is needed to understand how…

  7. Assessment of YouTube videos as a source of information on medication use in pregnancy.

    PubMed

    Hansen, Craig; Interrante, Julia D; Ailes, Elizabeth C; Frey, Meghan T; Broussard, Cheryl S; Godoshian, Valerie J; Lewis, Courtney; Polen, Kara N D; Garcia, Amanda P; Gilboa, Suzanne M

    2016-01-01

    When making decisions about medication use in pregnancy, women consult many information sources, including the Internet. The aim of this study was to assess the content of publicly accessible YouTube videos that discuss medication use in pregnancy. Using 2023 distinct combinations of search terms related to medications and pregnancy, we extracted metadata from YouTube videos using a YouTube video Application Programming Interface. Relevant videos were defined as those with a medication search term and a pregnancy-related search term in either the video title or description. We viewed relevant videos and abstracted content from each video into a database. We documented whether videos implied each medication to be "safe" or "unsafe" in pregnancy and compared that assessment with the medication's Teratogen Information System (TERIS) rating. After viewing 651 videos, 314 videos with information about medication use in pregnancy were available for the final analyses. The majority of videos were from law firms (67%), television segments (10%), or physicians (8%). Selective serotonin reuptake inhibitors (SSRIs) were the most common medication class named (225 videos, 72%), and 88% of videos about SSRIs indicated that they were unsafe for use in pregnancy. However, the TERIS ratings for medication products in this class range from "unlikely" to "minimal" teratogenic risk. For the majority of medications, current YouTube video content does not adequately reflect what is known about the safety of their use in pregnancy and should be interpreted cautiously. However, YouTube could serve as a platform for communicating evidence-based medication safety information. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Human Factors Design Guidelines for the Army Tactical Command and Control System (ATTCS) Soldier-Machine Interface. Version 2.0

    DTIC Science & Technology

    1992-05-01

    especially true for friend-enemy or danger-safe designations. Dots, dashes, shapes, and video effects are recommended. Care must be taken to avoid visual...MAY 92 10.3 Screen Design - Format 10.3.1.4 Use of Contrasting Features Use contrasting features such as inverse video and color to call attention to...captions. Do not use reverse video or highlighting for labels. 13.2.3.2 Formatting For single fields, locate the caption to the left of the entry fields

  9. Automated video-based assessment of surgical skills for training and evaluation in medical schools.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Ploetz, Thomas; Clements, Mark A; Essa, Irfan

    2016-09-01

    Routine evaluation of basic surgical skills in medical schools requires considerable time and effort from supervising faculty. For each surgical trainee, a supervisor has to observe the trainees in person. Alternatively, supervisors may use training videos, which reduces some of the logistical overhead. All these approaches however are still incredibly time consuming and involve human bias. In this paper, we present an automated system for surgical skills assessment by analyzing video data of surgical activities. We compare different techniques for video-based surgical skill evaluation. We use techniques that capture the motion information at a coarser granularity using symbols or words, extract motion dynamics using textural patterns in a frame kernel matrix, and analyze fine-grained motion information using frequency analysis. We were successfully able to classify surgeons into different skill levels with high accuracy. Our results indicate that fine-grained analysis of motion dynamics via frequency analysis is most effective in capturing the skill relevant information in surgical videos. Our evaluations show that frequency features perform better than motion texture features, which in-turn perform better than symbol-/word-based features. Put succinctly, skill classification accuracy is positively correlated with motion granularity as demonstrated by our results on two challenging video datasets.

  10. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  11. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  12. Misleading Claims About Tobacco Products in YouTube Videos: Experimental Effects of Misinformation on Unhealthy Attitudes.

    PubMed

    Albarracin, Dolores; Romer, Daniel; Jones, Christopher; Hall Jamieson, Kathleen; Jamieson, Patrick

    2018-06-29

    Recent content analyses of YouTube postings reveal a proliferation of user generated videos with misleading statements about the health consequences of various types of nontraditional tobacco use (eg, electronic cigarettes; e-cigarettes). This research was aimed at obtaining evidence about the potential effects of YouTube postings about tobacco products on viewers' attitudes toward these products. A sample of young adults recruited online (N=350) viewed one of four highly viewed YouTube videos containing misleading health statements about chewing tobacco, e-cigarettes, hookahs, and pipe smoking, as well as a control YouTube video unrelated to tobacco products. The videos about e-cigarettes and hookahs led to more positive attitudes toward the featured products than did control videos. However, these effects did not fully translate into attitudes toward combustive cigarette smoking, although the pipe video led to more positive attitudes toward combustive smoking than did the chewing and the hookah videos, and the e-cigarette video led to more positive attitudes toward combustive cigarette smoking than did the chewing video. This research revealed young people's reactions to misleading claims about tobacco products featured in popular YouTube videos. Policy implications are discussed. ©Dolores Albarracin, Daniel Romer, Christopher Jones, Kathleen Hall Jamieson, Patrick Jamieson. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.06.2018.

  13. Shuttle Lesson Learned - Toxicology

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.

  14. Automatic segmentation of psoriasis lesions

    NASA Astrophysics Data System (ADS)

    Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang

    2014-10-01

    The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.

  15. Impact of e-AV Biology Website for Learning about Renewable Energy

    ERIC Educational Resources Information Center

    Nugraini, Siti Hadiati; Choo, Koo Ah; Hin, Hew Soon; Hoon, Teoh Sian

    2013-01-01

    This paper considers the design and development of a Website for Biology in senior high schools in Indonesia. The teaching media, namely e-AV Biology, was developed with the main features of video lessons and other features in supporting the students' learning process. Some video lessons describe the production process of Biofuel or Renewable…

  16. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  17. Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.

    PubMed

    Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei

    2015-01-01

    Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.

  18. Motion video analysis using planar parallax

    NASA Astrophysics Data System (ADS)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  19. Development of a video-delivered relaxation treatment of late-life anxiety for veterans.

