Sample records for view modular stabilized

  1. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    PubMed

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  2. Spaceport aurora: An orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With recent announcements of the development of permanently staffed facilities on the Moon and Mars, the national space plan is in need of an infrastructure system for transportation and maintenance. A project team at the University of Houston College of Architecture and the Sasakawa International Center for Space Architecture, recently examined components for a low Earth orbit (LEO) transportation node that supports a lunar build-up scenario. Areas of investigation included identifying transportation node functions, identifying existing space systems and subsystems, analyzing variable orbits, determining logistics strategies for maintenance, and investigating assured crew return systems. The information resulted in a requirements definition document, from which the team then addressed conceptual designs for a LEO transportation node. The primary design drivers included: orbital stability, maximizing human performance and safety, vehicle maintainability, and modularity within existing space infrastructure. For orbital stability, the power tower configuration provides a gravity gradient stabilized facility and serves as the backbone for the various facility components. To maximize human performance, human comfort is stressed through zoning of living and working activities, maintaining a consistent local vertical orientation, providing crew interaction and viewing areas and providing crew return vehicles. Vehicle maintainability is accomplished through dual hangars, dual work cupolas, work modules, telerobotics and a fuel depot. Modularity is incorporated using Space Station Freedom module diameter, Space Station Freedom standard racks, and interchangeable interior partitions. It is intended that the final design be flexible and adaptable to provide a facility prototype that can service multiple mission profiles using modular space systems.

  3. The Quantal Larynx: The Stable Regions of Laryngeal Biomechanics and Implications for Speech Production.

    PubMed

    Moisik, Scott Reid; Gick, Bryan

    2017-03-01

    Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the larynx, a structure that is fundamental to speech production because of its role in phonation and numerous articulatory functions. A 3-dimensional model of the larynx was created using the ArtiSynth platform (http://www.artisynth.org). This model was used to simulate laryngeal articulatory states, including inspiration, glottal fricative, modal prephonation, plain glottal stop, vocal-ventricular stop, and aryepiglotto-epiglottal stop and fricative. Speech-relevant laryngeal biomechanics is rich with "quantal" or highly stable regions within muscle activation space. Quantal laryngeal biomechanics complement a modular view of speech control and have implications for the articulatory-biomechanical grounding of numerous phonetic and phonological phenomena.

  4. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus‐like particle

    PubMed Central

    Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.

    2016-01-01

    Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486

  5. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle.

    PubMed

    Tekewe, Alemu; Connors, Natalie K; Middelberg, Anton P J; Lua, Linda H L

    2016-08-01

    Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. © 2016 The Protein Society.

  6. Modularity, Working Memory, and Second Language Acquisition: A Research Program

    ERIC Educational Resources Information Center

    Truscott, John

    2017-01-01

    Considerable reason exists to view the mind, and language within it, as modular, and this view has an important place in research and theory in second language acquisition (SLA) and beyond. But it has had very little impact on the study of working memory and its role in SLA. This article considers the need for modular study of working memory,…

  7. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  8. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  9. Directional selection can drive the evolution of modularity in complex traits

    PubMed Central

    Melo, Diogo; Marroig, Gabriel

    2015-01-01

    Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154

  10. Directional selection can drive the evolution of modularity in complex traits.

    PubMed

    Melo, Diogo; Marroig, Gabriel

    2015-01-13

    Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.

  11. A simplified computational memory model from information processing.

    PubMed

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-23

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  12. [Modular enteral nutrition in pediatrics].

    PubMed

    Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D

    1991-01-01

    Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.

  13. A simplified computational memory model from information processing

    PubMed Central

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-01-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847

  14. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  15. Modular Universal Scalable Ion-trap Quantum Computer

    DTIC Science & Technology

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  16. Development and design of a late-model fitness test instrument based on LabView

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Wu, Feiqing

    2010-12-01

    Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.

  17. On the definition and K-theory realization of a modular functor

    NASA Astrophysics Data System (ADS)

    Kriz, Igor; Lai, Luhang

    We present a definition of a (super)-modular functor which includes certain interesting cases that previous definitions do not allow. We also introduce a notion of topological twisting of a modular functor, and construct formally a realization by a 2-dimensional topological field theory valued in twisted K-modules. We discuss, among other things, the N = 1-supersymmetric minimal models from the point of view of this formalism.

  18. Modular operads and the quantum open-closed homotopy algebra

    NASA Astrophysics Data System (ADS)

    Doubek, Martin; Jurčo, Branislav; Münster, Korbinian

    2015-12-01

    We verify that certain algebras appearing in string field theory are algebras over Feynman transform of modular operads which we describe explicitly. Equivalent description in terms of solutions of generalized BV master equations are explained from the operadic point of view.

  19. Performance evaluation and calibration of a modular multiband radiometer for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Robinson, B. F.; Buckley, R. E.; Burgess, J. A. (Principal Investigator)

    1982-01-01

    A multiband radiometer suitable for operation from helicopter, small plane, truck, or tripod platforms was developed. The standard unit is equipped with the seven thematic mapper spectral bands with an added band from 1.5 to 1.30 microns; however, up to eight user specified bands from 0.4 to 15 microns may be installed under clean field conditions. Results of prototype tests of the spectral responsivity of the detectors, the transmittance of the optical filters as a function of wavelength, the fields of view, and the system linearity, temperature stability, noise performance, and dynamic range were evaluated. Minor modifications were made to the instrument and the results of final testing are reported.

  20. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  1. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  2. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  3. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  4. Modularisation in the Scottish Education System: A View from the Outside.

    ERIC Educational Resources Information Center

    Pilz, Matthias

    2002-01-01

    The German vocational education system, possibly the opposite of a pure modular system, must change to match the needs of a rapidly changing and specializing labor market. Four types of Scottish modular programs (National Certificate Modules, Scottish Vocational Qualifications, General Scottish Vocational Qualifications, and the new "Higher…

  5. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  6. The Quantal Larynx: The Stable Regions of Laryngeal Biomechanics and Implications for Speech Production

    ERIC Educational Resources Information Center

    Moisik, Scott Reid; Gick, Bryan

    2017-01-01

    Purpose: Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the…

  7. Remote entanglement stabilization for modular quantum computing

    NASA Astrophysics Data System (ADS)

    Didier, Nicolas; Shankar, S.; Mirrahimi, M.

    Quantum information processing in a modular architecture requires to distribute and stabilize entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two qubits that are coupled to distant cavities. The cavities coupling is mediated and controlled via a three-wave mixing device that generates either a delocalized mode or a two-mode squeezed state between the remote cavities depending on the pump frequency. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. We show that these reservoir-engineering based protocols stabilize entanglement in presence of qubit-cavity asymmetries and losses. Most spectacularly, even a weakly-squeezed state can stabilize a maximally entangled Bell state of two distant qubits through entanglement accumulation. This research was supported by the Agence Nationale de la Recherche under Grant ANR-14-CE26-0018, by Inria's DPEI under the TAQUILLA associated team and by ARO under Grant No. W911NF-14-1-0011.

  8. Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system

    PubMed Central

    Gédet, Philippe; Haschtmann, Daniel; Thistlethwaite, Paul A.

    2009-01-01

    The goal of non-fusion stabilization is to reduce the mobility of the spine segment to less than that of the intact spine specimen, while retaining some residual motion. Several in vitro studies have been conducted on a dynamic system currently available for clinical use (Dynesys®). Under pure moment loading, a dependency of the biomechanical performance on spacer length has been demonstrated; this variability in implant properties is removed with a modular concept incorporating a discrete flexible element. An in vitro study was performed to compare the kinematic and stabilizing properties of a modular dynamic lumbar stabilization system with those of Dynesys, under the influence of an axial preload. Six human cadaver spine specimens (L1–S1) were tested in a spine loading apparatus. Flexibility measurements were performed by applying pure bending moments of 8 Nm, about each of the three principal anatomical axes, with a simultaneously applied axial preload of 400 N. Specimens were tested intact, and following creation of a defect at L3–L4, with the Dynesys implant, with the modular implant and, after removal of the hardware, the injury state. Segmental range of motion (ROM) was reduced for flexion–extension and lateral bending with both implants. Motion in flexion was reduced to less than 20% of the intact level, in extension to approximately 40% and in lateral bending a motion reduction to less than 40% was measured. In torsion, the total ROM was not significantly different from that of the intact level. The expectations for a flexible posterior stabilizing implant are not fulfilled. The assumption that a device which is particularly compliant in bending allows substantial intersegmental motion cannot be fully supported when one considers that such devices are placed at a location far removed from the natural rotation center of the intervertebral joint. PMID:19565278

  9. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  10. Modularity and the spread of perturbations in complex dynamical systems.

    PubMed

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  11. A Study on the Evaluation of the Applicability of an Environmental Education Modular Curriculum

    ERIC Educational Resources Information Center

    Artun, Hüseyin; Özsevgeç, Tuncay

    2016-01-01

    The purpose of this study was, in line with the views of the students & teacher, to examine Environmental Education Modular Curriculum (EEMC) developed to give environmental education with a specific content. In the study, the case study method was used. The research sample was determined with the purposeful sampling method & made up of 23…

  12. Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry

    2003-01-01

    This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.

  13. Vocational Training in Europe: Towards a Modular Form? Discussion Paper. CEDEFOP Panorama. First Edition.

    ERIC Educational Resources Information Center

    Sellin, Burkart

    Discussion of whether and to what extent initial vocational training and adult education in European Community (EC) member countries can assume a modular form hinges on the issue of the module as an organizational principle. In such a context, modules are viewed not as closed teaching and learning units but rather as integral parts of a more…

  14. Large-scale modular biofiltration system for effective odor removal in a composting facility.

    PubMed

    Lin, Yueh-Hsien; Chen, Yu-Pei; Ho, Kuo-Ling; Lee, Tsung-Yih; Tseng, Ching-Ping

    2013-01-01

    Several different foul odors such as nitrogen-containing groups, sulfur-containing groups, and short-chain fatty-acids commonly emitted from composting facilities. In this study, an experimental laboratory-scale bioreactor was scaled up to build a large-scale modular biofiltration system that can process 34 m(3)min(-1)waste gases. This modular reactor system was proven effective in eliminating odors, with a 97% removal efficiency for 96 ppm ammonia, a 98% removal efficiency for 220 ppm amines, and a 100% removal efficiency of other odorous substances. The results of operational parameters indicate that this modular biofiltration system offers long-term operational stability. Specifically, a low pressure drop (<45 mmH2O m(-1)) was observed, indicating that the packing carrier in bioreactor units does not require frequent replacement. Thus, this modular biofiltration system can be used in field applications to eliminate various odors with compact working volume.

  15. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  16. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    PubMed Central

    Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei

    2011-01-01

    This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575

  17. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    PubMed

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  18. Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System

    NASA Astrophysics Data System (ADS)

    Stebner, K.; Wieden, A.

    2014-03-01

    Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  19. Existence and significance of communities in the World Trade Web

    NASA Astrophysics Data System (ADS)

    Piccardi, Carlo; Tajoli, Lucia

    2012-06-01

    The World Trade Web (WTW), which models the international transactions among countries, is a fundamental tool for studying the economics of trade flows, their evolution over time, and their implications for a number of phenomena, including the propagation of economic shocks among countries. In this respect, the possible existence of communities is a key point, because it would imply that countries are organized in groups of preferential partners. In this paper, we use four approaches to analyze communities in the WTW between 1962 and 2008, based, respectively, on modularity optimization, cluster analysis, stability functions, and persistence probabilities. Overall, the four methods agree in finding no evidence of significant partitions. A few weak communities emerge from the analysis, but they do not represent secluded groups of countries, as intercommunity linkages are also strong, supporting the view of a truly globalized trading system.

  20. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  1. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    PubMed Central

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  2. Existence and significance of communities in the World Trade Web.

    PubMed

    Piccardi, Carlo; Tajoli, Lucia

    2012-06-01

    The World Trade Web (WTW), which models the international transactions among countries, is a fundamental tool for studying the economics of trade flows, their evolution over time, and their implications for a number of phenomena, including the propagation of economic shocks among countries. In this respect, the possible existence of communities is a key point, because it would imply that countries are organized in groups of preferential partners. In this paper, we use four approaches to analyze communities in the WTW between 1962 and 2008, based, respectively, on modularity optimization, cluster analysis, stability functions, and persistence probabilities. Overall, the four methods agree in finding no evidence of significant partitions. A few weak communities emerge from the analysis, but they do not represent secluded groups of countries, as intercommunity linkages are also strong, supporting the view of a truly globalized trading system.

