Sample records for view graph form

  1. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Wiersma, R

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less

  2. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    fleet type from 1992-2014 Last update August 2016 View Graph Graph Download Data Generated_thumb20160830 Trend of S&FP AFV acquisitions by fuel type from 1992-2015 Last update August 2016 View Graph Graph transactions from 1997-2014 Last update August 2016 View Graph Graph Download Data Biofuelsatlas BioFuels Atlas

  3. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    Fuel Standard Volumes by Year Generated_thumb20150904-8240-13hgnxh Last update August 2012 View Graph product or destination Last update August 2015 View Graph Graph Download Data Custom_thumb U.S. Ethanol , from 1866-2014 Last update August 2015 View Graph Graph Download Data Generated_thumb20160920-21993

  4. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    -1paywcu Last update August 2014 View Graph Graph Download Data State & Alt Fuel Providers -kgi9ks Trend of S&FP AFV acquisitions by fleet type from 1992-2014 Last update August 2016 View Graph -2015 Last update August 2016 View Graph Graph Download Data Generated_thumb20160907-12999-119sgvk

  5. Dust Spectra from Above and Below

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.

    Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere.

    Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature.

    Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates.

    Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.

  6. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    acquisitions by fleet type from 1992-2014 Last update August 2016 View Graph Graph Download Data -m8i0e0 Trend of S&FP AFV acquisitions by fuel type from 1992-2015 Last update August 2016 View Graph transactions from 1997-2014 Last update August 2016 View Graph Graph Download Data Generated_thumb20160907

  7. Rocket engine numerical simulation

    NASA Astrophysics Data System (ADS)

    Davidian, Ken

    1993-12-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  8. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  9. Cooperative processing data bases

    NASA Technical Reports Server (NTRS)

    Hasta, Juzar

    1991-01-01

    Cooperative processing for the 1990's using client-server technology is addressed. The main theme is concepts of downsizing from mainframes and minicomputers to workstations on a local area network (LAN). This document is presented in view graph form.

  10. 2003 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2005-02-01

    reviews traffic crash data in New Mexico from January : through December, 2003. It presents crash data in the : form of graphs for those who prefer an impressionistic : view and tables for those who require reference : information. Maps are provided ...

  11. Object-oriented requirements analysis: A quick tour

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1990-01-01

    Of all the approaches to software development, an object-oriented approach appears to be both the most beneficial and the most popular. The description of the object-oriented approach is presented in the form of the view graphs.

  12. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  13. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data.

    PubMed

    Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue

    2016-01-01

    We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

  14. 1997 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    1998-06-01

    This edition of New Mexico Traffic Crash Information reviews : traffic crash data in New Mexico from January through : December, 1997. It presents crash data in the form of graphs : for those who prefer an impressionistic view and tables for : those ...

  15. 1995 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    1996-09-01

    This edition of New Mexico Traffic Crash Information reviews : traffic crash data in New Mexico from January through : December, 1995. It presents crash data in the form of graphs : for those who prefer an impressionistic view and tables for : those ...

  16. 2000 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2002-03-01

    This edition of New Mexico Traffic Crash Information reviews traffic : crash data in New Mexico from January through December, 2000. : It presents crash data in the form of graphs for those who prefer : an impressionistic view and tables for those wh...

  17. 2005 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2006-11-01

    This edition of New Mexico Traffic Crash Information reviews traffic : crash data in New Mexico from January through December, 2005. : It presents crash data in the form of graphs for those who prefer : an impressionistic view and tables for those wh...

  18. 2001 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2003-01-01

    This edition of New Mexico Traffic Crash Information reviews traffic : crash data in New Mexico from January through December, 2001. : It presents crash data in the form of graphs for those who prefer : an impressionistic view and tables for those wh...

  19. 2008 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2010-05-01

    This edition of New Mexico Traffic Crash Information reviews : traffic crash data in New Mexico from January through December, : 2008. It presents crash data in the form of graphs for those who : prefer an impressionistic view and tables for those wh...

  20. 1996 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    1997-06-01

    This edition of New Mexico Traffic Crash Information reviews : traffic crash data in New Mexico from January through : December, 1997. It presents crash data in the form of graphs : for those who prefer an impressionistic view and tables for : those ...

  1. 1998 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    1999-06-01

    This edition of New Mexico Traffic Crash Information reviews : traffic crash data in New Mexico from January through : December, 1998. It presents crash data in the form of graphs : for those who prefer an impressionistic view and tables for : those ...

  2. 2002 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2004-02-01

    This edition of New Mexico Traffic Crash Information reviews traffic : crash data in New Mexico from January through December, 2002. : It presents crash data in the form of graphs for those who prefer : an impressionistic view and tables for those wh...

  3. Multigraph: Interactive Data Graphs on the Web

    NASA Astrophysics Data System (ADS)

    Phillips, M. B.

    2010-12-01

    Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Graph of Global Temperature Anomalies from ClimateWatch Magazine (http://www.climatewatch.noaa.gov/2009/articles/climate-change-global-temperature)

  4. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    PubMed

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  5. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    and technology types from 1994-2015 Last update March 2017 View Graph Graph Download Data of displacement by all fuel and technology types from 1994-2015 Last update March 2017 View Graph

  6. 2009 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2011-05-01

    This edition of New Mexico Traffic Crash Information reviews traffic crash data in New Mexico from January through December, 2009. It presents crash data in the form of graphs for those who prefer an impressionistic view and tables for those who requ...

  7. 1999 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2001-03-01

    This edition of New Mexico Traffic Crash Information reviews traffic crash data in New MExico from January through Decemeber, 1999. It presents crash data in the form of graphs for those who prefer an impressionistic view and tables for those who req...

  8. 2006 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2007-10-01

    This edition of New Mexico Traffi c Crash Information : reviews traffi c crash data in New Mexico from January : through December, 2006. It presents crash data in the : form of graphs for those who prefer an impressionistic view : and tables for thos...

  9. 2007 New Mexico traffic crash information

    DOT National Transportation Integrated Search

    2009-12-01

    This edition of New Mexico Traffi c Crash Information reviews : traffi c crash data in New Mexico from January through December, : 2007. It presents crash data in the form of graphs for those who : prefer an impressionistic view and tables for those ...

  10. Overview of the NASA astrophysics data system

    NASA Technical Reports Server (NTRS)

    Pomphrey, Rick B.

    1991-01-01

    Overview of the NASA Astrophysics Data Systems (ADS) is presented in the form of view graphs. The following subject areas are covered: The problem; the ADS project; architectural approach; elements of the solution; status of the effort; and the future plans.

  11. Liquid rocket booster study addendum

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Liquid rocket booster study (LRB) addendum to final report is presented in the form of the view-graphs. The following subject areas are covered: LRB launch vehicle concepts; LRB design; propulsion system configurations; LRB boattail for Shuttle-C application; and manned transportation systems.

  12. Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.

    PubMed

    Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang

    2017-01-01

    Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.

  13. Hypermedia 1990 structured Hypertext tutorial

    NASA Technical Reports Server (NTRS)

    Johnson, J. Scott

    1990-01-01

    Hypermedia 1990 structured Hypertext tutorial is presented in the form of view-graphs. The following subject areas are covered: structured hypertext; analyzing hypertext documents for structure; designing structured hypertext documents; creating structured hypertext applications; structuring service and repair documents; maintaining structured hypertext documents; and structured hypertext conclusion.

  14. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    PubMed

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  16. JPL space station telerobotic engineering prototype development FY 91 status/achievements

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne

    1991-01-01

    The topics covered are presented in view graph form and include: (1) streamlining intravehicular activity (IVA) teleoperation activities on the Space Station Freedom (SSF); (2) enhancing SSF utilization during the man-tended phase; (3) telerobotic ground remote operations (TGRO); and (4) advanced telerobotics system technology (shared control).

  17. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  18. Constructing a Graph Database for Semantic Literature-Based Discovery.

    PubMed

    Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C

    2015-01-01

    Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.

  19. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  20. Supercomputer Environments

    DTIC Science & Technology

    1990-01-09

    data structures can easily be presented to the user interface. An emphasis of the Graph Browser was the realization of graph views and graph animation ... animation of the graph. Anima- tion of the graph includes changing node shapes, changing node and arc colors, changing node and arc text, and making...many graphs tend to be tree-like. Animtion of a graph is a useful feature. One of the primary goals of GMB was to support animated graphs. For animation

  1. RoMPS concept review automatic control of space robot, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  2. Robust fault diagnosis of physical systems in operation. Ph.D. Thesis - Rutgers - The State Univ.

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy Hamilton

    1991-01-01

    Ideas are presented and demonstrated for improved robustness in diagnostic problem solving of complex physical systems in operation, or operative diagnosis. The first idea is that graceful degradation can be viewed as reasoning at higher levels of abstraction whenever the more detailed levels proved to be incomplete or inadequate. A form of abstraction is defined that applies this view to the problem of diagnosis. In this form of abstraction, named status abstraction, two levels are defined. The lower level of abstraction corresponds to the level of detail at which most current knowledge-based diagnosis systems reason. At the higher level, a graph representation is presented that describes the real-world physical system. An incremental, constructive approach to manipulating this graph representation is demonstrated that supports certain characteristics of operative diagnosis. The suitability of this constructive approach is shown for diagnosing fault propagation behavior over time, and for sometimes diagnosing systems with feedback. A way is shown to represent different semantics in the same type of graph representation to characterize different types of fault propagation behavior. An approach is demonstrated that threats these different behaviors as different fault classes, and the approach moves to other classes when previous classes fail to generate suitable hypotheses. These ideas are implemented in a computer program named Draphys (Diagnostic Reasoning About Physical Systems) and demonstrated for the domain of inflight aircraft subsystems, specifically a propulsion system (containing two turbofan systems and a fuel system) and hydraulic subsystem.

  3. Graph theory findings in the pathophysiology of temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Haneef, Zulfi

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  4. Computers and the Rational-Root Theorem--Another View.

    ERIC Educational Resources Information Center

    Waits, Bert K.; Demana, Franklin

    1989-01-01

    An approach to finding the rational roots of polynomial equations based on computer graphing is given. It integrates graphing with the purely algebraic approach. Either computers or graphing calculators can be used. (MNS)

  5. Interpretations of Graphs by University Biology Students and Practicing Scientists: Toward a Social Practice View of Scientific Representation Practices.

    ERIC Educational Resources Information Center

    Bowen, G. Michael; Roth, Wolff-Michael; McGinn, Michelle K.

    1999-01-01

    Describes a study of the similarities and differences in graph-related interpretations between scientists and college students engaged in collective graph interpretation. Concludes that while many students learned to provide correct answers to scientific graphing questions, they did not come to make linguistic distinctions or increase their…

  6. Graph theory findings in the pathophysiology of temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Haneef, Zulfi

    2014-07-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  8. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  9. Status of Sundstrand research

    NASA Technical Reports Server (NTRS)

    Bateman, Don

    1991-01-01

    Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.

  10. Match graph generation for symbolic indirect correlation

    NASA Astrophysics Data System (ADS)

    Lopresti, Daniel; Nagy, George; Joshi, Ashutosh

    2006-01-01

    Symbolic indirect correlation (SIC) is a new approach for bringing lexical context into the recognition of unsegmented signals that represent words or phrases in printed or spoken form. One way of viewing the SIC problem is to find the correspondence, if one exists, between two bipartite graphs, one representing the matching of the two lexical strings and the other representing the matching of the two signal strings. While perfect matching cannot be expected with real-world signals and while some degree of mismatch is allowed for in the second stage of SIC, such errors, if they are too numerous, can present a serious impediment to a successful implementation of the concept. In this paper, we describe a framework for evaluating the effectiveness of SIC match graph generation and examine the relatively simple, controlled cases of synthetic images of text strings typeset, both normally and in highly condensed fashion. We quantify and categorize the errors that arise, as well as present a variety of techniques we have developed to visualize the intermediate results of the SIC process.

  11. Cognitive Aids for Guiding Graph Comprehension

    ERIC Educational Resources Information Center

    Mautone, Patricia D.; Mayer, Richard E.

    2007-01-01

    This study sought to improve students' comprehension of scientific graphs by adapting scaffolding techniques used to aid text comprehension. In 3 experiments involving 121 female and 88 male college students, some students were shown cognitive aids prior to viewing 4 geography graphs whereas others were not; all students were then asked to write a…

  12. A model of language inflection graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Farzad, Babak; Cao, Yi

    2014-01-01

    Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.

  13. Optimal Clustering in Graphs with Weighted Edges: A Unified Approach to the Threshold Problem.

    ERIC Educational Resources Information Center

    Goetschel, Roy; Voxman, William

    1987-01-01

    Relations on a finite set V are viewed as weighted graphs. Using the language of graph theory, two methods of partitioning V are examined: selecting threshold values and applying them to a maximal weighted spanning forest, and using a parametric linear program to obtain a most adhesive partition. (Author/EM)

  14. GrouseFlocks: steerable exploration of graph hierarchy space.

    PubMed

    Archambault, Daniel; Munzner, Tamara; Auber, David

    2008-01-01

    Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.

  15. Men's interpretations of graphical information in a videotape decision aid 1

    PubMed Central

    Pylar, Jan; Wills, Celia E.; Lillie, Janet; Rovner, David R.; Kelly‐Blake, Karen; Holmes‐Rovner, Margaret

    2007-01-01

    Abstract Objective  To examine men's interpretations of graphical information types viewed in a high‐quality, previously tested videotape decision aid (DA). Setting, participants, design  A community‐dwelling sample of men >50 years of age (N = 188) balanced by education (college/non‐college) and race (Black/White) were interviewed just following their viewing of a videotape DA. A descriptive study design was used to examine men's interpretations of a representative sample of the types of graphs that were shown in the benign prostatic hyperplasia videotape DA. Main variables studied  Men provided their interpretation of graphs information presented in three formats that varied in complexity: pictograph, line and horizontal bar graph. Audiotape transcripts of men's responses were coded for meaning and content‐related interpretation statements. Results  Men provided both meaning and content‐focused interpretations of the graphs. Accuracy of interpretation was lower than hypothesized on the basis of literature review (85.4% for pictograph, 65.7% for line graph, 47.8% for horizontal bar graph). Accuracy for pictograph and line graphs was associated with education level,  = 3.94, P = 0.047, and  = 7.55, P = 0.006, respectively. Accuracy was uncorrelated with men's reported liking of the graphs,  = 2.00, P = 0.441. Conclusion  While men generally liked the DA, accuracy of graphs interpretation was associated with format complexity and education level. Graphs are often recommended to improve comprehension of information in DAs. However, additional evaluation is needed in experimental and naturalistic observational settings to develop best practice standards for data representation. PMID:17524011

  16. Transformations of Mathematical and Stimulus Functions

    PubMed Central

    Ninness, Chris; Barnes-Holmes, Dermot; Rumph, Robin; McCuller, Glen; Ford, Angela M; Payne, Robert; Ninness, Sharon K; Smith, Ronald J; Ward, Todd A; Elliott, Marc P

    2006-01-01

    Following a pretest, 8 participants who were unfamiliar with algebraic and trigonometric functions received a brief presentation on the rectangular coordinate system. Next, they participated in a computer-interactive matching-to-sample procedure that trained formula-to-formula and formula-to-graph relations. Then, they were exposed to 40 novel formula-to-graph tests and 10 novel graph-to-formula tests. Seven of the 8 participants showed substantial improvement in identifying formula-to-graph relations; however, in the test of novel graph-to-formula relations, participants tended to select equations in their factored form. Next, we manipulated contextual cues in the form of rules regarding mathematical preferences. First, we informed participants that standard forms of equations were preferred over factored forms. In a subsequent test of 10 additional novel graph-to-formula relations, participants shifted their selections to favor equations in their standard form. This preference reversed during 10 more tests when financial reward was made contingent on correct identification of formulas in factored form. Formula preferences and transformation of novel mathematical and stimulus functions are discussed. PMID:17020211

  17. COBE On-Orbit Engineering Performance, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Cosmic Background Explorer (COBE) was successfully launched on Nov. 18, 1989. The Delta Launch Vehicle performed flawlessly, and observatory deployments occurred as planned. The dewar cover successfully deployed on day 4, as planned, and the cryogen temperature is currently at 1.41 K. All three instruments are operating and acquiring science data, and the Payload Operational Control Center (POCC)/Network support has been excellent. Various performance aspects of the COBE are presented in view graph form.

  18. Generating GraphML XML Files for Graph Visualization of Architectures and Event Traces for the Monterey Phoenix Program

    DTIC Science & Technology

    2012-09-01

    Thesis Advisor: Mikhail Auguston Second Reader: Terry Norbraten THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved...Language (GraphML). MPGrapher compiles well- formed XML files that conform to the yEd GraphML schema. These files will be opened and analyzed using...ABSTRACT UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved

  19. Multigraph: Reusable Interactive Data Graphs

    NASA Astrophysics Data System (ADS)

    Phillips, M. B.

    2010-12-01

    There are surprisingly few good software tools available for presenting time series data on the internet. The most common practice is to use a desktop program such as Excel or Matlab to save a graph as an image which can be included in a web page like any other image. This disconnects the graph from the data in a way that makes updating a graph with new data a cumbersome manual process, and it limits the user to one particular view of the data. The Multigraph project defines an XML format for describing interactive data graphs, and software tools for creating and rendering those graphs in web pages and other internet connected applications. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions; the user can pan and zoom by clicking and dragging, in a familiar "Google Maps" kind of way. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. The Multigraph XML format, or "MUGL" for short, provides a concise description of the visual properties of a graph, such as axes, plot styles, data sources, labels, etc, as well as interactivity properties such as how and whether the user can pan or zoom along each axis. Multigraph reads a file in this format, draws the described graph, and allows the user to interact with it. Multigraph software currently includes a Flash application for embedding graphs in web pages, a Flex component for embedding graphs in larger Flex/Flash applications, and a plugin for creating graphs in the WordPress content management system. Plans for the future include a Java version for desktop viewing and editing, a command line version for batch and server side rendering, and possibly Android and iPhone versions. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Multigraph Display of Real Time Weather Data

  20. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  1. How Formal Dynamic Verification Tools Facilitate Novel Concurrency Visualizations

    NASA Astrophysics Data System (ADS)

    Aananthakrishnan, Sriram; Delisi, Michael; Vakkalanka, Sarvani; Vo, Anh; Gopalakrishnan, Ganesh; Kirby, Robert M.; Thakur, Rajeev

    With the exploding scale of concurrency, presenting valuable pieces of information collected by formal verification tools intuitively and graphically can greatly enhance concurrent system debugging. Traditional MPI program debuggers present trace views of MPI program executions. Such views are redundant, often containing equivalent traces that permute independent MPI calls. In our ISP formal dynamic verifier for MPI programs, we present a collection of alternate views made possible by the use of formal dynamic verification. Some of ISP’s views help pinpoint errors, some facilitate discerning errors by eliminating redundancy, while others help understand the program better by displaying concurrent even orderings that must be respected by all MPI implementations, in the form of completes-before graphs. In this paper, we describe ISP’s graphical user interface (GUI) capabilities in all these areas which are currently supported by a portable Java based GUI, a Microsoft Visual Studio GUI, and an Eclipse based GUI whose development is in progress.

  2. Analysis Tools for Interconnected Boolean Networks With Biological Applications.

    PubMed

    Chaves, Madalena; Tournier, Laurent

    2018-01-01

    Boolean networks with asynchronous updates are a class of logical models particularly well adapted to describe the dynamics of biological networks with uncertain measures. The state space of these models can be described by an asynchronous state transition graph, which represents all the possible exits from every single state, and gives a global image of all the possible trajectories of the system. In addition, the asynchronous state transition graph can be associated with an absorbing Markov chain, further providing a semi-quantitative framework where it becomes possible to compute probabilities for the different trajectories. For large networks, however, such direct analyses become computationally untractable, given the exponential dimension of the graph. Exploiting the general modularity of biological systems, we have introduced the novel concept of asymptotic graph , computed as an interconnection of several asynchronous transition graphs and recovering all asymptotic behaviors of a large interconnected system from the behavior of its smaller modules. From a modeling point of view, the interconnection of networks is very useful to address for instance the interplay between known biological modules and to test different hypotheses on the nature of their mutual regulatory links. This paper develops two new features of this general methodology: a quantitative dimension is added to the asymptotic graph, through the computation of relative probabilities for each final attractor and a companion cross-graph is introduced to complement the method on a theoretical point of view.

  3. Performance Impact of Connectivity Restrictions and Increased Vulnerability Presence on Automated Attack Graph Generation

    DTIC Science & Technology

    2007-03-01

    results (Ingols 2005). 2.4.3 Skybox - Skybox view Skybox View is a commercially available tool developed by Skybox Security that can automatically...generate attack graphs through the use of host-based agents, management interfaces, and an analysis server located on the target network ( Skybox 2006... Skybox , an examination of recent patents submitted by Skybox identified the algorithmic complexity of the product as n4, where n represents the number

  4. Multi-View Budgeted Learning under Label and Feature Constraints Using Label-Guided Graph-Based Regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, Christopher T; Arel, Itamar

    2011-01-01

    Budgeted learning under constraints on both the amount of labeled information and the availability of features at test time pertains to a large number of real world problems. Ideas from multi-view learning, semi-supervised learning, and even active learning have applicability, but a common framework whose assumptions fit these problem spaces is non-trivial to construct. We leverage ideas from these fields based on graph regularizers to construct a robust framework for learning from labeled and unlabeled samples in multiple views that are non-independent and include features that are inaccessible at the time the model would need to be applied. We describemore » examples of applications that fit this scenario, and we provide experimental results to demonstrate the effectiveness of knowledge carryover from training-only views. As learning algorithms are applied to more complex applications, relevant information can be found in a wider variety of forms, and the relationships between these information sources are often quite complex. The assumptions that underlie most learning algorithms do not readily or realistically permit the incorporation of many of the data sources that are available, despite an implicit understanding that useful information exists in these sources. When multiple information sources are available, they are often partially redundant, highly interdependent, and contain noise as well as other information that is irrelevant to the problem under study. In this paper, we are focused on a framework whose assumptions match this reality, as well as the reality that labeled information is usually sparse. Most significantly, we are interested in a framework that can also leverage information in scenarios where many features that would be useful for learning a model are not available when the resulting model will be applied. As with constraints on labels, there are many practical limitations on the acquisition of potentially useful features. A key difference in the case of feature acquisition is that the same constraints often don't pertain to the training samples. This difference provides an opportunity to allow features that are impractical in an applied setting to nevertheless add value during the model-building process. Unfortunately, there are few machine learning frameworks built on assumptions that allow effective utilization of features that are only available at training time. In this paper we formulate a knowledge carryover framework for the budgeted learning scenario with constraints on features and labels. The approach is based on multi-view and semi-supervised learning methods that use graph-encoded regularization. Our main contributions are the following: (1) we propose and provide justification for a methodology for ensuring that changes in the graph regularizer using alternate views are performed in a manner that is target-concept specific, allowing value to be obtained from noisy views; and (2) we demonstrate how this general set-up can be used to effectively improve models by leveraging features unavailable at test time. The rest of the paper is structured as follows. In Section 2, we outline real-world problems to motivate the approach and describe relevant prior work. Section 3 describes the graph construction process and the learning methodologies that are employed. Section 4 provides preliminary discussion regarding theoretical motivation for the method. In Section 5, effectiveness of the approach is demonstrated in a series of experiments employing modified versions of two well-known semi-supervised learning algorithms. Section 6 concludes the paper.« less

  5. Inquiring minds: Case studies of two middle school science teachers as they include inquiry and graphing in their curricula

    NASA Astrophysics Data System (ADS)

    Scarano, Grace Hotchkiss

    2000-10-01

    Current reform documents in science and mathematics call for teachers to include inquiry and data analysis in their teaching. This interpretive quasi-ethnographic case study examined two middle school science teachers as they planned and implemented inquiry and graphing in their science curricula. The focus question for this research was: What are middle school science teachers' experiences as they include graphing and inquiry-based student research projects in their curricula? How is teaching these areas different from usual teaching? The research examined two teachers teaching their favorite unit, parts of other familiar units, graphing, and student inquiry. Four main types of data were gathered: (1) observations of teachers' instruction, (2) interviews and meetings with the teachers, (3) curricular artifacts, and (4) questionnaires and other written material. The study took place over a seven-month period. The findings revealed that these two teachers had different ideologies of schooling and that these ideologies shaped the teachers' planning and implementation of their usual content as well as graphing and inquiry. One teacher's ideology was technical, and the other's was constructive. Six themes emerged as salient features of their teaching: (1) the role of developing a vision for curricular implementation, (2) curricular decisions: internal and external authority, (3) views of knowing and learning, (4) perceptions of the nature of science, (5) attending to a personal concern in teaching, and (6) reflection. The textures of these themes varied between the two teachers, and formed a coherent yet dynamic system within which each teacher maneuvered. This study found that both teachers found it challenging to include inquiry in their curricula, even though both had attended workshops designed to help teachers use student inquiry. The constructive teacher's implementation was more in line with the notions that are central to constructivism and current non-traditional views of the nature of science than was that of the technical teacher. The teacher with a technical ideology relied on the scientific method to organize student projects and implemented inquiry as a technique to increase student-centered work. It is proposed that teachers with technical ideologies need to undergo an ideological shift toward constructive ideologies of schooling in order to teach graphing and inquiry in ways that are aligned with current reform efforts.

  6. Designer: A Knowledge-Based Graphic Design Assistant.

    DTIC Science & Technology

    1986-07-01

    pro- pulsion. The system consists of a color graphics interface to a mathematical simulation. One can view and manipulate this simulation at a number of...valve vaive graph 50- mufi -plot graph 100 4 0 80 6.. 30 60 4 20 .... 40 2 10 V 20 0 2 4 6 8 10 0 20 40 60 80 100 FIGURE 4. Icon Sampler. This view...in Computing Systems. New York: ACM, 1983. 8306. Paul Smolensky. Harmony Theory: A Mathematical Framework for Stochastic Parallel Pro- cessing

  7. Layer-by-layer growth of vertex graph of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-09-01

    The growth form for the vertex graph of Penrose tiling is found to be a regular decagon. The lower and upper bounds for this form, coinciding with it, are strictly proven. A fractal character of layer-by-layer growth is revealed for some subgraphs of the vertex graph of Penrose tiling.