    PubMed

    Gould, Christine E; Zapata, Aimee Marie L; Bruce, Janine; Bereknyei Merrell, Sylvia; Wetherell, Julie Loebach; O'Hara, Ruth; Kuhn, Eric; Goldstein, Mary K; Beaudreau, Sherry A

    2017-10-01

    Behavioral treatments reduce anxiety, yet many older adults may not have access to these efficacious treatments. To address this need, we developed and evaluated the feasibility and acceptability of a video-delivered anxiety treatment for older Veterans. This treatment program, BREATHE (Breathing, Relaxation, and Education for Anxiety Treatment in the Home Environment), combines psychoeducation, diaphragmatic breathing, and progressive muscle relaxation training with engagement in activities. A mixed methods concurrent study design was used to examine the clarity of the treatment videos. We conducted semi-structured interviews with 20 Veterans (M age = 69.5, SD = 7.3 years; 55% White, Non-Hispanic) and collected ratings of video clarity. Quantitative ratings revealed that 100% of participants generally or definitely could follow breathing and relaxation video instructions. Qualitative findings, however, demonstrated more variability in the extent to which each video segment was clear. Participants identified both immediate benefits and motivation challenges associated with a video-delivered treatment. Participants suggested that some patients may need encouragement, whereas others need face-to-face therapy. Quantitative ratings of video clarity and qualitative findings highlight the feasibility of a video-delivered treatment for older Veterans with anxiety. Our findings demonstrate the importance of ensuring patients can follow instructions provided in self-directed treatments and the role that an iterative testing process has in addressing these issues. Next steps include testing the treatment videos with older Veterans with anxiety disorders.

  20. Videos Bridging Asia and Africa: Overcoming Cultural and Institutional Barriers in Technology-Mediated Rural Learning

    ERIC Educational Resources Information Center

    Van Mele, Paul; Wanvoeke, Jonas; Akakpo, Cyriaque; Dacko, Rosaline Maiga; Ceesay, Mustapha; Beavogui, Louis; Soumah, Malick; Anyang, Robert

    2010-01-01

    Will African farmers watch and learn from videos featuring farmers in Bangladesh? Learning videos on rice seed management were made with rural women in Bangladesh. By using a new approach, called zooming-in, zooming-out, the videos were of regional relevance and locally appropriate. When the Africa Rice Center (AfricaRice) introduced them to…

  1. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  2. Real-time UAV trajectory generation using feature points matching between video image sequences

    NASA Astrophysics Data System (ADS)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  3. Social media for message testing: a multilevel approach to linking favorable viewer responses with message, producer, and viewer influence on YouTube.

    PubMed

    Paek, Hye-Jin; Hove, Thomas; Jeon, Jehoon

    2013-01-01

    To explore the feasibility of social media for message testing, this study connects favorable viewer responses to antismoking videos on YouTube with the videos' message characteristics (message sensation value [MSV] and appeals), producer types, and viewer influences (viewer rating and number of viewers). Through multilevel modeling, a content analysis of 7,561 viewer comments on antismoking videos is linked with a content analysis of 87 antismoking videos. Based on a cognitive response approach, viewer comments are classified and coded as message-oriented thought, video feature-relevant thought, and audience-generated thought. The three mixed logit models indicate that videos with a greater number of viewers consistently increased the odds of favorable viewer responses, while those presenting humor appeals decreased the odds of favorable message-oriented and audience-generated thoughts. Some significant interaction effects show that videos produced by laypeople may hinder favorable viewer responses, while a greater number of viewer comments can work jointly with videos presenting threat appeals to predict favorable viewer responses. Also, for a more accurate understanding of audience responses to the messages, nuance cues should be considered together with message features and viewer influences.

  4. "Can you see me now?" An objective metric for predicting intelligibility of compressed American Sign Language video

    NASA Astrophysics Data System (ADS)

    Ciaramello, Francis M.; Hemami, Sheila S.

    2007-02-01

    For members of the Deaf Community in the United States, current communication tools include TTY/TTD services, video relay services, and text-based communication. With the growth of cellular technology, mobile sign language conversations are becoming a possibility. Proper coding techniques must be employed to compress American Sign Language (ASL) video for low-rate transmission while maintaining the quality of the conversation. In order to evaluate these techniques, an appropriate quality metric is needed. This paper demonstrates that traditional video quality metrics, such as PSNR, fail to predict subjective intelligibility scores. By considering the unique structure of ASL video, an appropriate objective metric is developed. Face and hand segmentation is performed using skin-color detection techniques. The distortions in the face and hand regions are optimally weighted and pooled across all frames to create an objective intelligibility score for a distorted sequence. The objective intelligibility metric performs significantly better than PSNR in terms of correlation with subjective responses.

  5. A Method of Sharing Tacit Knowledge by a Bulletin Board Link to Video Scene and an Evaluation in the Field of Nursing Skill

    NASA Astrophysics Data System (ADS)

    Shimada, Satoshi; Azuma, Shouzou; Teranaka, Sayaka; Kojima, Akira; Majima, Yukie; Maekawa, Yasuko

    We developed the system that knowledge could be discovered and shared cooperatively in the organization based on the SECI model of knowledge management. This system realized three processes by the following method. (1)A video that expressed skill is segmented into a number of scenes according to its contents. Tacit knowledge is shared in each scene. (2)Tacit knowledge is extracted by bulletin board linked to each scene. (3)Knowledge is acquired by repeatedly viewing the video scene with the comment that shows the technical content to be practiced. We conducted experiments that the system was used by nurses working for general hospitals. Experimental results show that the nursing practical knack is able to be collected by utilizing bulletin board linked to video scene. Results of this study confirmed the possibility of expressing the tacit knowledge of nurses' empirical nursing skills sensitively with a clue of video images.

  6. Semantic Segmentation and Difference Extraction via Time Series Aerial Video Camera and its Application

    NASA Astrophysics Data System (ADS)

    Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.

    2015-04-01

    Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.