  3. 73. View of launch control center towards the blast door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of launch control center towards the blast door and west, deputy commander standing in front of modular bed storage unit - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  4. Quadruped robots' modular trajectories: Stability issues

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.

    2012-09-01

    Pinto, Santos, Rocha and Matos [13, 12] study a CPG model for the generation of modular trajectories of quadruped robots. They consider that each movement is composed of two types of primitives: rhythmic and discrete. The rhythmic primitive models the periodic patterns and the discrete primitive is inserted as a perturbation of those patterns. In this paper we begin to tackle numerically the problem of the stability of that mathematical model. We observe that if the discrete part is inserted in all limbs, with equal values, and as an offset of the rhythmic part, the obtained gait is stable and has the same spatial and spatio-temporal symmetry groups as the purely rhythmic gait, differing only on the value of the offset.

  5. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  6. The Modular Organization of Protein Interactions in Escherichia coli

    PubMed Central

    Peregrín-Alvarez, José M.; Xiong, Xuejian; Su, Chong; Parkinson, John

    2009-01-01

    Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins (∼45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks. PMID:19798435

  7. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.

    PubMed

    Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J

    2012-10-01

    This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.

  8. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  9. Apollo 14 Mission image - View of Astronaut Mitchell and the Modular Equipment Transporter with the Lunar Module in background.

    NASA Image and Video Library

    1971-02-06

    AS14-64-9140 (6 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot, participates in the mission's second extravehicular activity (EVA). He is standing near the modularized equipment transporter (MET). While astronauts Alan B. Shepard Jr., commander, and Mitchell descended in the Apollo 14 LM to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  10. Direct social perception and dual process theories of mindreading.

    PubMed

    Herschbach, Mitchell

    2015-11-01

    The direct social perception (DSP) thesis claims that we can directly perceive some mental states of other people. The direct perception of mental states has been formulated phenomenologically and psychologically, and typically restricted to the mental state types of intentions and emotions. I will compare DSP to another account of mindreading: dual process accounts that posit a fast, automatic "Type 1" form of mindreading and a slow, effortful "Type 2" form. I will here analyze whether dual process accounts' Type 1 mindreading serves as a rival to DSP or whether some Type 1 mindreading can be perceptual. I will focus on Apperly and Butterfill's dual process account of mindreading epistemic states such as perception, knowledge, and belief. This account posits a minimal form of Type 1 mindreading of belief-like states called registrations. I will argue that general dual process theories fit well with a modular view of perception that is considered a kind of Type 1 process. I will show that this modular view of perception challenges and has significant advantages over DSP's phenomenological and psychological theses. Finally, I will argue that if such a modular view of perception is accepted, there is significant reason for thinking Type 1 mindreading of belief-like states is perceptual in nature. This would mean extending the scope of DSP to at least one type of epistemic state. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Developmental trajectories of pitch-related music skills in children with Williams syndrome.

    PubMed

    Martínez-Castilla, Pastora; Rodríguez, Manuel; Campos, Ruth

    2016-01-01

    The study of music cognition in Williams syndrome (WS) has resulted in theoretical debates regarding cognitive modularity and development. However, no research has previously investigated the development of music skills in this population. In this study, we used the cross-sectional developmental trajectories approach to assess the development of pitch-related music skills in children with WS compared with typically developing (TD) peers. Thus, we evaluated the role of change over time on pitch-related music skills and the developmental relationships between music skills and different cognitive areas. In the TD children, the pitch-related music skills improved with chronological age and cognitive development. In the children with WS, developmental relationships were only found between several pitch-related music skills and specific cognitive processes. We also found non-systematic relationships between chronological age and the pitch-related music skills, stabilization in the level reached in music when cognitive development was considered, and uneven associations between cognitive and music skills. In addition, the TD and WS groups differed in their patterns of pitch-related music skill development. These results suggest that the development of pitch-related music skills in children with WS is atypical. Our findings stand in contrast with the views that claim innate modularity for music in WS; rather, they are consistent with neuroconstructivist accounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Proving Stabilization of Biological Systems

    NASA Astrophysics Data System (ADS)

    Cook, Byron; Fisher, Jasmin; Krepska, Elzbieta; Piterman, Nir

    We describe an efficient procedure for proving stabilization of biological systems modeled as qualitative networks or genetic regulatory networks. For scalability, our procedure uses modular proof techniques, where state-space exploration is applied only locally to small pieces of the system rather than the entire system as a whole. Our procedure exploits the observation that, in practice, the form of modular proofs can be restricted to a very limited set. For completeness, our technique falls back on a non-compositional counterexample search. Using our new procedure, we have solved a number of challenging published examples, including: a 3-D model of the mammalian epidermis; a model of metabolic networks operating in type-2 diabetes; a model of fate determination of vulval precursor cells in the C. elegans worm; and a model of pair-rule regulation during segmentation in the Drosophila embryo. Our results show many orders of magnitude speedup in cases where previous stabilization proving techniques were known to succeed, and new results in cases where tools had previously failed.

  13. Systems and methods for improved telepresence

    DOEpatents

    Anderson, Matthew O.; Willis, W. David; Kinoshita, Robert A.

    2005-10-25

    The present invention provides a modular, flexible system for deploying multiple video perception technologies. The telepresence system of the present invention is capable of allowing an operator to control multiple mono and stereo video inputs in a hands-free manner. The raw data generated by the input devices is processed into a common zone structure that corresponds to the commands of the user, and the commands represented by the zone structure are transmitted to the appropriate device. This modularized approach permits input devices to be easily interfaced with various telepresence devices. Additionally, new input devices and telepresence devices are easily added to the system and are frequently interchangeable. The present invention also provides a modular configuration component that allows an operator to define a plurality of views each of which defines the telepresence devices to be controlled by a particular input device. The present invention provides a modular flexible system for providing telepresence for a wide range of applications. The modularization of the software components combined with the generalized zone concept allows the systems and methods of the present invention to be easily expanded to encompass new devices and new uses.

  14. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  15. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  16. 3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE BOXES WITHIN AND BETWEEN MODULAR WORK AREAS. LEADED GLOVES WERE AFFIXED TO PORTS ALONG THE CHAINVEYOR PATHWAY TO ALLOW OPERATOR ACCESS. (1/25/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  17. Closeup view of the mid deck aft wall of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the mid deck aft wall of the Orbiter Discovery showing a mission specific configuration of stowage lockers within the modular system designed for maximum flexibility. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. ATTICA family of thermal cameras in submarine applications

    NASA Astrophysics Data System (ADS)

    Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold

    2001-10-01

    Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.

  19. Preliminary development of an advanced modular pressure relief cushion: Testing and user evaluation.

    PubMed

    Freeto, Tyler; Mitchell, Steven J; Bogie, Kath M

    2018-02-01

    Effective pressure relief cushions are identified as a core assistive technology need by the World Health Organization Global Cooperation on Assistive Technology. High quality affordable wheelchair cushions could provide effective pressure relief for many individuals with limited access to advanced assistive technology. Value driven engineering (VdE) principles were employed to develop a prototype modular cushion. Low cost dynamically responsive gel balls were arranged in a close packed array and seated in bilayer foam for containment and support. Two modular cushions, one with high compliance balls and one with moderate compliance balls were compared with High Profile and Low Profile Roho ® and Jay ® Medical 2 cushions. ISO 16480-2 biomechanical standardized tests were applied to assess cushion performance. A preliminary materials cost analysis was carried out. A prototype modular cushion was evaluated by 12 participants who reported satisfaction using a questionnaire based on the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) instrument. Overall the modular cushions performed better than, or on par with, the most widely prescribed commercially available cushions under ISO 16480-2 testing. Users rated the modular cushion highly for overall appearance, size and dimensions, comfort, safety, stability, ease of adjustment and general ease of use. Cost-analysis indicated that every modular cushion component a could be replaced several times and still maintain cost-efficacy over the complete cushion lifecycle. A VdE modular cushion has the potential provide effective pressure relief for many users at a low lifetime cost. Copyright © 2017. Published by Elsevier Ltd.

  20. La Recherche Aerospatiale, Bimonthly Bulletin, no. 1982-6, 211/November-Decemter 1982

    NASA Astrophysics Data System (ADS)

    Sevestre, C.

    1983-04-01

    A modular method for centrifugal compressor performance prediction is presented. Cyclic hardening of stainless steel under complex loading is described. Fatigue failure microinitiation, micropropagation and damage is considered. The stability of a tilting rotor aircraft model is studied. The thermal stability of titanium alloys is investigated. A compensator for thermal effects on quartz oscillators is described.

  1. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  2. Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors

    PubMed Central

    Phillips, J J; Javadi, Y; Millership, C; Main, E R G

    2012-01-01

    Tetratricopeptide repeats (TPRs) are a class of all alpha-helical repeat proteins that are comprised of 34-aa helix-turn-helix motifs. These stack together to form nonglobular structures that are stabilized by short-range interactions from residues close in primary sequence. Unlike globular proteins, they have few, if any, long-range nonlocal stabilizing interactions. Several studies on designed TPR proteins have shown that this modular structure is reflected in their folding, that is, modular multistate folding is observed as opposed to two-state folding. Here we show that TPR multistate folding can be suppressed to approximate two-state folding through modulation of intrinsic stability or extrinsic environmental variables. This modulation was investigated by comparing the thermodynamic unfolding under differing buffer regimes of two distinct series of consensus-designed TPR proteins, which possess different intrinsic stabilities. A total of nine proteins of differing sizes and differing consensus TPR motifs were each thermally and chemically denatured and their unfolding monitored using differential scanning calorimetry (DSC) and CD/fluorescence, respectively. Analyses of both the DSC and chemical denaturation data show that reducing the total stability of each protein and repeat units leads to observable two-state unfolding. These data highlight the intimate link between global and intrinsic repeat stability that governs whether folding proceeds by an observably two-state mechanism, or whether partial unfolding yields stable intermediate structures which retain sufficient stability to be populated at equilibrium. PMID:22170589

  3. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  4. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket.

    PubMed

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-03-06

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.

  5. Modular multiaperatures for light sensors

    NASA Technical Reports Server (NTRS)

    Rizzo, A. A.

    1977-01-01

    Process involves electroplating multiaperature masks as unit, eliminating alinement and assembly difficulties previously encountered. Technique may be applied to masks in automated and surveillance light systems, when precise, wide angle field of view is needed.

  6. Automatic image database generation from CAD for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Sardana, Harish K.; Daemi, Mohammad F.; Ibrahim, Mohammad K.

    1993-06-01

    The development and evaluation of Multiple-View 3-D object recognition systems is based on a large set of model images. Due to the various advantages of using CAD, it is becoming more and more practical to use existing CAD data in computer vision systems. Current PC- level CAD systems are capable of providing physical image modelling and rendering involving positional variations in cameras, light sources etc. We have formulated a modular scheme for automatic generation of various aspects (views) of the objects in a model based 3-D object recognition system. These views are generated at desired orientations on the unit Gaussian sphere. With a suitable network file sharing system (NFS), the images can directly be stored on a database located on a file server. This paper presents the image modelling solutions using CAD in relation to multiple-view approach. Our modular scheme for data conversion and automatic image database storage for such a system is discussed. We have used this approach in 3-D polyhedron recognition. An overview of the results, advantages and limitations of using CAD data and conclusions using such as scheme are also presented.

  7. 7 CFR 1924.8 - Development work for modular/panelized housing units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... design of the foundation system required for the soil and slope conditions of the particular site on... when it appears advisable to ascertain the performance and continuing stability of accepted materials...