  8. A complex network description on traditional Chinese medicine system

    NASA Astrophysics Data System (ADS)

    Sun, Anzheng; Zhang, Peipei; He, Yue; Su, Beibei; He, Da-Ren

    2004-03-01

    Chinese traditional philosophy believes that a healthy body can adjust itself to reach a dynamic equilibrium with the environment. At an ill state the equilibrium is lost. Any single medicine can only attack one problem and cannot recover the whole equilibrium. A prescription formulation (PF) usually contains an "emperor" or principal medicine, several "minister" or assistant medicines, some accessorial medicines, and one or two inducting or harmonizing edicines. Therefore different traditional Chinese medicine (TCM) appears in different number of PFs. The whole TCM system may be viewed as a network set composed of many complete graphs (PFs). The TCMs, which have the highest node degrees in the network, serve as the "bridges" between the complete graphs for forming the network. While the TCMs, which have lowest node degrees in the network, serve as the "emperors" in each complete graph. According to this idea we have performed a manual statistical investigation on approximately 1000 PFs and computed 8 different tatistical properties of the network. The results show that TCM system is a scale-free one and has a nice clustering structure. We are suggesting a dynamical model to describe the development of TCM system.

  9. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  10. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Timothy James

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  11. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  12. Kirchhoff's rule for quantum wires

    NASA Astrophysics Data System (ADS)

    Kostrykin, V.; Schrader, R.

    1999-01-01

    We formulate and discuss one-particle quantum scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with n channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0 is given explicitly in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low-energy behaviour of one theory gives the high-energy behaviour of the transformed theory. Finally, we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs use only known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitian symplectic forms.

  13. The Flipped Classroom and College Physics Students' Motivation and Understanding of Kinematics Graphs

    ERIC Educational Resources Information Center

    Cagande, Jeffrey Lloyd L.; Jugar, Richard R.

    2018-01-01

    Reversing the traditional classroom activities, in the flipped classroom model students view lectures at home and perform activities during class period inside the classroom. This study investigated the effect of a flipped classroom implementation on college physics students' motivation and understanding of kinematics graphs. A Solomon four-group…

  14. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    different types of transportation infrastructure Last update July 2014 View Graph Graph Download Data gas pipelines are primarily for natural gas. This chart shows the distance covered by various types of distance covered by various types of transportation infrastructure in the U.S. Highways and other roads

  15. Novice Interpretations of Progress Monitoring Graphs: Extreme Values and Graphical Aids

    ERIC Educational Resources Information Center

    Newell, Kirsten W.; Christ, Theodore J.

    2017-01-01

    Curriculum-Based Measurement of Reading (CBM-R) is frequently used to monitor instructional effects and evaluate response to instruction. Educators often view the data graphically on a time-series graph that might include a variety of statistical and visual aids, which are intended to facilitate the interpretation. This study evaluated the effects…

  16. Causal inference, probability theory, and graphical insights.

    PubMed

    Baker, Stuart G

    2013-11-10

    Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.

  17. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans

    PubMed Central

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2015-01-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets. PMID:26266953

  18. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    PubMed

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2015-08-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  19. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.

    PubMed

    Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G

    2011-09-01

    A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.

  20. Structure and strategy in encoding simplified graphs

    NASA Technical Reports Server (NTRS)

    Schiano, Diane J.; Tversky, Barbara

    1992-01-01

    Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.

  1. FUSE: a profit maximization approach for functional summarization of biological networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry

    2012-03-21

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  2. Multispectral determination of soil moisture-2. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Simonett, D. S. (Principal Investigator); Hajic, E. J.; Hilton, B. M.; Lees, R. D.

    1982-01-01

    Soil moisture data obtained using scatterometers, modular multispectral scanners and passive microwave radiometers were revised and grouped into four field cover types for statistical anaysis. Guymon data are grouped as alfalfa, bare, milo with rows perpendicular to the field view, and milo viewed parallel to the field of view. Dalhart data are grouped as bare combo, stubble, disked stubble, and corn field. Summary graphs combine selected analyses to compare the effects of field cover. The analysis for each of the cover types is presented in tables and graphs. Other tables show elementary statistics, correlation matrices, and single variable regressions. Selected eigenvectors and factor analyses are included and the highest correlating sensor typs for each location are summarized.

  3. Movement Forms: A Graph-Dynamic Perspective.

    PubMed

    Saltzman, Elliot; Holt, Ken

    2014-01-01

    The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form's physical graph dynamics ). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects.

  4. Spectral fluctuations of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhař, Z.; Weidenmüller, H. A.

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  5. Performance Analysis of Automated Attack Graph Generation Software

    DTIC Science & Technology

    2006-12-01

    MIT Lincoln Laboratory – NetSPA .................................................13 3. Skybox - Skybox View...Lip05*) 3. Skybox - Skybox View Skybox View is a commercially available tool developed by Skybox Security that can automatically generate...each host. It differs from CAULDRON because it requires that Skybox View probe live networks and must be connected to live networks during its

  6. A graph lattice approach to maintaining and learning dense collections of subgraphs as image features.

    PubMed

    Saund, Eric

    2013-10-01

    Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.

  7. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    View Graph Graph Download Data Generated_thumb20140811-21276-p5mcbz Average Fuel Economy at Different Road Grades Generated_thumb20140811-21276-p5mcbz Trend of Fuel Economy and Consumption at different at Various Driving Speeds Generated_thumb20170119-11720-1o8tesk Trend of fuel efficiency at different

  8. Talking with Teachers, Administrators, and Parents: Preferences for Visual Displays of Education Data

    ERIC Educational Resources Information Center

    Alverson, Charlotte Y.; Yamamoto, Scott H.

    2014-01-01

    The purpose of this study was to learn from educational stakeholders what characteristics they like and dislike when viewing graphs of post-school outcomes data. We conducted six, 1-hour focus groups with teachers, administrators, and parents in which we distributed four stimuli graphs--horizontal grouped bars, horizontal stacked bars, vertical…

  9. Graphing evolutionary pattern and process: a history of techniques in archaeology and paleobiology.

    PubMed

    Lyman, R Lee

    2009-02-01

    Graphs displaying evolutionary patterns are common in paleontology and in United States archaeology. Both disciplines subscribed to a transformational theory of evolution and graphed evolution as a sequence of archetypes in the late nineteenth and early twentieth centuries. U.S. archaeologists in the second decade of the twentieth century, and paleontologists shortly thereafter, developed distinct graphic styles that reflected the Darwinian variational model of evolution. Paleobiologists adopted the view of a species as a set of phenotypically variant individuals and graphed those variations either as central tendencies or as histograms of frequencies of variants. Archaeologists presumed their artifact types reflected cultural norms of prehistoric artisans and the frequency of specimens in each type reflected human choice and type popularity. They graphed cultural evolution as shifts in frequencies of specimens representing each of several artifact types. Confusion of pattern and process is exemplified by a paleobiologist misinterpreting the process illustrated by an archaeological graph, and an archaeologist misinterpreting the process illustrated by a paleobiological graph. Each style of graph displays particular evolutionary patterns and implies particular evolutionary processes. Graphs of a multistratum collection of prehistoric mammal remains and a multistratum collection of artifacts demonstrate that many graph styles can be used for both kinds of collections.

  10. Insertion algorithms for network model database management systems

    NASA Astrophysics Data System (ADS)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  11. Computing sparse derivatives and consecutive zeros problem

    NASA Astrophysics Data System (ADS)

    Chandra, B. V. Ravi; Hossain, Shahadat

    2013-02-01

    We describe a substitution based sparse Jacobian matrix determination method using algorithmic differentiation. Utilizing the a priori known sparsity pattern, a compression scheme is determined using graph coloring. The "compressed pattern" of the Jacobian matrix is then reordered into a form suitable for computation by substitution. We show that the column reordering of the compressed pattern matrix (so as to align the zero entries into consecutive locations in each row) can be viewed as a variant of traveling salesman problem. Preliminary computational results show that on the test problems the performance of nearest-neighbor type heuristic algorithms is highly encouraging.

  12. Effect of Graph Scale on Risky Choice: Evidence from Preference and Process in Decision-Making

    PubMed Central

    Sun, Yan; Li, Shu; Bonini, Nicolao; Liu, Yang

    2016-01-01

    We investigate the effect of graph scale on risky choices. By (de)compressing the scale, we manipulate the relative physical distance between options on a given attribute in a coordinate graphical context. In Experiment 1, the risky choice changes as a function of the scale in the graph. In Experiment 2, we show that the type of graph scale also affects decision times. In Experiment 3, we examine the graph scale effect by using real money among students who have taken statistics courses. Consequently, the scale effects still appear even when we control the variations in calculation ability and increase the gravity with which participants view the consequence of their decisions. This finding is inconsistent with descriptive invariance of preference. The theoretical implications and practical applications of the findings are discussed. PMID:26771530

  13. Movement Forms: A Graph-Dynamic Perspective

    PubMed Central

    Saltzman, Elliot; Holt, Ken

    2014-01-01

    The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form’s physical graph dynamics). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects. PMID:24910507

  14. The Effective Resistance of the -Cycle Graph with Four Nearest Neighbors

    NASA Astrophysics Data System (ADS)

    Chair, Noureddine

    2014-02-01

    The exact expression for the effective resistance between any two vertices of the -cycle graph with four nearest neighbors , is given. It turns out that this expression is written in terms of the effective resistance of the -cycle graph , the square of the Fibonacci numbers, and the bisected Fibonacci numbers. As a consequence closed form formulas for the total effective resistance, the first passage time, and the mean first passage time for the simple random walk on the the -cycle graph with four nearest neighbors are obtained. Finally, a closed form formula for the effective resistance of with all first neighbors removed is obtained.

  15. Complexity and approximability for a problem of intersecting of proximity graphs with minimum number of equal disks

    NASA Astrophysics Data System (ADS)

    Kobylkin, Konstantin

    2016-10-01

    Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.

  16. 3D object retrieval using salient views

    PubMed Central

    Shapiro, Linda G.

    2013-01-01

    This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. PMID:23833704

  17. The Views of Preservice Teachers about the Strengths and Limitations of the Use of Graphing Calculators in Mathematics Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Asli

    2009-01-01

    Handheld graphing technologies have fundamentally been utilized in the teaching and learning of many secondary school and college mathematics concepts. In order to observe the effects of these new kinds of technologies on students' learning of mathematics, their teachers need to decide whether it is reasonable to do, learn, and teach mathematics…

  18. Diabetes Interactive Atlas

    PubMed Central

    Burrows, Nilka R.; Geiss, Linda S.

    2014-01-01

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340

  19. Computer Assisted Assessment of Face-to-Face Interactions in Health Care Settings

    PubMed Central

    Ayers, James L.; Haight, Stewart A.

    1981-01-01

    In this paper, the development of an objective procedure for the empirical assessment of dyadic face-to-face interactions is presented. This procedure, called the Interpersonal Tracking Task (ITT) permits two persons who have just finished video taping their conversation to watch themselves immediately after and, while viewing themselves, answer a sequence of questions systematically presented on a second monitor by a microcomputer. Immediately after viewing their tape, each participant can receive feedback in the form of descriptive statistics summarizing their responses to specific questions and a series of colored bar graphs by which they can view change in their responses over the course of their interaction. The unique role of a computer in this assessment is discussed together with specific components of the software. Preliminary research with the ITT in health care settings has suggested steps for its further development as a research instrument and learning tool whereby individuals might more closely examine their dealings with each other. ImagesFigure 1

  20. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…

  1. Limits on relief through constrained exchange on random graphs

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Ellebracht, Lory A.; Gieseler, Charles J.

    2007-09-01

    Agents are represented by nodes on a random graph (e.g., “small world”). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links.

  2. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  3. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  4. A Negative Partition Relation

    PubMed Central

    Hajnal, A.

    1971-01-01

    If the continuum hypothesis is assumed, there is a graph G whose vertices form an ordered set of type ω12; G does not contain triangles or complete even graphs of form [[unk]0,[unk]0], and there is no independent subset of vertices of type ω12. PMID:16591893

  5. Demystifying Data

    ERIC Educational Resources Information Center

    Dash, Carolyn; Hug, Barbara

    2014-01-01

    We constantly encounter data--in the form of graphs--that convey information about weather, medicine, politics, finances, and nutrition. These graphs are intended to help us visualize data for easy interpretation; however, approximately 41% of adults in the United States have low graph literacy (Galesic and Garcia-Retamero 2011). In this article,…

  6. Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.

    PubMed

    Martin, O C; Sulc, P

    2010-03-01

    We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.

  7. Graph Design via Convex Optimization: Online and Distributed Perspectives

    NASA Astrophysics Data System (ADS)

    Meng, De

    Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.

  8. Phase transition in the parametric natural visibility graph.

    PubMed

    Snarskii, A A; Bezsudnov, I V

    2016-10-01

    We investigate time series by mapping them to the complex networks using a parametric natural visibility graph (PNVG) algorithm that generates graphs depending on arbitrary continuous parameter-the angle of view. We study the behavior of the relative number of clusters in PNVG near the critical value of the angle of view. Artificial and experimental time series of different nature are used for numerical PNVG investigations to find critical exponents above and below the critical point as well as the exponent in the finite size scaling regime. Altogether, they allow us to find the critical exponent of the correlation length for PNVG. The set of calculated critical exponents satisfies the basic Widom relation. The PNVG is found to demonstrate scaling behavior. Our results reveal the similarity between the behavior of the relative number of clusters in PNVG and the order parameter in the second-order phase transitions theory. We show that the PNVG is another example of a system (in addition to magnetic, percolation, superconductivity, etc.) with observed second-order phase transition.

  9. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  10. Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere

    NASA Astrophysics Data System (ADS)

    Garner, David; Ramgoolam, Sanjaye

    2013-10-01

    The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.

  11. MPD work at MIT

    NASA Technical Reports Server (NTRS)

    Martinez-Sanchez, Manuel

    1991-01-01

    MPD work at MIT is presented in the form of the view-graphs. The following subject areas are covered: the MIT program, its goals, achievements, and roadblocks; quasi one-dimensional modeling; two-dimensional modeling - transport effects and Hall effect; microscopic instabilities in MPD flows and modified two stream instability; electrothermal stability theory; separation of onset and anode depletion; exit plane spectroscopic measurements; phenomena of onset as performance limiter; explanations of onset; geometry effects on onset; onset at full ionization and its consequences; relationship to anode depletion; summary on self-field MPD; applied field MPD - the logical growth path; the case for AF; the challenges of AF MPD; and recommendations.

  12. GOGrapher: A Python library for GO graph representation and analysis.

    PubMed

    Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua

    2009-07-07

    The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve.

  13. Expanding our understanding of students' use of graphs for learning physics

    NASA Astrophysics Data System (ADS)

    Laverty, James T.

    It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.

  14. Detection of atypical network development patterns in children with autism spectrum disorder using magnetoencephalography

    PubMed Central

    Watanabe, Katsumi; Yoshimura, Yuko; Kikuchi, Mitsuru; Minabe, Yoshio; Aihara, Kazuyuki

    2017-01-01

    Autism spectrum disorder (ASD) is a developmental disorder that involves developmental delays. It has been hypothesized that aberrant neural connectivity in ASD may cause atypical brain network development. Brain graphs not only describe the differences in brain networks between clinical and control groups, but also provide information about network development within each group. In the present study, graph indices of brain networks were estimated in children with ASD and in typically developing (TD) children using magnetoencephalography performed while the children viewed a cartoon video. We examined brain graphs from a developmental point of view, and compared the networks between children with ASD and TD children. Network development patterns (NDPs) were assessed by examining the association between the graph indices and the raw scores on the achievement scale or the age of the children. The ASD and TD groups exhibited different NDPs at both network and nodal levels. In the left frontal areas, the nodal degree and efficiency of the ASD group were negatively correlated with the achievement scores. Reduced network connections were observed in the temporal and posterior areas of TD children. These results suggested that the atypical network developmental trajectory in children with ASD is associated with the development score rather than age. PMID:28886147

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wylie, Brian Neil; Moreland, Kenneth D.

    Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphsmore » from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.« less

  16. Instructional Efficiency of the Integration of Graphing Calculators in Teaching and Learning Mathematics

    ERIC Educational Resources Information Center

    Tajuddin, Nor'ain Mohd; Tarmizi, Rohani Ahmad; Konting, Mohd Majid; Ali, Wan Zah Wan

    2009-01-01

    This quasi-experimental study with non-equivalent control group post-test only design was conducted to investigate the effects of using graphing calculators in mathematics teaching and learning on Form Four Malaysian secondary school students' performance and their meta-cognitive awareness level. Graphing calculator strategy refers to the use of…

  17. Developing Data Graph Comprehension. Third Edition

    ERIC Educational Resources Information Center

    Curcio, Frances

    2010-01-01

    Since the dawn of civilization, pictorial representations and symbols have been used to communicate simple statistics. Efficient and effective, they are still used today in the form of pictures and graphs to record and present data. Who can tie their shoes? How many calories are in your favorite food? Make data and graphs relevant and interesting…

  18. A Network Analysis of Social Balance in Conflict in the Maghreb

    DTIC Science & Technology

    2013-03-01

    relationships from Table 6 shown in graph form. Graph by author using Pajek ( Batagelj & Mrvar , 1996 ...author using Pajek ( Batagelj & Mrvar , 1996 )................................................................................................ 4-17 Figure...negative and black is positive. By author using Pajek ( Batagelj & Mrvar , 1996 ). ..... 4-21 Figure 23: Network Graph of 10 Actor Network (Post-French

  19. Copying Helps Novice Learners Build Orthographic Knowledge: Methods for Teaching Devanagari Akshara

    ERIC Educational Resources Information Center

    Bhide, Adeetee

    2018-01-01

    Hindi graphs, called akshara, are difficult to learn because of their visual complexity and large set of graphs. Akshara containing multiple consonants (complex akshara) are particularly difficult. In Hindi, complex akshara are formed by fusing individual consonantal graphs. Some complex akshara look similar to their component parts (transparent),…

  20. The effect of Gestalt laws of perceptual organization on the comprehension of three-variable bar and line graphs.

    PubMed

    Ali, Nadia; Peebles, David

    2013-02-01

    We report three experiments investigating the ability of undergraduate college students to comprehend 2 x 2 "interaction" graphs from two-way factorial research designs. Factorial research designs are an invaluable research tool widely used in all branches of the natural and social sciences, and the teaching of such designs lies at the core of many college curricula. Such data can be represented in bar or line graph form. Previous studies have shown, however, that people interpret these two graphical forms differently. In Experiment 1, participants were required to interpret interaction data in either bar or line graphs while thinking aloud. Verbal protocol analysis revealed that line graph users were significantly more likely to misinterpret the data or fail to interpret the graph altogether. The patterns of errors line graph users made were interpreted as arising from the operation of Gestalt principles of perceptual organization, and this interpretation was used to develop two modified versions of the line graph, which were then tested in two further experiments. One of the modifications resulted in a significant improvement in performance. Results of the three experiments support the proposed explanation and demonstrate the effects (both positive and negative) of Gestalt principles of perceptual organization on graph comprehension. We propose that our new design provides a more balanced representation of the data than the standard line graph for nonexpert users to comprehend the full range of relationships in two-way factorial research designs and may therefore be considered a more appropriate representation for use in educational and other nonexpert contexts.

  1. Multi-target Detection, Tracking, and Data Association on Road Networks Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Barkley, Brett E.

    A cooperative detection and tracking algorithm for multiple targets constrained to a road network is presented for fixed-wing Unmanned Air Vehicles (UAVs) with a finite field of view. Road networks of interest are formed into graphs with nodes that indicate the target likelihood ratio (before detection) and position probability (after detection). A Bayesian likelihood ratio tracker recursively assimilates target observations until the cumulative observations at a particular location pass a detection criterion. At this point, a target is considered detected and a position probability is generated for the target on the graph. Data association is subsequently used to route future measurements to update the likelihood ratio tracker (for undetected target) or to update a position probability (a previously detected target). Three strategies for motion planning of UAVs are proposed to balance searching for new targets with tracking known targets for a variety of scenarios. Performance was tested in Monte Carlo simulations for a variety of mission parameters, including tracking on road networks with varying complexity and using UAVs at various altitudes.

  2. Function plot response: A scalable system for teaching kinematics graphs

    NASA Astrophysics Data System (ADS)

    Laverty, James; Kortemeyer, Gerd

    2012-08-01

    Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.

  3. An investigation of Hebbian phase sequences as assembly graphs

    PubMed Central

    Almeida-Filho, Daniel G.; Lopes-dos-Santos, Vitor; Vasconcelos, Nivaldo A. P.; Miranda, José G. V.; Tort, Adriano B. L.; Ribeiro, Sidarta

    2014-01-01

    Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition. PMID:24782715

  4. An enhanced digital line graph design

    USGS Publications Warehouse

    Guptill, Stephen C.

    1990-01-01

    In response to increasing information demands on its digital cartographic data, the U.S. Geological Survey has designed an enhanced version of the Digital Line Graph, termed Digital Line Graph - Enhanced (DLG-E). In the DLG-E model, the phenomena represented by geographic and cartographic data are termed entities. Entities represent individual phenomena in the real world. A feature is an abstraction of a set of entities, with the feature description encompassing only selected properties of the entities (typically the properties that have been portrayed cartographically on a map). Buildings, bridges, roads, streams, grasslands, and counties are examples of features. A feature instance, that is, one occurrence of a feature, is described in the digital environment by feature objects and spatial objects. A feature object identifies a feature instance and its nonlocational attributes. Nontopological relationships are associated with feature objects. The locational aspects of the feature instance are represented by spatial objects. Four spatial objects (points, nodes, chains, and polygons) and their topological relationships are defined. To link the locational and nonlocational aspects of the feature instance, a given feature object is associated with (or is composed of) a set of spatial objects. These objects, attributes, and relationships are the components of the DLG-E data model. To establish a domain of features for DLG-E, an approach using a set of classes, or views, of spatial entities was adopted. The five views that were developed are cover, division, ecosystem, geoposition, and morphology. The views are exclusive; each view is a self-contained analytical approach to the entire range of world features. Because each view is independent of the others, a single point on the surface of the Earth can be represented under multiple views. Under the five views, over 200 features were identified and defined. This set constitutes an initial domain of DLG-E features.

  5. Publisher Correction: Predicting unpredictability

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.

    2018-06-01

    In this News & Views article originally published, the wrong graph was used for panel b of Fig. 1, and the numbers on the y axes of panels a and c were incorrect; the original and corrected Fig. 1 is shown below. This has now been corrected in all versions of the News & Views.

  6. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

    NASA Astrophysics Data System (ADS)

    Claussen, Jens Christian

    2007-02-01

    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

  7. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178

  8. The PANTHER User Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less

  9. Extraction of Graph Information Based on Image Contents and the Use of Ontology

    ERIC Educational Resources Information Center

    Kanjanawattana, Sarunya; Kimura, Masaomi

    2016-01-01

    A graph is an effective form of data representation used to summarize complex information. Explicit information such as the relationship between the X- and Y-axes can be easily extracted from a graph by applying human intelligence. However, implicit knowledge such as information obtained from other related concepts in an ontology also resides in…

  10. Using Graphing Software to Teach about Algebraic Forms: A Study of Technology-Supported Practice in Secondary-School Mathematics

    ERIC Educational Resources Information Center

    Ruthven, Kenneth; Deaney, Rosemary; Hennessy, Sara

    2009-01-01

    From preliminary analysis of teacher-nominated examples of successful technology-supported practice in secondary-school mathematics, the use of graphing software to teach about algebraic forms was identified as being an important archetype. Employing evidence from lesson observation and teacher interview, such practice was investigated in greater…

  11. Visual Reasoning in Computational Environment: A Case of Graph Sketching

    ERIC Educational Resources Information Center

    Leung, Allen; Chan, King Wah

    2004-01-01

    This paper reports the case of a form six (grade 12) Hong Kong student's exploration of graph sketching in a computational environment. In particular, the student summarized his discovery in the form of two empirical laws. The student was interviewed and the interviewed data were used to map out a possible path of his visual reasoning. Critical…

  12. Data Mining Meets HCI: Making Sense of Large Graphs

    DTIC Science & Technology

    2012-07-01

    graph algo- rithms, won the Open Source Software World Challenge, Silver Award. We have released Pegasus as free , open-source software, downloaded by...METIS [77], spectral clustering [108], and the parameter- free “Cross-associations” (CA) [26]. Belief Propagation can also be used for clus- tering, as...number of tools have been developed to support “ landscape ” views of information. These include WebBook and Web- Forager [23], which use a book metaphor

  13. GOGrapher: A Python library for GO graph representation and analysis

    PubMed Central

    Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua

    2009-01-01

    Background The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. Findings An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. Conclusion The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve. PMID:19583843

  14. Model-based morphological segmentation and labeling of coronary angiograms.

    PubMed

    Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G

    1999-10-01

    A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.

  15. View-Based Organization and Interplay of Spatial Working and Long-Term Memories

    PubMed Central

    Röhrich, Wolfgang G.; Hardiess, Gregor; Mallot, Hanspeter A.

    2014-01-01

    Space perception provides egocentric, oriented views of the environment from which working and long-term memories are constructed. “Allocentric” (i.e. position-independent) long-term memories may be organized as graphs of recognized places or views but the interaction of such cognitive graphs with egocentric working memories is unclear. Here we present a simple coherent model of view-based working and long-term memories, together with supporting evidence from behavioral experiments. The model predicts that within a given place, memories for some views may be more salient than others, that imagery of a target square should depend on the location where the recall takes place, and that recall favors views of the target square that would be obtained when approaching it from the current recall location. In two separate experiments in an outdoor urban environment, pedestrians were approached at various interview locations and asked to draw sketch maps of one of two well-known squares. Orientations of the sketch map productions depended significantly on distance and direction of the interview location from the target square, i.e. different views were recalled at different locations. Further analysis showed that location-dependent recall is related to the respective approach direction when imagining a walk from the interview location to the target square. The results are consistent with a view-based model of spatial long-term and working memories and their interplay. PMID:25409437

  16. Global dynamics for switching systems and their extensions by linear differential equations

    NASA Astrophysics Data System (ADS)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  17. Global dynamics for switching systems and their extensions by linear differential equations.

    PubMed

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  18. Graph Databases for Large-Scale Healthcare Systems: A Framework for Efficient Data Management and Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yubin; Shankar, Mallikarjun; Park, Byung H.