  7. An intelligent crowdsourcing system for forensic analysis of surveillance video

    NASA Astrophysics Data System (ADS)

    Tahboub, Khalid; Gadgil, Neeraj; Ribera, Javier; Delgado, Blanca; Delp, Edward J.

    2015-03-01

    Video surveillance systems are of a great value for public safety. With an exponential increase in the number of cameras, videos obtained from surveillance systems are often archived for forensic purposes. Many automatic methods have been proposed to do video analytics such as anomaly detection and human activity recognition. However, such methods face significant challenges due to object occlusions, shadows and scene illumination changes. In recent years, crowdsourcing has become an effective tool that utilizes human intelligence to perform tasks that are challenging for machines. In this paper, we present an intelligent crowdsourcing system for forensic analysis of surveillance video that includes the video recorded as a part of search and rescue missions and large-scale investigation tasks. We describe a method to enhance crowdsourcing by incorporating human detection, re-identification and tracking. At the core of our system, we use a hierarchal pyramid model to distinguish the crowd members based on their ability, experience and performance record. Our proposed system operates in an autonomous fashion and produces a final output of the crowdsourcing analysis consisting of a set of video segments detailing the events of interest as one storyline.

  8. Quality optimization of H.264/AVC video transmission over noisy environments using a sparse regression framework

    NASA Astrophysics Data System (ADS)

    Pandremmenou, K.; Tziortziotis, N.; Paluri, S.; Zhang, W.; Blekas, K.; Kondi, L. P.; Kumar, S.

    2015-03-01

    We propose the use of the Least Absolute Shrinkage and Selection Operator (LASSO) regression method in order to predict the Cumulative Mean Squared Error (CMSE), incurred by the loss of individual slices in video transmission. We extract a number of quality-relevant features from the H.264/AVC video sequences, which are given as input to the LASSO. This method has the benefit of not only keeping a subset of the features that have the strongest effects towards video quality, but also produces accurate CMSE predictions. Particularly, we study the LASSO regression through two different architectures; the Global LASSO (G.LASSO) and Local LASSO (L.LASSO). In G.LASSO, a single regression model is trained for all slice types together, while in L.LASSO, motivated by the fact that the values for some features are closely dependent on the considered slice type, each slice type has its own regression model, in an e ort to improve LASSO's prediction capability. Based on the predicted CMSE values, we group the video slices into four priority classes. Additionally, we consider a video transmission scenario over a noisy channel, where Unequal Error Protection (UEP) is applied to all prioritized slices. The provided results demonstrate the efficiency of LASSO in estimating CMSE with high accuracy, using only a few features. les that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a le system, user interface and applications through an web architecture.

  9. A new Hessian - based approach for segmentation of CT porous media images

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Kirill, Gerke

    2017-04-01

    Hessian matrix based methods are widely used in image analysis for features detection, e.g., detection of blobs, corners and edges. Hessian matrix of the imageis the matrix of 2nd order derivate around selected voxel. Most significant features give highest values of Hessian transform and lowest values are located at smoother parts of the image. Majority of conventional segmentation techniques can segment out cracks, fractures and other inhomogeneities in soils and rocks only if the rest of the image is significantly "oversigmented". To avoid this disadvantage, we propose to enhance greyscale values of voxels belonging to such specific inhomogeneities on X-ray microtomography scans. We have developed and implemented in code a two-step approach to attack the aforementioned problem. During the first step we apply a filter that enhances the image and makes outstanding features more sharply defined. During the second step we apply Hessian filter based segmentation. The values of voxels on the image to be segmented are calculated in conjunction with the values of other voxels within prescribed region. Contribution from each voxel within such region is computed by weighting according to the local Hessian matrix value. We call this approach as Hessian windowed segmentation. Hessian windowed segmentation has been tested on different porous media X-ray microtomography images, including soil, sandstones, carbonates and shales. We also compared this new method against others widely used methods such as kriging, Markov random field, converging active contours and region grow. We show that our approach is more accurate in regions containing special features such as small cracks, fractures, elongated inhomogeneities and other features with low contrast related to the background solid phase. Moreover, Hessian windowed segmentation outperforms some of these methods in computational efficiency. We further test our segmentation technique by computing permeability of segmented images and comparing them against laboratory based measurements. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).

  10. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398

  11. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Gao, Yaozong; Shi, Feng

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less

  12. Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features.

    PubMed

    Lin, Lung-Chang; Chen, Sharon Chia-Ju; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng; Ouyang, Chen-Sen

    2017-03-01

    The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.

  13. Effective intervention or child's play? A review of video games for diabetes education.

    PubMed

    DeShazo, Jonathan; Harris, Lynne; Pratt, Wanda

    2010-10-01

    The purpose of this study is (1) to identify diabetes education video games and pilot studies in the literature, (2) to review themes in diabetes video game design and evaluation, and (3) to evaluate the potential role of educational video games in diabetes self-management education. Studies were systematically identified for inclusion from Medline, Web of Science, CINAHL, EMBASE, Psychinfo, IEEE Xplore, and ACM Digital Library. Features of each video game intervention were reviewed and coded based on an existing taxonomy of diabetes interventions framework. Nine studies featuring 11 video games for diabetes care were identified. Video games for diabetes have typically targeted children with type 1 diabetes mellitus and used situation problem-solving methods to teach diet, exercise, self-monitored blood glucose, and medication adherence. Evaluations have shown positive outcomes in knowledge, disease management adherence, and clinical outcomes. Video games for diabetes education show potential as effective educational interventions. Yet we found that improvements are needed in expanding the target audience, tailoring the intervention, and using theoretical frameworks. In the future, the reach and effectiveness of educational video games for diabetes education could be improved by expanding the target audience beyond juvenile type 1 diabetes mellitus, the use of tailoring, and increased use of theoretical frameworks.