  8. Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults

    PubMed Central

    Baniqued, Pauline L.; Gallen, Courtney L.; Voss, Michelle W.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Duffy, Kristin; Fanning, Jason; Ehlers, Diane K.; Salerno, Elizabeth A.; Aguiñaga, Susan; McAuley, Edward; Kramer, Arthur F.; D'Esposito, Mark

    2018-01-01

    Recent work suggests that the brain can be conceptualized as a network comprised of groups of sub-networks or modules. The extent of segregation between modules can be quantified with a modularity metric, where networks with high modularity have dense connections within modules and sparser connections between modules. Previous work has shown that higher modularity predicts greater improvements after cognitive training in patients with traumatic brain injury and in healthy older and young adults. It is not known, however, whether modularity can also predict cognitive gains after a physical exercise intervention. Here, we quantified modularity in older adults (N = 128, mean age = 64.74) who underwent one of the following interventions for 6 months (NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking (Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement (Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness (CRF), with larger effects in both walking groups compared to the SSS and Dance groups. The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS groups that improved in EF, higher baseline modularity was positively related to EF gains, even after controlling for age, in-scanner motion and baseline EF. No relationship between modularity and EF gains was observed in the Dance group, which did not show training-related gains in CRF or EF control. These results are consistent with previous studies demonstrating that individuals with a more modular brain network organization are more responsive to cognitive training. These findings suggest that the predictive power of modularity may be generalizable across interventions aimed to enhance aspects of cognition and that, especially in low-performing individuals, global network properties can capture individual differences in neuroplasticity. PMID:29354050

  9. Drawings of the Modular Equipment Transporter and Hand Tool Carrier

    NASA Image and Video Library

    1970-10-12

    S70-50762 (November 1970) --- A line drawing illustrating layout view of the modular equipment transporter (MET) and its equipment. A MET (or Rickshaw, as it has been nicknamed) will be used on the lunar surface for the first time during the Apollo 14 lunar landing mission. The Rickshaw will serve as a portable workbench with a place for the Apollo lunar hand tools (ALHT) and their carrier, three cameras, two sample container bags, a special environment sample container (SESC), a lunar portable magnetometer (LPM) and spare film magazines.

  10. Spectral statistics of the uni-modular ensemble

    NASA Astrophysics Data System (ADS)

    Joyner, Christopher H.; Smilansky, Uzy; Weidenmüller, Hans A.

    2017-09-01

    We investigate the spectral statistics of Hermitian matrices in which the elements are chosen uniformly from U(1) , called the uni-modular ensemble (UME), in the limit of large matrix size. Using three complimentary methods; a supersymmetric integration method, a combinatorial graph-theoretical analysis and a Brownian motion approach, we are able to derive expressions for 1 / N corrections to the mean spectral moments and also analyse the fluctuations about this mean. By addressing the same ensemble from three different point of view, we can critically compare their relative advantages and derive some new results.

  11. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.

    1995-01-01

    A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.

  12. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  13. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket

    PubMed Central

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-01-01

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622

  14. Safety concerns related to modular/prefabricated building construction.

    PubMed

    Fard, Maryam Mirhadi; Terouhid, Seyyed Amin; Kibert, Charles J; Hakim, Hamed

    2017-03-01

    The US construction industry annually experiences a relatively high rate of fatalities and injuries; therefore, improving safety practices should be considered a top priority for this industry. Modular/prefabricated building construction is a construction strategy that involves manufacturing of the whole building or some of its components off-site. This research focuses on the safety performance of the modular/prefabricated building construction sector during both manufacturing and on-site processes. This safety evaluation can serve as the starting point for improving the safety performance of this sector. Research was conducted based on Occupational Safety and Health Administration investigated accidents. The study found 125 accidents related to modular/prefabricated building construction. The details of each accident were closely examined to identify the types of injury and underlying causes. Out of 125 accidents, there were 48 fatalities (38.4%), 63 hospitalized injuries (50.4%), and 14 non-hospitalized injuries (11.2%). It was found that, the most common type of injury in modular/prefabricated construction was 'fracture', and the most common cause of accidents was 'fall'. The most frequent cause of cause (underlying and root cause) was 'unstable structure'. In this research, the accidents were also examined in terms of corresponding location, occupation, equipment as well as activities during which the accidents occurred. For improving safety records of the modular/prefabricated construction sector, this study recommends that future research be conducted on stabilizing structures during their lifting, storing, and permanent installation, securing fall protection systems during on-site assembly of components while working from heights, and developing training programmes and standards focused on modular/prefabricated construction.

  15. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.

    PubMed

    Hao, Dapeng; Ren, Cong; Li, Chuanxing

    2012-05-01

    A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling). Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn't show dependence of degree. Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to "deterministic model" of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  16. New type of hip arthroplasty failure related to modular femoral components: breakage at the neck-stem junction.

    PubMed

    Wodecki, P; Sabbah, D; Kermarrec, G; Semaan, I

    2013-10-01

    Total hip replacements (THR) with modular femoral components (stem-neck interface) make it possible to adapt to extramedullary femoral parameters (anteversion, offset, and length) theoretically improving muscle function and stability. Nevertheless, adding a new interface has its disadvantages: reduced mechanical resistance, fretting corrosion and material fatigue fracture. We report the case of a femoral stem fracture of the female part of the component where the modular morse taper of the neck is inserted. An extended trochanteric osteotomy was necessary during revision surgery because the femoral stump could not be grasped for extraction, so that a long stem had to be used. In this case, the patient had the usual risk factors for modular neck failure: he was an active overweight male patient with a long varus neck. This report shows that the female part of the stem of a small femoral component may also be at increased failure risk and should be added to the list of risk factors. To our knowledge, this is the first reported case of this type of failure. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Wide swath imaging spectrometer utilizing a multi-modular design

    DOEpatents

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  18. Comparison of robot surgery modular and total knee arthroplasty kinematics.

    PubMed

    Yildirim, Gokce; Fernandez-Madrid, Ivan; Schwarzkopf, Ran; Walker, Peter S; Karia, Raj

    2014-04-01

    The kinematics of seven knee specimens were measured from 0 to 120 degrees flexion using an up-and-down crouching machine. Motion was characterized by the positions of the centers of the lateral and medial femoral condyles in the anterior-posterior direction relative to a fixed tibia. A modular unicompartmental knee, trochlea flange, and patella resurfacing (multicompartmental knee [MCK] system) were implanted using a surgeon-interactive robot system that provided accurate surface matching. The MCK was tested, followed by standard cruciate retaining (CR) and posterior stabilized (PS) knees. The motion of the MCK was close to anatomic, especially on the medial side, in contrast to the CR and PS knees that showed abnormal motion features. Such a modular knee system, accurately inserted, has the potential for close to normal function in clinical application. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Modularity and hierarchical organization of action programs in children's acquisition of graphic skills.

    PubMed

    Manoel, Edison de J; Dantas, Luiz; Gimenez, Roberto; de Oliveira, Dalton Lustosa

    2011-10-01

    The organization of actions is based on modules in memory as a result of practice, easing the demand of performing more complex actions. If this modularization occurs, the elements of the module must remain invariant in new tasks. To test this hypothesis, 35 children, age 10 yr., practiced a graphic criterion task on a digital tablet and completed a complex graphic task enclosing the previous one. Total movement and pause times to draw the figure indicated skill acquisition. A module was identified by the variability of relative timing, pause time, and sequencing. Total movement to perform the criterion task did not increase significantly when it was embedded in the more complex task. Modularity was evidenced by the stability of relative timing and pause time and sequencing. The spatial position of new elements did not perturb the module, so the grammar of action may still have been forming.

  20. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    USGS Publications Warehouse

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested networks, whether they were assessed in individual sample periods or pooled into infested and non-infested networks over the entire blooming period of C.arvense. Connectors typically did not reside within the same modules as C. arvense, suggesting that effects of the other invasive plants may also influence the modularity results, and that effects of infestation extend to co-flowering native plants. We conclude that the presence of abundantly flowering invasive species is associated with greater network stability due to decreased modularity, but whether this is advantageous for the associated native plant-pollinator communities depends on the nature of perturbations they experience.

  1. Assessment of a press-fit proximal femoral modular reconstruction implant (PFMR®) at 14.5 years. A 48-case series with a disturbing rate of implant fracture.

    PubMed

    Dumoulin, Q; Sabau, S; Goetzmann, T; Jacquot, A; Sirveaux, F; Mole, D; Roche, O

    2018-05-01

    The PFMR ® proximal femoral modular reconstruction implant (Protek, Sulzer Orthopedics, Switzerland) is a straight modular stem in sanded titanium with press-fit anchorage, intended to achieve spontaneous bone reconstruction following Wagner's principle. The aim of the present study was to analyze long-term clinical and radiological outcome. A single-center retrospective study included 48 PFMR stems implanted in 47 patients between 1998 and 2002. Results in this series were previously reported at 7 years' follow-up. Clinical assessment used PMA and Harris scores. Radiologic assessment focused on stem stability and osseointegration, and bone stock following Le Béguec. Twenty-three patients were seen at a mean 14.5 years' follow-up (13 deceased, 11 lost to follow-up), including 1 with bilateral implants, i.e., 24 stems. PMA and Harris scores, stem stability and osseointegration and bone stock were stable with respect to the 7-year findings. Radiology found 7 stem fractures in the Morse taper, i.e., in 29% of implants. Two of these cases required femoral implant replacement; 5 were asymptomatic. Long-term outcome for PFMR stems was clinically and radiologically satisfactory for the 16 patients free of mechanical complications. The Morse taper fracture rate was high, and higher than reported elsewhere. The usual risk factors for implant fracture were not found in the present series. The modular design of the press-fit revision implant is its weak point; monoblock implants should be used in patients with good life-expectancy. IV (retrospective study). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M.

    The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.

  3. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.

    1995-05-16

    A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.

  4. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  5. Use of off-the-shelf PC-based flight simulators for aviation human factors research.

    DOT National Transportation Integrated Search

    1996-04-01

    Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...

  6. Standardized strapdown inertial component modularity study, volume 2

    NASA Technical Reports Server (NTRS)

    Feldman, J.

    1974-01-01

    To obtain cost effective strapdown navigation, guidance and stabilization systems to meet anticipated future needs a standardized modularized strapdown system concept is proposed. Three performance classes, high, medium and low, are suggested to meet the range of applications. Candidate inertial instruments are selected and analyzed for interface compatibility. Electronic packaging and processing, materials and thermal considerations applying to the three classes are discussed and recommendations advanced. Opportunities for automatic fault detection and redundancy are presented. The smallest gyro and accelerometer modules are projected as requiring a volume of 26 cubic inches and 23.6 cubic inches, respectively. Corresponding power dissipation is projected as 5 watts, and 2.6 watts respectively.

  7. Analysis and design of the Multimission Modular Spacecraft hydrazine propulsion module

    NASA Technical Reports Server (NTRS)

    Etheridge, F. G.; Woodruff, W. L.

    1978-01-01

    The translational velocity increment, stabilization and control requirements, vehicle weight, and geometric considerations of the Multimission Modular Spacecraft (MMS) provided the basic data on which to initiate the analysis and design of the hydrazine propulsion modules. The Landsat D was used as the mission model. Tradeoff studies were conducted on thrust level, thruster location, and clustering arrangement together with tankage volume and location. The impact of the use of single and dual seat thruster valves on plumbing configuration, reliability, and overall system cost was studied in detail. Conceptual designs of a recommended propulsion module configuration for both the Delta 3910 and Shuttle were prepared.

  8. Relative importance of modularity and other morphological attributes on different types of lithic point weapons: assessing functional variations.

    PubMed

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way.

  9. Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations

    PubMed Central

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104

  10. Aeromechanical stability analysis of COPTER

    NASA Technical Reports Server (NTRS)

    Yin, Sheng K.; Yen, Jing G.

    1988-01-01

    A plan was formed for developing a comprehensive, second-generation system with analytical capabilities for predicting performance, loads and vibration, handling qualities, aeromechanical stability, and acoustics. This second-generation system named COPTER (COmprehensive Program for Theoretical Evaluation of Rotorcraft) is designed for operational efficiency, user friendliness, coding readability, maintainability, transportability, modularity, and expandability for future growth. The system is divided into an executive, a data deck validator, and a technology complex. At present a simple executive, the data deck validator, and the aeromechanical stability module of the technology complex were implemented. The system is described briefly, the implementation of the technology module is discussed, and correlation data presented. The correlation includes hingeless-rotor isolated stability, hingeless-rotor ground-resonance stability, and air-resonance stability of an advanced bearingless-rotor in forward flight.

  11. Electromagnetic compatibility (EMC) standard test chamber upgrade requirements for spacecraft design verification tests

    NASA Technical Reports Server (NTRS)

    Dyer, Edward F.

    1992-01-01

    In view of the serious performance deficiencies inherent in conventional modular and welded shielding EMC test enclosures, in which multipath reflections and resonant standing waves can damage flight hardware during RF susceptibility tests, NASA-Goddard has undertaken the modification of a 20 x 24 ft modular-shielded enclosure through installation of steel panels to which ferrite tiles will be mounted with epoxy. The internally reflected RF energy will thereby be absorbed, and exterior power-line noise will be reduced. Isolation of power-line filters and control of 60-Hz ground connections will also be undertaken in the course of upgrading.