    Designing a database system for both efficient data management and data services has been one of the enduring challenges in the healthcare domain. In many healthcare systems, data services and data management are often viewed as two orthogonal tasks; data services refer to retrieval and analytic queries such as search, joins, statistical data extraction, and simple data mining algorithms, while data management refers to building error-tolerant and non-redundant database systems. The gap between service and management has resulted in rigid database systems and schemas that do not support effective analytics. We compose a rich graph structure from an abstracted healthcaremore » RDBMS to illustrate how we can fill this gap in practice. We show how a healthcare graph can be automatically constructed from a normalized relational database using the proposed 3NF Equivalent Graph (3EG) transformation.We discuss a set of real world graph queries such as finding self-referrals, shared providers, and collaborative filtering, and evaluate their performance over a relational database and its 3EG-transformed graph. Experimental results show that the graph representation serves as multiple de-normalized tables, thus reducing complexity in a database and enhancing data accessibility of users. Based on this finding, we propose an ensemble framework of databases for healthcare applications.« less

  19. Low-Rank Discriminant Embedding for Multiview Learning.

    PubMed

    Li, Jingjing; Wu, Yue; Zhao, Jidong; Lu, Ke

    2017-11-01

    This paper focuses on the specific problem of multiview learning where samples have the same feature set but different probability distributions, e.g., different viewpoints or different modalities. Since samples lying in different distributions cannot be compared directly, this paper aims to learn a latent subspace shared by multiple views assuming that the input views are generated from this latent subspace. Previous approaches usually learn the common subspace by either maximizing the empirical likelihood, or preserving the geometric structure. However, considering the complementarity between the two objectives, this paper proposes a novel approach, named low-rank discriminant embedding (LRDE), for multiview learning by taking full advantage of both sides. By further considering the duality between data points and features of multiview scene, i.e., data points can be grouped based on their distribution on features, while features can be grouped based on their distribution on the data points, LRDE not only deploys low-rank constraints on both sample level and feature level to dig out the shared factors across different views, but also preserves geometric information in both the ambient sample space and the embedding feature space by designing a novel graph structure under the framework of graph embedding. Finally, LRDE jointly optimizes low-rank representation and graph embedding in a unified framework. Comprehensive experiments in both multiview manner and pairwise manner demonstrate that LRDE performs much better than previous approaches proposed in recent literatures.

  20. Ringo: Interactive Graph Analytics on Big-Memory Machines

    PubMed Central

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2016-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215

  1. Ringo: Interactive Graph Analytics on Big-Memory Machines.

    PubMed

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2015-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.

  2. Why Representations?

    ERIC Educational Resources Information Center

    Schultz, James E.; Waters, Michael S.

    2000-01-01

    Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)

  3. A complementary graphical method for reducing and analyzing large data sets. Case studies demonstrating thresholds setting and selection.

    PubMed

    Jing, X; Cimino, J J

    2014-01-01

    Graphical displays can make data more understandable; however, large graphs can challenge human comprehension. We have previously described a filtering method to provide high-level summary views of large data sets. In this paper we demonstrate our method for setting and selecting thresholds to limit graph size while retaining important information by applying it to large single and paired data sets, taken from patient and bibliographic databases. Four case studies are used to illustrate our method. The data are either patient discharge diagnoses (coded using the International Classification of Diseases, Clinical Modifications [ICD9-CM]) or Medline citations (coded using the Medical Subject Headings [MeSH]). We use combinations of different thresholds to obtain filtered graphs for detailed analysis. The thresholds setting and selection, such as thresholds for node counts, class counts, ratio values, p values (for diff data sets), and percentiles of selected class count thresholds, are demonstrated with details in case studies. The main steps include: data preparation, data manipulation, computation, and threshold selection and visualization. We also describe the data models for different types of thresholds and the considerations for thresholds selection. The filtered graphs are 1%-3% of the size of the original graphs. For our case studies, the graphs provide 1) the most heavily used ICD9-CM codes, 2) the codes with most patients in a research hospital in 2011, 3) a profile of publications on "heavily represented topics" in MEDLINE in 2011, and 4) validated knowledge about adverse effects of the medication of rosiglitazone and new interesting areas in the ICD9-CM hierarchy associated with patients taking the medication of pioglitazone. Our filtering method reduces large graphs to a manageable size by removing relatively unimportant nodes. The graphical method provides summary views based on computation of usage frequency and semantic context of hierarchical terminology. The method is applicable to large data sets (such as a hundred thousand records or more) and can be used to generate new hypotheses from data sets coded with hierarchical terminologies.

  4. A graph-based approach to inequality assessment

    NASA Astrophysics Data System (ADS)

    Palestini, Arsen; Pignataro, Giuseppe

    2016-08-01

    In a population consisting of heterogeneous types, whose income factors are indicated by nonnegative vectors, policies aggregating different factors can be represented by coalitions in a cooperative game, whose characteristic function is a multi-factor inequality index. When it is not possible to form all coalitions, the feasible ones can be indicated by a graph. We redefine Shapley and Banzhaf values on graph games to deduce some properties involving the degrees of the graph vertices and marginal contributions to overall inequality. An example is finally provided based on a modified multi-factor Atkinson index.

  5. Resistance distance and Kirchhoff index in circulant graphs

    NASA Astrophysics Data System (ADS)

    Zhang, Heping; Yang, Yujun

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.

  6. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  7. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  8. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  9. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  10. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation

    DOE PAGES

    Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.

    2017-10-26

    Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less

  11. Characterizing networks formed by P. polycephalum

    NASA Astrophysics Data System (ADS)

    Dirnberger, M.; Mehlhorn, K.

    2017-06-01

    We present a systematic study of the characteristic vein networks formed by the slime mold P. polycephalum. Our study is based on an extensive set of graph representations of slime mold networks. We analyze a total of 1998 graphs capturing growth and network formation of P. polycephalum as observed in 36 independent, identical, wet-lab experiments. Relying on concepts from graph theory such as face cycles and cuts as well as ideas from percolation theory, we establish a broad collection of individual observables taking into account various complementary aspects of P. polycephalum networks. As a whole, the collection is intended to serve as a specialized knowledge-base providing a comprehensive characterization of P. polycephalum networks. To this end, it contains individual as well as cumulative results for all investigated observables across all available data series, down to the level of single P. polycephalum graphs. Furthermore we include the raw numerical data as well as various plotting and analysis tools to ensure reproducibility and increase the usefulness of the collection. All our results are publicly available in an organized fashion in the slime mold graph repository (Smgr).

  12. Measuring Graph Comprehension, Critique, and Construction in Science

    NASA Astrophysics Data System (ADS)

    Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.

    2016-08-01

    Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.

  13. Network topology mapper

    DOEpatents

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  14. Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching

    DTIC Science & Technology

    2013-01-01

    REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy

  15. Graph-based surface reconstruction from stereo pairs using image segmentation

    NASA Astrophysics Data System (ADS)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  16. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  17. Labeling RDF Graphs for Linear Time and Space Querying

    NASA Astrophysics Data System (ADS)

    Furche, Tim; Weinzierl, Antonius; Bry, François

    Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.

  18. High-performance analysis of filtered semantic graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluc, Aydin; Fox, Armando; Gilbert, John R.

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less

  19. Graphing Reality

    ERIC Educational Resources Information Center

    Beeken, Paul

    2014-01-01

    Graphing is an essential skill that forms the foundation of any physical science. Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations. Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary…

  20. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.

    PubMed

    Warnke-Sommer, Julia; Ali, Hesham

    2016-05-06

    The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured by its structure. We demonstrate the advantages of considering assembly graphs as data-mining support in addition to their role as frameworks for assembly.

  1. Three-dimensional curvilinear device reconstruction from two fluoroscopic views

    NASA Astrophysics Data System (ADS)

    Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge

    2015-03-01

    In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.

  2. Monitor and Control of the Deep-Space network via Secure Web

    NASA Technical Reports Server (NTRS)

    Lamarra, N.

    1997-01-01

    (view graph) NASA lead center for robotic space exploration. Operating division of Caltech/Jet Propulsion Laboratory. Current missions, Voyagers, Galileo, Pathfinder, Global Surveyor. Upcoming missions, Cassini, Mars and New Millennium.

  3. FEDFacts: Information about the Federal Electronic Docket Facilities

    EPA Pesticide Factsheets

    Cleanup status information related to Federal Facilities contained in EPA's Federal Agency Hazardous Waste Compliance Docket. Information includes maps, lists of facilities, dashboard view with graphs, links to community resources, and news items.

  4. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  5. Network analysis for the visualization and analysis of qualitative data.

    PubMed

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Graph-based layout analysis for PDF documents

    NASA Astrophysics Data System (ADS)

    Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao

    2013-03-01

    To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.

  7. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    NASA Astrophysics Data System (ADS)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; Li, Xing; Li, Jun; Tan, Guotai; Zhu, Yimei; Zhu, Jing

    2018-04-01

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. Herein, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by a genus model from a higher dimension in the graph theory. Our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.

  8. Strong parameterization and coordination encirclements of graph of Penrose tiling vertices

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-07-01

    The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.

  9. Graphs for information security control in software defined networks

    NASA Astrophysics Data System (ADS)

    Grusho, Alexander A.; Abaev, Pavel O.; Shorgin, Sergey Ya.; Timonina, Elena E.

    2017-07-01

    Information security control in software defined networks (SDN) is connected with execution of the security policy rules regulating information accesses and protection against distribution of the malicious code and harmful influences. The paper offers a representation of a security policy in the form of hierarchical structure which in case of distribution of resources for the solution of tasks defines graphs of admissible interactions in a networks. These graphs define commutation tables of switches via the SDN controller.

  10. Optimal Topology Control and Power Allocation for Minimum Energy Consumption in Consensus Networks

    DTIC Science & Technology

    2011-12-16

    network topologies, such as small world graphs, can greatly increase the convergence rate. In [9], the authors show that nonbipartite Ramanujan graphs...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 23384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60...of iterations necessary to achieve consensus. From this perspec- tive, enforcing a small world, scale-free, or Ramanujan graph topology may not be the

  11. The Science from Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert

    2006-01-01

    This slide presentation shows views from the Mars rovers, Spirit and Opportunity. Included are views of the takeoff, and descent on to Mars. The science objective of these missions are to determine the water, climate, and geologic history of two sites on Mars where evidence has been preserved for past and persistent liquid water activity that may have supported biotic or pre-biotic processes. There are also shots of the Athena Science Payload with views of the instrumentation. Also presented are graphs showing Mossbauer Spectra of varions martian rocks.

  12. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  13. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  14. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  15. Precalculus teachers' perspectives on using graphing calculators: an example from one curriculum

    NASA Astrophysics Data System (ADS)

    Karadeniz, Ilyas; Thompson, Denisse R.

    2018-01-01

    Graphing calculators are hand-held technological tools currently used in mathematics classrooms. Teachers' perspectives on using graphing calculators are important in terms of exploring what teachers think about using such technology in advanced mathematics courses, particularly precalculus courses. A descriptive intrinsic case study was conducted to analyse the perspectives of 11 teachers using graphing calculators with potential Computer Algebra System (CAS) capability while teaching Functions, Statistics, and Trigonometry, a precalculus course for 11th-grade students developed by the University of Chicago School Mathematics Project. Data were collected from multiple sources as part of a curriculum evaluation study conducted during the 2007-2008 school year. Although all teachers were using the same curriculum that integrated CAS into the instructional materials, teachers had mixed views about the technology. Graphing calculator features were used much more than CAS features, with many teachers concerned about the use of CAS because of pressures from external assessments. In addition, several teachers found it overwhelming to learn a new technology at the same time they were learning a new curriculum. The results have implications for curriculum developers and others working with teachers to update curriculum and the use of advanced technologies simultaneously.

  16. Three-dimensional model-based object recognition and segmentation in cluttered scenes.

    PubMed

    Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn

    2006-10-01

    Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.

  17. Automatic classification of protein structures relying on similarities between alignments

    PubMed Central

    2012-01-01

    Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051

  18. On the degree conjecture for separability of multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-01

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

  19. Aviation system indicators : 1996 annual report

    DOT National Transportation Integrated Search

    1997-03-14

    This report presents graphs and data tables for 36 aviation system and environmental indicators that the Federal Aviation Administration (FAA) has developed to give a broad view of the national aviation system operation and environment. The 24 system...

  20. Querying graphs in protein-protein interactions networks using feedback vertex set.

    PubMed

    Blin, Guillaume; Sikora, Florian; Vialette, Stéphane

    2010-01-01

    Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.

  1. An MBO Scheme for Minimizing the Graph Ohta-Kawasaki Functional

    NASA Astrophysics Data System (ADS)

    van Gennip, Yves

    2018-06-01

    We study a graph-based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph-based problems inspired by partial differential equations (PDEs) and variational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph-based problems to pattern-forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ -converge to the Ohta-Kawasaki functional (which includes the standard graph-based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.

  2. Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders

    PubMed Central

    Thomas, Jaya; Seo, Dongmin; Sael, Lee

    2016-01-01

    How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of graph representation and graph analysis methods and their application in the study of both the genomic level and the phenotypic level of the neurological disorder. We find numerous research works that create, process and analyze graphs formed from one or a few data types to gain an understanding of specific aspects of the neurological disorders. Furthermore, with the increasing number of data of various types becoming available for neurological disorders, we find that integrative analysis approaches that combine several types of data are being recognized as a way to gain a global understanding of the diseases. Although there are still not many integrative analyses of graphs due to the complexity in analysis, multi-layer graph analysis is a promising framework that can incorporate various data types. We describe and discuss the benefits of the multi-layer graph framework for studies of neurological disease. PMID:27258269

  3. Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders.

    PubMed

    Thomas, Jaya; Seo, Dongmin; Sael, Lee

    2016-06-01

    How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of graph representation and graph analysis methods and their application in the study of both the genomic level and the phenotypic level of the neurological disorder. We find numerous research works that create, process and analyze graphs formed from one or a few data types to gain an understanding of specific aspects of the neurological disorders. Furthermore, with the increasing number of data of various types becoming available for neurological disorders, we find that integrative analysis approaches that combine several types of data are being recognized as a way to gain a global understanding of the diseases. Although there are still not many integrative analyses of graphs due to the complexity in analysis, multi-layer graph analysis is a promising framework that can incorporate various data types. We describe and discuss the benefits of the multi-layer graph framework for studies of neurological disease.

  4. The Construction of {P}_{2}\\vartriangleright H-antimagic graph using smaller edge-antimagic vertex labeling

    NASA Astrophysics Data System (ADS)

    Prihandini, Rafiantika M.; Agustin, I. H.; Dafik

    2018-04-01

    In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.

  5. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  6. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE PAGES

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; ...

    2018-04-19

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  7. Homology groups for particles on one-connected graphs

    NASA Astrophysics Data System (ADS)

    MaciÄ Żek, Tomasz; Sawicki, Adam

    2017-06-01

    We present a mathematical framework for describing the topology of configuration spaces for particles on one-connected graphs. In particular, we compute the homology groups over integers for different classes of one-connected graphs. Our approach is based on some fundamental combinatorial properties of the configuration spaces, Mayer-Vietoris sequences for different parts of configuration spaces, and some limited use of discrete Morse theory. As one of the results, we derive the closed-form formulae for ranks of the homology groups for indistinguishable particles on tree graphs. We also give a detailed discussion of the second homology group of the configuration space of both distinguishable and indistinguishable particles. Our motivation is the search for new kinds of quantum statistics.

  8. Smartphone Application Enabling Global Graph Exploitation and Research

    DTIC Science & Technology

    2013-05-01

    employed, blue collar, white collar Religion Mild theology, radical theology Skill Photography, writing, electrical, mechanical, computer, driving...findViewById( R.id.religion_spinner ); 480: String religion = s9.getSelectedItem().toString(); 481: 482: Spinner s10 = (Spinner) findViewById...34Choose Suspect Religion ") || skill.equals("Choose Suspect Skill") || address.equals("Choose Suspect Address")) 504: { 505: Toast msg

  9. Integrated VR platform for 3D and image-based models: a step toward interactive image-based virtual environments

    NASA Astrophysics Data System (ADS)

    Yoon, Jayoung; Kim, Gerard J.

    2003-04-01

    Traditionally, three dimension models have been used for building virtual worlds, and a data structure called the "scene graph" is often employed to organize these 3D objects in the virtual space. On the other hand, image-based rendering has recently been suggested as a probable alternative VR platform for its photo-realism, however, due to limited interactivity, it has only been used for simple navigation systems. To combine the merits of these two approaches to object/scene representations, this paper proposes for a scene graph structure in which both 3D models and various image-based scenes/objects can be defined, traversed, and rendered together. In fact, as suggested by Shade et al., these different representations can be used as different LOD's for a given object. For instance, an object might be rendered using a 3D model at close range, a billboard at an intermediate range, and as part of an environment map at far range. The ultimate objective of this mixed platform is to breath more interactivity into the image based rendered VE's by employing 3D models as well. There are several technical challenges in devising such a platform: designing scene graph nodes for various types of image based techniques, establishing criteria for LOD/representation selection, handling their transitions, implementing appropriate interaction schemes, and correctly rendering the overall scene. Currently, we have extended the scene graph structure of the Sense8's WorldToolKit, to accommodate new node types for environment maps billboards, moving textures and sprites, "Tour-into-the-Picture" structure, and view interpolated objects. As for choosing the right LOD level, the usual viewing distance and image space criteria are used, however, the switching between the image and 3D model occurs at a distance from the user where the user starts to perceive the object's internal depth. Also, during interaction, regardless of the viewing distance, a 3D representation would be used, it if exists. Before rendering, objects are conservatively culled from the view frustum using the representation with the largest volume. Finally, we carried out experiments to verify the theoretical derivation of the switching rule and obtained positive results.

  10. A Graph Summarization Algorithm Based on RFID Logistics

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Hu, Kongfa; Lu, Zhipeng; Zhao, Li; Chen, Ling

    Radio Frequency Identification (RFID) applications are set to play an essential role in object tracking and supply chain management systems. The volume of data generated by a typical RFID application will be enormous as each item will generate a complete history of all the individual locations that it occupied at every point in time. The movement trails of such RFID data form gigantic commodity flowgraph representing the locations and durations of the path stages traversed by each item. In this paper, we use graph to construct a warehouse of RFID commodity flows, and introduce a database-style operation to summarize graphs, which produces a summary graph by grouping nodes based on user-selected node attributes, further allows users to control the hierarchy of summaries. It can cut down the size of graphs, and provide convenience for users to study just on the shrunk graph which they interested. Through extensive experiments, we demonstrate the effectiveness and efficiency of the proposed method.

  11. Thinking graphically: Connecting vision and cognition during graph comprehension.

    PubMed

    Ratwani, Raj M; Trafton, J Gregory; Boehm-Davis, Deborah A

    2008-03-01

    Task analytic theories of graph comprehension account for the perceptual and conceptual processes required to extract specific information from graphs. Comparatively, the processes underlying information integration have received less attention. We propose a new framework for information integration that highlights visual integration and cognitive integration. During visual integration, pattern recognition processes are used to form visual clusters of information; these visual clusters are then used to reason about the graph during cognitive integration. In 3 experiments, the processes required to extract specific information and to integrate information were examined by collecting verbal protocol and eye movement data. Results supported the task analytic theories for specific information extraction and the processes of visual and cognitive integration for integrative questions. Further, the integrative processes scaled up as graph complexity increased, highlighting the importance of these processes for integration in more complex graphs. Finally, based on this framework, design principles to improve both visual and cognitive integration are described. PsycINFO Database Record (c) 2008 APA, all rights reserved

  12. Classification of user interfaces for graph-based online analytical processing

    NASA Astrophysics Data System (ADS)

    Michaelis, James R.

    2016-05-01

    In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.

  13. An efficient algorithm for planar drawing of RNA structures with pseudoknots of any type.

    PubMed

    Byun, Yanga; Han, Kyungsook

    2016-06-01

    An RNA pseudoknot is a tertiary structural element in which bases of a loop pair with complementary bases are outside the loop. A drawing of RNA secondary structures is a tree, but a drawing of RNA pseudoknots is a graph that has an inner cycle within a pseudoknot and possibly outer cycles formed between the pseudoknot and other structural elements. Visualizing a large-scale RNA structure with pseudoknots as a planar drawing is challenging because a planar drawing of an RNA structure requires both pseudoknots and an entire structure enclosing the pseudoknots to be embedded into a plane without overlapping or crossing. This paper presents an efficient heuristic algorithm for visualizing a pseudoknotted RNA structure as a planar drawing. The algorithm consists of several parts for finding crossing stems and page mapping the stems, for the layout of stem-loops and pseudoknots, and for overlap detection between structural elements and resolving it. Unlike previous algorithms, our algorithm generates a planar drawing for a large RNA structure with pseudoknots of any type and provides a bracket view of the structure. It generates a compact and aesthetic structure graph for a large pseudoknotted RNA structure in O([Formula: see text]) time, where n is the number of stems of the RNA structure.

  14. On the degree conjecture for separability of multipartite quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-15

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less

  15. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  16. Effect of Scientific Argumentation on the Development of Scientific Process Skills in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Kilic, Ziya

    2015-01-01

    This study was conducted in order to determine the differences in integrated scientific process skills (designing experiments, forming data tables, drawing graphs, graph interpretation, determining the variables and hypothesizing, changing and controlling variables) of students (n = 17) who were taught with an approach based on scientific…

  17. Using Graphing to Reveal the Hidden Transformations in Palindrome (and Other Types of) Licence Plates

    ERIC Educational Resources Information Center

    Nivens, Ryan Andrew

    2016-01-01

    This article provides a range of activities designed to engage students in using an early form of graphing. While the "Australian Curriculum: Mathematics" (2014) highlights understanding, fluency, problem-solving, and reasoning, the National Research Council (2001) describes five strands of mathematical proficiency, with the additional…

  18. The Gauss-Bonnet operator of an infinite graph

    NASA Astrophysics Data System (ADS)

    Anné, Colette; Torki-Hamza, Nabila

    2015-06-01

    We propose a general condition, to ensure essential self-adjointness for the Gauss-Bonnet operator , based on a notion of completeness as Chernoff. This gives essential self-adjointness of the Laplace operator both for functions and 1-forms on infinite graphs. This is used to extend Flanders result concerning solutions of Kirchhoff's laws.

  19. Projection transparencies from printed material

    NASA Technical Reports Server (NTRS)

    Grunewald, L. S.; Nickerson, T. B.

    1968-01-01

    Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials.

  20. Wire insulation degradation and flammability in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.

  1. Inferring ontology graph structures using OWL reasoning.

    PubMed

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  2. A tool for filtering information in complex systems

    NASA Astrophysics Data System (ADS)

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-07-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.

  3. Edge Antimagic Total Labeling on Two Copies of Path

    NASA Astrophysics Data System (ADS)

    Nurdin; Abrar, A. M.; Bhayangkara, A. R. M.; Muliani; Samsir, A. U.; Nahdi, M. R. An

    2018-03-01

    A graph G = (V(G), E(G)) denotes the vertex set and the edge set, respectively. A (p,q)-graph G is a graph such that |V(G) | = p and |E(G) | = q. Graph of order p and size q is called (a,d)-edge-anti magic total if there exists a bijection f : V(G) U E(G)→ {1,2,..., p + q} such that the edge weights w(u,v) = f(u) + f(uv) + f(v) form an arithmetic sequence {a, a + d, a + 2d,...,a + (q - 1)d} with the first term a and common difference d. Two copies of path is disjoint union of two path graph with same order (Pn ∪Pn ) denoted by 2Pn . In this paper we construct the (a,d)-edge-anti magic total labeling in two copies of path for some differences d.

  4. The topology of fullerenes

    PubMed Central

    Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James

    2015-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935

  5. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  6. Parallel program debugging with flowback analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongdeok.

    1989-01-01

    This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less

  7. Motion sensors in mathematics teaching: learning tools for understanding general math concepts?

    NASA Astrophysics Data System (ADS)

    Urban-Woldron, Hildegard

    2015-05-01

    Incorporating technology tools into the mathematics classroom adds a new dimension to the teaching of mathematics concepts and establishes a whole new approach to mathematics learning. In particular, gathering data in a hands-on and real-time method helps classrooms coming alive. The focus of this paper is on bringing forward important mathematics concepts such as functions and rate of change with the motion detector. Findings from the author's studies suggest that the motion detector can be introduced from a very early age and used to enliven classes at any level. Using real-world data to present the main functions invites an experimental approach to mathematics and encourages students to engage actively in their learning. By emphasizing learning experiences with computer-based motion detectors and aiming to involve students in mathematical representations of real-world phenomena, six learning activities, which were developed in previous research studies, will be presented. Students use motion sensors to collect physical data that are graphed in real time and then manipulate and analyse them. Because data are presented in an immediately understandable graphical form, students are allowed to take an active role in their learning by constructing mathematical knowledge from observation of the physical world. By utilizing a predict-observe-explain format, students learn about slope, determining slope and distance vs. time graphs through motion-filled activities. Furthermore, exploring the meaning of slope, viewed as the rate of change, students acquire competencies for reading, understanding and interpreting kinematics graphs involving a multitude of mathematical representations. Consequently, the students are empowered to efficiently move among tabular, graphical and symbolic representation to analyse patterns and discover the relationships between different representations of motion. In fact, there is a need for further research to explore how mathematics teachers can integrate motion sensors into their classrooms.

  8. E-learning task analysis making temporal evolution graphics on symptoms of waves and the ability to solve problems

    NASA Astrophysics Data System (ADS)

    Rosdiana, L.; Widodo, W.; Nurita, T.; Fauziah, A. N. M.

    2018-04-01

    This study aimed to describe the ability of pre-service teachers to create graphs, solve the problem of spatial and temporal evolution on the symptoms of vibrations and waves. The learning was conducted using e-learning method. The research design is a quasi-experimental design with one-shot case study. The e-learning contained learning materials and tasks involving answering tasks, making questions, solving their own questions, and making graphs. The participants of the study was 28 students of Science Department, Universitas Negeri Surabaya. The results obtained by using the e-learning were that the students’ ability increase gradually from task 1 to task 3 (the tasks consisted of three tasks). Additionally, based on the questionnaire with 28 respondents, it showed that 24 respondents stated that making graphs via e-learning were still difficult. Four respondents said that it was easy to make graphs via e-learning. Nine respondents stated that the e-learning did not help them in making graphs and 19 respondents stated that the e-learning help in creating graphs. The conclusion of the study is that the students was able to make graphs on paper sheet, but they got difficulty to make the graphs in e-learning (the virtual form).

  9. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  10. cMapper: gene-centric connectivity mapper for EBI-RDF platform.