  14. Examining the effect of task on viewing behavior in videos using saliency maps

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith A.; Heynderickx, Ingrid

    2012-03-01

    Research has shown that when viewing still images, people will look at these images in a different manner if instructed to evaluate their quality. They will tend to focus less on the main features of the image and, instead, scan the entire image area looking for clues for its level of quality. It is questionable, however, whether this finding can be extended to videos considering their dynamic nature. One can argue that when watching a video the viewer will always focus on the dynamically changing features of the video regardless of the given task. To test whether this is true, an experiment was conducted where half of the participants viewed videos with the task of quality evaluation while the other half were simply told to watch the videos as if they were watching a movie on TV or a video downloaded from the internet. The videos contained content which was degraded with compression artifacts over a wide range of quality. An eye tracking device was used to record the viewing behavior in both conditions. By comparing the behavior during each task, it was possible to observe a systematic difference in the viewing behavior which seemed to correlate to the quality of the videos.

  15. Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume

    2008-07-01

    The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.

  16. Compressed-domain video indexing techniques using DCT and motion vector information in MPEG video

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; Doermann, David S.; Lin, King-Ip; Faloutsos, Christos

    1997-01-01

    Development of various multimedia applications hinges on the availability of fast and efficient storage, browsing, indexing, and retrieval techniques. Given that video is typically stored efficiently in a compressed format, if we can analyze the compressed representation directly, we can avoid the costly overhead of decompressing and operating at the pixel level. Compressed domain parsing of video has been presented in earlier work where a video clip is divided into shots, subshots, and scenes. In this paper, we describe key frame selection, feature extraction, and indexing and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame-type independent representation of the various types of frames present in an MPEG video in which al frames can be considered equivalent. Features are derived from the available DCT, macroblock, and motion vector information and mapped to a low-dimensional space where they can be accessed with standard database techniques. The spatial information is used as primary index while the temporal information is used to enhance the robustness of the system during the retrieval process. The techniques presented enable fast archiving, indexing, and retrieval of video. Our operational prototype typically takes a fraction of a second to retrieve similar video scenes from our database, with over 95% success.

  17. Contact-free heart rate measurement using multiple video data

    NASA Astrophysics Data System (ADS)

    Hung, Pang-Chan; Lee, Kual-Zheng; Tsai, Luo-Wei

    2013-10-01

    In this paper, we propose a contact-free heart rate measurement method by analyzing sequential images of multiple video data. In the proposed method, skin-like pixels are firstly detected from multiple video data for extracting the color features. These color features are synchronized and analyzed by independent component analysis. A representative component is finally selected among these independent component candidates to measure the HR, which achieves under 2% deviation on average compared with a pulse oximeter in the controllable environment. The advantages of the proposed method include: 1) it uses low cost and high accessibility camera device; 2) it eases users' discomfort by utilizing contact-free measurement; and 3) it achieves the low error rate and the high stability by integrating multiple video data.

  18. Video attention deviation estimation using inter-frame visual saliency map analysis

    NASA Astrophysics Data System (ADS)

    Feng, Yunlong; Cheung, Gene; Le Callet, Patrick; Ji, Yusheng

    2012-01-01

    A viewer's visual attention during video playback is the matching of his eye gaze movement to the changing video content over time. If the gaze movement matches the video content (e.g., follow a rolling soccer ball), then the viewer keeps his visual attention. If the gaze location moves from one video object to another, then the viewer shifts his visual attention. A video that causes a viewer to shift his attention often is a "busy" video. Determination of which video content is busy is an important practical problem; a busy video is difficult for encoder to deploy region of interest (ROI)-based bit allocation, and hard for content provider to insert additional overlays like advertisements, making the video even busier. One way to determine the busyness of video content is to conduct eye gaze experiments with a sizable group of test subjects, but this is time-consuming and costineffective. In this paper, we propose an alternative method to determine the busyness of video-formally called video attention deviation (VAD): analyze the spatial visual saliency maps of the video frames across time. We first derive transition probabilities of a Markov model for eye gaze using saliency maps of a number of consecutive frames. We then compute steady state probability of the saccade state in the model-our estimate of VAD. We demonstrate that the computed steady state probability for saccade using saliency map analysis matches that computed using actual gaze traces for a range of videos with different degrees of busyness. Further, our analysis can also be used to segment video into shorter clips of different degrees of busyness by computing the Kullback-Leibler divergence using consecutive motion compensated saliency maps.

  19. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Individual differences in the processing of smoking-cessation video messages: An imaging genetics study.

    PubMed

    Shi, Zhenhao; Wang, An-Li; Aronowitz, Catherine A; Romer, Daniel; Langleben, Daniel D

    2017-09-01

    Studies testing the benefits of enriching smoking-cessation video ads with attention-grabbing sensory features have yielded variable results. Dopamine transporter gene (DAT1) has been implicated in attention deficits. We hypothesized that DAT1 polymorphism is partially responsible for this variability. Using functional magnetic resonance imaging, we examined brain responses to videos high or low in attention-grabbing features, indexed by "message sensation value" (MSV), in 53 smokers genotyped for DAT1. Compared to other smokers, 10/10 homozygotes showed greater neural response to High- vs. Low-MSV smoking-cessation videos in two a priori regions of interest: the right temporoparietal junction and the right ventrolateral prefrontal cortex. These regions are known to underlie stimulus-driven attentional processing. Exploratory analysis showed that the right temporoparietal response positively predicted follow-up smoking behavior indexed by urine cotinine. Our findings suggest that responses to attention-grabbing features in smoking-cessation messages is affected by the DAT1 genotype. Copyright © 2017. Published by Elsevier B.V.