  12. The development of a lightweight modular compliant surface bio-inspired robot

    NASA Astrophysics Data System (ADS)

    Stone, David L.; Cranney, John

    2004-09-01

    The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morphable robot for military forces in the field and for other industrial uses. The USTLAB effort builds on proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. In Phase I, basic open plant stability was proven for climbing over obstacles of ~18 inches high and traversing ~75 degree inclines (up, down, or sideways) in a platform of approximately 15 kilograms. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved changes which currently enable future work in active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), and we have reduced platform weight by one third. Currently the vehicle weighs 10 kilograms and will grow marginally as additional actuation, MEMS based organic sensing, payload, and autonomous processing is added. The CSR vehicle"s modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process and the vehicle characteristics will be discussed.

  13. Individualized Foreign Language Islands: Sample Materials.

    ERIC Educational Resources Information Center

    Mountain View School District, CA.

    Students at Mountain View High School, California, are participating in an experimental foreign language program which is based on individualized instruction within a modular schedule. This collection of sample materials which students and parents receive reflects the goals and requirements of the program. Materials include: (1) program…

  14. A Cryptological Way of Teaching Mathematics

    ERIC Educational Resources Information Center

    Caballero-Gil, Pino; Bruno-Castaneda, Carlos

    2007-01-01

    This work addresses the subject of mathematics education at secondary schools from a current and stimulating point of view intimately related to computational science. Cryptology is a captivating way of introducing into the classroom different mathematical subjects such as functions, matrices, modular arithmetic, combinatorics, equations,…

  15. Mining the modular structure of protein interaction networks.

    PubMed

    Berenstein, Ariel José; Piñero, Janet; Furlong, Laura Inés; Chernomoretz, Ariel

    2015-01-01

    Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.

  16. A modular projection autostereoscopic system for stereo cinema

    NASA Astrophysics Data System (ADS)

    Elkhov, Victor A.; Kondratiev, Nikolai V.; Ovechkis, Yuri N.; Pautova, Larisa V.

    2009-02-01

    The lenticular raster system for 3D movies non-glasses show designed by NIKFI demonstrated commercially in Moscow in the 40'st of the last century. Essential lack of this method was narrow individual viewing zone as only two images on the film used. To solve this problem, we propose to use digital video projective system with modular principle of its design. Increase of the general number of the pixels forming the stereo image is reached by using of more than one projector. The modular projection autostereoscopic system for demonstration of the 3D movies includes diffuser screen; lenticular plate located in front of the screen; projective system consisted from several projectors and the block of parallax panoramogram fragments creator. By means of this block the parallax panoramogram is broken into fragments which quantity corresponds to number of projectors. For the large dimension lenticular screen making rectangular fragments of inclined raster were joined in a uniform leaf. To obtain the needed focal distance of the screen lenses we used immersion - aqueous solution of glycerin. The immersion also let essentially decrease visibility of fragments joints. An experimental prototype of the modular projection autostereoscopic system was created to validate proposed system.

  17. Control Strategy of Active Power Filter Based on Modular Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng

    2018-03-01

    To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.

  18. Modular Bioconjugates to Study Herceptin Resistance: A Structural and Functional Approach

    DTIC Science & Technology

    2016-10-01

    REPORT   DATE :  October 2016 TYPE  OF  REPORT:     Annual   PREPARED  FOR:      U.S.  Army  Medical  Research  and  Materiel  Command    Fort  Detrick...ABOVE  ADDRESS.   1. REPORT   DATE October 2016 2. REPORT  TYPE Annual 3. DATES  COVERED 9/15/2015-9/14/2016 4. TITLE  AND  SUBTITLE Modular...cells.  Despite  many  efforts  to  chemically  stabilize   the  capsid  to  prevent  disassembly,  I  was  unable  to  identify  a   method  that

  19. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation.

    PubMed

    Lin, Bor-Shing; Lee, I-Jung; Yang, Shu-Yu; Lo, Yi-Chiang; Lee, Junghsi; Chen, Jean-Lon

    2018-05-13

    Capturing hand motions for hand function evaluations is essential in the medical field. Various data gloves have been developed for rehabilitation and manual dexterity assessments. This study proposed a modular data glove with 9-axis inertial measurement units (IMUs) to obtain static and dynamic parameters during hand function evaluation. A sensor fusion algorithm is used to calculate the range of motion of joints. The data glove is designed to have low cost, easy wearability, and high reliability. Owing to the modular design, the IMU board is independent and extensible and can be used with various microcontrollers to realize more medical applications. This design greatly enhances the stability and maintainability of the glove.

  20. Attitude control of the space construction base: A modular approach

    NASA Technical Reports Server (NTRS)

    Oconnor, D. A.

    1982-01-01

    A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.

  1. Effects of environmental disturbance on phenotypic variation: an integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape.

    PubMed

    Lazić, Marko M; Carretero, Miguel A; Crnobrnja-Isailović, Jelka; Kaliontzopoulou, Antigoni

    2015-01-01

    When populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development. The head shapes of urban lizards were more variable and less symmetric, suggesting that urban living is more likely to disturb development. Head shape variation was congruent within and across individuals, which indicated that canalization and developmental stability are two related phenomena in these organisms. Furthermore, urban lizards exhibited smaller mean head sizes, divergent size-shape allometries, and increased deviation from within-group allometric lines. This suggests that mechanisms regulating head shape allometry may also be disrupted. The integrated evaluation of several measures of developmental instability at different hierarchical levels, which provided in this case congruent results, can be a powerful methodological guide for future studies, as it enhances the detection of environmental disturbances on phenotypic variation and aids biological interpretation of the results.

  2. General Intelligence Predicts Reasoning Ability Even for Evolutionarily Familiar Content

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry; DeYoung, Colin G.; Reis, Deidre L.; Gray, Jeremy R.

    2011-01-01

    The existence of general-purpose cognitive mechanisms related to intelligence, which appear to facilitate all forms of problem solving, conflicts with the strong modularity view of the mind espoused by some evolutionary psychologists. The current study assessed the contribution of general intelligence ("g") to explaining variation in…

  3. Commander Brand shaves in front of forward middeck lockers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, wearing shorts, shaves in front of forward middeck lockers using personal hygiene mirror assembly (assy). Open modular locker single tray assy, Field Sequential (FS) crew cabin camera, communications kit assy mini headset (HDST) and HDST interface unit (HIU), personal hygiene kit, and meal tray assemblies appear in view.

  4. Robotic Welding and Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. B. Smartt; D. P. Pace; E. D. Larsen

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  5. JS-MS: a cross-platform, modular javascript viewer for mass spectrometry signals.

    PubMed

    Rosen, Jebediah; Handy, Kyle; Gillan, André; Smith, Rob

    2017-11-06

    Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS storage systems or data processing algorithms. We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and better navigation interfaces. The client includes a modular Java backend with a novel streaming.mzML parser to demonstrate the API-based serving of MS data to the viewer. JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at github.com/optimusmoose/jsms.

  6. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    NASA Astrophysics Data System (ADS)

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-06-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.

  7. [Mechanical testing of implant properties of thoracoscopic implantation of ventral spinal stabilizing systems. Comparative study with the ISO/DIS 12189-2 corpectomy model and an improved synthetic model].

    PubMed

    Grupp, T M; Beisse, R; Potulski, M; Marnay, T; Beger, J; Blömer, W

    2002-04-01

    A new modular anterior fixation system MACS TL (modular anterior construct system for the thoracic and lumbar spine) has been developed for use in thoracoscopic spondylodesis. This system demonstrates high angular stability and meets the surgical requirements for an endoscopic approach. The objective of the current study was fatigue testing of the MACS TL implant system using a corpectomy model according to ISO/DIS 12189-2 and a synthetic model recently developed by Kotani et al. [6]. The MACS TL system demonstrated good mechanical properties with a high stiffness compared to the published data reviewed. The importance of dynamic testing in a corpectomy model has been demonstrated by comparing the MACS TL plate system with an early prototype, which has not yet been clinically evaluated. The corpectomy model according to Kotani et al. offers an interesting alternative to the ISO/DIS 12189-2 test method for asymmetrically designed and antero-laterally positioned spinal implants due to the unconstrained ball joint.

  8. A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials

    ERIC Educational Resources Information Center

    He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali

    2016-01-01

    In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…

  9. The Role of Automatic Indexing in Access Control: A Modular View

    ERIC Educational Resources Information Center

    Hartson, H. Rex

    1974-01-01

    A model which relates the access control and indexing functions. The model is based on concept protection which allows a practically unbounded number of levels (subsets) of protection without requiring a fixed hierarchy among the levels. This protection is offered independently for each of the user operations allowed. (Author)

  10. A Paradigmatic Example of an Artificially Intelligent Instructional System.

    ERIC Educational Resources Information Center

    Brown, John Seely; Burton, Richard R.

    This paper describes the philosophy of intelligent instructional systems and presents an example of one such system in the domain of manipulative mathematics--BLOCKS. The notion of BLOCKS as a paradigmatic system is explicated from both the system development and educational viewpoints. From a developmental point of view, the modular design of…

  11. Assessing the Structure of a Concept Map

    ERIC Educational Resources Information Center

    Giouvanakis, Thanasis; Samaras, Haido; Kehris, Evangelos; Mpakavos, Asterios

    2013-01-01

    This paper presents a framework for the evaluation of concept maps. We focus on supporting the student in dealing with ill-structured and complex problems. We argue that these problems require the application of "the modularity approach." In view of this, the paper describes ways of providing student support for the implementation of…

  12. Modular Curriculum: English/Social Studies, Japanese Civilization.

    ERIC Educational Resources Information Center

    Spear, Richard L.

    This independent study course for college credit is a study of Japanese civilization. The nine lessons that comprise the course are: 1. The Origins of the Civilization: From Primitive to Early Classical Times; 2. The Classical Tradition I: The Religion and Aesthetics of Classical Times; 3. The Classical Tradition II: A View of Court Life through…

  13. View of javelin and golf ball on lunar surface during Apollo 14 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    View shows the javelin and golf ball used by Astronaut Alan B. Shepard Jr., Apollo 14 commander, during the mission's second extravehicular activity (EVA-2) on Feb. 6, 1971. Just to the left of center lies the javelin, with the golf ball just below it, almost perpendicular to it. Dark colored trails are the results of tracks made by the lunar overshoes of the astronauts and the wheels of the Modularized Equipment Transporter (MET). This photograph was made through the right window of the Lunar Module, looking northwest.

  14. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  15. Evaluation of constraint stabilization procedures for multibody dynamical systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.

  16. Hybrid external fixation in high-energy elbow fractures: a modular system with a promising future.

    PubMed

    Lerner, A; Stahl, S; Stein, H

    2000-12-01

    Severe, high-energy, periarticular elbow injuries producing a "floating joint" are a major surgical challenge. Their reconstruction and rehabilitation are not well documented. Therefore, the following reports our experience with treating such injuries caused by war wounds. Seven adults with compound open peri- and intra-articular elbow fractures were treated in hybrid ring tubular fixation frames. After debridement, bone stabilization, and neurovascular reconstructions, early controlled daily movements were started in the affected joint. These seven patients had together seven humeral, five radial, and six ulnar fractures. All fractures united at a median time of 180 days. No deep infection developed. The functional end results assessed by the Khalfayan functional score were excellent in two, good in one, and fair in four of these severely mangled upper extremities. None was amputated. The Mangled Extremity Severity Score has been shown to be unable to provide a reliable assessment for severe high-energy limb injuries surgically managed with the modular hybrid thin wire tubular external fixation system. This hybrid system is a very useful addition to the surgical armamentarium of orthopedic trauma surgeons. It both allows complex surgical reconstructions and reduces the incidence of deep infections in these heavily contaminated injuries. The hybrid circular (thin wire) external fixation system is very modular and may provide secure skeletal stabilization even in cases of severely comminuted juxta-articular fractures on both sides of the elbow joint (floating elbow) with severe damage to soft tissues. This fixation system allows individual fixation of forearm bone fractures, thus allowing the preservation of pronation-supination movements.

  17. Analysis of In-Space Assembly of Modular Systems

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.

    2005-01-01

    Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.