    PubMed

    Shoaib, Muhammad; Ansari, Adnan Ahmad; Ahn, Sung-Min

    2017-01-15

    In this era of biological big data, data integration has become a common task and a challenge for biologists. The Resource Description Framework (RDF) was developed to enable interoperability of heterogeneous datasets. The EBI-RDF platform enables an efficient data integration of six independent biological databases using RDF technologies and shared ontologies. However, to take advantage of this platform, biologists need to be familiar with RDF technologies and SPARQL query language. To overcome this practical limitation of the EBI-RDF platform, we developed cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in a gene-centric manner without a thorough knowledge of RDF and SPARQL. cMapper allows biologists to search data entities in the EBI-RDF platform that are connected to genes or small molecules of interest in multiple biological contexts. The input to cMapper consists of a set of genes or small molecules, and the output are data entities in six independent EBI-RDF databases connected with the given genes or small molecules in the user's query. cMapper provides output to users in the form of a graph in which nodes represent data entities and the edges represent connections between data entities and inputted set of genes or small molecules. Furthermore, users can apply filters based on database, taxonomy, organ and pathways in order to focus on a core connectivity graph of their interest. Data entities from multiple databases are differentiated based on background colors. cMapper also enables users to investigate shared connections between genes or small molecules of interest. Users can view the output graph on a web browser or download it in either GraphML or JSON formats. cMapper is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on Tomcat server. We developed the user interface using HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at http://cmapper.ewostech.net Readers can download the development manual from the website http://cmapper.ewostech.net/docs/cMapperDocumentation.pdf. Source Code is available at https://github.com/muhammadshoaib/cmapperContact:smahn@gachon.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. An Improved Electro-Optical Image Quality Summary Measure.

    DTIC Science & Technology

    1981-10-01

    photo- graphing the display of a vidicon camera system viewing silhouettes of the broadside view of a Soviet KOTLIN class destroyer. Observers were...series ,: hard mages. Transparencies of the broadside KOTLIN silhouette were made with the scale :actor ranqin,, from 13b to 1810 meters per picture...3 warship rather than a merchant ship, and (c) the warsh-,;, is identifiable as beinq )f the nDTLIN class. Obviously, since only KOTLIN images were

  12. A tool for filtering information in complex systems

    PubMed Central

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-01-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. PMID:16027373

  13. A tool for filtering information in complex systems.

    PubMed

    Tumminello, M; Aste, T; Di Matteo, T; Mantegna, R N

    2005-07-26

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties.

  14. The ergodicity landscape of quantum theories

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Radičević, Đorđe

    2018-02-01

    This paper is a physicist’s review of the major conceptual issues concerning the problem of spectral universality in quantum systems. Here, we present a unified, graph-based view of all archetypical models of such universality (billiards, particles in random media, interacting spin or fermion systems). We find phenomenological relations between the onset of ergodicity (Gaussian-random delocalization of eigenstates) and the structure of the appropriate graphs, and we construct a heuristic picture of summing trajectories on graphs that describes why a generic interacting system should be ergodic. We also provide an operator-based discussion of quantum chaos and propose criteria to distinguish bases that can usefully diagnose ergodicity. The result of this analysis is a rough but systematic outline of how ergodicity changes across the space of all theories with a given Hilbert space dimension. As a particular example, we study the SYK model and report on the transition from maximal to partial ergodicity as the disorder strength is decreased.

  15. [Health for All-Italia: an indicator system on health].

    PubMed

    Burgio, Alessandra; Crialesi, Roberta; Loghi, Marzia

    2003-01-01

    The Health for All - Italia information system collects health data from several sources. It is intended to be a cornerstone for the achievement of an overview about health in Italy. Health is analyzed at different levels, ranging from health services, health needs, lifestyles, demographic, social, economic and environmental contexts. The database associated software allows to pin down statistical data into graphs and tables, and to carry out simple statistical analysis. It is therefore possible to view the indicators' time series, make simple projections and compare the various indicators over the years for each territorial unit. This is possible by means of tables, graphs (histograms, line graphs, frequencies, linear regression with calculation of correlation coefficients, etc) and maps. These charts can be exported to other programs (i.e. Word, Excel, Power Point), or they can be directly printed in color or black and white.

  16. Software for Preprocessing Data from Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  17. A Graph Approach to Mining Biological Patterns in the Binding Interfaces.

    PubMed

    Cheng, Wen; Yan, Changhui

    2017-01-01

    Protein-RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein-RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein-RNA interfaces. We represented known protein-RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near-native protein-RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.

  18. Impact of Geometer's Sketchpad on Students Achievement in Graph Functions

    ERIC Educational Resources Information Center

    Eu, Leong Kwan

    2013-01-01

    The purpose of this study is to investigate the effect of using the Geometer's Sketchpad software in the teaching and learning of graph functions among Form Six (Grade 12) students in a Malaysian secondary school. This study utilized a quasi-experimental design using intact group of students from two classes in an urban secondary school. Two…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  20. An Automated Method for Identifying Inconsistencies within Diagrammatic Software Requirements Specifications

    NASA Technical Reports Server (NTRS)

    Zhang, Zhong

    1997-01-01

    The development of large-scale, composite software in a geographically distributed environment is an evolutionary process. Often, in such evolving systems, striving for consistency is complicated by many factors, because development participants have various locations, skills, responsibilities, roles, opinions, languages, terminology and different degrees of abstraction they employ. This naturally leads to many partial specifications or viewpoints. These multiple views on the system being developed usually overlap. From another aspect, these multiple views give rise to the potential for inconsistency. Existing CASE tools do not efficiently manage inconsistencies in distributed development environment for a large-scale project. Based on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for requirements Evolution) toolkit aims to tackle inconsistency management issues within geographically distributed software development projects. Consequently, WHERE project helps make more robust software and support software assurance process. The long term goal of WHERE tools aims to the inconsistency analysis and management in requirements specifications. A framework based on Graph Grammar theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints. This systematic approach uses three basic operations (UNION, DIFFERENCE, INTERSECTION) to study the static behaviors of graphic and tabular notations. From these operations, subgraphs Query, Selection, Merge, Replacement operations can be derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the dynamic transformations of graphs. We discuss the feasibility of implementation these operations. Also, We present the process of porting original TCM (Toolkit for Conceptual Modeling) project from C++ to Java programming language in this thesis. A scenario based on NASA International Space Station Specification is discussed to show the applicability of our approach. Finally, conclusion and future work about inconsistency management issues in WHERE project will be summarized.

  1. Sampling ARG of multiple populations under complex configurations of subdivision and admixture.

    PubMed

    Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi

    2016-04-01

    Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. A Unified Framework for Street-View Panorama Stitching

    PubMed Central

    Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei

    2016-01-01

    In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481

  3. Exponent and scrambling index of double alternate circular snake graphs

    NASA Astrophysics Data System (ADS)

    Rahmayanti, Sri; Pasaribu, Valdo E.; Nasution, Sawaluddin; Liani Salnaz, Sishi

    2018-01-01

    A graph is primitive if it contains a cycle of odd length. The exponent of a primitive graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a (n,r)-double alternate circular snake graph, denoted by DA(C r,n ), is a graph obtained from a path u 1 u 2 ... u n by replacing each edge of the form u 2i u 2i+1 by two different r-cycles. We study the exponent and scrambling index of DA(C r,n ) and show that exp(DA(C r,n )) = n + r - 4 and k(DA(C r,n )) = (n + r - 3)/2.

  4. Graph drawing using tabu search coupled with path relinking.

    PubMed

    Dib, Fadi K; Rodgers, Peter

    2018-01-01

    Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function's value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset.

  5. Graph drawing using tabu search coupled with path relinking

    PubMed Central

    Rodgers, Peter

    2018-01-01

    Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function’s value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset. PMID:29746576

  6. Quantification of Graph Complexity Based on the Edge Weight Distribution Balance: Application to Brain Networks.

    PubMed

    Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto

    2018-02-01

    The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.

  7. Simulation Concept - How to Exploit Tools for Computing Hybrids

    DTIC Science & Technology

    2010-06-01

    biomolecular reactions ................................................................ 42  Figure 30: Overview of MATLAB Implementation...Figure 50: Adenine graphed using MATLAB (left) and OpenGL (right) ........................ 70  Figure 51: An overhead view of a thymine and adenine base...93  Figure 68: Response frequency solution from MATLAB

  8. Weak variations of Lipschitz graphs and stability of phase boundaries

    NASA Astrophysics Data System (ADS)

    Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev

    2011-03-01

    In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.

  9. Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.

    2013-09-01

    We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.

  10. Implementing an Automated Antenna Measurement System

    NASA Technical Reports Server (NTRS)

    Valerio, Matthew D.; Romanofsky, Robert R.; VanKeuls, Fred W.

    2003-01-01

    We developed an automated measurement system using a PC running a LabView application, a Velmex BiSlide X-Y positioner, and a HP85l0C network analyzer. The system provides high positioning accuracy and requires no user supervision. After the user inputs the necessary parameters into the LabView application, LabView controls the motor positioning and performs the data acquisition. Current parameters and measured data are shown on the PC display in two 3-D graphs and updated after every data point is collected. The final output is a formatted data file for later processing.

  11. Simulator for heterogeneous dataflow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    1993-01-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  12. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  13. World Eagle, The Monthly Social Studies Resource: Data, Maps, Graphs. 1990-1991.

    ERIC Educational Resources Information Center

    World Eagle, 1991

    1991-01-01

    This document consists of the 10 issues of "World Eagle" issued during the 1990-1991 school year. World Eagle is a monthly social studies resource in which demographic and geographic information is presented in the forms of maps, graphs, charts, and text. Each issue of World Eagle has a section that focuses on a particular topic, along with other…

  14. What can graph theory tell us about word learning and lexical retrieval?

    PubMed

    Vitevitch, Michael S

    2008-04-01

    Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.

  15. X-Ray Form Factor, Attenuation and Scattering Tables

    National Institute of Standards and Technology Data Gateway

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  16. Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)

    NASA Astrophysics Data System (ADS)

    Lozano, A. C.

    2010-12-01

    Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring relationship) by defining a relational graph in which related locations are connected (note that this relational graph, which represents relationships among the different locations, is distinct from the causal graph, which represents causal relationships among the individual variables - e.g. temperature, pressure- within a multivariate time series). We then define a hidden Markov Random Field (hMRF), assigning a hidden state to each node (location), with the state assignment guided by the prior information encoded in the relational graph. Nodes that share the same state in the hMRF model will have the same causal graph. State assignment can thus shed light on unknown relations among locations (e.g. teleconnection). While the model has been described in terms of hard location partitioning to facilitate its exposition, in fact a soft partitioning is maintained throughout learning. This leads to a form of transfer learning, which makes our model applicable even in situations where partitioning the locations might not seem appropriate. We first validate the effectiveness of our methodology on synthetic datasets, and then apply it to actual climate measurement data. The experimental results show that our approach offers a useful alternative to the simulation-based approach for climate modeling and attribution, and has the capability to provide valuable scientific insights from a new perspective.

  17. A 3D camera for improved facial recognition

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew; Orchard, David A.; Scott, Andrew M.; Walton, Nicholas A.; Austin, Jim

    2004-12-01

    We describe a camera capable of recording 3D images of objects. It does this by projecting thousands of spots onto an object and then measuring the range to each spot by determining the parallax from a single frame. A second frame can be captured to record a conventional image, which can then be projected onto the surface mesh to form a rendered skin. The camera is able of locating the images of the spots to a precision of better than one tenth of a pixel, and from this it can determine range to an accuracy of less than 1 mm at 1 meter. The data can be recorded as a set of two images, and is reconstructed by forming a 'wire mesh' of range points and morphing the 2 D image over this structure. The camera can be used to record the images of faces and reconstruct the shape of the face, which allows viewing of the face from various angles. This allows images to be more critically inspected for the purpose of identifying individuals. Multiple images can be stitched together to create full panoramic images of head sized objects that can be viewed from any direction. The system is being tested with a graph matching system capable of fast and accurate shape comparisons for facial recognition. It can also be used with "models" of heads and faces to provide a means of obtaining biometric data.

  18. Mining concepts of health responsibility using text mining and exploratory graph analysis.

    PubMed

    Kjellström, Sofia; Golino, Hudson

    2018-05-24

    Occupational therapists need to know about people's beliefs about personal responsibility for health to help them pursue everyday activities. The study aims to employ state-of-the-art quantitative approaches to understand people's views of health and responsibility at different ages. A mixed method approach was adopted, using text mining to extract information from 233 interviews with participants aged 5 to 96 years, and then exploratory graph analysis to estimate the number of latent variables. The fit of the structure estimated via the exploratory graph analysis was verified using confirmatory factor analysis. Exploratory graph analysis estimated three dimensions of health responsibility: (1) creating good health habits and feeling good; (2) thinking about one's own health and wanting to improve it; and 3) adopting explicitly normative attitudes to take care of one's health. The comparison between the three dimensions among age groups showed, in general, that children and adolescents, as well as the old elderly (>73 years old) expressed ideas about personal responsibility for health less than young adults, adults and young elderly. Occupational therapists' knowledge of the concepts of health responsibility is of value when working with a patient's health, but an identified challenge is how to engage children and older persons.

  19. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  20. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  1. Gps-Denied Geo-Localisation Using Visual Odometry

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish; Chang, Huan; Yilmaz, Alper

    2016-06-01

    The primary method for geo-localization is based on GPS which has issues of localization accuracy, power consumption, and unavailability. This paper proposes a novel approach to geo-localization in a GPS-denied environment for a mobile platform. Our approach has two principal components: public domain transport network data available in GIS databases or OpenStreetMap; and a trajectory of a mobile platform. This trajectory is estimated using visual odometry and 3D view geometry. The transport map information is abstracted as a graph data structure, where various types of roads are modelled as graph edges and typically intersections are modelled as graph nodes. A search for the trajectory in real time in the graph yields the geo-location of the mobile platform. Our approach uses a simple visual sensor and it has a low memory and computational footprint. In this paper, we demonstrate our method for trajectory estimation and provide examples of geolocalization using public-domain map data. With the rapid proliferation of visual sensors as part of automated driving technology and continuous growth in public domain map data, our approach has the potential to completely augment, or even supplant, GPS based navigation since it functions in all environments.

  2. Web-based CERES Clouds QC Property Viewing Tool

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Minnis, P.

    2014-12-01

    This presentation will display the capabilities of a web-based CERES cloud property viewer. Terra data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool. A laptop will hopefully be available to allow conference attendees to try navigating the tool.

  3. Storm Water Management Model User’s Manual Version 5.1 - manual

    EPA Science Inventory

    SWMM 5 provides an integrated environment for editing study area input data, running hydrologic, hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded drainage area and conveyance system maps, time series graphs and ta...

  4. A Set of Handwriting Features for Use in Automated Writer Identification.

    PubMed

    Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn

    2017-05-01

    A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.

  5. Mathematical formula recognition using graph grammar

    NASA Astrophysics Data System (ADS)

    Lavirotte, Stephane; Pottier, Loic

    1998-04-01

    This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.

  6. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less

  7. On the existence of point spectrum for branching strips quantum graph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, I. Yu., E-mail: popov1955@gmail.com; Skorynina, A. N.; Blinova, I. V., E-mail: irin-a@yandex.ru

    2014-03-15

    The quantum graph having the form of branching strips with hexagonal (honeycomb) structure is considered. The Hamiltonian is determined as free 1D Schrödinger operator on each edge and some “boundary” conditions at each vertex. We obtain the conditions ensuring the point spectrum's existence for the Schrödinger operator of the system and relations that give us the eigenvalues.

  8. Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer.

    ERIC Educational Resources Information Center

    Lockwood, Arthur

    Since the ultimate success of any diagram rests in its clarity, it is important that the designer select a method of presentation which will achieve this aim. He should be aware of the various ways in which statistics can be shown diagrammatically, how information can be incorporated in maps, and how events can be plotted in chart or graph form.…

  9. Edge length dynamics on graphs with applications to p-adic AdS/CFT

    DOE PAGES

    Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian; ...

    2017-06-30

    We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less

  10. Edge length dynamics on graphs with applications to p-adic AdS/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian

    We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less

  11. Evolving network simulation study. From regular lattice to scale free network

    NASA Astrophysics Data System (ADS)

    Makowiec, D.

    2005-12-01

    The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

  12. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  13. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  14. Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Neukom, Christian

    1998-01-01

    Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.

  15. A Graph Oriented Approach for Network Forensic Analysis

    ERIC Educational Resources Information Center

    Wang, Wei

    2010-01-01

    Network forensic analysis is a process that analyzes intrusion evidence captured from networked environment to identify suspicious entities and stepwise actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of output from security sensors make it difficult for analysts to obtain a succinct high-level view of complex…

  16. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    3 results Generated_thumb20170118-11720-lxiuaf Clean Cities Alternative Fuel and Advanced Vehicle Inventory Generated_thumb20170118-11720-lxiuaf Advanced fuel and advanced vehicle inventory reported by Last update July 2017 View Image Graph Clean Cities Alternative Fuel and Advanced Vehicle Inventory

  17. Reusable Launch Vehicle (RLV) Mission/Market Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    1999-01-01

    The goal of this model was to assess the Reusable Launch Vehicle's (RLV) capability to support the International Space Station (ISS) servicing, determine the potential to leverage the commercial marketplace to reduce NASA's cost, and to evaluate the RLV's ability to expand the space economy. The presentation is in view-graph format.

  18. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use : Category Most Recent Most Popular 2 results Ccities_map Clean Cities Coalition Locations Ccities_map Last update May 2017 View Image Graph Generated_thumb20170515-25423-1c6vokd Clean Cities Funding

  19. Evaluation of Liquid Detergents and Methods Used for Airfield Rubber Removal

    DTIC Science & Technology

    2012-07-31

    friction. Each detergent is applied to the pavement surface in controlled 50’ x 30’ patches. There were three patches placed for each detergent with...Measurements ..........................................................................................................16 6.3. Periodic Pavement Wetting...19 Figure 14. Pre-Cleaning Micro -Texture Data Graph (GT View Data

  20. Clustering in complex directed networks

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio

    2007-08-01

    Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.

  1. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  2. The complex network of the Brazilian Popular Music

    NASA Astrophysics Data System (ADS)

    de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.

    2004-02-01

    We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.

  3. Analysis of graphic representation ability in oscillation phenomena

    NASA Astrophysics Data System (ADS)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  4. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  5. The parametric modified limited penetrable visibility graph for constructing complex networks from time series

    NASA Astrophysics Data System (ADS)

    Li, Xiuming; Sun, Mei; Gao, Cuixia; Han, Dun; Wang, Minggang

    2018-02-01

    This paper presents the parametric modified limited penetrable visibility graph (PMLPVG) algorithm for constructing complex networks from time series. We modify the penetrable visibility criterion of limited penetrable visibility graph (LPVG) in order to improve the rationality of the original penetrable visibility and preserve the dynamic characteristics of the time series. The addition of view angle provides a new approach to characterize the dynamic structure of the time series that is invisible in the previous algorithm. The reliability of the PMLPVG algorithm is verified by applying it to three types of artificial data as well as the actual data of natural gas prices in different regions. The empirical results indicate that PMLPVG algorithm can distinguish the different time series from each other. Meanwhile, the analysis results of natural gas prices data using PMLPVG are consistent with the detrended fluctuation analysis (DFA). The results imply that the PMLPVG algorithm may be a reasonable and significant tool for identifying various time series in different fields.

  6. Using graph theory to quantify coarse sediment connectivity in alpine geosystems

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Thiel, Markus; Schwanghart, Wolfgang; Haas, Florian; Becht, Michael

    2010-05-01

    Networks are a common object of study in various disciplines. Among others, informatics, sociology, transportation science, economics and ecology frequently deal with objects which are linked with other objects to form a network. Despite this wide thematic range, a coherent formal basis to represent, measure and model the relational structure of models exists. The mathematical model for networks of all kinds is a graph which can be analysed using the tools of mathematical graph theory. In a graph model of a generic system, system components are represented by graph nodes, and the linkages between them are formed by graph edges. The latter may represent all kinds of linkages, from matter or energy fluxes to functional relations. To some extent, graph theory has been used in geosciences and related disciplines; in hydrology and fluvial geomorphology, for example, river networks have been modeled and analysed as graphs. An important issue in hydrology is the hydrological connectivity which determines if runoff generated on some area reaches the channel network. In ecology, a number of graph-theoretical indices is applicable to describing the influence of habitat distribution and landscape fragmentation on population structure and species mobility. In these examples, the mobility of matter (water, sediment, animals) through a system is an important consequence of system structure, i.e. the location and topology of its components as well as of properties of linkages between them. In geomorphology, sediment connectivity relates to the potential of sediment particles to move through the catchment. As a system property, connectivity depends, for example, on the degree to which hillslopes within a catchment are coupled to the channel system (lateral coupling), and to which channel reaches are coupled to each other (longitudinal coupling). In the present study, numerical GIS-based models are used to investigate the coupling of geomorphic process units by delineating the process domains of important geomorphic processes in a high-mountain environment (rockfall, slope-type debris flows, slope aquatic and fluvial processes). The results are validated by field mapping; they show that only small parts of a catchment are actually coupled to its outlet with respect to coarse (bedload) sediment. The models not only generate maps of the spatial extent and geomorphic activity of the aforementioned processes, they also output so-called edge lists that can be converted to adjacency matrices and graphs. Graph theory is then employed to explore ‘local' (i.e. referring to single nodes or edges) and ‘global' (i.e. system-wide, referring to the whole graph) measures that can be used to quantify coarse sediment connectivity. Such a quantification will complement the mainly qualitative appraisal of coupling and connectivity; the effect of connectivity on catchment properties such as specific sediment yield and catchment sensitivity will then be studied on the basis of quantitative measures.

  7. Generalised Spin Dynamics and Induced Bounds of Automorphic [A]nX, [AX]n NMR Systems via Dual Tensorial Sets: An Invariant Cardinality Role for CFP

    NASA Astrophysics Data System (ADS)

    Temme, Francis P.

    For uniform spins and their indistinguishable point sets of tensorial bases defining automorphic group-based Liouvillian NMR spin dynamics, the role of recursively-derived coefficients of fractional parentage (CFP) bijections and Schur duality-defined CFP(0)(n) ≡ ¦GI¦(n) group invariant cardinality is central both to understanding the impact of time-reversal invariance(TRI) spin physics, and to analysis as density-matrix formalisms over democratic recoupled (DR) dual tensorial sets, {T{ṽ}k(11.1)(SU2 × ln)}. Over abstract spin space, these tensorial sets are (ṽ) invariant-theoretic forms which lie beyond the Liouvillian graph recoupling and Racah-forms envisaged by Sanctuary [1]. This is a direct consequence of the dominance of the ln group. It leads to new views on the value of projective group actions as mappings over specialised Liouvillian carrier spaces, and on the need for the replacement of Racah-Wigner (R-W) orthogonality for distinct point sets, by criteria based on explicit properties of invariants [J. Phys.: Math. & Theor. A 41, 015210 (2008)] for multiple invariant systems. Ũ × P group actions over disjoint (L) carrier subspaces, leading to exclusively combinatorial views of the nature of quantal completeness for indistinguishable point-based tensorial sets. Such generalised invariant-theoretic approaches lie beyond the range of Lévi-Civitá generator views, or of Lévy-Leblond and Lévy-Nahas [9] with its additional cyclic-commutators defining mono-invariant DR forms. Comparison of the latter with generalised multiple-invariant techniques provides an answer to the question of precisely why [A]n≥4(X) and [AX]n≥4 NMR system spin dynamics are not ameniable to conventional R-W analysis of recoupled discrete-point tensorial systems. Our work augments earlier Hilbert space views, both of Louck and Biedenharn [21] on boson pattern projective mapping, and of Corio [19]. The roles of recent ln group action and (λ ⊢ n)-Schur combinatorial concepts, as well as of polyhedral-combinatorial modelling over invariance algebras, contribute significantly to our understanding of invariant-based techniques of Liouville dual tensorial sets for automorphic NMR spin physics.1

  8. The probability estimation of the electronic lesson implementation taking into account software reliability

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.

    2017-01-01

    Software tools for educational purposes, such as e-lessons, computer-based testing system, from the point of view of reliability, have a number of features. The main ones among them are the need to ensure a sufficiently high probability of their faultless operation for a specified time, as well as the impossibility of their rapid recovery by the way of replacing it with a similar running program during the classes. The article considers the peculiarities of reliability evaluation of programs in contrast to assessments of hardware reliability. The basic requirements to reliability of software used for carrying out practical and laboratory classes in the form of computer-based training programs are given. The essential requirements applicable to the reliability of software used for conducting the practical and laboratory studies in the form of computer-based teaching programs are also described. The mathematical tool based on Markov chains, which allows to determine the degree of debugging of the training program for use in the educational process by means of applying the graph of the software modules interaction, is presented.

  9. From brain topography to brain topology: relevance of graph theory to functional neuroscience.

    PubMed

    Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis

    2013-07-10

    Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.

  10. A Partitioning Algorithm for Block-Diagonal Matrices With Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina

    2008-02-02

    We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less

  11. Sankofa pediatric HIV disclosure intervention cyber data management: building capacity in a resource-limited setting and ensuring data quality.

    PubMed

    Catlin, Ann Christine; Fernando, Sumudinie; Gamage, Ruwan; Renner, Lorna; Antwi, Sampson; Tettey, Jonas Kusah; Amisah, Kofi Aikins; Kyriakides, Tassos; Cong, Xiangyu; Reynolds, Nancy R; Paintsil, Elijah

    2015-01-01

    Prevalence of pediatric HIV disclosure is low in resource-limited settings. Innovative, culturally sensitive, and patient-centered disclosure approaches are needed. Conducting such studies in resource-limited settings is not trivial considering the challenges of capturing, cleaning, and storing clinical research data. To overcome some of these challenges, the Sankofa pediatric disclosure intervention adopted an interactive cyber infrastructure for data capture and analysis. The Sankofa Project database system is built on the HUBzero cyber infrastructure ( https://hubzero.org ), an open source software platform. The hub database components support: (1) data management - the "databases" component creates, configures, and manages database access, backup, repositories, applications, and access control; (2) data collection - the "forms" component is used to build customized web case report forms that incorporate common data elements and include tailored form submit processing to handle error checking, data validation, and data linkage as the data are stored to the database; and (3) data exploration - the "dataviewer" component provides powerful methods for users to view, search, sort, navigate, explore, map, graph, visualize, aggregate, drill-down, compute, and export data from the database. The Sankofa cyber data management tool supports a user-friendly, secure, and systematic collection of all data. We have screened more than 400 child-caregiver dyads and enrolled nearly 300 dyads, with tens of thousands of data elements. The dataviews have successfully supported all data exploration and analysis needs of the Sankofa Project. Moreover, the ability of the sites to query and view data summaries has proven to be an incentive for collecting complete and accurate data. The data system has all the desirable attributes of an electronic data capture tool. It also provides an added advantage of building data management capacity in resource-limited settings due to its innovative data query and summary views and availability of real-time support by the data management team.