  1. Analysis of environmental sounds

    NASA Astrophysics Data System (ADS)

    Lee, Keansub

    Environmental sound archives - casual recordings of people's daily life - are easily collected by MPS players or camcorders with low cost and high reliability, and shared in the web-sites. There are two kinds of user generated recordings we would like to be able to handle in this thesis: Continuous long-duration personal audio and Soundtracks of short consumer video clips. These environmental recordings contain a lot of useful information (semantic concepts) related with activity, location, occasion and content. As a consequence, the environment archives present many new opportunities for the automatic extraction of information that can be used in intelligent browsing systems. This thesis proposes systems for detecting these interesting concepts on a collection of these real-world recordings. The first system is to segment and label personal audio archives - continuous recordings of an individual's everyday experiences - into 'episodes' (relatively consistent acoustic situations lasting a few minutes or more) using the Bayesian Information Criterion and spectral clustering. The second system is for identifying regions of speech or music in the kinds of energetic and highly-variable noise present in this real-world sound. Motivated by psychoacoustic evidence that pitch is crucial in the perception and organization of sound, we develop a noise-robust pitch detection algorithm to locate speech or music-like regions. To avoid false alarms resulting from background noise with strong periodic components (such as air-conditioning), a new scheme is added in order to suppress these noises in the domain of autocorrelogram. In addition, the third system is to automatically detect a large set of interesting semantic concepts; which we chose for being both informative and useful to users, as well as being technically feasible. These 25 concepts are associated with people's activities, locations, occasions, objects, scenes and sounds, and are based on a large collection of consumer videos in conjunction with user studies. We model the soundtrack of each video, regardless of its original duration, as a fixed-sized clip-level summary feature. For each concept, an SVM-based classifier is trained according to three distance measures (Kullback-Leibler, Bhattacharyya, and Mahalanobis distance). Detecting the time of occurrence of a local object (for instance, a cheering sound) embedded in a longer soundtrack is useful and important for applications such as search and retrieval in consumer video archives. We finally present a Markov-model based clustering algorithm able to identify and segment consistent sets of temporal frames into regions associated with different ground-truth labels, and at the same time to exclude a set of uninformative frames shared in common from all clips. The labels are provided at the clip level, so this refinement of the time axis represents a variant of Multiple-Instance Learning (MIL). Quantitative evaluation shows that the performance of our proposed approaches tested on the 60h personal audio archives or 1900 YouTube video clips is significantly better than existing algorithms for detecting these useful concepts in real-world personal audio recordings.

  2. Physics and Video Analysis

    NASA Astrophysics Data System (ADS)

    Allain, Rhett

    2016-05-01

    We currently live in a world filled with videos. There are videos on YouTube, feature movies and even videos recorded with our own cameras and smartphones. These videos present an excellent opportunity to not only explore physical concepts, but also inspire others to investigate physics ideas. With video analysis, we can explore the fantasy world in science-fiction films. We can also look at online videos to determine if they are genuine or fake. Video analysis can be used in the introductory physics lab and it can even be used to explore the make-believe physics embedded in video games. This book covers the basic ideas behind video analysis along with the fundamental physics principles used in video analysis. The book also includes several examples of the unique situations in which video analysis can be used.

  3. Why don't end-of-life conversations go viral? A review of videos on YouTube.

    PubMed

    Mitchell, Imogen A; Schuster, Anne L R; Lynch, Thomas; Smith, Katherine Clegg; Bridges, John F P; Aslakson, Rebecca A

    2017-06-01

    To identify videos on YouTube concerning advance care planning (ACP) and synthesise existing video content and style elements. Informed by stakeholder engagement, two researchers searched YouTube for ACP videos using predefined search terms and snowballing techniques. Videos identified were reviewed and deemed ineligible for analysis if they: targeted healthcare professionals; contained irrelevant content; focused on viewers under the age of 18; were longer than 7 min in duration; received fewer than 150 views; were in a language other than English; or were a duplicate version. For each video, two investigators independently extracted general information as well as video content and stylistic characteristics. The YouTube search identified 23 100 videos with 213 retrieved for assessment and 42 meeting eligibility criteria. The majority of videos had been posted to YouTube since 2010 and produced by organisations in the USA (71%). Viewership ranged from 171 to 10 642. Most videos used a documentary style and featured healthcare providers (60%) rather than patients (19%) or families (45%). A minority of videos (29%) used upbeat or hopeful music. The videos frequently focused on completing legal medical documents (86%). None of the ACP videos on YouTube went viral and a relatively small number of them contained elements endorsed by stakeholders. In emphasising the completion of legal medical documents, videos may have failed to support more meaningful ACP. Further research is needed to understand the features of videos that will engage patients and the wider community with ACP and palliative and end-of-life care conversations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  5. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    PubMed

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  6. AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques.

    PubMed

    Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert

    2018-05-08

    In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.

  7. Using movement and intentions to understand human activity.

    PubMed

    Zacks, Jeffrey M; Kumar, Shawn; Abrams, Richard A; Mehta, Ritesh

    2009-08-01

    During perception, people segment continuous activity into discrete events. They do so in part by monitoring changes in features of an ongoing activity. Characterizing these features is important for theories of event perception and may be helpful for designing information systems. The three experiments reported here asked whether the body movements of an actor predict when viewers will perceive event boundaries. Body movements were recorded using a magnetic motion tracking system and compared with viewers' segmentation of his activity into events. Changes in movement features were strongly associated with segmentation. This was more true for fine-grained than for coarse-grained boundaries, and was strengthened when the stimulus displays were reduced from live-action movies to simplified animations. These results suggest that movement variables play an important role in the process of segmenting activity into meaningful events, and that the influence of movement on segmentation depends on the availability of other information sources.

  8. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  9. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  10. An integrated framework for detecting suspicious behaviors in video surveillance

    NASA Astrophysics Data System (ADS)

    Zin, Thi Thi; Tin, Pyke; Hama, Hiromitsu; Toriu, Takashi

    2014-03-01

    In this paper, we propose an integrated framework for detecting suspicious behaviors in video surveillance systems which are established in public places such as railway stations, airports, shopping malls and etc. Especially, people loitering in suspicion, unattended objects left behind and exchanging suspicious objects between persons are common security concerns in airports and other transit scenarios. These involve understanding scene/event, analyzing human movements, recognizing controllable objects, and observing the effect of the human movement on those objects. In the proposed framework, multiple background modeling technique, high level motion feature extraction method and embedded Markov chain models are integrated for detecting suspicious behaviors in real time video surveillance systems. Specifically, the proposed framework employs probability based multiple backgrounds modeling technique to detect moving objects. Then the velocity and distance measures are computed as the high level motion features of the interests. By using an integration of the computed features and the first passage time probabilities of the embedded Markov chain, the suspicious behaviors in video surveillance are analyzed for detecting loitering persons, objects left behind and human interactions such as fighting. The proposed framework has been tested by using standard public datasets and our own video surveillance scenarios.