  18. Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach

    USGS Publications Warehouse

    Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.

    2006-01-01

    Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.

  19. Modularisation in the German VET System: A Study of Policy Implementation

    ERIC Educational Resources Information Center

    Li, Junmin; Pilz, Matthias

    2017-01-01

    Modularisation of vocational training courses is a major issue across many European countries. Germany has been slow to implement modularisation in its VET system: the prevailing view of modular concepts in the country is one of great scepticism, but there is very little empirical data to inform the debate. This exploratory study focuses on the…

  20. Towards PCC for Concurrent and Distributed Systems (Work in Progress)

    NASA Technical Reports Server (NTRS)

    Henriksen, Anders S.; Filinski, Andrzej

    2009-01-01

    We outline some conceptual challenges in extending the PCC paradigm to a concurrent and distributed setting, and sketch a generalized notion of module correctness based on viewing communication contracts as economic games. The model supports compositional reasoning about modular systems and is meant to apply not only to certification of executable code, but also of organizational workflows.

  1. Gossip.

    PubMed

    1994-06-01

    The big news this week is that prefabricated buildings are no longer viewed as a poor substitute for traditional buildings. That's what it says here, anyway. In a press release headed Future looking bright for prefabricated building industry', Rovacabin - 'leading suppliers of modular and portable buildings' - says average turnover in the prefab, building industry rose by 20 per cent in the second half of 1993.

  2. Commander Young removes CAP from FDF stowage locker on middeck

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck locker MF28E. Window shade and filter kit on port side bulkhead and potable water tank on middeck floor appear in view. Photo was taken by Pilot Crippen with a 35mm camera.

  3. The Multiple Intelligence Based Enrichment Module on the Development of Human Potential: Examining Its Impact and the Views of Teachers

    ERIC Educational Resources Information Center

    Azid, Nurulwahida Hj; Yaacob, Aizan; Shaik-Abdullah, Sarimah

    2016-01-01

    Purpose: Howard Gardners' concept of multiple intelligence (MI) offers an alternative perspective on intelligence which highlights the importance of acknowledging learner diversity, individual talents and the development of human potentials. MI has been used as a basis for the construction of modular enrichment activities to facilitate the…

  4. A Modular Approach to Video Designation of Manipulation Targets for Manipulators

    DTIC Science & Technology

    2014-05-12

    side view of a ray going through a point cloud of a water bottle sitting on the ground. The bottom left image shows the same point cloud after it has...System (ROS), Point Cloud Library (PCL), and OpenRAVE were used to a great extent to help promote reusability of the code developed during this

  5. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  6. An Evaluation of Oceanographic Optical Instruments and Deployment Methodologies

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Maritorena, Stephane

    1999-01-01

    The primary objective of the Sea-viewing, Wide Field-of-view Sensor (SeaWiFS) Project is to produce water- leaving radiances with an uncertainty of 5% in clear-water regions and chlorophyll a concentrations within +/- 35% over the range of 0.05-50 mg/cu m. Any global mission, like SeaWiFS, requires validation data be submitted from a wide variety of investigators which places a significant challenge on quantifying the total uncertainty associated with the in situ measurements, because each investigator follows slightly different practices when it comes to implementing all of the steps associated with collecting field data, even those with a prescribed set of protocols. This study uses data from multiple cruises to quantify the uncertainties associated with implementing data collection procedures while utilizing differing in-water optical instruments and deployment methods. A comprehensive approach is undertaken and includes: (1) the use of a portable light source and in-water intercomparisons to monitor the stability of the field radiometers, (2) alternative methods for acquiring reference measurements, and (3) different techniques for making in-water profiles. The only system to meet the 5% radiometric objective of the SeaWiFS Project was a free-fall profiler using (relatively inexpensive) modular components, although a more sophisticated (and comparatively expensive) profiler using integral components was very close and only 1% higher. A relatively inexpensive system deployed with a winch and crane was also close, but the ship shadow contamination problem increased the total uncertainty to approximately 6.5%.

  7. A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.

    1984-01-01

    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.

  8. Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus

    PubMed Central

    Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.

    2016-01-01

    The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184

  9. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    PubMed Central

    Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel

    2016-01-01

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894

  10. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    PubMed

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  11. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  12. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  13. The CMS Data Management System

    NASA Astrophysics Data System (ADS)

    Giffels, M.; Guo, Y.; Kuznetsov, V.; Magini, N.; Wildish, T.

    2014-06-01

    The data management elements in CMS are scalable, modular, and designed to work together. The main components are PhEDEx, the data transfer and location system; the Data Booking Service (DBS), a metadata catalog; and the Data Aggregation Service (DAS), designed to aggregate views and provide them to users and services. Tens of thousands of samples have been cataloged and petabytes of data have been moved since the run began. The modular system has allowed the optimal use of appropriate underlying technologies. In this contribution we will discuss the use of both Oracle and NoSQL databases to implement the data management elements as well as the individual architectures chosen. We will discuss how the data management system functioned during the first run, and what improvements are planned in preparation for 2015.

  14. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  15. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.

  16. Effect of Flame Stabilizer Design on Performance and Exhaust Pollutants of a Two-Row Swirl-Can Combustor Operated to Near-Stoichiometric Conditions

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Trout, Arthur M.

    1977-01-01

    Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.

  17. View of javelin and golf ball on lunar surface during Apollo 14 EVA

    NASA Image and Video Library

    1971-02-06

    AS14-66-9337 (6 Feb. 1971) --- This view shows the "javelin" and golf ball used by astronaut Alan B. Shepard Jr., commander, during the mission's second extravehicular activity (EVA) on Feb. 6, 1971. Just to the left of center lies the "javelin", with the golf ball just below it, almost perpendicular to it. Dark colored trails are the results of tracks made by the lunar overshoes of the astronauts and the wheels of the modular equipment transporter (MET). This photograph was made through the right window of the Lunar Module (LM), looking northwest.

  18. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  19. Multispectral determination of soil moisture-2. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Simonett, D. S. (Principal Investigator); Hajic, E. J.; Hilton, B. M.; Lees, R. D.

    1982-01-01

    Soil moisture data obtained using scatterometers, modular multispectral scanners and passive microwave radiometers were revised and grouped into four field cover types for statistical anaysis. Guymon data are grouped as alfalfa, bare, milo with rows perpendicular to the field view, and milo viewed parallel to the field of view. Dalhart data are grouped as bare combo, stubble, disked stubble, and corn field. Summary graphs combine selected analyses to compare the effects of field cover. The analysis for each of the cover types is presented in tables and graphs. Other tables show elementary statistics, correlation matrices, and single variable regressions. Selected eigenvectors and factor analyses are included and the highest correlating sensor typs for each location are summarized.

  20. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-04-01

    Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)

    DTIC Science & Technology

    2008-07-01

    use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with

  2. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition.

    PubMed

    Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong

    2017-11-01

    A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.

  3. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong

    2017-11-01

    A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.

  4. MoniQA: a general approach to monitor quality assurance

    NASA Astrophysics Data System (ADS)

    Jacobs, J.; Deprez, T.; Marchal, G.; Bosmans, H.

    2006-03-01

    MoniQA ("Monitor Quality Assurance") is a new, non-commercial, independent quality assurance software application developed in our medical physics team. It is a complete Java TM - based modular environment for the evaluation of radiological viewing devices and it thus fits in the global quality assurance network of our (film less) radiology department. The purpose of the software tool is to guide the medical physicist through an acceptance protocol and the radiologist through a constancy check protocol by presentation of the necessary test patterns and by automated data collection. Data are then sent to a central management system for further analysis. At the moment more than 55 patterns have been implemented, which can be grouped in schemes to implement protocols (i.e. AAPMtg18, DIN and EUREF). Some test patterns are dynamically created and 'drawn' on the viewing device with random parameters as is the case in a recently proposed new pattern for constancy testing. The software is installed on 35 diagnostic stations (70 monitors) in a film less radiology department. Learning time was very limited. A constancy check -with the new pattern that assesses luminance decrease, resolution problems and geometric distortion- takes only 2 minutes and 28 seconds per monitor. The modular approach of the software allows the evaluation of new or emerging test patterns. We will report on the software and its usability: practicality of the constancy check tests in our hospital and on the results from acceptance tests of viewing stations for digital mammography.

  5. A Dissipative Systems Theory for FDTD With Application to Stability Analysis and Subgridding

    NASA Astrophysics Data System (ADS)

    Bekmambetova, Fadime; Zhang, Xinyue; Triverio, Piero

    2017-02-01

    This paper establishes a far-reaching connection between the Finite-Difference Time-Domain method (FDTD) and the theory of dissipative systems. The FDTD equations for a rectangular region are written as a dynamical system having the magnetic and electric fields on the boundary as inputs and outputs. Suitable expressions for the energy stored in the region and the energy absorbed from the boundaries are introduced, and used to show that the FDTD system is dissipative under a generalized Courant-Friedrichs-Lewy condition. Based on the concept of dissipation, a powerful theoretical framework to investigate the stability of FDTD methods is devised. The new method makes FDTD stability proofs simpler, more intuitive, and modular. Stability conditions can indeed be given on the individual components (e.g. boundary conditions, meshes, embedded models) instead of the whole coupled setup. As an example of application, we derive a new subgridding method with material traverse, arbitrary grid refinement, and guaranteed stability. The method is easy to implement and has a straightforward stability proof. Numerical results confirm its stability, low reflections, and ability to handle material traverse.

  6. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  7. Establishing non-Abelian topological order in Gutzwiller-projected Chern insulators via entanglement entropy and modular S-matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Vishwanath, Ashvin

    2013-04-01

    We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.

  8. Control, responses and modularity of cellular regulatory networks: a control analysis perspective.

    PubMed

    Bruggeman, F J; Snoep, J L; Westerhoff, H V

    2008-11-01

    Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.

  9. Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    NASA Astrophysics Data System (ADS)

    Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian

    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.

  10. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  11. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  12. Geometric description of modular and weak values in discrete quantum systems using the Majorana representation

    NASA Astrophysics Data System (ADS)

    Cormann, Mirko; Caudano, Yves

    2017-07-01

    We express modular and weak values of observables of three- and higher-level quantum systems in their polar form. The Majorana representation of N-level systems in terms of symmetric states of N  -  1 qubits provides us with a description on the Bloch sphere. With this geometric approach, we find that modular and weak values of observables of N-level quantum systems can be factored in N  -  1 contributions. Their modulus is determined by the product of N  -  1 ratios involving projection probabilities between qubits, while their argument is deduced from a sum of N  -  1 solid angles on the Bloch sphere. These theoretical results allow us to study the geometric origin of the quantum phase discontinuity around singularities of weak values in three-level systems. We also analyze the three-box paradox (Aharonov and Vaidman 1991 J. Phys. A: Math. Gen. 24 2315-28) from the point of view of a bipartite quantum system. In the Majorana representation of this paradox, an observer comes to opposite conclusions about the entanglement state of the particles that were successfully pre- and postselected.

  13. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  14. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  15. Unclassified Information Sharing and Coordination in Security, Stabilization, Transition and Reconstruction Efforts

    DTIC Science & Technology

    2008-03-01

    is implemented using the Drupal (2007) content management system (CMS) and many of the baseline information sharing and collaboration tools have...been contributed through the Dru- pal open source community. Drupal is a very modular open source software written in PHP hypertext processor...needed to suit the particular problem domain. While other frameworks have the potential to provide similar advantages (“Ruby,” 2007), Drupal was

  16. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  17. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    NASA Astrophysics Data System (ADS)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and expanding the available airplane components. Wind tunnel tests over a wide range of airplane configurations have been used to validate the numerical approach. The comparison between the proposed method and the standard semi-empirical methods available in literature proves the reliability of the innovative approach, according to the available experimental data collected in the wind tunnel test campaign.