  12. What Can Graph Theory Tell Us About Word Learning and Lexical Retrieval?

    PubMed Central

    Vitevitch, Michael S.

    2008-01-01

    Purpose Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Method Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. Results The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. Conclusions The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing. PMID:18367686

  13. Introducing the slime mold graph repository

    NASA Astrophysics Data System (ADS)

    Dirnberger, M.; Mehlhorn, K.; Mehlhorn, T.

    2017-07-01

    We introduce the slime mold graph repository or SMGR, a novel data collection promoting the visibility, accessibility and reuse of experimental data revolving around network-forming slime molds. By making data readily available to researchers across multiple disciplines, the SMGR promotes novel research as well as the reproduction of original results. While SMGR data may take various forms, we stress the importance of graph representations of slime mold networks due to their ease of handling and their large potential for reuse. Data added to the SMGR stands to gain impact beyond initial publications or even beyond its domain of origin. We initiate the SMGR with the comprehensive Kist Europe data set focusing on the slime mold Physarum polycephalum, which we obtained in the course of our original research. It contains sequences of images documenting growth and network formation of the organism under constant conditions. Suitable image sequences depicting the typical P. polycephalum network structures are used to compute sequences of graphs faithfully capturing them. Given such sequences, node identities are computed, tracking the development of nodes over time. Based on this information we demonstrate two out of many possible ways to begin exploring the data. The entire data set is well-documented, self-contained and ready for inspection at http://smgr.mpi-inf.mpg.de.

  14. VIGOR: Interactive Visual Exploration of Graph Query Results.

    PubMed

    Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng

    2018-01-01

    Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.

  15. Graph Structured Program Evolution: Evolution of Loop Structures

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shinichi; Nagao, Tomoharu

    Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.

  16. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  17. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2002-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC "E" test-stand complex and utilize the SSC file format. The programs are the following: 1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel; 2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris); and 3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  18. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  19. Tracking Research Data Footprints via Integration with Research Graph

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Wang, J.; Aryani, A.; Conlon, M.; Wyborn, L. A.; Choudhury, S. A.

    2017-12-01

    The researcher of today is likely to be part of a team that will use subsets of data from at least one, if not more external repositories, and that same data could be used by multiple researchers for many different purposes. At best, the repositories that host this data will know who is accessing their data, but rarely what they are using it for, resulting in funders of data collecting programs and data repositories that store the data unlikely to know: 1) which research funding contributed to the collection and preservation of a dataset, and 2) which data contributed to high impact research and publications. In days of funding shortages there is a growing need to be able to trace the footprint a data set from the originator that collected the data to the repository that stores the data and ultimately to any derived publications. The Research Data Alliance's Data Description Registry Interoperability Working Group (DDRIWG) has addressed this problem through the development of a distributed graph, called Research Graph that can map each piece of the research interaction puzzle by building aggregated graphs. It can connect datasets on the basis of co-authorship or other collaboration models such as joint funding and grants and can connect research datasets, publications, grants and researcher profiles across research repositories and infrastructures such as DataCite and ORCID. National Computational Infrastructure (NCI) in Australia is one of the early adopters of Research Graph. The graphic view and quantitative analysis helps NCI track the usage of their National reference data collections thus quantifying the role that these NCI-hosted data assets play within the funding-researcher-data-publication-cycle. The graph can unlock the complex interactions of the research projects by tracking the contribution of datasets, the various funding bodies and the downstream data users. RMap Project is a similar initiative which aims to solve complex relationships among scholarly publications and their underlying data, including IEEE publications. It is hoped to combine RMap and Research Graph in the near futures and also to add physical samples to Research Graph.

  20. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  1. External Visual Representations in Science Learning: The Case of Relations among System Components

    ERIC Educational Resources Information Center

    Eilam, Billie; Poyas, Yael

    2010-01-01

    How do external visual representations (e.g., graph, diagram) promote or constrain students' ability to identify system components and their interrelations, to reinforce a systemic view through the application of the STS approach? University students (N = 150) received information cards describing cellphones' communication system and its subsystem…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorkey, T.J.

    This note describes how to get POSTSCRIPT files into T{sub E}X documents on a Sun computer using psifg. Several applications generating POSTSCRIPT files are used as examples. These applications are: Adobe Illustrator, Mathematica, View, Cricket Graph and MacDraw, and a scanned image. I assume the reader knows nothing about POSTSCRIPT, and does not want to learn anything about it.

  3. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  4. VPV--The velocity profile viewer user manual

    USGS Publications Warehouse

    Donovan, John M.

    2004-01-01

    The Velocity Profile Viewer (VPV) is a tool for visualizing time series of velocity profiles developed by the U.S. Geological Survey (USGS). The USGS uses VPV to preview and present measured velocity data from acoustic Doppler current profilers and simulated velocity data from three-dimensional estuarine, river, and lake hydrodynamic models. The data can be viewed as an animated three-dimensional profile or as a stack of time-series graphs that each represents a location in the water column. The graphically displayed data are shown at each time step like frames of animation. The animation can play at several different speeds or can be suspended on one frame. The viewing angle and time can be manipulated using mouse interaction. A number of options control the appearance of the profile and the graphs. VPV cannot edit or save data, but it can create a Post-Script file showing the velocity profile in three dimensions. This user manual describes how to use each of these features. VPV is available and can be downloaded for free from the World Wide Web at http://ca.water.usgs.gov/program/sfbay/vpv.

  5. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  6. A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra.

    PubMed

    Kou, Qiang; Wu, Si; Tolic, Nikola; Paša-Tolic, Ljiljana; Liu, Yunlong; Liu, Xiaowen

    2017-05-01

    Although proteomics has rapidly developed in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteoforms to their biological functions as well as discovering novel proteoforms and new protein functions. Top-down mass spectrometry is the method of choice for identifying complex proteoforms because it provides a 'bird's eye view' of intact proteoforms. The combinatorial explosion of various alterations on a protein may result in billions of possible proteoforms, making proteoform identification a challenging computational problem. We propose a new data structure, called the mass graph, for efficient representation of proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-based software tool for proteoform identification by top-down mass spectrometry. Experiments on top-down mass spectrometry datasets showed that TopMG outperformed existing methods in identifying complex proteoforms. http://proteomics.informatics.iupui.edu/software/topmg/. xwliu@iupui.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Scale-free characteristics of random networks: the topology of the world-wide web

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László; Albert, Réka; Jeong, Hawoong

    2000-06-01

    The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.

  8. The Area of a Surface Generated by Revolving a Graph about Any Line

    ERIC Educational Resources Information Center

    Goins, Edray Herber; Washington, Talitha M.

    2013-01-01

    We discuss a general formula for the area of the surface that is generated by a graph [t[subscript 0], t[subscript 1] [right arrow] [the set of real numbers][superscript 2] sending t [maps to] (x(t), y(t)) revolved around a general line L : Ax + By = C. As a corollary, we obtain a formula for the area of the surface formed by revolving y = f(x)…

  9. Modeling flow and transport in fracture networks using graphs

    NASA Astrophysics Data System (ADS)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.

  10. Modeling flow and transport in fracture networks using graphs.

    PubMed

    Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.

  11. Modeling flow and transport in fracture networks using graphs

    DOE PAGES

    Karra, S.; O'Malley, D.; Hyman, J. D.; ...

    2018-03-09

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less

  12. Modeling flow and transport in fracture networks using graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karra, S.; O'Malley, D.; Hyman, J. D.

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less

  13. Picture grammars in classification and semantic interpretation of 3D coronary vessels visualisations

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Tadeusiewicz, R.; Trzupek, M.

    2009-09-01

    The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart's coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and — to a great degree — automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.

  14. OPTICAL TRANSCRIBING OSCILLOSCOPE

    DOEpatents

    Kerns, Q.A.

    1961-09-26

    A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.

  15. Granular Flow Graph, Adaptive Rule Generation and Tracking.

    PubMed

    Pal, Sankar Kumar; Chakraborty, Debarati Bhunia

    2017-12-01

    A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.

  16. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  17. Structure theorems for game trees

    PubMed Central

    Govindan, Srihari; Wilson, Robert

    2002-01-01

    Kohlberg and Mertens [Kohlberg, E. & Mertens, J. (1986) Econometrica 54, 1003–1039] proved that the graph of the Nash equilibrium correspondence is homeomorphic to its domain when the domain is the space of payoffs in normal-form games. A counterexample disproves the analog for the equilibrium outcome correspondence over the space of payoffs in extensive-form games, but we prove an analog when the space of behavior strategies is perturbed so that every path in the game tree has nonzero probability. Without such perturbations, the graph is the closure of the union of a finite collection of its subsets, each diffeomorphic to a corresponding path-connected open subset of the space of payoffs. As an application, we construct an algorithm for computing equilibria of an extensive-form game with a perturbed strategy space, and thus approximate equilibria of the unperturbed game. PMID:12060702

  18. Structure theorems for game trees.

    PubMed

    Govindan, Srihari; Wilson, Robert

    2002-06-25

    Kohlberg and Mertens [Kohlberg, E. & Mertens, J. (1986) Econometrica 54, 1003-1039] proved that the graph of the Nash equilibrium correspondence is homeomorphic to its domain when the domain is the space of payoffs in normal-form games. A counterexample disproves the analog for the equilibrium outcome correspondence over the space of payoffs in extensive-form games, but we prove an analog when the space of behavior strategies is perturbed so that every path in the game tree has nonzero probability. Without such perturbations, the graph is the closure of the union of a finite collection of its subsets, each diffeomorphic to a corresponding path-connected open subset of the space of payoffs. As an application, we construct an algorithm for computing equilibria of an extensive-form game with a perturbed strategy space, and thus approximate equilibria of the unperturbed game.

  19. Teaching and Learning with a Visualiser in the Primary Classroom: Modelling Graph-Making

    ERIC Educational Resources Information Center

    Mavers, Diane

    2009-01-01

    This paper examines the technological affordances of the visualiser, and what teachers actually do with it in the primary (elementary) classroom, followed by an investigation into one example of teaching and learning with this whole-class technology. A visualiser is a digital display device. Connected to a data projector, whatever is in view of…

  20. A New Approach in Examining the Influence of Drugs on Pulsation Rates in Blackworms ("Lumbriculus Variegatus")

    ERIC Educational Resources Information Center

    Ryan, Amy B.; Elwess, Nancy L.

    2017-01-01

    This investigative laboratory activity engages students in observing, recording, graphing and analyzing pulsation rates in a commonly used laboratory organism, blackworms. This activity stresses how various drugs can impact the pulsation rate in blackworms at varying concentrations. In addition, we have incorporated two new ways to view the…

  1. U.S. NIC

    Science.gov Websites

    Graphs) IMS Ice Extent Data. IMS Ice Extent for sea ice only. Total Ice Sea Ice Only View chart (2200 x Hemisphere Automated Snow and Ice Mapping NOHRSC Satellite Products NCEP MMAB Sea Ice CPC Northern Hemisphere National Snow and Ice Data Center (NSIDC) ** Multisensor Analyzed Sea Ice Extent (NSIDC) ** The NRCS NWCC

  2. The Contribution of the Human Body in Young Children's Explanations about Shadow Formation

    ERIC Educational Resources Information Center

    Herakleioti, Evagelia; Pantidos, Panagiotis

    2016-01-01

    This paper begins with the view that the generation of meaning is a multimodal process. Props, drawings, graphs, gestures, as well as speech and written text are all mediators through which students construct new knowledge. Each semiotic context makes a unique contribution to the conceptualization of scientific entities. The human body, in…

  3. Writing to Promote and Assess Conceptual Understanding in College Algebra

    ERIC Educational Resources Information Center

    Gay, A. Susan; Peterson, Ingrid

    2014-01-01

    Concept-focused quiz questions required College Algebra students to write about their understanding. The questions can be viewed in three broad categories: a focus on sense-making, a focus on describing a mathematical object such as a graph or an equation, and a focus on understanding vocabulary. Student responses from 10 classes were analyzed.…

  4. America's Black Population: 1970 to 1982. A Statistical View. Special Publication PIO/POP-83-1.

    ERIC Educational Resources Information Center

    Matney, William C.; Johnson, Dwight L.

    This pamphlet is the first in a series designed to provide a compilation of selected demographic, social, economic, and other statistical data relating to selected populations. Topics covered here (in both discussion and table/graph format) include Black population growth and distribution, residence, income gain, poverty rate increase, labor force…

  5. Social capital calculations in economic systems: Experimental study

    NASA Astrophysics Data System (ADS)

    Chepurov, E. G.; Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chekmarev, I. V.

    2017-11-01

    The paper describes the social capital study for a system where actors are engaged in an economic activity. The focus is on the analysis of communications structural parameters (transactions) between the actors. Comparison between transaction network graph structure and the structure of a random Bernoulli graph of the same dimension and density allows revealing specific structural features of the economic system under study. Structural analysis is based on SNA-methodology (SNA - Social Network Analysis). It is shown that structural parameter values of the graph formed by agent relationship links may well characterize different aspects of the social capital structure. The research advocates that it is useful to distinguish the difference between each agent social capital and the whole system social capital.

  6. A Graph is Worth a Thousand Words: How Overconfidence and Graphical Disclosure of Numerical Information Influence Financial Analysts Accuracy on Decision Making

    PubMed Central

    Leite, Rodrigo Oliveira; de Aquino, André Carlos Busanelli

    2016-01-01

    Previous researches support that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Moreover, literature shows that different types of graphical information can help or harm the accuracy on decision making of accountants and financial analysts. We conducted a 4×2 mixed-design experiment to examine the effects of numerical information disclosure on financial analysts’ accuracy, and investigated the role of overconfidence in decision making. Results show that compared to text, column graph enhanced accuracy on decision making, followed by line graphs. No difference was found between table and textual disclosure. Overconfidence harmed accuracy, and both genders behaved overconfidently. Additionally, the type of disclosure (text, table, line graph and column graph) did not affect the overconfidence of individuals, providing evidence that overconfidence is a personal trait. This study makes three contributions. First, it provides evidence from a larger sample size (295) of financial analysts instead of a smaller sample size of students that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Second, it uses the text as a baseline comparison to test how different ways of information disclosure (line and column graphs, and tables) can enhance understandability of information. Third, it brings an internal factor to this process: overconfidence, a personal trait that harms the decision-making process of individuals. At the end of this paper several research paths are highlighted to further study the effect of internal factors (personal traits) on financial analysts’ accuracy on decision making regarding numerical information presented in a graphical form. In addition, we offer suggestions concerning some practical implications for professional accountants, auditors, financial analysts and standard setters. PMID:27508519

  7. A Graph is Worth a Thousand Words: How Overconfidence and Graphical Disclosure of Numerical Information Influence Financial Analysts Accuracy on Decision Making.

    PubMed

    Cardoso, Ricardo Lopes; Leite, Rodrigo Oliveira; de Aquino, André Carlos Busanelli

    2016-01-01

    Previous researches support that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Moreover, literature shows that different types of graphical information can help or harm the accuracy on decision making of accountants and financial analysts. We conducted a 4×2 mixed-design experiment to examine the effects of numerical information disclosure on financial analysts' accuracy, and investigated the role of overconfidence in decision making. Results show that compared to text, column graph enhanced accuracy on decision making, followed by line graphs. No difference was found between table and textual disclosure. Overconfidence harmed accuracy, and both genders behaved overconfidently. Additionally, the type of disclosure (text, table, line graph and column graph) did not affect the overconfidence of individuals, providing evidence that overconfidence is a personal trait. This study makes three contributions. First, it provides evidence from a larger sample size (295) of financial analysts instead of a smaller sample size of students that graphs are relevant decision aids to tasks related to the interpretation of numerical information. Second, it uses the text as a baseline comparison to test how different ways of information disclosure (line and column graphs, and tables) can enhance understandability of information. Third, it brings an internal factor to this process: overconfidence, a personal trait that harms the decision-making process of individuals. At the end of this paper several research paths are highlighted to further study the effect of internal factors (personal traits) on financial analysts' accuracy on decision making regarding numerical information presented in a graphical form. In addition, we offer suggestions concerning some practical implications for professional accountants, auditors, financial analysts and standard setters.

  8. An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads

    PubMed Central

    2013-01-01

    Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333

  9. Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mu; Pothen, Alex; Hovland, Paul

    We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less

  10. OLSVis: an animated, interactive visual browser for bio-ontologies

    PubMed Central

    2012-01-01

    Background More than one million terms from biomedical ontologies and controlled vocabularies are available through the Ontology Lookup Service (OLS). Although OLS provides ample possibility for querying and browsing terms, the visualization of parts of the ontology graphs is rather limited and inflexible. Results We created the OLSVis web application, a visualiser for browsing all ontologies available in the OLS database. OLSVis shows customisable subgraphs of the OLS ontologies. Subgraphs are animated via a real-time force-based layout algorithm which is fully interactive: each time the user makes a change, e.g. browsing to a new term, hiding, adding, or dragging terms, the algorithm performs smooth and only essential reorganisations of the graph. This assures an optimal viewing experience, because subsequent screen layouts are not grossly altered, and users can easily navigate through the graph. URL: http://ols.wordvis.com Conclusions The OLSVis web application provides a user-friendly tool to visualise ontologies from the OLS repository. It broadens the possibilities to investigate and select ontology subgraphs through a smooth visualisation method. PMID:22646023

  11. Entropy of spatial network ensembles

    NASA Astrophysics Data System (ADS)

    Coon, Justin P.; Dettmann, Carl P.; Georgiou, Orestis

    2018-04-01

    We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.

  12. Graph run-length matrices for histopathological image segmentation.

    PubMed

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  13. Theoretical and vibrational spectroscopic approach to keto-enol tautomerism in methyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate

    NASA Astrophysics Data System (ADS)

    Arı, Hatice; Özpozan, Talat; Büyükmumcu, Zeki; Kabacalı, Yiğit; Saçmaci, Mustafa

    2016-10-01

    A carbamate compound having tricarbonyl groups, methyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate (BPOC) was investigated from theoretical and vibrational spectroscopic point of view employing quantum chemical methods. Hybrid Density Functionals (B3LYP, X3LYP and B3PW91) with 6-311 G(d,p) basis set were used for the calculations. Rotational barrier and conformational analyses were performed to find the most stable conformers of keto and enol forms of the molecule. Three transition states for keto-enol tautomerism in gas phase were determined. The results of the calculations show that enol-1 form of BPOC is more stable than keto and enol-2 forms. Hydrogen bonding investigation including Natural bond orbital analysis (NBO) for all the tautomeric structures was employed to compare intra-molecular interactions. The energies of HOMO and LUMO molecular orbitals for all tautomeric forms of BPOC were predicted. Normal Coordinate Analysis (NCA) was carried out for the enol-1 to assign vibrational bands of IR and Raman spectra. The scaling factors were calculated as 0.9721, 0.9697 and 0.9685 for B3LYP, X3LYP and B3PW91 methods, respectively. The correlation graphs of experimental versus calculated vibrational wavenumbers were plotted and X3LYP method gave better frequency agreement than the others.

  14. Loops in hierarchical channel networks

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  15. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  16. Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information

    NASA Astrophysics Data System (ADS)

    Jamshidpour, N.; Homayouni, S.; Safari, A.

    2017-09-01

    Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  17. Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories

    NASA Astrophysics Data System (ADS)

    AlMomani, Abd AlRahman R.; Bollt, Erik

    2018-06-01

    Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system.

  18. A robust approach towards unknown transformation, regional adjacency graphs, multigraph matching, segmentation video frames from unnamed aerial vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Gohatre, Umakant Bhaskar; Patil, Venkat P.

    2018-04-01

    In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.

  19. Reliability models for dataflow computer systems

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.; Buckles, B. P.

    1985-01-01

    The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers.

  20. Single Polygon Counting on Cayley Tree of Order 3

    NASA Astrophysics Data System (ADS)

    Pah, Chin Hee

    2010-07-01

    We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.

  1. Predicting and Detecting Emerging Cyberattack Patterns Using StreamWorks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Choudhury, Sutanay; Feo, John T.

    2014-06-30

    The number and sophistication of cyberattacks on industries and governments have dramatically grown in recent years. To counter this movement, new advanced tools and techniques are needed to detect cyberattacks in their early stages such that defensive actions may be taken to avert or mitigate potential damage. From a cybersecurity analysis perspective, detecting cyberattacks may be cast as a problem of identifying patterns in computer network traffic. Logically and intuitively, these patterns may take on the form of a directed graph that conveys how an attack or intrusion propagates through the computers of a network. Such cyberattack graphs could providemore » cybersecurity analysts with powerful conceptual representations that are natural to express and analyze. We have been researching and developing graph-centric approaches and algorithms for dynamic cyberattack detection. The advanced dynamic graph algorithms we are developing will be packaged into a streaming network analysis framework known as StreamWorks. With StreamWorks, a scientist or analyst may detect and identify precursor events and patterns as they emerge in complex networks. This analysis framework is intended to be used in a dynamic environment where network data is streamed in and is appended to a large-scale dynamic graph. Specific graphical query patterns are decomposed and collected into a graph query library. The individual decomposed subpatterns in the library are continuously and efficiently matched against the dynamic graph as it evolves to identify and detect early, partial subgraph patterns. The scalable emerging subgraph pattern algorithms will match on both structural and semantic network properties.« less

  2. Measuring Primary Students' Graph Interpretation Skills Via a Performance Assessment: A case study in instrument development

    NASA Astrophysics Data System (ADS)

    Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth

    2015-11-01

    This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research project. Fifty-five students participated in a performance assessment interview at the beginning and end of a place-based investigation. Two forms of the assessment were created and counterbalanced within class at pre and post. In situ scoring was conducted such that responses were scored as correct versus incorrect during the assessment's administration. Criterion validity analysis demonstrated an age-level progression in student scores. Tests of discriminant validity showed that the instrument detected variability in interpretation skills across each of three graph types (line, bar, dot plot). Convergent validity was established by correlating in situ scores with those from the Graph Interpretation Scoring Rubric. Students' proficiency with interpreting different types of graphs matched expectations based on age and the standards-based progression of graphs across primary school grades. The assessment tasks were also effective at detecting pre-post gains in students' interpretation of line graphs and dot plots after the place-based project. The results of the case study are discussed in relation to the common challenges associated with performance assessment. Implications are presented in relation to the need for authentic and performance-based instructional and assessment tasks to respond to the Common Core State Standards and the Next Generation Science Standards.

  3. Super (a*, d*)-ℋ-antimagic total covering of second order of shackle graphs

    NASA Astrophysics Data System (ADS)

    Hesti Agustin, Ika; Dafik; Nisviasari, Rosanita; Prihandini, R. M.

    2017-12-01

    Let H be a simple and connected graph. A shackle of graph H, denoted by G = shack(H, v, n), is a graph G constructed by non-trivial graphs H 1, H 2, …, H n such that, for every 1 ≤ s, t ≤ n, H s and Ht have no a common vertex with |s - t| ≥ 2 and for every 1 ≤ i ≤ n - 1, Hi and H i+1 share exactly one common vertex v, called connecting vertex, and those k - 1 connecting vertices are all distinct. The graph G is said to be an (a*, d*)-H-antimagic total graph of second order if there exist a bijective function f : V(G) ∪ E(G) → {1, 2, …, |V(G)| + |E(G)|} such that for all subgraphs isomorphic to H, the total H-weights W(H)=\\displaystyle {\\sum }v\\in V(H)f(v)+\\displaystyle {\\sum }e\\in E(H)f(e) form an arithmetic sequence of second order of \\{a* ,a* +d* ,a* +3d* ,a* +6d* ,\\ldots ,a* +(\\frac{{n}2-n}{2})d* \\}, where a* and d* are positive integers and n is the number of all subgraphs isomorphic to H. An (a*, d*)-H-antimagic total labeling of second order f is called super if the smallest labels appear in the vertices. In this paper, we study a super (a*, d*)-H antimagic total labeling of second order of G = shack(H, v, n) by using a partition technique of second order.

  4. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  5. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.

    PubMed

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  6. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.

    PubMed

    Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-12-01

    We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.

  7. New in-flight calibration adjustment of the Nimbus 6 and 7 earth radiation budget wide field of view radiometers

    NASA Technical Reports Server (NTRS)

    Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.

    1984-01-01

    In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.

  8. Web-based CERES Clouds QC Property Viewing Tool

    NASA Astrophysics Data System (ADS)

    Smith, R. A.

    2015-12-01

    Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.

  9. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

    PubMed Central

    Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives. PMID:26771381

  10. An Experimental Analysis of Some Procedures to Teach Priming and Reinforcement Skills to Preschool Teachers.

    ERIC Educational Resources Information Center

    Thomson, Carolyn L.; And Others

    1978-01-01

    Reports the results of teaching preschool teachers to use priming and reinforcement to increase the desired behaviors of their children. Five teacher-training techniques were examined: (1) written assignments, (2) feedback from viewing graphs, (3) on-the-spot feedback from a wireless radio (Bug-in-the-Ear), (4) feedback from an observer, and (5)…

  11. Hitting the Bull's-Eye: A Dart Game Simulation Using Graphing Calculator Technology

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2006-01-01

    One problem that students have with mathematics is that they often view the topic as a series of unrelated ideas. Sometimes they are aware that they have to know one concept to move to the next, but what is done in geometry is not necessarily related to anything in algebra. This failure to recognize mathematical connections limits students'…

  12. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location . This tool helps users select from and apply biomass data layers to a map, as well as query and download State Biodiesel-stations View Map Graph E85-stations-map E85 Fueling Station Locations by State E85

  13. Graphing Calculators in the Secondary Mathematics Classroom. Monograph #21.

    ERIC Educational Resources Information Center

    Eckert, Paul; And Others

    The objective of this presentation is to focus on the use of a hand-held graphics calculator. The specific machine referred to in this monograph is the Casio fx-7000G, chosen because of its low cost, its large viewing screen, its versatility, and its simple operation. Sections include: (1) "Basic Operations with the Casio fx-7000G"; (2) "Graphical…

  14. Using Dynamic Mathematics Software to Teach One-Variable Inequalities by the View of Semiotic Registers

    ERIC Educational Resources Information Center

    Kabaca, Tolga

    2013-01-01

    Solution set of any inequality or compound inequality, which has one-variable, lies in the real line which is one dimensional. So a difficulty appears when computer assisted graphical representation is intended to use for teaching these topics. Sketching a one-dimensional graph by using computer software is not a straightforward work. In this…

  15. Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    PubMed

    Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J

    2015-06-01

    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. Reconstruction and simplification of urban scene models based on oblique images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Guo, B.