  11. Cooperative Educational Project - The Southern Appalachians: A Changing World

    NASA Astrophysics Data System (ADS)

    Clark, S.; Back, J.; Tubiolo, A.; Romanaux, E.

    2001-12-01

    The Southern Appalachian Mountains, a popular recreation area known for its beauty and rich biodiversity, was chosen by the U.S. Geological Survey as the site to produce a video, booklet, and teachers guide to explain basic geologic principles and how long-term geologic processes affect landscapes, ecosystems, and the quality of human life. The video was produced in cooperation with the National Park Service and has benefited from the advice of the Southern Appalachian Man and Biosphere Cooperative, a group of 11 Federal and three State agencies that works to promote the environmental health, stewardship, and sustainable development of the resources of the region. Much of the information in the video is included in the booklet. A teachers guide provides supporting activities that teachers may use to reinforce the concepts presented in the video and booklet. Although the Southern Appalachians include some of the most visited recreation areas in the country, few are aware of the geologic underpinnings that have contributed to the beauty, biological diversity, and quality of human life in the region. The video includes several animated segments that show paleogeographic reconstructions of the Earth and movements of the North American continent over time; the formation of the Ocoee sedimentary basin beginning about 750 million years ago; the collision of the North American and African continents about 270 million years ago; the formation of granites and similar rocks, faults, and geologic windows; and the extent of glaciation in North America. The animated segments are tied to familiar public-access localities in the region. They illustrate geologic processes and time periods, making the geologic setting of the region more understandable to tourists and local students. The video reinforces the concept that understanding geologic processes and settings is an important component of informed land management to sustain the quality of life in a region. The video and a teachers guide will be distributed by the Southern Appalachian Man and Biosphere to local middle and high schools, libraries, and visitors centers in the region. It will be distributed by the U.S. Geological Survey and sold in Park Service and Forest Service gift shops in the region.

  12. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    PubMed Central

    Alldieck, Thiemo; Bahnsen, Chris H.; Moeslund, Thomas B.

    2016-01-01

    In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion. PMID:27869730

  13. Identifying Key Features of Student Performance in Educational Video Games and Simulations through Cluster Analysis

    ERIC Educational Resources Information Center

    Kerr, Deirdre; Chung, Gregory K. W. K.

    2012-01-01

    The assessment cycle of "evidence-centered design" (ECD) provides a framework for treating an educational video game or simulation as an assessment. One of the main steps in the assessment cycle of ECD is the identification of the key features of student performance. While this process is relatively simple for multiple choice tests, when…

  14. Audiovisual quality estimation of mobile phone video cameras with interpretation-based quality approach

    NASA Astrophysics Data System (ADS)

    Radun, Jenni E.; Virtanen, Toni; Olives, Jean-Luc; Vaahteranoksa, Mikko; Vuori, Tero; Nyman, Göte

    2007-01-01

    We present an effective method for comparing subjective audiovisual quality and the features related to the quality changes of different video cameras. Both quantitative estimation of overall quality and qualitative description of critical quality features are achieved by the method. The aim was to combine two image quality evaluation methods, the quantitative Absolute Category Rating (ACR) method with hidden reference removal and the qualitative Interpretation- Based Quality (IBQ) method in order to see how they complement each other in audiovisual quality estimation tasks. 26 observers estimated the audiovisual quality of six different cameras, mainly mobile phone video cameras. In order to achieve an efficient subjective estimation of audiovisual quality, only two contents with different quality requirements were recorded with each camera. The results show that the subjectively important quality features were more related to the overall estimations of cameras' visual video quality than to the features related to sound. The data demonstrated two significant quality dimensions related to visual quality: darkness and sharpness. We conclude that the qualitative methodology can complement quantitative quality estimations also with audiovisual material. The IBQ approach is valuable especially, when the induced quality changes are multidimensional.

  15. Study on the application of MRF and the D-S theory to image segmentation of the human brain and quantitative analysis of the brain tissue

    NASA Astrophysics Data System (ADS)

    Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang

    2012-01-01

    The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.

  16. Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning.

    PubMed

    Song, Youyi; Zhang, Ling; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu

    2015-10-01

    In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.

  17. Segmentation of prostate boundaries from ultrasound images using statistical shape model.

    PubMed

    Shen, Dinggang; Zhan, Yiqiang; Davatzikos, Christos

    2003-04-01

    This paper presents a statistical shape model for the automatic prostate segmentation in transrectal ultrasound images. A Gabor filter bank is first used to characterize the prostate boundaries in ultrasound images in both multiple scales and multiple orientations. The Gabor features are further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding the deformable segmentation. A hierarchical deformation strategy is then employed, in which the model adaptively focuses on the similarity of different Gabor features at different deformation stages using a multiresolution technique, i.e., coarse features first and fine features later. A number of successful experiments validate the algorithm.

  18. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-10-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.