  18. Algorithm for parametric community detection in networks.

    PubMed

    Bettinelli, Andrea; Hansen, Pierre; Liberti, Leo

    2012-07-01

    Modularity maximization is extensively used to detect communities in complex networks. It has been shown, however, that this method suffers from a resolution limit: Small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multiresolution methods. In this paper we systematically study a simple model (proposed by Pons and Latapy [Theor. Comput. Sci. 412, 892 (2011)] and similar to the parametric model of Reichardt and Bornholdt [Phys. Rev. E 74, 016110 (2006)]) with a single parameter α that balances the fraction of within community edges and the expected fraction of edges according to the configuration model. An exact algorithm is proposed to find optimal solutions for all values of α as well as the corresponding successive intervals of α values for which they are optimal. This algorithm relies upon a routine for exact modularity maximization and is limited to moderate size instances. An agglomerative hierarchical heuristic is therefore proposed to address parametric modularity detection in large networks. At each iteration the smallest value of α for which it is worthwhile to merge two communities of the current partition is found. Then merging is performed and the data are updated accordingly. An implementation is proposed with the same time and space complexity as the well-known Clauset-Newman-Moore (CNM) heuristic [Phys. Rev. E 70, 066111 (2004)]. Experimental results on artificial and real world problems show that (i) communities are detected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram summarizing the results of the heuristic method provides a useful tool for substantive analysis, as illustrated particularly on a Les Misérables data set; (iii) the difference between the parametric modularity values given by the exact method and those given by the heuristic is moderate; (iv) the heuristic version of the proposed parametric method, viewed as a modularity maximization tool, gives better results than the CNM heuristic for large instances.

  19. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties.

    PubMed

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel; Šubr, Vladimír; Konvalinka, Jan

    2016-02-12

    Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named "iBodies", consist of an HPMA copolymer decorated with low-molecular-weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live-cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties

    PubMed Central

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel

    2016-01-01

    Abstract Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named “iBodies”, consist of an HPMA copolymer decorated with low‐molecular‐weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live‐cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. PMID:26749427

  1. Modular experimental platform for science and applications

    NASA Technical Reports Server (NTRS)

    Hill, A. S.

    1984-01-01

    A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.

  2. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy.

    PubMed

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-04-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.

  3. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity

    NASA Astrophysics Data System (ADS)

    Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard

    2018-04-01

    Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.

  4. Dying dyons don't count

    NASA Astrophysics Data System (ADS)

    Cheng, Miranda C. N.; Verlinde, Erik P.

    2007-09-01

    The dyonic 1/4-BPS states in 4D string theory with Script N = 4 spacetime supersymmetry are counted by a Siegel modular form. The pole structure of the modular form leads to a contour dependence in the counting formula obscuring its duality invariance. We exhibit the relation between this ambiguity and the (dis-)appearance of bound states of 1/2-BPS configurations. Using this insight we propose a precise moduli-dependent contour prescription for the counting formula. We then show that the degeneracies are duality-invariant and are correctly adjusted at the walls of marginal stability to account for the (dis-)appearance of the two-centered bound states. Especially, for large black holes none of these bound states exists at the attractor point and none of these ambiguous poles contributes to the counting formula. Using this fact we also propose a second, moduli-independent contour which counts the ``immortal dyons" that are stable everywhere.

  5. A modular multiple use system for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Adams, W. S.; Lee, G. M.; Bush, R. L.

    1978-01-01

    A modular CAMAC based system is described which was developed to meet a variety of precise time and frequency measurement and distribution needs. The system was based on a generalization of the dual mixer concept. By using a 16 channel 100 ns event clock, the system can intercompare the phase of 16 frequency standards with subpicosecond resolution. The system has a noise floor of 26 fs and a long term stability on the order of 1 ps or better. The system also used a digitally controlled crystal oscillator in a control loop to provide an offsettable 5 MHz output with subpicosecond phase tracking capability. A detailed description of the system is given including theory of operation and performance. A method to improve the performance of the dual mixer technique is discussed when phase balancing of the two input ports cannot be accomplished.

  6. Small Combatants for the Homeland Defense Mission

    DTIC Science & Technology

    2013-03-01

    MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in...the U.S. Navy relies on a shrinking group of aging Oliver Hazard Perry class frigates to conduct counter- piracy, counter-narcotics, counter maritime...the ideal ship: it is too expensive, too vulnerable, and undermanned, and it has a modular concept that is too underdeveloped for practical naval

  7. Young Children's Use of Features to Reorient Is More than Just Associative: Further Evidence against a Modular View of Spatial Processing

    ERIC Educational Resources Information Center

    Newcombe, Nora S.; Ratliff, Kristin R.; Shallcross, Wendy L.; Twyman, Alexandra D.

    2010-01-01

    Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association (Lee,…

  8. Conceptual design study. Science and Applications Space Platform (SASP). Final briefing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modularity, shape, and size of the recommended platform concept offers a low investment, early option to demonstrate the system; flexibility to conservative growth; adaptability to great variety of multi or dedicated payload groups; and good dispersion and viewing freedom for payloads. Platform configuration effectively supports 80 to 85% of the NASA/OSS and OSTA payloads. The subsystem approaches recommended are based on cost effective distribution of functions.

  9. Development potential of the Dauin geothermal prospect, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrante, L.F.; Hermoso, D.Z.; Candelaria, M.R.

    1997-12-31

    The Dauin geothermal prospect, situated 5 km southeast of the Palinpinon I and II sectors, was drilled between 1982 and 1983 to test its viability for development. Drilling results indicated that DN-1 was drilled closer to the source region than DN-2 where permeability, temperature, and alteration mineralogy were generally unpromising. DN-1 encountered temperatures of at least 240{degrees}C and a neutral-pH fluid with reservoir chloride of 3000 mg/kg. In particular, the presence of sulphur in the DN-1 discharge provoked debates and many speculation on the nature of the fluid in the area. The area was re-evaluated in 1996 for the followingmore » reasons: (1) Renewed interests on other geothermal prospects within Negros Island from an economic point of view and the success of modular plant developments are Pal II and other areas in the Philippines; (2) Reinterpretation of the genesis of sulphur contained in the DN-1 discharge fluid; (3) Encouraging temperature, permeability and neutral-pH alterations at depth and the neutral character of DN-1 discharge fluid; and (4) Reinterpretation of the hydrological model from a geochemical and geological point of view. The study indicates good potential for modular power development.« less

  10. Integrated Solar-Energy-Harvesting and -Storage Device

    NASA Technical Reports Server (NTRS)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  11. A comparative analysis of auditory perception in humans and songbirds: a modular approach.

    PubMed

    Weisman, Ronald; Hoeschele, Marisa; Sturdy, Christopher B

    2014-05-01

    We propose that a relatively small number of perceptual skills underlie human perception of music and speech. Humans and songbirds share a number of features in the development of their auditory communication systems. These similarities invite comparisons between species in their auditory perceptual skills. Here, we summarized our experimental comparisons between humans (and other mammals) and songbirds (and other birds) in their use of pitch height and pitch chroma perception and discuss similarities and differences in other auditory perceptual abilities of these species. Specifically, we introduced a functional modular view, using pitch chroma and pitch height perception as examples, as a theoretical framework for the comparative study of auditory perception and perhaps all of the study of comparative cognition. We also contrasted phylogeny and adaptation as causal mechanisms in comparative cognition using examples from auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  13. A unifying model of concurrent spatial and temporal modularity in muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2014-02-01

    Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.

  14. Drag and stability characteristics of a variety of reefed and unreefed parachute configurations at Mach 1.80 with an empirical correlation for supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Couch, L. M.

    1975-01-01

    An investigation was conducted at Mach 1.80 in the Langley 4-foot supersonic pressure tunnel to determine the effects of variation in reefing ratio and geometric porosity on the drag and stability characteristics of four basic canopy types deployed in the wake of a cone-cylinder forebody. The basic designs included cross, hemisflo, disk-gap-band, and extended-skirt canopies; however, modular cross and standard flat canopies and a ballute were also investigated. An empirical correlation was determined which provides a fair estimation of the drag coefficients in transonic and supersonic flow for parachutes of specified geometric porosity and reefing ratio.

  15. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  16. Toward a Practical Type Theory for Recursive Modules

    DTIC Science & Technology

    2001-03-01

    Carnegie Mellon University Pittsburgh, PA 15213 Abstract Module systems for languages with complex type systems, such as Standard ML, often lack the...Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050. The views and conclusions...power of a module system lies in the flexibility of its facility for expressing dependencies between modular components. Some languages (such as Java

  17. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  18. Apollo 14 Mission image - View of the ALSEP Station

    NASA Image and Video Library

    1971-02-05

    AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  19. Analysis of Time Filters in Multistep Methods

    NASA Astrophysics Data System (ADS)

    Hurl, Nicholas

    Geophysical ow simulations have evolved sophisticated implicit-explicit time stepping methods (based on fast-slow wave splittings) followed by time filters to control any unstable models that result. Time filters are modular and parallel. Their effect on stability of the overall process has been tested in numerous simulations, but never analyzed. Stability is proven herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW) time filter for systems by energy methods. We derive an equivalent multistep method for CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restriction is even smaller. Numerical tests find that RA and RAW add numerical dissipation. This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method are asymptotically stable under the standard timestep condition.

  20. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    NASA Astrophysics Data System (ADS)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  1. Gaze and viewing angle influence visual stabilization of upright posture

    PubMed Central

    Ustinova, KI; Perkins, J

    2011-01-01

    Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978

  2. The VISPA Internet Platform for Students

    NASA Astrophysics Data System (ADS)

    Asseldonk, D. v.; Erdmann, M.; Fischer, R.; Glaser, C.; Müller, G.; Quast, T.; Rieger, M.; Urban, M.

    2016-04-01

    The VISPA internet platform enables users to remotely run Python scripts and view resulting plots or inspect their output data. With a standard web browser as the only user requirement on the client-side, the system becomes suitable for blended learning approaches for university physics students. VISPA was used in two consecutive years each by approx. 100 third year physics students at the RWTH Aachen University for their homework assignments. For example, in one exercise students gained a deeper understanding of Einsteins mass-energy relation by analyzing experimental data of electron-positron pairs revealing J / Ψ and Z particles. Because the students were free to choose their working hours, only few users accessed the platform simultaneously. The positive feedback from students and the stability of the platform lead to further development of the concept. This year, students accessed the platform in parallel while they analyzed the data recorded by demonstrated experiments live in the lecture hall. The platform is based on experience in the development of professional analysis tools. It combines core technologies from previous projects: an object-oriented C++ library, a modular data-driven analysis flow, and visual analysis steering. We present the platform and discuss its benefits in the context of teaching based on surveys that are conducted each semester.

  3. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    PubMed

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin

    PubMed Central

    Yang, Muyang; Yu, Lixia; Guo, Ruiwei; Dong, Anjie; Lin, Cunguo

    2018-01-01

    Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirable multifunctionalities, such as coloaded high payloads, targeted delivery, hemodynamic stability, and also to ensure low drug leakage before reaching the tumor site, but simultaneously the corelease of drugs in the same cancer cell. Herein, we developed a facile modular coassembly approach to construct an all-in-one multifunctional multidrug delivery system for the synergistic codelivery of doxorubicin (DOX, chemotherapeutic agent) and curcumin (CUR, MDR modulator). The acid-cleavable PEGylated polymeric prodrug (DOX-h-PCEC), tumor cell-specific targeting peptide (CRGDK-PEG-PCL), and natural chemosensitizer (CUR) were ratiometrically assembled into in one single nanocarrier (CUR/DOX-h-PCEC@CRGDK NPs). The resulting CUR/DOX-h-PCEC@CRGDK NPs exhibited several desirable characteristics, such as efficient and ratiometric drug loading, high hemodynamic stability and low drug leakage, tumor intracellular acid-triggered cleavage, and subsequent intracellular simultaneous drug corelease, which are expected to maximize a synergistic effect of chemotherapy and chemosensitization. Collectively, the multifunctional nanocarrier is feasible for the creation of a robust nanoplatform for targeted multidrug codelivery and efficient MDR modulation. PMID:29543780

  5. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  6. Arc is a flexible modular protein capable of reversible self-oligomerization

    PubMed Central

    Myrum, Craig; Baumann, Anne; Bustad, Helene J.; Flydal, Marte Innselset; Mariaule, Vincent; Alvira, Sara; Cuéllar, Jorge; Haavik, Jan; Soulé, Jonathan; Valpuesta, José Maria; Márquez, José Antonio; Martinez, Aurora; Bramham, Clive R.