    2014-08-01

    We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.

  17. Complexity and non-commutativity of learning operations on graphs.

    PubMed

    Atmanspacher, Harald; Filk, Thomas

    2006-07-01

    We present results from numerical studies of supervised learning operations in small recurrent networks considered as graphs, leading from a given set of input conditions to predetermined outputs. Graphs that have optimized their output for particular inputs with respect to predetermined outputs are asymptotically stable and can be characterized by attractors, which form a representation space for an associative multiplicative structure of input operations. As the mapping from a series of inputs onto a series of such attractors generally depends on the sequence of inputs, this structure is generally non-commutative. Moreover, the size of the set of attractors, indicating the complexity of learning, is found to behave non-monotonically as learning proceeds. A tentative relation between this complexity and the notion of pragmatic information is indicated.

  18. Pinching parameters for open (super) strings

    NASA Astrophysics Data System (ADS)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  19. Processing Information in Graphical Form.

    ERIC Educational Resources Information Center

    Curcio, Frances R.; Smith-Burke, M. Trika

    The purpose of this exploratory, descriptive study was to examine how children process different tasks of comprehension presented in graphical form. During the Spring 1981, 8 fourth graders and 9 seventh graders were interviewed. The children were presented with graphs accompanied by six questions reflecting three levels of comprehension:…

  20. Designing a Constraint Based Parser for Sanskrit

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amba; Pokar, Sheetal; Shukl, Devanand

    Verbal understanding (śā bdabodha) of any utterance requires the knowledge of how words in that utterance are related to each other. Such knowledge is usually available in the form of cognition of grammatical relations. Generative grammars describe how a language codes these relations. Thus the knowledge of what information various grammatical relations convey is available from the generation point of view and not the analysis point of view. In order to develop a parser based on any grammar one should then know precisely the semantic content of the grammatical relations expressed in a language string, the clues for extracting these relations and finally whether these relations are expressed explicitly or implicitly. Based on the design principles that emerge from this knowledge, we model the parser as finding a directed Tree, given a graph with nodes representing the words and edges representing the possible relations between them. Further, we also use the Mīmā ṃsā constraint of ākā ṅkṣā (expectancy) to rule out non-solutions and sannidhi (proximity) to prioritize the solutions. We have implemented a parser based on these principles and its performance was found to be satisfactory giving us a confidence to extend its functionality to handle the complex sentences.

  1. Design and Evaluation of a Web-Based Symptom Monitoring Tool for Heart Failure.

    PubMed

    Wakefield, Bonnie J; Alexander, Gregory; Dohrmann, Mary; Richardson, James

    2017-05-01

    Heart failure is a chronic condition where symptom recognition and between-visit communication with providers are critical. Patients are encouraged to track disease-specific data, such as weight and shortness of breath. Use of a Web-based tool that facilitates data display in graph form may help patients recognize exacerbations and more easily communicate out-of-range data to clinicians. The purposes of this study were to (1) design a Web-based tool to facilitate symptom monitoring and symptom recognition in patients with chronic heart failure and (2) conduct a usability evaluation of the Web site. Patient participants generally had a positive view of the Web site and indicated it would support recording their health status and communicating with their doctors. Clinician participants generally had a positive view of the Web site and indicated it would be a potentially useful adjunct to electronic health delivery systems. Participants expressed a need to incorporate decision support within the site and wanted to add other data, for example, blood pressure, and have the ability to adjust font size. A few expressed concerns about data privacy and security. Technologies require careful design and testing to ensure they are useful, usable, and safe for patients and do not add to the burden of busy providers.

  2. Clinical correlates of graph theory findings in temporal lobe epilepsy.

    PubMed

    Haneef, Zulfi; Chiang, Sharon

    2014-11-01

    Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30-50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. A proximity-based graph clustering method for the identification and application of transcription factor clusters.

    PubMed

    Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P

    2017-11-29

    Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.

  4. Clinical correlates of graph theory findings in temporal lobe epilepsy

    PubMed Central

    Haneef, Zulfi; Chiang, Sharon

    2014-01-01

    Purpose Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30–50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. Methods We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Results Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Conclusions Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. PMID:25127370

  5. Quantifying loopy network architectures.

    PubMed

    Katifori, Eleni; Magnasco, Marcelo O

    2012-01-01

    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  6. Adaptation of Chain Event Graphs for use with Case-Control Studies in Epidemiology.

    PubMed

    Keeble, Claire; Thwaites, Peter Adam; Barber, Stuart; Law, Graham Richard; Baxter, Paul David

    2017-09-26

    Case-control studies are used in epidemiology to try to uncover the causes of diseases, but are a retrospective study design known to suffer from non-participation and recall bias, which may explain their decreased popularity in recent years. Traditional analyses report usually only the odds ratio for given exposures and the binary disease status. Chain event graphs are a graphical representation of a statistical model derived from event trees which have been developed in artificial intelligence and statistics, and only recently introduced to the epidemiology literature. They are a modern Bayesian technique which enable prior knowledge to be incorporated into the data analysis using the agglomerative hierarchical clustering algorithm, used to form a suitable chain event graph. Additionally, they can account for missing data and be used to explore missingness mechanisms. Here we adapt the chain event graph framework to suit scenarios often encountered in case-control studies, to strengthen this study design which is time and financially efficient. We demonstrate eight adaptations to the graphs, which consist of two suitable for full case-control study analysis, four which can be used in interim analyses to explore biases, and two which aim to improve the ease and accuracy of analyses. The adaptations are illustrated with complete, reproducible, fully-interpreted examples, including the event tree and chain event graph. Chain event graphs are used here for the first time to summarise non-participation, data collection techniques, data reliability, and disease severity in case-control studies. We demonstrate how these features of a case-control study can be incorporated into the analysis to provide further insight, which can help to identify potential biases and lead to more accurate study results.

  7. Method of optimum channel switching in equipment of infocommunication network in conditions of cyber attacks to their telecommunication infrastructure.

    NASA Astrophysics Data System (ADS)

    Kochedykov, S. S.; Noev, A. N.; Dushkin, A. V.; Gubin, I. A.

    2018-05-01

    On the basis of the mathematical graph theory, the method of optimum switching of infocommunication networks in the conditions of cyber attacks is developed. The idea of representation of a set of possible ways on the graph in the form of the multilevel tree ordered by rules of algebra of a logic theory is the cornerstone of a method. As a criterion of optimization, the maximum of network transmission capacity to which assessment Ford- Falkerson's theorem is applied is used. The method is realized in the form of a numerical algorithm, which can be used not only for design, but also for operational management of infocommunication networks in conditions of violation of the functioning of their switching centers.

  8. Online graphic symbol recognition using neural network and ARG matching

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Li, Changhua; Xie, Weixing

    2001-09-01

    This paper proposes a novel method for on-line recognition of line-based graphic symbol. The input strokes are usually warped into a cursive form due to the sundry drawing style, and classifying them is very difficult. To deal with this, an ART-2 neural network is used to classify the input strokes. It has the advantages of high recognition rate, less recognition time and forming classes in a self-organized manner. The symbol recognition is achieved by an Attribute Relational Graph (ARG) matching algorithm. The ARG is very efficient for representing complex objects, but computation cost is very high. To over come this, we suggest a fast graph matching algorithm using symbol structure information. The experimental results show that the proposed method is effective for recognition of symbols with hierarchical structure.

  9. Evolution of imitation networks in Minority Game model

    NASA Astrophysics Data System (ADS)

    Lavička, H.; Slanina, F.

    2007-03-01

    The Minority Game is adapted to study the “imitation dilemma”, i.e. the tradeoff between local benefit and global harm coming from imitation. The agents are placed on a substrate network and are allowed to imitate more successful neighbours. Imitation domains, which are oriented trees, are formed. We investigate size distribution of the domains and in-degree distribution within the trees. We use four types of substrate: one-dimensional chain; Erdös-Rényi graph; Barabási-Albert scale-free graph; Barabási-Albert 'model A' graph. The behaviour of some features of the imitation network strongly depend on the information cost epsilon, which is the percentage of gain the imitators must pay to the imitated. Generally, the system tends to form a few domains of equal size. However, positive epsilon makes the system stay in a long-lasting metastable state with complex structure. The in-degree distribution is found to follow a power law in two cases of those studied: for Erdös-Rényi substrate for any epsilon and for Barabási-Albert scale-free substrate for large enough epsilon. A brief comparison with empirical data is provided.

  10. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  11. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (78th, Washington, DC, August 9-12, 1995). Newspaper Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The newspaper section of the Proceedings contains the following 18 papers: "The Role of Headlines and Nut Graphs in Helping Readers Learn from News Stories" (Glen L. Bleske); "Daily Newspaper Reporters' Views of Journalistic Roles: An Integrated Perspective" (Dan Berkowitz and James TerKeurst); "'Cohen V. Cowles Media':…

  12. Measurement, Ratios, and Graphing: Safety First. A Lesson Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. Each program has three components: (1) a 30-minute television broadcast which can be viewed live or taped for later use; (2) an interactive Web activity that allows teachers to integrate…

  13. Space shuttle propulsion systems

    NASA Technical Reports Server (NTRS)

    Bardos, Russell

    1991-01-01

    This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.

  14. Spectral Analysis for Weighted Iterated Triangulations of Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Yufei; Dai, Meifeng; Wang, Xiaoqian; Sun, Yu; Su, Weiyi

    Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a first study on the spectra of the normalized Laplacian of weighted iterated triangulations of graphs. We analytically obtain all the eigenvalues, as well as their multiplicities from two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index, Kemeny’s constant and number of weighted spanning trees.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.

    Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less

  16. An Improved Multi-Sensor Fusion Navigation Algorithm Based on the Factor Graph

    PubMed Central

    Zeng, Qinghua; Chen, Weina; Liu, Jianye; Wang, Huizhe

    2017-01-01

    An integrated navigation system coupled with additional sensors can be used in the Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is redundant and complementary, which can markedly improve the system accuracy. How to deal with the information gathered from different sensors efficiently is an important problem. The fact that different sensors provide measurements asynchronously may complicate the processing of these measurements. In addition, the output signals of some sensors appear to have a non-linear character. In order to incorporate these measurements and calculate a navigation solution in real time, the multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution is factorized according to the chain structure of the factor graph, which allows for a more general form of the conditional probability density. It can convert the fusion matter into connecting factors defined by these measurements to the graph without considering the relationship between the sensor update frequency and the fusion period. An experimental MUAV system has been built and some experiments have been performed to prove the effectiveness of the proposed method. PMID:28335570

  17. An Improved Multi-Sensor Fusion Navigation Algorithm Based on the Factor Graph.

    PubMed

    Zeng, Qinghua; Chen, Weina; Liu, Jianye; Wang, Huizhe

    2017-03-21

    An integrated navigation system coupled with additional sensors can be used in the Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is redundant and complementary, which can markedly improve the system accuracy. How to deal with the information gathered from different sensors efficiently is an important problem. The fact that different sensors provide measurements asynchronously may complicate the processing of these measurements. In addition, the output signals of some sensors appear to have a non-linear character. In order to incorporate these measurements and calculate a navigation solution in real time, the multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution is factorized according to the chain structure of the factor graph, which allows for a more general form of the conditional probability density. It can convert the fusion matter into connecting factors defined by these measurements to the graph without considering the relationship between the sensor update frequency and the fusion period. An experimental MUAV system has been built and some experiments have been performed to prove the effectiveness of the proposed method.

  18. Content based image retrieval for matching images of improvised explosive devices in which snake initialization is viewed as an inverse problem

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam

    2008-02-01

    Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.

  19. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  20. Applying graphs and complex networks to football metric interpretation.

    PubMed

    Arriaza-Ardiles, E; Martín-González, J M; Zuniga, M D; Sánchez-Flores, J; de Saa, Y; García-Manso, J M

    2018-02-01

    This work presents a methodology for analysing the interactions between players in a football team, from the point of view of graph theory and complex networks. We model the complex network of passing interactions between players of a same team in 32 official matches of the Liga de Fútbol Profesional (Spain), using a passing/reception graph. This methodology allows us to understand the play structure of the team, by analysing the offensive phases of game-play. We utilise two different strategies for characterising the contribution of the players to the team: the clustering coefficient, and centrality metrics (closeness and betweenness). We show the application of this methodology by analyzing the performance of a professional Spanish team according to these metrics and the distribution of passing/reception in the field. Keeping in mind the dynamic nature of collective sports, in the future we will incorporate metrics which allows us to analyse the performance of the team also according to the circumstances of game-play and to different contextual variables such as, the utilisation of the field space, the time, and the ball, according to specific tactical situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metaplot: a novel stata graph for assessing heterogeneity at a glance.

    PubMed

    Poorolajal, J; Mahmoodi, M; Majdzadeh, R; Fotouhi, A

    2010-01-01

    Heterogeneity is usually a major concern in meta-analysis. Although there are some statistical approaches for assessing variability across studies, here we present a new approach to heterogeneity using "MetaPlot" that investigate the influence of a single study on the overall heterogeneity. MetaPlot is a two-way (x, y) graph, which can be considered as a complementary graphical approach for testing heterogeneity. This method shows graphically as well as numerically the results of an influence analysis, in which Higgins' I(2) statistic with 95% (Confidence interval) CI are computed omitting one study in each turn and then are plotted against reciprocal of standard error (1/SE) or "precision". In this graph, "1/SE" lies on x axis and "I(2) results" lies on y axe. Having a first glance at MetaPlot, one can predict to what extent omission of a single study may influence the overall heterogeneity. The precision on x-axis enables us to distinguish the size of each trial. The graph describes I(2) statistic with 95% CI graphically as well as numerically in one view for prompt comparison. It is possible to implement MetaPlot for meta-analysis of different types of outcome data and summary measures. This method presents a simple graphical approach to identify an outlier and its effect on overall heterogeneity at a glance. We wish to suggest MetaPlot to Stata experts to prepare its module for the software.

  2. Metaplot: A Novel Stata Graph for Assessing Heterogeneity at a Glance

    PubMed Central

    Poorolajal, J; Mahmoodi, M; Majdzadeh, R; Fotouhi, A

    2010-01-01

    Background: Heterogeneity is usually a major concern in meta-analysis. Although there are some statistical approaches for assessing variability across studies, here we present a new approach to heterogeneity using “MetaPlot” that investigate the influence of a single study on the overall heterogeneity. Methods: MetaPlot is a two-way (x, y) graph, which can be considered as a complementary graphical approach for testing heterogeneity. This method shows graphically as well as numerically the results of an influence analysis, in which Higgins’ I2 statistic with 95% (Confidence interval) CI are computed omitting one study in each turn and then are plotted against reciprocal of standard error (1/SE) or “precision”. In this graph, “1/SE” lies on x axis and “I2 results” lies on y axe. Results: Having a first glance at MetaPlot, one can predict to what extent omission of a single study may influence the overall heterogeneity. The precision on x-axis enables us to distinguish the size of each trial. The graph describes I2 statistic with 95% CI graphically as well as numerically in one view for prompt comparison. It is possible to implement MetaPlot for meta-analysis of different types of outcome data and summary measures. Conclusion: This method presents a simple graphical approach to identify an outlier and its effect on overall heterogeneity at a glance. We wish to suggest MetaPlot to Stata experts to prepare its module for the software. PMID:23113013

  3. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  4. Sankofa pediatric HIV disclosure intervention cyber data management: building capacity in a resource-limited setting and ensuring data quality

    PubMed Central

    Catlin, Ann Christine; Fernando, Sumudinie; Gamage, Ruwan; Renner, Lorna; Antwi, Sampson; Tettey, Jonas Kusah; Amisah, Kofi Aikins; Kyriakides, Tassos; Cong, Xiangyu; Reynolds, Nancy R.; Paintsil, Elijah

    2015-01-01

    Prevalence of pediatric HIV disclosure is low in resource-limited settings. Innovative, culturally sensitive, and patient-centered disclosure approaches are needed. Conducting such studies in resource-limited settings is not trivial considering the challenges of capturing, cleaning, and storing clinical research data. To overcome some of these challenges, the Sankofa pediatric disclosure intervention adopted an interactive cyber infrastructure for data capture and analysis. The Sankofa Project database system is built on the HUBzero cyber infrastructure (https://hubzero.org), an open source software platform. The hub database components support: (1) data management – the “databases” component creates, configures, and manages database access, backup, repositories, applications, and access control; (2) data collection – the “forms” component is used to build customized web case report forms that incorporate common data elements and include tailored form submit processing to handle error checking, data validation, and data linkage as the data are stored to the database; and (3) data exploration – the “dataviewer” component provides powerful methods for users to view, search, sort, navigate, explore, map, graph, visualize, aggregate, drill-down, compute, and export data from the database. The Sankofa cyber data management tool supports a user-friendly, secure, and systematic collection of all data. We have screened more than 400 child–caregiver dyads and enrolled nearly 300 dyads, with tens of thousands of data elements. The dataviews have successfully supported all data exploration and analysis needs of the Sankofa Project. Moreover, the ability of the sites to query and view data summaries has proven to be an incentive for collecting complete and accurate data. The data system has all the desirable attributes of an electronic data capture tool. It also provides an added advantage of building data management capacity in resource-limited settings due to its innovative data query and summary views and availability of real-time support by the data management team. PMID:26616131

  5. 16 CFR 2.7 - Compulsory process in investigations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., graphs, charts, photographs, sound recordings, images and other data or data compilations stored in any... other tangible things, for inspection, copying, testing, or sampling. (j) Manner and form of production...

  6. 16 CFR 2.7 - Compulsory process in investigations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., graphs, charts, photographs, sound recordings, images and other data or data compilations stored in any... other tangible things, for inspection, copying, testing, or sampling. (j) Manner and form of production...

  7. Some Student Experiments with a Laser.

    ERIC Educational Resources Information Center

    Young, P. A.

    1989-01-01

    Described are three experiments on the photometric, Gaussian, and image-forming properties of a helium-neon gas laser. Details of the experimental method and typical calculations with diagrams and graphs are provided. (YP)

  8. Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology

    NASA Astrophysics Data System (ADS)

    Sharma, Harshita; Zerbe, Norman; Heim, Daniel; Wienert, Stephan; Lohmann, Sebastian; Hellwich, Olaf; Hufnagl, Peter

    2016-03-01

    This paper describes a novel graph-based method for efficient representation and subsequent classification in histological whole slide images of gastric cancer. Her2/neu immunohistochemically stained and haematoxylin and eosin stained histological sections of gastric carcinoma are digitized. Immunohistochemical staining is used in practice by pathologists to determine extent of malignancy, however, it is laborious to visually discriminate the corresponding malignancy levels in the more commonly used haematoxylin and eosin stain, and this study attempts to solve this problem using a computer-based method. Cell nuclei are first isolated at high magnification using an automatic cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they contain information about cell nuclei morphology as vertex attributes, along with knowledge of neighborhood in the form of edge linking and edge attributes. Global graph characteristics are derived and ensemble learning is used to discriminate between three types of malignancy levels, namely, non-tumor, Her2/neu positive tumor and Her2/neu negative tumor. Performance is compared with state of the art methods including four texture feature groups (Haralick, Gabor, Local Binary Patterns and Varma Zisserman features), color and intensity features, and Voronoi diagram and Delaunay triangulation. Texture, color and intensity information is also combined with graph-based knowledge, followed by correlation analysis. Quantitative assessment is performed using two cross validation strategies. On investigating the experimental results, it can be concluded that the proposed method provides a promising way for computer-based analysis of histopathological images of gastric cancer.

  9. The space exploration initiative

    NASA Technical Reports Server (NTRS)

    Priest, Pete

    1991-01-01

    A number of view graph charts are presented which outline the presentation. Outlined are reasons for going to Mars, why it is necessary to go to the Moon first, and the presidential decision on the space exploration initiative. Other representative charts are entitled: Lunar transportation system requirement drivers; Mars transportation system requirement drivers; National space policy goals; Exploration hardware needed; Mars mission profile; Science on the Moon and Mars; and Two independent reviews.

  10. What Data Can Do: A Teacher's View of Digital Tools for Formative Assessment

    ERIC Educational Resources Information Center

    Gallagher, Kerry

    2016-01-01

    Digital tools are making it easier than ever for teachers to gather and analyze formative data. Paper exit slips can take a classroom teacher upward of an hour to sort and graph after just one day of classes. But now, that same teacher can pose a question out loud to the class and ask students to type answers on their mobile phones and hit send.…

  11. Decision-Making in National Security Affairs: Toward a Typology.

    DTIC Science & Technology

    1985-06-07

    decisional model, and thus provide the necessary linkage between observation and application of theory in explaining and/or predicting policy decisions . r...examines theories and models of decision -making processes from an interdisciplinary perspective, with a view toward deriving means by which the behavior of...processes, game theory , linear programming, network and graph theory , time series analysis, and the like. The discipline of decision analysis is a relatively

  12. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2008-03-01

    Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.

  13. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  14. Exactly solved models on planar graphs with vertices in {Z}^3

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.

    2017-12-01

    It is shown how exactly solved edge interaction models on the square lattice, may be extended onto more general planar graphs, with edges connecting a subset of next nearest neighbour vertices of {Z}3 . This is done by using local deformations of the square lattice, that arise through the use of the star-triangle relation. Similar to Baxter’s Z-invariance property, these local deformations leave the partition function invariant up to some simple factors coming from the star-triangle relation. The deformations used here extend the usual formulation of Z-invariance, by requiring the introduction of oriented rapidity lines which form directed closed paths in the rapidity graph of the model. The quasi-classical limit is also considered, in which case the deformations imply a classical Z-invariance property, as well as a related local closure relation, for the action functional of a system of classical discrete Laplace equations.

  15. Operator based integration of information in multimodal radiological search mission with applications to anomaly detection

    NASA Astrophysics Data System (ADS)

    Benedetto, J.; Cloninger, A.; Czaja, W.; Doster, T.; Kochersberger, K.; Manning, B.; McCullough, T.; McLane, M.

    2014-05-01

    Successful performance of radiological search mission is dependent on effective utilization of mixture of signals. Examples of modalities include, e.g., EO imagery and gamma radiation data, or radiation data collected during multiple events. In addition, elevation data or spatial proximity can be used to enhance the performance of acquisition systems. State of the art techniques in processing and exploitation of complex information manifolds rely on diffusion operators. Our approach involves machine learning techniques based on analysis of joint data- dependent graphs and their associated diffusion kernels. Then, the significant eigenvectors of the derived fused graph Laplace and Schroedinger operators form the new representation, which provides integrated features from the heterogeneous input data. The families of data-dependent Laplace and Schroedinger operators on joint data graphs, shall be integrated by means of appropriately designed fusion metrics. These fused representations are used for target and anomaly detection.

  16. Semantic super networks: A case analysis of Wikipedia papers

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, Evgeny; Lebedeva, Taisiya; Goritov, Alexander

    2017-11-01

    An algorithm for constructing super-large semantic networks has been developed in current work. Algorithm was tested using the "Cosmos" category of the Internet encyclopedia "Wikipedia" as an example. During the implementation, a parser for the syntax analysis of Wikipedia pages was developed. A graph based on list of articles and categories was formed. On the basis of the obtained graph analysis, algorithms for finding domains of high connectivity in a graph were proposed and tested. Algorithms for constructing a domain based on the number of links and the number of articles in the current subject area is considered. The shortcomings of these algorithms are shown and explained, an algorithm is developed on their joint use. The possibility of applying a combined algorithm for obtaining the final domain is shown. The problem of instability of the received domain was discovered when starting an algorithm from two neighboring vertices related to the domain.

  17. Graph theory for feature extraction and classification: a migraine pathology case study.

    PubMed

    Jorge-Hernandez, Fernando; Garcia Chimeno, Yolanda; Garcia-Zapirain, Begonya; Cabrera Zubizarreta, Alberto; Gomez Beldarrain, Maria Angeles; Fernandez-Ruanova, Begonya

    2014-01-01

    Graph theory is also widely used as a representational form and characterization of brain connectivity network, as is machine learning for classifying groups depending on the features extracted from images. Many of these studies use different techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the classifier used.

  18. Network connectivity value.

    PubMed

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Generic strategies for chemical space exploration.

    PubMed

    Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F

    2014-01-01

    The chemical universe of molecules reachable from a set of start compounds by iterative application of a finite number of reactions is usually so vast, that sophisticated and efficient exploration strategies are required to cope with the combinatorial complexity. A stringent analysis of (bio)chemical reaction networks, as approximations of these complex chemical spaces, forms the foundation for the understanding of functional relations in Chemistry and Biology. Graphs and graph rewriting are natural models for molecules and reactions. Borrowing the idea of partial evaluation from functional programming, we introduce partial applications of rewrite rules. A framework for the specification of exploration strategies in graph-rewriting systems is presented. Using key examples of complex reaction networks from carbohydrate chemistry we demonstrate the feasibility of this high-level strategy framework. While being designed for chemical applications, the framework can also be used to emulate higher-level transformation models such as illustrated in a small puzzle game.

  20. Counting spanning trees on fractal graphs and their asymptotic complexity

    NASA Astrophysics Data System (ADS)

    Anema, Jason A.; Tsougkas, Konstantinos

    2016-09-01

    Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.

  1. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  2. Managing complexity in simulations of land surface and near-surface processes

    DOE PAGES

    Coon, Ethan T.; Moulton, J. David; Painter, Scott L.

    2016-01-12

    Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less

  3. The Path Resistance Method for Bounding the Smallest Nontrivial Eigenvalue of a Laplacian

    NASA Technical Reports Server (NTRS)

    Guattery, Stephen; Leighton, Tom; Miller, Gary L.

    1997-01-01

    We introduce the path resistance method for lower bounds on the smallest nontrivial eigenvalue of the Laplacian matrix of a graph. The method is based on viewing the graph in terms of electrical circuits; it uses clique embeddings to produce lower bounds on lambda(sub 2) and star embeddings to produce lower bounds on the smallest Rayleigh quotient when there is a zero Dirichlet boundary condition. The method assigns priorities to the paths in the embedding; we show that, for an unweighted tree T, using uniform priorities for a clique embedding produces a lower bound on lambda(sub 2) that is off by at most an 0(log diameter(T)) factor. We show that the best bounds this method can produce for clique embeddings are the same as for a related method that uses clique embeddings and edge lengths to produce bounds.