  19. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed Central

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-01-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444

  20. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  1. ASSESSMENT OF YOUTUBE VIDEOS AS A SOURCE OF INFORMATION ON MEDICATION USE IN PREGNANCY

    PubMed Central

    Hansen, Craig; Interrante, Julia D; Ailes, Elizabeth C; Frey, Meghan T; Broussard, Cheryl S; Godoshian, Valerie J; Lewis, Courtney; Polen, Kara ND; Garcia, Amanda P; Gilboa, Suzanne M

    2015-01-01

    Background When making decisions about medication use in pregnancy, women consult many information sources, including the Internet. The aim of this study was to assess the content of publicly-accessible YouTube videos that discuss medication use in pregnancy. Methods Using 2,023 distinct combinations of search terms related to medications and pregnancy, we extracted metadata from YouTube videos using a YouTube video Application Programming Interface. Relevant videos were defined as those with a medication search term and a pregnancy-related search term in either the video title or description. We viewed relevant videos and abstracted content from each video into a database. We documented whether videos implied each medication to be ‘safe’ or ‘unsafe’ in pregnancy and compared that assessment with the medication’s Teratogen Information System (TERIS) rating. Results After viewing 651 videos, 314 videos with information about medication use in pregnancy were available for the final analyses. The majority of videos were from law firms (67%), television segments (10%), or physicians (8%). Selective serotonin reuptake inhibitors (SSRIs) were the most common medication class named (225 videos, 72%), and 88% percent of videos about SSRIs indicated they were ‘unsafe’ for use in pregnancy. However, the TERIS ratings for medication products in this class range from ‘unlikely’ to ‘minimal’ teratogenic risk. Conclusion For the majority of medications, current YouTube video content does not adequately reflect what is known about the safety of their use in pregnancy and should be interpreted cautiously. However, YouTube could serve as a valuable platform for communicating evidence-based medication safety information. PMID:26541372

  2. The Cableshop.

    ERIC Educational Resources Information Center

    Rohrer, Daniel M.

    "Cableshop" is an experimental cable television service offering three- to seven-minute broadcast segments of product or community information and using a combination of telephone, computer, and video technology. Viewers participating in the service will have a choice of items ready for viewing listed on a "menu" channel and…

  3. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  4. A real-time TV logo tracking method using template matching

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin

    2012-11-01

    A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.

  5. Teaching Reading: 3-5 Workshop

    ERIC Educational Resources Information Center

    Annenberg Media, 2005

    2005-01-01

    This video workshop with auxiliary classroom videos will show intermediate elementary teachers how to help their students transition from "learning to read" to "reading to learn." Eight half-hour workshop video programs feature leading experts who discuss current research on learning to read and teaching a diverse range of students. The research…

  6. Using Interactive Video Instruction To Enhance Public Speaking Instruction.

    ERIC Educational Resources Information Center

    Cronin, Michael W.; Kennan, William R.

    Noting that interactive video instruction (IVI) should not and cannot replace classroom instruction, this paper offers an introduction to interactive video instruction as an innovative technology that can be used to expand pedagogical opportunities in public speaking instruction. The paper: (1) defines the distinctive features of IVI; (2) assesses…

  7. Teaching What Matters: Great Videos for Teaching about the Common Good.

    ERIC Educational Resources Information Center

    Alter, Gloria T.

    2000-01-01

    Discusses videos that address the common good by focusing on such topics as racism, sexism and heterosexism, classism, disability awareness, prejudice and hatred, democracy and human rights, and social control. Includes classroom applications for teaching about the common good and a bibliography of the featured videos. (CMK)

  8. Analysis of simulated angiographic procedures. Part 2: extracting efficiency data from audio and video recordings.

    PubMed

    Duncan, James R; Kline, Benjamin; Glaiberman, Craig B

    2007-04-01

    To create and test methods of extracting efficiency data from recordings of simulated renal stent procedures. Task analysis was performed and used to design a standardized testing protocol. Five experienced angiographers then performed 16 renal stent simulations using the Simbionix AngioMentor angiographic simulator. Audio and video recordings of these simulations were captured from multiple vantage points. The recordings were synchronized and compiled. A series of efficiency metrics (procedure time, contrast volume, and tool use) were then extracted from the recordings. The intraobserver and interobserver variability of these individual metrics was also assessed. The metrics were converted to costs and aggregated to determine the fixed and variable costs of a procedure segment or the entire procedure. Task analysis and pilot testing led to a standardized testing protocol suitable for performance assessment. Task analysis also identified seven checkpoints that divided the renal stent simulations into six segments. Efficiency metrics for these different segments were extracted from the recordings and showed excellent intra- and interobserver correlations. Analysis of the individual and aggregated efficiency metrics demonstrated large differences between segments as well as between different angiographers. These differences persisted when efficiency was expressed as either total or variable costs. Task analysis facilitated both protocol development and data analysis. Efficiency metrics were readily extracted from recordings of simulated procedures. Aggregating the metrics and dividing the procedure into segments revealed potential insights that could be easily overlooked because the simulator currently does not attempt to aggregate the metrics and only provides data derived from the entire procedure. The data indicate that analysis of simulated angiographic procedures will be a powerful method of assessing performance in interventional radiology.

  9. Markerless identification of key events in gait cycle using image flow.

    PubMed

    Vishnoi, Nalini; Duric, Zoran; Gerber, Naomi Lynn

    2012-01-01

    Gait analysis has been an interesting area of research for several decades. In this paper, we propose image-flow-based methods to compute the motion and velocities of different body segments automatically, using a single inexpensive video camera. We then identify and extract different events of the gait cycle (double-support, mid-swing, toe-off and heel-strike) from video images. Experiments were conducted in which four walking subjects were captured from the sagittal plane. Automatic segmentation was performed to isolate the moving body from the background. The head excursion and the shank motion were then computed to identify the key frames corresponding to different events in the gait cycle. Our approach does not require calibrated cameras or special markers to capture movement. We have also compared our method with the Optotrak 3D motion capture system and found our results in good agreement with the Optotrak results. The development of our method has potential use in the markerless and unencumbered video capture of human locomotion. Monitoring gait in homes and communities provides a useful application for the aged and the disabled. Our method could potentially be used as an assessment tool to determine gait symmetry or to establish the normal gait pattern of an individual.