    2015-01-01

    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. PMID:25748042

  7. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    DTIC Science & Technology

    2011-01-01

    open-source BMI software solu- tions are currently available, we feel that the Craniux software package fills a specific need in the realm of BMI...data, such as cortical source imaging using EEG or MEG recordings. It is with these characteristics in mind that we feel the Craniux software package...S. Adee, “Dean Kamen’s ‘luke arm’ prosthesis readies for clinical trials,” IEEE Spectrum, February 2008, http://spectrum .ieee.org/biomedical

  8. Knee arthodesis using a modular customized intramedullary nail.

    PubMed

    Letartre, R; Combes, A; Autissier, G; Bonnevialle, N; Gougeon, F

    2009-11-01

    Arthrodesis of the knee, particularly in infectious situations, can be achieved using either an external fixator or an intramedullary device. The objective of this study is to report the clinical, functional, and radiographic outcomes of a continuous series of 19 cases of knee arthrodesis using a customized modular intramedullary nailing system. The modular intramedullary nail offers a satisfactory functional result while maintaining limb length, in spite of a nonunion risk, since acting like a true endoprosthesis. In our retrospective series of 19 patients, the main source of patients were infected total knee replacements. The nail was customized from assembling a dual surface-sanded titanium component (femoral and tibial). The Lequesne Algofunctional score and the WOMAC score were recorded, as well as the length discrepancy between the lower extremities. Arthrodesis consolidation and the nail's fit in the shaft were verified on anterior-posterior (AP) and lateral radiographs. Five complications were observed: one anterior cortical break, one excessive tibial rotation, two cases of delayed union, and one nail revision due to residual nail instability. The postoperative Lequesne Algofunctional score was 13/24 and the WOMAC score 57/100. The nonunion rate was 32%. From a functional point of view, the patients who did not achieve complete union and those who did had similar scores. The subjective results were not as good in patients who did not achieve final consolidation. Modular intramedullary nailing simplifies the technique, shortens the procedure, and reduces the amount of blood loss at surgery. Our nonunion rate was high, although the functional result did not seem compromised by such nonunion. The risk of long-term implant failure was not studied and requires longer follow-up studies. Level IV therapeutic study. 2009 Published by Elsevier Masson SAS.

  9. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  10. Labview virtual instruments for calcium buffer calculations.

    PubMed

    Reitz, Frederick B; Pollack, Gerald H

    2003-01-01

    Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.

  11. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The

  12. NASA Tech Briefs, August 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: Mars Science Laboratory Drill; Ultra-Compact Motor Controller; A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator; Shape Memory Composite Hybrid Hinge; Binding Causes of Printed Wiring Assemblies with Card-Loks; Coring Sample Acquisition Tool; Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge; 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF; Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer; Discontinuous Mode Power Supply; Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI; Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing; Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry; High-Thermal-Conductivity Fabrics; Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes; Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach; Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms; Saliva Preservative for Diagnostic Purposes; Hands-Free Transcranial Color Doppler Probe; Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer LogScope; TraceContract; AIRS Maps from Space Processing Software; POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation; Space Operations Learning Center; OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems; Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers; Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing; Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery; 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer; Social Networking Adapted for Distributed Scientific Collaboration; General Methodology for Designing Spacecraft Trajectories; Hemispherical Field-of-View Above-Water Surface Imager for Submarines; and Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly.

  13. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  15. BKM Lie superalgebras from dyon spectra in Z N CHL orbifolds for composite N

    NASA Astrophysics Data System (ADS)

    Govindarajan, Suresh; Gopala Krishna, K.

    2010-05-01

    We show that the generating function of electrically charged 1/2 -BPS states in mathcal{N} = 4 supersymmetric CHL {mathbb{Z}_N} -orbifolds of the heterotic string on T 6 are given by multiplicative η-products. The η-products are determined by the cycle shape of the corresponding symplectic involution in the dual type II picture. This enables us to complete the construction of the genus-two Siegel modular forms due to David, Jatkar and Sen [arXiv:hep-th/0609109] for {mathbb{Z}_N} -orbifolds when N is non-prime. We study the {mathbb{Z}_4} CHL orbifold in detail and show that the associated Siegel modular forms, {Φ_3}left( mathbb{Z} right) and {widetildeΦ_3}left( mathbb{Z} right) , are given by the square of the product of three even genus-two theta constants. Extending work by us as well as Cheng and Dabholkar, we show that the ‘square roots’ of the two Siegel modular forms appear as the denominator formulae of two distinct Borcherds-Kac-Moody (BKM) Lie superalgebras. The BKM Lie superalgebra associated with the generating function of 1/4 -BPS states, i.e., {widetildeΦ_3}left( mathbb{Z} right) has a parabolic root system with a lightlike Weyl vector and the walls of its fundamental Weyl chamber are mapped to the walls of marginal stability of the 1/4 -BPS states.

  16. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  17. Supratransmission in a metastable modular metastructure for tunable non-reciprocal wave transmission

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wang, K. W.

    2018-03-01

    In this research, we numerically and analytically investigate the nonlinear energy transmission phenomenon in a metastable modular metastructure. Numerical studies on a 1D metastable chain provide clear evidence that when driving frequency is within the stopband of the periodic structure, there exists a threshold for the driving amplitude, above which sudden increase in the energy transmission can be observed. This onset of transmission is due to nonlinear instability and is known as supratransmission. We discover that due to spatial asymmetry of strategically configured constituents, such transmission thresholds are considerably different when structure is excited from different ends and this discrepancy creates a region of non-reciprocal energy transmission. We demonstrate that when the loss of stability is due to saddlenode bifurcation, the transmission threshold can be predicted analytically using a localized nonlinear-linear system model, and analyzed via combining harmonic balancing and transfer matrix methods. These investigations elucidate the rich and complex dynamics achievable by nonlinearity and metastabilities, and provide synthesize tools for tunable bandgaps and non-reciprocal wave transmissions.

  18. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  19. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy

    PubMed Central

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-01-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates. PMID:22167472

  20. Protein stability: a crystallographer’s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deller, Marc C., E-mail: mdeller@stanford.edu; Kong, Leopold; Rupp, Bernhard

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhatmore » practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.« less

  1. Payload isolation and stabilization by a Suspended Experiment Mount (SEM)

    NASA Technical Reports Server (NTRS)

    Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.

    1992-01-01

    Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.

  2. Differential pleiotropy and HOX functional organization.

    PubMed

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2015-02-01

    Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Image Geometric Corrections for a New EMCCD-based Dual Modular X-ray Imager

    PubMed Central

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen

    2012-01-01

    An EMCCD-based dual modular x-ray imager was recently designed and developed from the component level, providing a high dynamic range of 53 dB and an effective pixel size of 26 μm for angiography and fluoroscopy. The unique 2×1 array design efficiently increased the clinical field of view, and also can be readily expanded to an M×N array implementation. Due to the alignment mismatches between the EMCCD sensors and the fiber optic tapers in each module, the output images or video sequences result in a misaligned 2048×1024 digital display if uncorrected. In this paper, we present a method for correcting display registration using a custom-designed two layer printed circuit board. This board was designed with grid lines to serve as the calibration pattern, and provides an accurate reference and sufficient contrast to enable proper display registration. Results show an accurate and fine stitching of the two outputs from the two modules. PMID:22254882

  4. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  5. Chemical markup, XML, and the World Wide Web. 5. Applications of chemical metadata in RSS aggregators.

    PubMed

    Murray-Rust, Peter; Rzepa, Henry S; Williamson, Mark J; Willighagen, Egon L

    2004-01-01

    Examples of the use of the RSS 1.0 (RDF Site Summary) specification together with CML (Chemical Markup Language) to create a metadata based alerting service termed CMLRSS for molecular content are presented. CMLRSS can be viewed either using generic software or with modular opensource chemical viewers and editors enhanced with CMLRSS modules. We discuss the more automated use of CMLRSS as a component of a World Wide Molecular Matrix of semantically rich chemical information.

  6. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    USGS Publications Warehouse

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the network approach provides a broad understanding of the relationships among insect visitors and other plant species that may affect the focal rare plant. Knowledge of such relationships allows managers to detect, target and prioritize control of only the important subset of invasive species present and identify other species that may augment a rare species' population stability, such as E. pauciflorum in our study.

  7. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALDmore » were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery performance. The capacity of the Al2O3 ALD-coated LCO battery electrodes was measured versus the number of charge-discharge cycles. Both temporal and spatial ALD processing methods led to higher capacity stability compared with uncoated LCO battery electrodes. The results for improved battery performance were comparable for temporal and spatial ALD-coated electrodes. The next steps are also presented for scale-up to R2R spatial ALD using the modular rotating cylinder reactor.« less

  8. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery as it sits at Launch Complex 39 A at Kennedy Space Center being prepared for its launch. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  10. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures.

    PubMed

    Percec, Virgil; Wilson, Daniela A; Leowanawat, Pawaret; Wilson, Christopher J; Hughes, Andrew D; Kaucher, Mark S; Hammer, Daniel A; Levine, Dalia H; Kim, Anthony J; Bates, Frank S; Davis, Kevin P; Lodge, Timothy P; Klein, Michael L; DeVane, Russell H; Aqad, Emad; Rosen, Brad M; Argintaru, Andreea O; Sienkowska, Monika J; Rissanen, Kari; Nummelin, Sami; Ropponen, Jarmo

    2010-05-21

    Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.

  11. Stability studies of extracellular domain two of neural-cadherin.

    PubMed

    Vunnam, Nagamani; McCool, John K; Williamson, Michael; Pedigo, Susan

    2011-12-01

    Neural- (NCAD) and epithelial- (ECAD) cadherin are calcium-dependent cell-adhesive molecules, and are localized at excitatory and inhibitory synapses respectively. They play an important role in synaptogenesis, synapse maintenance and plasticity. The extracellular region plays a critical role in cadherin-mediated cell adhesion, and has five tandemly repeated ectodomains (EC1-EC5). Calcium binding is required for dimer formation between first two N-terminal domains (EC1-EC2). Despite similarity in the primary structure, the extracellular domains of NCAD and ECAD have different intrinsic stability, dimerization affinity and kinetics of disassembly. To investigate the origin of these differences, we are characterizing the modular domains individually. Here, we report studies of NCAD2, EC2 of NCAD. This domain is important for calcium binding and is the physical linkage between the dimerization interface in EC1 and the membrane proximal modular domains. Thermal-denaturation studies show that NCAD2 is less stable than ECAD2 and less influenced by the adjoining 7-residue, N- and C-terminal linker segments. In addition the NCAD2 constructs are less influenced by added salt. This difference is likely due to variation in the overall number and distribution of charges on these anionic proteins. Our studies indicate that despite their sequence similarity and apparently passive role in adhesive dimer formation, EC2 of E- and N-cadherins are distinctly different and may contribute to the differences in energetics and kinetics of dimerization. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    PubMed

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Survey of Modular Military Vehicles: Benefits and Burdens

    DTIC Science & Technology

    2016-01-01

    Survey of Modular Military Vehicles: BENEFITS and BURDENS Jean M. Dasch and David J. Gorsich Modularity in military vehicle design is generally...considered a positive attribute that promotes adaptability, resilience, and cost savings. The benefits and burdens of modularity are considered by...Engineering Center, vehicles were considered based on horizontal modularity , vertical modularity , and distributed modularity . Examples were given for each

  14. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    PubMed

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Kondrla, M.; Shaindlin, A.; Carabe, A.

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa’s most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  16. Creating the Infrastructure for Rapid Application Development and Processing Response to the HIRDLS Radiance Anomaly

    NASA Astrophysics Data System (ADS)

    Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.

    2005-12-01

    The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.

  17. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    PubMed

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  18. A Modular Approach for Interlocking Enzymes in Whatman Paper.

    PubMed

    Riccardi, Caterina; Kumar, Challa; Kasi, Rajeswari; McCormick, Shelby

    2018-06-13

    We report a potentially universal approach for enzyme attachment to cellulose that significantly enhances enzyme stability while retaining high activity, and involves no chemical functionalization of cellulose. In our design, bovine serum albumin (BSA) was interlocked in cellulose to form a protein-friendly surface (named BSA-Paper), while also providing COOH and NH2 groups for subsequent attachment of enzymes. The desired enzyme is then mixed with additional BSA and interlocked on BSA-Paper. The 2nd layer dilutes and crosslinks the enzyme for improved stability. Laccase was tested as a model enzyme for interlocking on BSA-Paper, and was found to retain over 100% activity and was 240 times more stable at 25 °C (half life = 180 d) than laccase. This new approach was also tested with a few other enzymes with encouraging results, thus providing a potentially universal method for stabilization of enzymes on cellulose with retention of high activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).