  4. Graph Matching for the Registration of Persistent Scatterers to Optical Oblique Imagery

    NASA Astrophysics Data System (ADS)

    Schack, L.; Soergel, U.; Heipke, C.

    2016-06-01

    Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing direction with respect to SAR.We exploit the additional information coming with these optical sensors to assign individual PS to single parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two exemplary case studies show the plausibility of the presented approach.

  5. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The SPS program plan is outlined. An overall review of the component systems which comprise the SPS is presented. The report is presented in the form of charts, graphs, data tables, and engineering drawings.

  6. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  7. Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers

    NASA Astrophysics Data System (ADS)

    Huffaker, Bradley; Dhamdhere, Amogh; Fomenkov, Marina; Claffy, Kc

    To describe, analyze, and model the topological and structural characteristics of the Internet, researchers use Internet maps constructed at the router or autonomous system (AS) level. Although progress has been made on each front individually, a dual graph representing connectivity of routers with AS labels remains an elusive goal. We take steps toward merging the router-level and AS-level views of the Internet. We start from a collection of traces, i.e. sequences of IP addresses obtained with large-scale traceroute measurements from a distributed set of vantage points. We use state-of-the-art alias resolution techniques to identify interfaces belonging to the same router. We develop novel heuristics to assign routers to ASes, producing an AS-router dual graph. We validate our router assignment heuristics using data provided by tier-1 and tier-2 ISPs and five research networks, and show that we successfully assign 80% of routers with interfaces from multiple ASes to the correct AS. When we include routers with interfaces from a single AS, the accuracy drops to 71%, due to the 24% of total inferred routers for which our measurement or alias resolution fails to find an interface belonging to the correct AS. We use our dual graph construct to estimate economic properties of the AS-router dual graph, such as the number of internal and border routers owned by different types of ASes. We also demonstrate how our techniques can improve IP-AS mapping, including resolving up to 62% of false loops we observed in AS paths derived from traceroutes.

  8. Transforming graph states using single-qubit operations.

    PubMed

    Dahlberg, Axel; Wehner, Stephanie

    2018-07-13

    Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  9. Conception of discrete systems decomposition algorithm using p-invariants and hypergraphs

    NASA Astrophysics Data System (ADS)

    Stefanowicz, Ł.

    2016-09-01

    In the article author presents an idea of decomposition algorithm of discrete systems described by Petri Nets using pinvariants. Decomposition process is significant from the point of view of discrete systems design, because it allows separation of the smaller sequential parts. Proposed algorithm uses modified Martinez-Silva method as well as author's selection algorithm. The developed method is a good complement of classical decomposition algorithms using graphs and hypergraphs.

  10. SVEN: Informative Visual Representation of Complex Dynamic Structure

    DTIC Science & Technology

    2014-12-23

    nodes in the diagram can be chosen to minimize crossings, but this is the Traveling Salesman Problem , and even if an optimal solution was found, there...visualization problem inherits the challenges of optimizing the aesthetic properties of the static views of the graphs, it also introduces a new problem of how to...inevitable problem of having an overwhelming number of edge crossings for larger datasets is addressed by reducing the opacity of the lines drawn

  11. The influence of graphic format on breast cancer risk communication.

    PubMed

    Schapira, Marilyn M; Nattinger, Ann B; McAuliffe, Timothy L

    2006-09-01

    Graphic displays can enhance quantitative risk communication. However, empiric data regarding the effect of graphic format on risk perception is lacking. We evaluate the effect of graphic format elements on perceptions of risk magnitude and perceived truth of data. Preferences for format also were assessed. Participants (254 female primary care patients) viewed a series of hypothetical risk communications regarding the lifetime risk of breast cancer. Identical numeric risk information was presented using different graphic formats. Risk was perceived to be of lower magnitude when communicated with a bar graph as compared with a pictorial display (p < 0.0001), or with consecutively versus randomly highlighted symbols in a pictorial display (p = 0.0001). Data were perceived to be more true when presented with random versus consecutive highlights in a pictorial display (p < 0.01). A pictorial display was preferred to a bar graph format for the presentation of breast cancer risk estimates alone (p = 0.001). When considering breast cancer risk in comparison to heart disease, stroke, and osteoporosis, however, bar graphs were preferred pictorial displays (p < 0.001). In conclusion, elements of graphic format used to convey quantitative risk information effects key domains of risk perception. One must be cognizant of these effects when designing risk communication strategies.

  12. Decentralized and self-centered estimation architecture for formation flying of spacecraft

    NASA Technical Reports Server (NTRS)

    Kang, B. H.; Hadaegh, F. Y.; Scharf, D. P.; Ke, N. -P.

    2001-01-01

    Formation estimation methodologies for distributed spacecraft systems are formulated and analyzed. A generic form of the formation estimation problem is described by defining a common hardware configuration, observation graph, and feasible estimation topologies.

  13. Metabolomic Analysis and Visualization Engine for LC–MS Data

    PubMed Central

    Melamud, Eugene; Vastag, Livia; Rabinowitz, Joshua D.

    2017-01-01

    Metabolomic analysis by liquid chromatography–high-resolution mass spectrometry results in data sets with thousands of features arising from metabolites, fragments, isotopes, and adducts. Here we describe a software package, Metabolomic Analysis and Visualization ENgine (MAVEN), designed for efficient interactive analysis of LC–MS data, including in the presence of isotope labeling. The software contains tools for all aspects of the data analysis process, from feature extraction to pathway-based graphical data display. To facilitate data validation, a machine learning algorithm automatically assesses peak quality. Users interact with raw data primarily in the form of extracted ion chromatograms, which are displayed with overlaid circles indicating peak quality, and bar graphs of peak intensities for both unlabeled and isotope-labeled metabolite forms. Click-based navigation leads to additional information, such as raw data for specific isotopic forms or for metabolites changing significantly between conditions. Fast data processing algorithms result in nearly delay-free browsing. Drop-down menus provide tools for the overlay of data onto pathway maps. These tools enable animating series of pathway graphs, e.g., to show propagation of labeled forms through a metabolic network. MAVEN is released under an open source license at http://maven.princeton.edu. PMID:21049934

  14. Active and passive spatial learning in human navigation: acquisition of graph knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2015-07-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.

  15. Connections between the Sznajd model with general confidence rules and graph theory

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2012-10-01

    The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).

  16. Euclidean commute time distance embedding and its application to spectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Albano, James A.; Messinger, David W.

    2012-06-01

    Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the random walk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute time distance that avoids running an iterative process and is found by simply performing an eigendecomposition on the graph Laplacian matrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.

  17. Life Starting Materials Found in Dusty Disk

    NASA Image and Video Library

    2005-12-20

    This graph, or spectrum, from NASA Spitzer Space Telescope tells astronomers that some of the most basic ingredients of DNA and protein are concentrated in a dusty planet-forming disk circling a young sun-like star called IRS 46.

  18. Hybrid Propulsion Technology Program, phase 1. Volume 2: Technical discussion

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Information on hybrid propulsion system concepts is given largely in the form of outlines, charts and graphs. Included are the concept definition, trade study data generation, concept evaluation and selection, conceptual design definition, and technology definition.

  19. Underwater detection by using ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  20. A Comparison between Strand Spaces and Multiset Rewriting for Security Protocol Analysis

    DTIC Science & Technology

    2005-01-01

    directed labeled graph GL is a structure (S,−→, L , Λ) where (S,−→) is a directed graph, L is a set of labels, and Λ : S → L is a labeling function that...particular, for ν ∈ S and l ∈ L , we will write “ν = l ” as an abbreviation of Λ(ν) = l . However, for ν1, ν2 ∈ S, expressions of the form “ν 1 = ν2” shall...appeared in [4]. First-order formalisms were considered only several years later in the classical work of Berry and Boudol [2], whose state-based

  1. Optimized graph-based mosaicking for virtual microscopy

    NASA Astrophysics Data System (ADS)

    Steckhan, Dirk G.; Wittenberg, Thomas

    2009-02-01

    Virtual microscopy has the potential to partially replace traditional microscopy. For virtualization, the slide is scanned once by a fully automatized robotic microscope and saved digitally. Typically, such a scan results in several hundreds to thousands of fields of view. Since robotic stages have positioning errors, these fields of view have to be registered locally and globally in an additional step. In this work we propose a new global mosaicking method for the creation of virtual slides based on sub-pixel exact phase correlation for local alignment in combination with Prim's minimum spanning tree algorithm for global alignment. Our algorithm allows for a robust reproduction of the original slide even in the presence of views with little to no information content. This makes it especially suitable for the mosaicking of cervical smears. These smears often exhibit large empty areas, which do not contain enough information for common stitching approaches.

  2. Topological evolution of the internet public opinion

    NASA Astrophysics Data System (ADS)

    Lian, Ying; Dong, Xuefan; Liu, Yijun

    2017-11-01

    The Internet forms a platform featured with high liquidity, accessibility and concealment for the public to express their respective views on certain events, thus leading to a large network graph. Due to such environmental features, the public opinions formed on the Internet are different from those on traditional media. Studies focusing on the former area are relatively fewer. In addition, the majority of existing methods proposed for constructing the Internet public opinion topological structure are based on the classic BA model, thus resulting in drawbacks in the range of simplicity and a lack of strict deduction. Therefore, based on the complex networks theory, a model applied to describe the topology of the Internet public opinion is deduced with rigorous derivation in the present paper. Results show that the proposed expression could well reflect the degree distribution of Internet public opinion which follows an analogous power law distribution, and that the peak value and the degree distribution are not correlative to each other. Moreover, it has been also proved that compared to the classic BA model, the proposed model has better accuracy performance in the description of the degree distribution of the Internet public opinion, which contributes to future studies focusing on this area. Thus, an attempt has been made to give the first theoretical description of the Internet public opinion topology in the present paper. In addition, it is also the first paper focusing on the solution of networks degree distribution with an exponential growth form.

  3. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hrovat, Kenneth

    1994-01-01

    The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.

  4. Dual algebraic formulation of differential GPS

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Dur, S.

    2003-05-01

    A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.

  5. EMMMA: A web-based system for environmental mercury mapping, modeling, and analysis

    USGS Publications Warehouse

    Hearn,, Paul P.; Wente, Stephen P.; Donato, David I.; Aguinaldo, John J.

    2006-01-01

    tissue, atmospheric emissions and deposition, stream sediments, soils, and coal) and mercuryrelated data (mine locations); 2) Interactively view and access predictions of the National Descriptive Model of Mercury in Fish (NDMMF) at 4,976 sites and 6,829 sampling events (events are unique combinations of site and sampling date) across the United States; and 3) Use interactive mapping and graphing capabilities to visualize spatial and temporal trends and study relationships between mercury and other variables.

  6. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  7. Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity

    PubMed Central

    Sadovsky, Alexander J.

    2014-01-01

    Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. PMID:24899701

  8. On the location of spectral edges in \\ {Z}-periodic media

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Kuchment, Peter; Winn, Brian

    2010-11-01

    Periodic second-order ordinary differential operators on \\ {R} are known to have the edges of their spectra to occur only at the spectra of periodic and anti-periodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice \\ {Z}), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. This paper is dedicated to the memory of P Duclos.

  9. Combinatorial compatibility as habit-controlling factor in lysozyme crystallization I. Monomeric and tetrameric F faces derived graph-theoretically

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Bennema, P.

    1997-03-01

    A series of two articles discusses possible morphological evidence for oligomerization of growth units in the crystallization of tetragonal lysozyme, based on a rigorous graph-theoretic derivation of the F faces. In the first study (Part I), the growth layers are derived as valid networks satisfying the conditions of F slices in the context of the PBC theory using the graph-theoretic method implemented in program FFACE [C.S. Strom, Z. Krist. 172 (1985) 11]. The analysis is performed in monomeric and alternative tetrameric and octameric formulations of the unit cell, assuming tetramer formation according to the strongest bonds. F (flat) slices with thickness Rdhkl ( {1}/{2} < R ≤ 1 ) are predicted theoretically in the forms 1 1 0, 0 1 1, 1 1 1. The relevant energies are established in the broken bond model. The relation between possible oligomeric specifications of the unit cell and combinatorially feasible F slice compositions in these orientations is explored.

  10. A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou's pseudo amino acid composition.

    PubMed

    Tripathi, Pooja; Pandey, Paras N

    2017-07-07

    The present work employs pseudo amino acid composition (PseAAC) for encoding the protein sequences in their numeric form. Later this will be arranged in the similarity matrix, which serves as input for spectral graph clustering method. Spectral methods are used previously also for clustering of protein sequences, but they uses pair wise alignment scores of protein sequences, in similarity matrix. The alignment score depends on the length of sequences, so clustering short and long sequences together may not good idea. Therefore the idea of introducing PseAAC with spectral clustering algorithm came into scene. We extensively tested our method and compared its performance with other existing machine learning methods. It is consistently observed that, the number of clusters that we obtained for a given set of proteins is close to the number of superfamilies in that set and PseAAC combined with spectral graph clustering shows the best classification results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  12. Integration of heterogeneous data for classification in hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.

    2012-06-01

    As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.

  13. Kirchhoff index of linear hexagonal chains

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Zhang, Heping

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of linear hexagonal chain Ln consists of the Laplacian spectrum of path P2n+1 and eigenvalues of a symmetric tridiagonal matrix of order 2n + 1. By applying the relationship between roots and coefficients of the characteristic polynomial of the above matrix, explicit closed-form formula for Kirchhoff index of Ln is derived in terms of Laplacian spectrum. To our surprise, the Krichhoff index of Ln is approximately to one half of its Wiener index. Finally, we show that holds for all graphs G in a class of graphs including Ln.0

  14. Assessment of tautomer distribution using the condensed reaction graph approach

    NASA Astrophysics Data System (ADS)

    Gimadiev, T. R.; Madzhidov, T. I.; Nugmanov, R. I.; Baskin, I. I.; Antipin, I. S.; Varnek, A.

    2018-03-01

    We report the first direct QSPR modeling of equilibrium constants of tautomeric transformations (logK T ) in different solvents and at different temperatures, which do not require intermediate assessment of acidity (basicity) constants for all tautomeric forms. The key step of the modeling consisted in the merging of two tautomers in one sole molecular graph ("condensed reaction graph") which enables to compute molecular descriptors characterizing entire equilibrium. The support vector regression method was used to build the models. The training set consisted of 785 transformations belonging to 11 types of tautomeric reactions with equilibrium constants measured in different solvents and at different temperatures. The models obtained perform well both in cross-validation (Q2 = 0.81 RMSE = 0.7 logK T units) and on two external test sets. Benchmarking studies demonstrate that our models outperform results obtained with DFT B3LYP/6-311 ++ G(d,p) and ChemAxon Tautomerizer applicable only in water at room temperature.

  15. Hierarchical lattice models of hydrogen-bond networks in water

    NASA Astrophysics Data System (ADS)

    Dandekar, Rahul; Hassanali, Ali A.

    2018-06-01

    We develop a graph-based model of the hydrogen-bond network in water, with a view toward quantitatively modeling the molecular-level correlational structure of the network. The networks formed are studied by the constructing the model on two infinite-dimensional lattices. Our models are built bottom up, based on microscopic information coming from atomistic simulations, and we show that the predictions of the model are consistent with known results from ab initio simulations of liquid water. We show that simple entropic models can predict the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic simulations. We also find that orientational correlations between bonds are longer ranged than density correlations, determine the directional correlations within closed loops, and show that the patterns of water wires within these structures are also consistent with previous atomistic simulations. Our models show the existence of density and compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with the singularity-free scenario previously proposed by Sastry and coworkers [Phys. Rev. E 53, 6144 (1996), 10.1103/PhysRevE.53.6144].

  16. Integrated Information Support System (IISS). Volume 8. User Interface Subsystem. Part 10. Graph Support System Unit Test Plan

    DTIC Science & Technology

    1990-09-30

    UTP 620344220 30 September 1990 Command Line form gfl MSG: Estructure closed apIcatic Figure 5-64b (AFTER) 5-132 UTP 620344220 30 September 1990 Command...620344220 30 September 1990 Comman Lineay form gf 1 MSG: Estructure 9 psted on workstation 1 at priority 1 applcatioo Figure 5-101a (BEFORE) 5-205 UTP

  17. A new forecast presentation tool for offshore contractors

    NASA Astrophysics Data System (ADS)

    Jørgensen, M.

    2009-09-01

    Contractors working off shore are often very sensitive to both sea and weather conditions, and it's essential that they have easy access to reliable information on coming conditions to enable planning of when to start or shut down offshore operations to avoid loss of life and materials. Danish Meteorological Institute, DMI, recently, in cooperation with business partners in the field, developed a new application to accommodate that need. The "Marine Forecast Service” is a browser based forecast presentation tool. It provides an interface for the user to enable easy and quick access to all relevant meteorological and oceanographic forecasts and observations for a given area of interest. Each customer gains access to the application via a standard login/password procedure. Once logged in, the user can inspect animated forecast maps of parameters like wind, gust, wave height, swell and current among others. Supplementing the general maps, the user can choose to look at forecast graphs for each of the locations where the user is running operations. These forecast graphs can also be overlaid with the user's own in situ observations, if such exist. Furthermore, the data from the graphs can be exported as data files that the customer can use in his own applications as he desires. As part of the application, a forecaster's view on the current and near future weather situation is presented to the user as well, adding further value to the information presented through maps and graphs. Among other features of the product, animated radar and satellite images could be mentioned. And finally the application provides the possibility of a "second opinion” through traditional weather charts from another recognized provider of weather forecasts. The presentation will provide more detailed insights into the contents of the applications as well as some of the experiences with the product.

  18. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  19. A parallel computing engine for a class of time critical processes.

    PubMed

    Nabhan, T M; Zomaya, A Y

    1997-01-01

    This paper focuses on the efficient parallel implementation of systems of numerically intensive nature over loosely coupled multiprocessor architectures. These analytical models are of significant importance to many real-time systems that have to meet severe time constants. A parallel computing engine (PCE) has been developed in this work for the efficient simplification and the near optimal scheduling of numerical models over the different cooperating processors of the parallel computer. First, the analytical system is efficiently coded in its general form. The model is then simplified by using any available information (e.g., constant parameters). A task graph representing the interconnections among the different components (or equations) is generated. The graph can then be compressed to control the computation/communication requirements. The task scheduler employs a graph-based iterative scheme, based on the simulated annealing algorithm, to map the vertices of the task graph onto a Multiple-Instruction-stream Multiple-Data-stream (MIMD) type of architecture. The algorithm uses a nonanalytical cost function that properly considers the computation capability of the processors, the network topology, the communication time, and congestion possibilities. Moreover, the proposed technique is simple, flexible, and computationally viable. The efficiency of the algorithm is demonstrated by two case studies with good results.

  20. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOEpatents

    Faber, Vance; Moore, James W.

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  1. Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search

    PubMed Central

    2014-01-01

    Background The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. Results We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. Conclusion The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology. PMID:24917489

  2. Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem

    NASA Astrophysics Data System (ADS)

    Connes, Alain; Kreimer, Dirk

    This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ+ of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. The analysis of this latter group as well as the interpretation of the renormalization group and of anomalous dimensions are the content of our second paper with the same overall title.

  3. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in Java, a language that is portable among platforms, because it can run on different operating systems such as Windows and Unix without having to be rewritten. I had no prior experience of programming in Java at the start of my internship; I am continuously learning as I create the program. I have written the part of the program that enables a user to draw several zones, edit them, and store their locations. The next phase of my project is to allow the user to click on the side of a zone and create a boundary condition for it. A previous intern wrote a program that allows the user to input boundary conditions. I can integrate the two programs to create a larger, more usable program. After that, I will develop a way for the user to save the graph for future reference. Another eventual goal is to make the GUI capable of creating three-dimensional zones as well. Researchers such as my mentor, Dr. David Ashpis, need a quick, user-friendly

  4. Simulation of an Asynchronous Machine by using a Pseudo Bond Graph

    NASA Astrophysics Data System (ADS)

    Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa

    2008-11-01

    For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .

  5. EnsembleGraph: Interactive Visual Analysis of Spatial-Temporal Behavior for Ensemble Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Qingya; Guo, Hanqi; Che, Limei

    We present a novel visualization framework—EnsembleGraph— for analyzing ensemble simulation data, in order to help scientists understand behavior similarities between ensemble members over space and time. A graph-based representation is used to visualize individual spatiotemporal regions with similar behaviors, which are extracted by hierarchical clustering algorithms. A user interface with multiple-linked views is provided, which enables users to explore, locate, and compare regions that have similar behaviors between and then users can investigate and analyze the selected regions in detail. The driving application of this paper is the studies on regional emission influences over tropospheric ozone, which is based onmore » ensemble simulations conducted with different anthropogenic emission absences using the MOZART-4 (model of ozone and related tracers, version 4) model. We demonstrate the effectiveness of our method by visualizing the MOZART-4 ensemble simulation data and evaluating the relative regional emission influences on tropospheric ozone concentrations. Positive feedbacks from domain experts and two case studies prove efficiency of our method.« less

  6. Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies

    PubMed Central

    Harrington, Magadalena; Velicer, Wayne F.

    2015-01-01

    Little is known about the extent to which interrupted time-series analysis (ITSA) can be applied to short, single-case study designs and whether those applications produce results consistent with visual analysis (VA). This paper examines the extent to which ITSA can be applied to single-case study designs and compares the results based on two methods: ITSA and VA, using papers published in the Journal of Applied Behavior Analysis in 2010. The study was made possible by the development of software called UnGraph® which facilitates the recovery of raw data from the graphs. ITSA was successfully applied to 94% of the examined graphs with the number of observations ranging from 8 to 136. Moderate to high lag 1 autocorrelations (> .50) were found for 46% of the data series. Effect sizes similar to group-level Cohen’s d were identified based on the tertile distribution. Effects ranging from 0.00 to 0.99 were classified as small, those ranging from 1.00 to 2.49 as medium, and large effect sizes were defined as 2.50 or greater. Comparison of the conclusions from VA and ITSA had a low level of agreement (Kappa = .14, accounting for the agreement expected by chance). The results demonstrate that ITSA can be broadly implemented in applied behavior analysis research. These two methods should be viewed as complimentary and used concurrently. PMID:26609876

  7. Analysis of the enzyme network involved in cattle milk production using graph theory.

    PubMed

    Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan

    2015-06-01

    Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.

  8. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen

    2018-07-01

    Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).

  9. Can We Recognize an Innovation? Perspective from an Evolving Network Model

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay; Krishna, Sandeep

    "Innovations" are central to the evolution of societies and the evolution of life. But what constitutes an innovation? We can often agree after the event, when its consequences and impact over a long term are known, whether something was an innovation, and whether it was a "big" innovation or a "minor" one. But can we recognize an innovation "on the fly" as it appears? Successful entrepreneurs often can. Is it possible to formalize that intuition? We discuss this question in the setting of a mathematical model of evolving networks. The model exhibits self-organization , growth, stasis, and collapse of a complex system with many interacting components, reminiscent of real-world phenomena. A notion of "innovation" is formulated in terms of graph-theoretic constructs and other dynamical variables of the model. A new node in the graph gives rise to an innovation, provided it links up "appropriately" with existing nodes; in this view innovation necessarily depends upon the existing context. We show that innovations, as defined by us, play a major role in the birth, growth, and destruction of organizational structures. Furthermore, innovations can be categorized in terms of their graph-theoretic structure as they appear. Different structural classes of innovation have potentially different qualitative consequences for the future evolution of the system, some minor and some major. Possible general lessons from this specific model are briefly discussed.

  10. Macrophyte mapping in ten lakes of South Carolina with multispectral SPOT HRV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1989-01-01

    Fall and spring multispectral SPOT HRV data for 1987 and 1988 were used to evaluate the macrophyte distributions in ten freshwater reservoirs of South Carolina. The types of macrophyte and wetland communities present along the shoreline of the lakes varied depending on the age, water level fluctuations, water quality, and basin morphology. Seasonal satellite data were important for evaluation of the extent of persistent versus non-persistent macrophyte communities in the lakes. This paper contains only the view graphs of this process.

  11. A New Program Structuring Mechanism Based on Layered Graphs.

    DTIC Science & Technology

    1984-12-01

    which is a single-page diagram. Diagrams are constructed from some 40 symbols , chiefly A- boxes, arrows and annotations. A single model specifies a...are identified and used in describing it. 20The symbol "G" derives from the original use of the term "group" for "object slice". Since Ŕ" is already an...overloaded mathematical symbol , retaining "G" seems as good as any alternative. 21The names object slices and views reflect the interpretation placed

  12. Direct Visualization of Surfaces from Computed Tomography Data,

    DTIC Science & Technology

    1988-01-01

    dominant method - slice-by-slice - makes comprehension of convoluted, small, or faint structures difficult. From a densitometric point of view, the human ...Di t SPeclal 4 N(xI) = Vf(lx) IVf (XI)I* There are many ways to estimate the gradient vector Vf(xi). The selection of an operator depends on the...the data is relatively noise-free or has been pre-smoothed. A graph of a(xi) as a function of f(xi) and IVf (xl)l for three tissue types A, B, and C

  13. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  14. On k-ary n-cubes: Theory and applications

    NASA Technical Reports Server (NTRS)

    Mao, Weizhen; Nicol, David M.

    1994-01-01

    Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings, hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions.

  15. Interactive Multiple-Representation Editing of Physically-based 3D Animation

    DTIC Science & Technology

    1994-05-29

    view similar to that of FrameMaker [46], but with a stronger model of structured editing, and a language window, which displays a formal description of...used. This is partly a result of the power of a good direct manipulation editor { most users of good editors like FrameMaker don’t seem to miss having a...re nement. In SIG- GRAPH, pages 205{212, August 1988. [46] Frame Technology Inc. Using FrameMaker , 1990. [47] Bjorn N. Freeman-Benson and John Maloney

  16. Real World Cognitive Multi-Tasking and Problem Solving: A Large Scale Cognitive Architecture Simulation Through High Performance Computing-Project Casie

    DTIC Science & Technology

    2008-03-01

    computational version of the CASIE architecture serves to demonstrate the functionality of our primary theories. However, implementation of several other...following facts. First, based on Theorem 3 and Theorem 5, the objective function is non -increasing under updating rule (6); second, by the criteria for...reassignment in updating rule (7), it is trivial to show that the objective function is non -increasing under updating rule (7). A Unified View to Graph

  17. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    DTIC Science & Technology

    2016-06-01

    out China, Pakistan, and India as having a minimalist point of view with regards to nuclear weapons. For those in favor of this approach, he does...Referee event graph The referee listens to the start and stops of the mover and determines whether or not the Polaris has entered or exited the...are highlighted in Figure 17: • Polaris start point • Polaris end point • Polaris original waypoints • Polaris ad hoc waypoints • Number of

  18. Born approximation in linear-time invariant system

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin

    2017-09-01

    An alternative way of finding the LTI’s solution with the Born approximation, is investigated. We use Born approximation in the LTI and in the transformed LTI in form of Helmholtz equation. General solution are considered as infinite series or Feynman graph. Slow-roll approximation are explored. Transforming the LTI system into Helmholtz equation, approximated general solution can be found for any given forms of force with its initial value.