  10. Automated content and quality assessment of full-motion-video for the generation of meta data

    NASA Astrophysics Data System (ADS)

    Harguess, Josh

    2015-05-01

    Virtually all of the video data (and full-motion-video (FMV)) that is currently collected and stored in support of missions has been corrupted to various extents by image acquisition and compression artifacts. Additionally, video collected by wide-area motion imagery (WAMI) surveillance systems and unmanned aerial vehicles (UAVs) and similar sources is often of low quality or in other ways corrupted so that it is not worth storing or analyzing. In order to make progress in the problem of automatic video analysis, the first problem that should be solved is deciding whether the content of the video is even worth analyzing to begin with. We present a work in progress to address three types of scenes which are typically found in real-world data stored in support of Department of Defense (DoD) missions: no or very little motion in the scene, large occlusions in the scene, and fast camera motion. Each of these produce video that is generally not usable to an analyst or automated algorithm for mission support and therefore should be removed or flagged to the user as such. We utilize recent computer vision advances in motion detection and optical flow to automatically assess FMV for the identification and generation of meta-data (or tagging) of video segments which exhibit unwanted scenarios as described above. Results are shown on representative real-world video data.

  11. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational segmentation method was able to better disambiguate the tumor from the surrounding tissue.

  12. A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.

    PubMed

    Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong

    2018-02-12

    Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Video Image Tracking Engine

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Bryan, ThomasC. (Inventor); Book, Michael L. (Inventor)

    2004-01-01

    A method and system for processing an image including capturing an image and storing the image as image pixel data. Each image pixel datum is stored in a respective memory location having a corresponding address. Threshold pixel data is selected from the image pixel data and linear spot segments are identified from the threshold pixel data selected.. Ihe positions of only a first pixel and a last pixel for each linear segment are saved. Movement of one or more objects are tracked by comparing the positions of fust and last pixels of a linear segment present in the captured image with respective first and last pixel positions in subsequent captured images. Alternatively, additional data for each linear data segment is saved such as sum of pixels and the weighted sum of pixels i.e., each threshold pixel value is multiplied by that pixel's x-location).

  14. STS-107 Mission Highlights Resource, Part 4 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, Part 4 of 4, shows the activities of the STS-107 crew during flight days 13 through 15 of the Columbia orbiter's final flight. The crew consists of Commander Rick Husband, Pilot William McCool, Payload Commander Michael Anderson, Mission Specialists David Brown, Kalpana Chawla, and Laurel Clark, and Payload Specialist Ilan Ramon. The highlight of flight day 13 is Kalpana Chawla conversing with Mission Control Center in Houston during troubleshooting of the Combustion Module in a recovery procedure to get the MIST fire suppression experiment back online. Chawla is shown replacing an atomizer head. At Mission Control Center a vase of flowers commemorating the astronauts who died on board Space Shuttle Challenger's final flight is shown and explained. The footage of flight day 14 consists of a tour of Columbia's flight deck, middeck, and Spacehab research module. Rick Husband narrates the tour, which features Kalpana Chawla, Laurel Clark, and himself. The astronauts demonstrate hygene, a dining tray, the orbiter's toilet, and a space iron, which is a rack for strapping down shirts. The Earth limb is shown with the Spacehab module in the foreground. Clark exercises on a bicycle for a respiration experiment, and demonstrates how a compact disk player gyrates in microgravity. On flight day 15, the combustion module is running again, and footage is shown of the Water Mist Fire-Suppression Experiment (Mist) in operation. Laurel Clark narrates a segment of the video in which Ilan Ramon exercises on a bicycle, Rick Husband, Kalpana Chawla, and Ramon demonstrate spinning and push-ups in the Spacehab module, and Clark demonstrates eating from a couple of food packets. The video ends with a shot of the Earth limb reflected on the radiator on the inside of Columbia's open payload bay door with the Earth in the background.

  15. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  16. A pilot randomized, controlled trial of an active video game physical activity intervention.

    PubMed

    Peng, Wei; Pfeiffer, Karin A; Winn, Brian; Lin, Jih-Hsuan; Suton, Darijan

    2015-12-01

    Active video games (AVGs) transform the sedentary screen time of video gaming into active screen time and have great potential to serve as a "gateway" tool to a more active lifestyle for the least active individuals. This pilot randomized trial was conducted to explore the potential of theory-guided active video games in increasing moderate-to-vigorous physical activity (MVPA) among young adults. In this pilot 4-week intervention, participants were randomly assigned to 1 of the following groups: an AVG group with all the self determination theory (SDT)-based game features turned off, an AVG group with all the SDT-based game features turned on, a passive gameplay group with all the SDT-based game features turned on, and a control group. Physical activity was measured using ActiGraph GT3X accelerometers. Other outcomes included attendance and perceived need satisfaction of autonomy, competence and relatedness. It was found that playing the self-determination theory supported AVG resulted in greater MVPA compared with the control group immediately postintervention. The AVG with the theory-supported features also resulted in greater attendance and psychological need satisfaction than the non-theory-supported one. An AVG designed with motivation theory informed features positively impacted attendance and MVPA immediately postintervention, suggesting that including AVG features guided with motivation theory may be a method of addressing common problems with adherence and increasing effectiveness of active gaming. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Coding visual features extracted from video sequences.

    PubMed

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  18. Multi-scale Gaussian representation and outline-learning based cell image segmentation.

    PubMed

    Farhan, Muhammad; Ruusuvuori, Pekka; Emmenlauer, Mario; Rämö, Pauli; Dehio, Christoph; Yli-Harja, Olli

    2013-01-01

    High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks.

  19. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    PubMed Central

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  20. Prevention: lessons from video display installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margach, C.B.

    1983-04-01

    Workers interacting with video display units for periods in excess of two hours per day report significantly increased visual discomfort, fatigue and inefficiencies, as compared with workers performing similar tasks, but without the video viewing component. Difficulties in focusing and the appearance of myopia are among the problems being described. With a view to preventing or minimizing such problems, principles and procedures are presented providing for (a) modification of physical features of the video workstation and (b) improvement in the visual performances of the individual video unit operator.

Top