  19. Identifying compromised systems through correlation of suspicious traffic from malware behavioral analysis

    NASA Astrophysics Data System (ADS)

    Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.

    2016-05-01

    Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.

  20. Local Table Condensation in Rough Set Approach for Jumping Emerging Pattern Induction

    NASA Astrophysics Data System (ADS)

    Terlecki, Pawel; Walczak, Krzysztof

    This paper extends the rough set approach for JEP induction based on the notion of a condensed decision table. The original transaction database is transformed to a relational form and patterns are induced by means of local reducts. The transformation employs an item aggregation obtained by coloring a graph that re0ects con0icts among items. For e±ciency reasons we propose to perform this preprocessing locally, i.e. at the transaction level, to achieve a higher dimensionality gain. Special maintenance strategy is also used to avoid graph rebuilds. Both global and local approach have been tested and discussed for dense and synthetically generated sparse datasets.

  1. Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Hu, Y.; Chen, J.

    2018-04-01

    Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.

  2. A high-definition fiber tracking report for patients with traumatic brain injury and their doctors.

    PubMed

    Chmura, Jon; Presson, Nora; Benso, Steven; Puccio, Ava M; Fissel, Katherine; Hachey, Rebecca; Braun, Emily; Okonkwo, David O; Schneider, Walter

    2015-03-01

    We have developed a tablet-based application, the High-Definition Fiber Tracking Report App, to enable clinicians and patients in research studies to see and understand damage from Traumatic Brain Injury (TBI) by viewing 2-dimensional and 3-dimensional images of their brain, with a focus on white matter tracts with quantitative metrics. The goal is to visualize white matter fiber tract injury like bone fractures; that is, to make the "invisible wounds of TBI" understandable for patients. Using mobile computing technology (iPad), imaging data for individual patients can be downloaded remotely within hours of a magnetic resonance imaging brain scan. Clinicians and patients can view the data in the form of images of each tract, rotating animations of the tracts, 3-dimensional models, and graphics. A growing number of tracts can be examined for asymmetry, gaps in streamline coverage, reduced arborization (branching), streamline volume, and standard quantitative metrics (e.g., Fractional Anisotropy (FA)). Novice users can learn to effectively navigate and interact with the application (explain the figures and graphs representing normal and injured brain tracts) within 15 minutes of simple orientation with high accuracy (96%). The architecture supports extensive graphics, configurable reports, provides an easy-to-use, attractive interface with a smooth user experience, and allows for securely serving cases from a database. Patients and clinicians have described the application as providing dramatic benefits in understanding their TBI and improving their lives. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  3. Trajectory And Heating Of A Hypervelocity Projectile

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1992-01-01

    Technical paper presents derivation of approximate, closed-form equation for relationship between velocity of projectile and density of atmosphere. Results of calculations based on approximate equation agree well with results from numerical integrations of exact equations of motion. Comparisons of results presented in series of graphs.

  4. Use of Time-Aware Language Model in Entity Driven Filtering System

    DTIC Science & Technology

    2014-11-01

    knowledge graph explo- ration. In the case where no Wikipedia page were found for an entity, the set remains empty; - a set of surface forms found using...Interna- tional Conference on Weblogs and Social Media, Barcelona, Catalonia , Spain, July 17-21, 2011.

  5. Vulnerability detection using data-flow graphs and SMT solvers

    DTIC Science & Technology

    2016-10-31

    concerns. The framework is modular and pipelined to allow scalable analysis on distributed systems. Our vulnerability detection framework employs machine...Design We designed the framework to be modular to enable flexible reuse and extendibility. In its current form, our framework performs the following

  6. Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred

    Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less

  7. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGES

    Kepner, Jeremy; Bader, David; Buluç, Aydın; ...

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  8. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  9. Digital line graphs from 1:100,000-scale maps

    USGS Publications Warehouse

    ,

    1989-01-01

    The National Cartographic Information Center (NCIC) distributes digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. Digital cartographic data files may be grouped into four basic types. The first of these, called a Digital Line Graph (DLG), is line map information in digital form. These data files include information on planimetric base categories, such as transportation, hydrography, and boundaries. The second form, called a Digital Elevation Model (OEM), consists of a sampled array of elevations for ground positions that are usually, but not always, at regularly spaced intervals. The third type is Land Use and Land Cover digital data, which provides information on nine major classes of land use such as urban, agricultural, or forest as well as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for known places, features, and areas in the United States identified by a proper name.

  10. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  11. Adjusting protein graphs based on graph entropy

    PubMed Central

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347

  12. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    PubMed Central

    2011-01-01

    Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting massive data streams into usable knowledge. PMID:22165854

  13. Signalling Network Construction for Modelling Plant Defence Response

    PubMed Central

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided. PMID:23272172

  14. Securing Provenance of Distributed Processes in an Untrusted Environment

    NASA Astrophysics Data System (ADS)

    Syalim, Amril; Nishide, Takashi; Sakurai, Kouichi

    Recently, there is much concern about the provenance of distributed processes, that is about the documentation of the origin and the processes to produce an object in a distributed system. The provenance has many applications in the forms of medical records, documentation of processes in the computer systems, recording the origin of data in the cloud, and also documentation of human-executed processes. The provenance of distributed processes can be modeled by a directed acyclic graph (DAG) where each node represents an entity, and an edge represents the origin and causal relationship between entities. Without sufficient security mechanisms, the provenance graph suffers from integrity and confidentiality problems, for example changes or deletions of the correct nodes, additions of fake nodes and edges, and unauthorized accesses to the sensitive nodes and edges. In this paper, we propose an integrity mechanism for provenance graph using the digital signature involving three parties: the process executors who are responsible in the nodes' creation, a provenance owner that records the nodes to the provenance store, and a trusted party that we call the Trusted Counter Server (TCS) that records the number of nodes stored by the provenance owner. We show that the mechanism can detect the integrity problem in the provenance graph, namely unauthorized and malicious “authorized” updates even if all the parties, except the TCS, collude to update the provenance. In this scheme, the TCS only needs a very minimal storage (linear with the number of the provenance owners). To protect the confidentiality and for an efficient access control administration, we propose a method to encrypt the provenance graph that allows access by paths and compartments in the provenance graph. We argue that encryption is important as a mechanism to protect the provenance data stored in an untrusted environment. We analyze the security of the integrity mechanism, and perform experiments to measure the performance of both mechanisms.

  15. Characterizing Containment and Related Classes of Graphs,

    DTIC Science & Technology

    1985-01-01

    Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete

  16. A Collection of Features for Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less

  17. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    PubMed

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  18. Graphical Representations of Electronic Search Patterns.

    ERIC Educational Resources Information Center

    Lin, Xia; And Others

    1991-01-01

    Discussion of search behavior in electronic environments focuses on the development of GRIP (Graphic Representor of Interaction Patterns), a graphing tool based on HyperCard that produces graphic representations of search patterns. Search state spaces are explained, and forms of data available from electronic searches are described. (34…

  19. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  20. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo

    2011-01-01

    This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

  1. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  2. Quantum gravity as an information network self-organization of a 4D universe

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-10-01

    I propose a quantum gravity model in which the fundamental degrees of freedom are information bits for both discrete space-time points and links connecting them. The Hamiltonian is a very simple network model consisting of a ferromagnetic Ising model for space-time vertices and an antiferromagnetic Ising model for the links. As a result of the frustration between these two terms, the ground state self-organizes as a new type of low-clustering graph with finite Hausdorff dimension 4. The spectral dimension is lower than the Hausdorff dimension: it coincides with the Hausdorff dimension 4 at a first quantum phase transition corresponding to an IR fixed point, while at a second quantum phase transition describing small scales space-time dissolves into disordered information bits. The large-scale dimension 4 of the universe is related to the upper critical dimension 4 of the Ising model. At finite temperatures the universe graph emerges without a big bang and without singularities from a ferromagnetic phase transition in which space-time itself forms out of a hot soup of information bits. When the temperature is lowered the universe graph unfolds and expands by lowering its connectivity, a mechanism I have called topological expansion. The model admits topological black hole excitations corresponding to graphs containing holes with no space-time inside and with "Schwarzschild-like" horizons with a lower spectral dimension.

  3. A Statistical Analysis of IrisCode and Its Security Implications.

    PubMed

    Kong, Adams Wai-Kin

    2015-03-01

    IrisCode has been used to gather iris data for 430 million people. Because of the huge impact of IrisCode, it is vital that it is completely understood. This paper first studies the relationship between bit probabilities and a mean of iris images (The mean of iris images is defined as the average of independent iris images.) and then uses the Chi-square statistic, the correlation coefficient and a resampling algorithm to detect statistical dependence between bits. The results show that the statistical dependence forms a graph with a sparse and structural adjacency matrix. A comparison of this graph with a graph whose edges are defined by the inner product of the Gabor filters that produce IrisCodes shows that partial statistical dependence is induced by the filters and propagates through the graph. Using this statistical information, the security risk associated with two patented template protection schemes that have been deployed in commercial systems for producing application-specific IrisCodes is analyzed. To retain high identification speed, they use the same key to lock all IrisCodes in a database. The belief has been that if the key is not compromised, the IrisCodes are secure. This study shows that even without the key, application-specific IrisCodes can be unlocked and that the key can be obtained through the statistical dependence detected.

  4. N-Benzyl­pyridin-2-amine

    PubMed Central

    Wang, Jun; Dai, Chuntao; Nie, Jianhua

    2010-01-01

    In the crystal of the title compound, C12H12N2, inter­molecular N—H⋯N hydrogen bonds form rings of graph-set motif R 2 2(8) and C—H⋯π inter­actions further consolidate the dimers. Neighbouring dimers are further connected into a three-dimensional network by C—H⋯π inter­actions. The benzyl and pyridyl rings form a dihedral angle of 67.2 (1)° PMID:21589385

  5. A Comparison of the Readability of Selected Instructions, Publications and Forms Commonly Used by Adults and the Minimum Literacy Level as Defined by the United States Office of Education.

    ERIC Educational Resources Information Center

    Beris, Carole

    The Fry Readability Graph was used to assess the approximate readability level of each of 23 selected instructions, publications, and forms commonly used by adults in order to compare their readability levels with the minimum literacy level as defined by the United States Office of Education (approximately the eighth grade level). The results…

  6. PSG-EXPERT. An expert system for the diagnosis of sleep disorders.

    PubMed

    Fred, A; Filipe, J; Partinen, M; Paiva, T

    2000-01-01

    This paper describes PSG-EXPERT, an expert system in the domain of sleep disorders exploring polysomnographic data. The developed software tool is addressed from two points of view: (1)--as an integrated environment for the development of diagnosis-oriented expert systems; (2)--as an auxiliary diagnosis tool in the particular domain of sleep disorders. Developed over a Windows platform, this software tool extends one of the most popular shells--CLIPS (C Language Integrated Production System) with the following features: backward chaining engine; graph-based explanation facilities; knowledge editor including a fuzzy fact editor and a rules editor, with facts-rules integrity checking; belief revision mechanism; built-in case generator and validation module. It therefore provides graphical support for knowledge acquisition, edition, explanation and validation. From an application domain point of view, PSG-Expert is an auxiliary diagnosis system for sleep disorders based on polysomnographic data, that aims at assisting the medical expert in his diagnosis task by providing automatic analysis of polysomnographic data, summarising the results of this analysis in terms of a report of major findings and possible diagnosis consistent with the polysomnographic data. Sleep disorders classification follows the International Classification of Sleep Disorders. Major features of the system include: browsing on patients data records; structured navigation on Sleep Disorders descriptions according to ASDA definitions; internet links to related pages; diagnosis consistent with polysomnographic data; graphical user-interface including graph-based explanatory facilities; uncertainty modelling and belief revision; production of reports; connection to remote databases.

  7. Graphing with "LogoWriter."

    ERIC Educational Resources Information Center

    Yoder, Sharon K.

    This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Chung Wong, Pak

    Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less

  9. Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs

    NASA Astrophysics Data System (ADS)

    Freyberg, Bryan J.

    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G = (V,E) of order n there exists an orientation of the edges of G and a companion bijection from V to Gamma with the property that there is an element mu of Gamma (called the magic constant) such that [special characters omitted] where w(x) is the weight of vertex x, we say that G is orientable Gamma -distance magic. In addition to introducing the concept, we provide numerous results on orientable Zn-distance magic graphs, where Zn is the cyclic group of order n.. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work.

  10. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  11. Unsupervised object segmentation with a hybrid graph model (HGM).

    PubMed

    Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou

    2010-05-01

    In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.

  12. A Robust Concurrent Approach for Road Extraction and Urbanization Monitoring Based on Superpixels Acquired from Spectral Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Seppke, Benjamin; Dreschler-Fischer, Leonie; Wilms, Christian

    2016-08-01

    The extraction of road signatures from remote sensing images as a promising indicator for urbanization is a classical segmentation problem. However, some segmentation algorithms often lead to non-sufficient results. One way to overcome this problem is the usage of superpixels, that represent a locally coherent cluster of connected pixels. Superpixels allow flexible, highly adaptive segmentation approaches due to the possibility of merging as well as splitting and form new basic image entities. On the other hand, superpixels require an appropriate representation containing all relevant information about topology and geometry to maximize their advantages.In this work, we present a combined geometric and topological representation based on a special graph representation, the so-called RS-graph. Moreover, we present the use of the RS-graph by means of a case study: the extraction of partially occluded road networks in rural areas from open source (spectral) remote sensing images by tracking. In addition, multiprocessing and GPU-based parallelization is used to speed up the construction of the representation and the application.

  13. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity

    PubMed Central

    Bassett, Danielle S.; Khambhati, Ankit N.; Grafton, Scott T.

    2018-01-01

    Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain–machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer’s tool kit. PMID:28375650

  14. Mathematical foundations of the GraphBLAS

    DOE PAGES

    Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...

    2016-12-01

    The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less

  15. Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2015-01-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…

  16. Supplement no. 1 to the January 1974 report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R.; Davis, L. R.

    1974-01-01

    Updated information and descriptions on spacecraft and experiments are listed according to spacecraft name and principle experimental investigator. A cumulative index of active and planned spacecraft and experiments is provided; bar graph indexes for electromagnetic radiation experiments are included in table form.

  17. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  18. Latent Factors in Student-Teacher Interaction Factor Analysis

    ERIC Educational Resources Information Center

    Le, Thu; Bolt, Daniel; Camburn, Eric; Goff, Peter; Rohe, Karl

    2017-01-01

    Classroom interactions between students and teachers form a two-way or dyadic network. Measurements such as days absent, test scores, student ratings, or student grades can indicate the "quality" of the interaction. Together with the underlying bipartite graph, these values create a valued student-teacher dyadic interaction network. To…

  19. Postsecondary Education in California Information Digest 1978.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    The digest provides extensive data on postsecondary education in the state in the form of charts, graphs, and tables, with only occasional narration; it is designed for the layman, and only summary information is displayed. The information includes private as well as public institutions, significant trends, opening enrollments and their…

  20. Custom Orthotics Changed My Life

    ERIC Educational Resources Information Center

    Holeton, Richard

    2010-01-01

    The narrator relates his life's downward spiral and miraculous rebound from severe foot problems using animated bullet points, images, charts, and graphs. "Custom Orthotics Changed My Life" is a work of presentation fiction, or slideshow fiction, in the form of a video with an original soundtrack. The music was composed by David Kettler, a…

  1. Exploring Alternative Approaches for Presenting Evaluation Results

    ERIC Educational Resources Information Center

    Johnson, Jeremiah; Hall, Jori; Greene, Jennifer C.; Ahn, Jeehae

    2013-01-01

    Evaluators have an obligation to present clearly the results of their evaluative efforts. Traditionally, such presentations showcase formal written and oral reports, with dispassionate language and graphs, tables, quotes, and vignettes. These traditional forms do not reach all audiences nor are they likely to include the most powerful presentation…

  2. PERFORMANCE OF TWO LIQUID METAL TURBOPROP ENGINES UTILIZING A CIRCULATING FUEL REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiedemann, H.J.; Mathews, L.

    1955-01-20

    The performance of two all-nuclear turboprop engines utilizing the circulating fuel reactor with a fluoride fuel temperature of I500 deg F was investigated. Data are presented for off-match-point and modified match-point performances. Results are given in graph form. (M.C.G.)

  3. The "No Crossing Constraint" in Autosegmental Phonology.

    ERIC Educational Resources Information Center

    Coleman, John; Local, John

    A discussion of autosegmental phonology (AP), a theory of phonological representation that uses graphs rather than strings as the central data structure, considers its principal constraint, the "No Crossing Constraint" (NCC). The NCC is the statement that in a well-formed autosegmental diagram, lines of association may not cross. After…

  4. UNDERUTILIZATION OF WOMEN WORKERS.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    INFORMATION ABOUT THE STATUS OF WORKING WOMEN AND THEIR UNDERUTILIZATION IN THE NATIONAL WORK FORCE IS PRESENTED IN SUMMARY AND GRAPH FORM. ALTHOUGH PROGRESS HAS BEEN MADE IN ASSURING WOMEN EQUALITY OF PAY AND NONDISCRIMINATION IN EMPLOYMENT, MUCH NEEDS TO BE DONE TO IMPROVE THE UTILIZATION OF THEIR ABILITIES. MOST WOMEN WORK TO SUPPORT THEMSELVES…

  5. Automatically Assessing Graph-Based Diagrams

    ERIC Educational Resources Information Center

    Thomas, Pete; Smith, Neil; Waugh, Kevin

    2008-01-01

    To date there has been very little work on the machine understanding of imprecise diagrams, such as diagrams drawn by students in response to assessment questions. Imprecise diagrams exhibit faults such as missing, extraneous and incorrectly formed elements. The semantics of imprecise diagrams are difficult to determine. While there have been…

  6. Underutilization of Women Workers.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    Information about the status of working women and their underutilization in the national work force is presented in summary and graph form. Although progress has been made in assuring women equality of pay and nondiscrimination in employment, much work needs to be done to improve the utilization of their abilities. The barriers are still high…

  7. Probing Factors Influencing Students' Graph Comprehension Regarding Four Operations in Kinematics Graphs

    ERIC Educational Resources Information Center

    Phage, Itumeleng B.; Lemmer, Miriam; Hitge, Mariette

    2017-01-01

    Students' graph comprehension may be affected by the background of the students who are the readers or interpreters of the graph, their knowledge of the context in which the graph is set, and the inferential processes required by the graph operation. This research study investigated these aspects of graph comprehension for 152 first year…

  8. Modeling and optimization of Quality of Service routing in Mobile Ad hoc Networks

    NASA Astrophysics Data System (ADS)

    Rafsanjani, Marjan Kuchaki; Fatemidokht, Hamideh; Balas, Valentina Emilia

    2016-01-01

    Mobile ad hoc networks (MANETs) are a group of mobile nodes that are connected without using a fixed infrastructure. In these networks, nodes communicate with each other by forming a single-hop or multi-hop network. To design effective mobile ad hoc networks, it is important to evaluate the performance of multi-hop paths. In this paper, we present a mathematical model for a routing protocol under energy consumption and packet delivery ratio of multi-hop paths. In this model, we use geometric random graphs rather than random graphs. Our proposed model finds effective paths that minimize the energy consumption and maximizes the packet delivery ratio of the network. Validation of the mathematical model is performed through simulation.

  9. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  10. Study of cryogenic propellant systems for loading the space shuttle. Part 2: Hydrogen systems

    NASA Technical Reports Server (NTRS)

    Steward, W. G.

    1975-01-01

    Computer simulation studies of liquid hydrogen fill and vent systems for the space shuttle are studied. The computer programs calculate maximum and minimum permissible flow rates during cooldown as limited by thermal stress considerations, fill line cooldown time, pressure drop, flow rates, vapor content, vent line pressure drop and vent line discharge temperature. The input data for these programs are selected through graphic displays which schematically depict the part of the system being analyzed. The computed output is also displayed in the form of printed messages and graphs. Digital readouts of graph coordinates may also be obtained. Procedures are given for operation of the graphic display unit and the associated minicomputer and timesharing computer.

  11. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  12. SIGNATURES OF ILLICIT NUCLEAR PROCUREMENT NETWORKS: AN OVERVIEW OF PRELIMINARY APPROACHES AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Jennifer B.; Erikson, Luke E.; Gastelum, Zoe N.

    2014-05-12

    The illicit trafficking of strategic nuclear commodities (defined here as the goods needed for a covert nuclear program excluding special nuclear materials) poses a significant challenge to the international nuclear nonproliferation community. Export control regulations, both domestically and internationally, seek to inhibit the spread of strategic nuclear commodities by restricting their sale to parties that may use them for nefarious purposes. However, export controls alone are not sufficient for preventing the illicit transfer of strategic nuclear goods. There are two major pitfalls to relying solely on export control regulations for the deterrence of proliferation of strategic goods. First, export controlmore » enforcement today relies heavily on the honesty and willingness of participants to adhere to the legal framework already in place. Secondly, current practices focus on the evaluation of single records which allow for the necessary goods to be purchased separately and hidden within the thousands of legitimate commerce transactions that occur each day, disregarding strategic information regarding several purchases. Our research presents two preliminary data-centric approaches for investigating procurement networks of strategic nuclear commodities. Pacific Northwest National Laboratory (PNNL) has been putting significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. In particular, the PNNL Signature Discovery Initiative (SDI) has codified several scientific methodologies for the detection, characterization, and prediction of signatures that are indicative of a phenomenon of interest. The methodologies and tools developed under SDI have already been applied successfully to problems in bio-forensics, cyber security and power grid balancing efforts and they have now made the nonproliferation of strategic goods into a challenge problem for testing their methodology and tools. As a first step towards the detection and characterization of illicit procurement networks, our research examines procurement networks as defined by a system of entities (people or companies) that enter into transactions of specific items with one another. Once we have defined such networks, we are interested in answering questions about the behavior and characterization of such networks. The questions we wish to answer regarding procurement networks are, first, “Can we detect networks within large, noisy datasets?” and second, “To what extent can we compare multiple networks and identify their similarities?” As procurement networks can be naturally viewed as a graph, we have employed several graph analytic tools to aid in these tasks. In particular, Graphscape, an SDI tool, uses a novel method to approximate edit distance, a graph distance measure based on the number of changes needed to transform one graph into another, in order to measure how similar two given graphs are to each other. Given a set of graphs where vertices represent companies and edges represent a shipment from company A to company B, we can calculate an all-for-all comparison of graphs. In this way, we are able to determine which graphs are most similar, and which require more changes to transform one into the other. The set of graphs to be compared can be further specialized to provide more insight, e.g., using different time periods to explore events in a company life cycle.« less

  13. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  14. Comparison and Enumeration of Chemical Graphs

    PubMed Central

    Akutsu, Tatsuya; Nagamochi, Hiroshi

    2013-01-01

    Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697

  15. Mean square cordial labelling related to some acyclic graphs and its rough approximations

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, S.; Parvathi, N.

    2018-04-01

    In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.

  16. Relating zeta functions of discrete and quantum graphs

    NASA Astrophysics Data System (ADS)

    Harrison, Jonathan; Weyand, Tracy

    2018-02-01

    We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

  17. The effect of alternative graphical displays used to present the benefits of antibiotics for sore throat on decisions about whether to seek treatment: a randomized trial.

    PubMed

    Carling, Cheryl L L; Kristoffersen, Doris Tove; Flottorp, Signe; Fretheim, Atle; Oxman, Andrew D; Schünemann, Holger J; Akl, Elie A; Herrin, Jeph; MacKenzie, Thomas D; Montori, Victor M

    2009-08-01

    We conducted an Internet-based randomized trial comparing four graphical displays of the benefits of antibiotics for people with sore throat who must decide whether to go to the doctor to seek treatment. Our objective was to determine which display resulted in choices most consistent with participants' values. This was the first of a series of televised trials undertaken in cooperation with the Norwegian Broadcasting Company. We recruited adult volunteers in Norway through a nationally televised weekly health program. Participants went to our Web site and rated the relative importance of the consequences of treatment using visual analogue scales (VAS). They viewed the graphical display (or no information) to which they were randomized and were asked to decide whether to go to the doctor for an antibiotic prescription. We compared four presentations: face icons (happy/sad) or a bar graph showing the proportion of people with symptoms on day three with and without treatment, a bar graph of the average duration of symptoms, and a bar graph of proportion with symptoms on both days three and seven. Before completing the study, all participants were shown all the displays and detailed patient information about the treatment of sore throat and were asked to decide again. We calculated a relative importance score (RIS) by subtracting the VAS scores for the undesirable consequences of antibiotics from the VAS score for the benefit of symptom relief. We used logistic regression to determine the association between participants' RIS and their choice. 1,760 participants completed the study. There were statistically significant differences in the likelihood of choosing to go to the doctor in relation to different values (RIS). Of the four presentations, the bar graph of duration of symptoms resulted in decisions that were most consistent with the more fully informed second decision. Most participants also preferred this presentation (38%) and found it easiest to understand (37%). Participants shown the other three presentations were more likely to decide to go to the doctor based on their first decision than everyone based on the second decision. Participants preferred the graph using faces the least (14.4%). For decisions about going to the doctor to get antibiotics for sore throat, treatment effects presented by a bar graph showing the duration of symptoms helped people make decisions more consistent with their values than treatment effects presented as graphical displays of proportions of people with sore throat following treatment. ISRCTN58507086.

  18. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  19. Tracking Multiple People Online and in Real Time

    DTIC Science & Technology

    2015-12-21

    NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple

  20. A method for the automated construction of the joint system of equations to solve the problem of the flow distribution in hydraulic networks

    NASA Astrophysics Data System (ADS)

    Novikov, A. E.

    1993-10-01

    There are several methods of solving the problem of the flow distribution in hydraulic networks. But all these methods have no mathematical tools for forming joint systems of equations to solve this problem. This paper suggests a method of constructing joint systems of equations to calculate hydraulic circuits of the arbitrary form. The graph concept, according to Kirchhoff, has been introduced.

Top