  20. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  1. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification

    PubMed Central

    Lech, Christopher Jacques

    2017-01-01

    Abstract Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0–13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin–avidin conjugation approach. PMID:28499037

  2. The relative efficiency of modular and non-modular networks of different size

    PubMed Central

    Tosh, Colin R.; McNally, Luke

    2015-01-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  3. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  4. Aiming Instruments On The Space Station

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Laskin, Robert; Lin, Yu-Hwan

    1989-01-01

    Report discusses capabilities and requirements for aiming scientific instruments carried aboard proposed Space Station. Addresses two issues: whether system envisioned for pointing instruments at celestial targets offers sufficiently low jitter, high accuracy, and high stability to meet scientific requirements; whether it can do so even in presence of many vibrations and other disturbances on Space Station. Salient conclusion of study, recommendation to develop pointing-actuator system including mechanical/fluid base isolator underneath reactionaless gimbal subsystem. This kind of system offers greatest promise of high performance, cost-effectiveness, and modularity for job at hand.

  5. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  6. Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1.

    PubMed

    Polster, Robert; Petropoulos, Christos J; Bonhoeffer, Sebastian; Guillaume, Frédéric

    2016-12-01

    The genotype-phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Adaptive multi-resolution Modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  8. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  9. Patterns of interactions of a large fish-parasite network in a tropical floodplain.

    PubMed

    Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M

    2012-07-01

    1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  10. Business intelligence and information systems in hospitals--distribution and usage of BI and HIS in German hospitals.

    PubMed

    Bartsch, Patrick; Lux, Thomas; Wagner, Alexander; Gabriel, Roland

    2013-01-01

    This paper shows the results of a short survey taken place in February 2013 within German Hospitals. The present studies view is bottom-up and the interviews are done directly with the hospitals CIOs. There are some effects like the G-DRG implementation in Germany that are evident in the results. The survey indicates also the different methods of adapting the solutions, either by having an all-in-one solution by a single provider or by using a modular solution from multiple providers.

  11. An infrared modular panoramic imaging objective

    NASA Astrophysics Data System (ADS)

    Palmer, Troy A.; Alexay, Christopher C.

    2004-08-01

    We describe the optical and mechanical design of an athermal infrared objective lens with an afocal anamorphic adapter. The lens presented consists of two modules: an athermal 25mm F/2.3 mid-wave IR objective lens and an optional panoramic adapter. The adapter utilizes anamorphic lenses to create unique image control. The result of which enables an independent horizontal wide field of view, while preserving the original narrow vertical field. We have designed, fabricated and tested two such lenses. A summary of the assembly and testing process is also presented.

  12. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.

    PubMed

    Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  13. KSC-06pd0395

    NASA Image and Video Library

    2006-03-01

    KENNEDY SPACE CENTER, FLA. - This aerial view shows the Press Site (in the foreground) comprising the NASA TV studio, the NASA News Center behind it, buildings used by local NBC and CBS television stations, and newly erected prefabricated buildings for local newspapers and correspondents for CNN, AP and others. A year-long project removed and replaced hurricane-damaged trailers and grandstands from the site. In the background, at right, is the newly built Operations Support Building II, which replaced modular housing and trailers in the Launch Complex 39 area. Photo credit: Cory Huston

  14. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy

    NASA Astrophysics Data System (ADS)

    Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  15. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  16. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    PubMed

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  17. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  18. The High Field Path to Practical Fusion Energy

    NASA Astrophysics Data System (ADS)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  19. Modelling Biogeochemistry Across Domains with The Modular System for Shelves and Coasts (MOSSCO)

    NASA Astrophysics Data System (ADS)

    Burchard, H.; Lemmen, C.; Hofmeister, R.; Knut, K.; Nasermoaddeli, M. H.; Kerimoglu, O.; Koesters, F.; Wirtz, K.

    2016-02-01

    Coastal biogeochemical processes extend from the atmosphere through the water column and the epibenthos into the ocean floor, laterally they are determined by freshwater inflows and open water exchange, and in situ they are mediated by physical, chemical and biological interactions. We use the new Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de) to obtain an integrated view of coastal biogeochemistry. MOSSCO is a coupling framework that builds on existing coupling technologies like the Earth System Modeling Framework (ESMF, for domain-coupling) and the Framework for Aquatic Biogeochemistry (FABM, for process coupling). MOSSCO facilitates the communication about and the integration of existing and of new process models into a threedimensional regional coastal modelling context. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. Here, we demonstrate a MOSSCO application for the southern North Sea, where atmospheric deposition, biochemical processing in the water column and the ocean floor, lateral nutrient replenishment, and wave- and current-dependent remobilization from sediments are accounted for by modular components. A multi-annual simulation yields realistic succession of the spatial gradients of dissolved nutrients, of chlorophyll variability and gross primary production rates and of benthic denitrification rates for this intriguing coastal system.

  20. Development of modularity in the neural activity of childrenʼs brains

    NASA Astrophysics Data System (ADS)

    Chen, Man; Deem, Michael W.

    2015-02-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.

  1. Connected cruise control: modelling, delay effects, and nonlinear behaviour

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor

    2016-08-01

    Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.

  2. Combining analysis with optimization at Langley Research Center. An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.

  3. On Landauer's Principle and Bound for Infinite Systems

    NASA Astrophysics Data System (ADS)

    Longo, Roberto

    2018-04-01

    Landauer's principle provides a link between Shannon's information entropy and Clausius' thermodynamical entropy. Here we set up a basic formula for the incremental free energy of a quantum channel, possibly relative to infinite systems, naturally arising by an Operator Algebraic point of view. By the Tomita-Takesaki modular theory, we can indeed describe a canonical evolution associated with a quantum channel state transfer. Such evolution is implemented both by a modular Hamiltonian and a physical Hamiltonian, the latter being determined by its functoriality properties. This allows us to make an intrinsic analysis, extending our QFT index formula, but without any a priori given dynamics; the associated incremental free energy is related to the logarithm of the Jones index and is thus quantised. This leads to a general lower bound for the incremental free energy of an irreversible quantum channel which is half of the Landauer bound, and to further bounds corresponding to the discrete series of the Jones index. In the finite dimensional context, or in the case of DHR charges in QFT, where the dimension is a positive integer, our lower bound agrees with Landauer's bound.

  4. Large scale micro-photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming

    NASA Astrophysics Data System (ADS)

    Niu, Ran; Khodorov, Stanislav; Weber, Julian; Reinmüller, Alexander; Palberg, Thomas

    2017-11-01

    Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.

  5. Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan

    This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less

  6. Promotion of family-friendliness at the Medical Faculty of Freiburg - taking stock of study participation.

    PubMed

    Binninger, Sabine; Brüstle, Peter; Korinthenberg, Rudolf; Streitlein-Böhme, Irmgard

    2012-01-01

    The survey on family-friendly study organisation in medical schools conducted by the University Hospital in Ulm has identified a need for improvement in various respects in Freiburg. Due to the specific structure of medical school and the high amount of mandatory lectures, students with children face serious problems in balancing family life and their studies at the same time. On the other hand, the freer, modular structure of the clinical curriculum in Freiburg has been mainly rated as positive by the interviewees. In order to improve the situation of students with children, the interviewees favour a more flexible curriculum in general as well as an increase in information and advice services offered by the faculty. In the first place, the results of the study encourage us to maintain the modular structure in the final two clinical years in Freiburg in view of current curriculum developments. Additionally, we aim to offer targeted support to students with children. Furthermore, a wider range of e-learning supported lectures is to help students manage their studies with childcare and family obligations.

  7. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  8. Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes.

    PubMed

    Evans, Kory M; Waltz, Brandon; Tagliacollo, Victor; Chakrabarty, Prosanta; Albert, James S

    2017-03-01

    Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo-devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies.

  9. Dynamics of modularity of neural activity in the brain during development

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  10. Aerial view of Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.

  11. PCIE interface design for high-speed image storage system based on SSD

    NASA Astrophysics Data System (ADS)

    Wang, Shiming

    2015-02-01

    This paper proposes and implements a standard interface of miniaturized high-speed image storage system, which combines PowerPC with FPGA and utilizes PCIE bus as the high speed switching channel. Attached to the PowerPC, mSATA interface SSD(Solid State Drive) realizes RAID3 array storage. At the same time, a high-speed real-time image compression patent IP core also can be embedded in FPGA, which is in the leading domestic level with compression rate and image quality, making that the system can record higher image data rate or achieve longer recording time. The notebook memory card buckle type design is used in the mSATA interface SSD, which make it possible to complete the replacement in 5 seconds just using single hand, thus the total length of repeated recordings is increased. MSI (Message Signaled Interrupts) interruption guarantees the stability and reliability of continuous DMA transmission. Furthermore, only through the gigabit network, the remote display, control and upload to backup function can be realized. According to an optional 25 frame/s or 30 frame/s, upload speeds can be up to more than 84 MB/s. Compared with the existing FLASH array high-speed memory systems, it has higher degree of modularity, better stability and higher efficiency on development, maintenance and upgrading. Its data access rate is up to 300MB/s, realizing the high speed image storage system miniaturization, standardization and modularization, thus it is fit for image acquisition, storage and real-time transmission to server on mobile equipment.

  12. Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic 'antenna-reaction center' mimic.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2015-04-21

    A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.

  13. First example of a modular porphyrinoid assembly capable of stabilizing different metal ions in a single molecular scaffold.

    PubMed

    Murugavel, Muthuchamy; Reddy, R V Ramana; Dey, Dhananjay; Sankar, Jeyaraman

    2015-10-05

    We report the synthesis and characterization of porphyrin-corrole-porphyrin (Por-Cor-Por) hybrids directly linked at the meso-meso positions for the first time. The stability and solubility of the trimer are carefully balanced by adding electron-withdrawing substituents to the corrole ring and sterically bulky groups on the porphyrins. The new hybrids are capable of stabilizing more than one metal ion in a single molecular scaffold. The versatility of the triad has been demonstrated by successfully stabilizing homo- (Ni) and heterotrinuclear (Ni-Cu-Ni) coordination motifs. The solid-state structure of the NiPor-CuCor-PorNi hybrid was revealed by single-crystal X-ray diffraction studies. The Ni(II) porphyrins are significantly ruffled and tilted by 83° from the plane of corrole. The robustness of the synthesized hybrids was reflected in the electrochemical investigations and the redox behaviour of the hybrids show that the oxidation processes are mostly corrole-centred. In particular it is worth noting that the Por-Cor-Por hybrid can further be manipulated due to the presence of substituent-free meso-positions on both the terminals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modular Courses in British Higher Education: A Critical Assessment

    ERIC Educational Resources Information Center

    Church, Clive

    1975-01-01

    The trends towards modular course structures is examined. British conceptions of modularization are compared with American interpretations of modular instruction, the former shown to be concerned almost exclusively with content, the latter attempting more radical changes in students' learning behavior. Rationales for British modular schemes are…

  15. Dissociation of modular total hip arthroplasty at the neck-stem interface without dislocation.

    PubMed

    Kouzelis, A; Georgiou, C S; Megas, P

    2012-12-01

    Modular femoral and acetabular components are now widely used, but only a few complications related to the modularity itself have been reported. We describe a case of dissociation of the modular total hip arthroplasty (THA) at the femoral neck-stem interface during walking. The possible causes of this dissociation are discussed. Successful treatment was provided with surgical revision and replacement of the modular neck components. Surgeons who use modular components in hip arthroplasties should be aware of possible early complications in which the modularity of the prostheses is the major factor of failure.

  16. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  17. Instrument pointing system applicability and orbiter stabilization for EVAL missions. Application studies

    NASA Technical Reports Server (NTRS)

    Spector, V. A.

    1977-01-01

    Related aspect of the Earth Viewing Applications Laboratory (EVAL) shuttle missions were investigated. The applicability of the gimballed Instrument Pointing System (IPS) to EVAL missions by comparing the IPS capabilities with the EVAL requirements was evaluated, and a means of stabilizing the shuttle orbiter attitude in earth viewing orientations for prolonged periods without use of the orbiter gas reaction control system was assessed.

  18. Self-organized modularization in evolutionary algorithms.

    PubMed

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  19. Convergent evolution of modularity in metabolic networks through different community structures.

    PubMed

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.

  20. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    PubMed

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  1. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics

    PubMed Central

    Goswami, Anjali; Binder, Wendy J.; Meachen, Julie; O’Keefe, F. Robin

    2015-01-01

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change. PMID:25901310

  3. Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces

    PubMed Central

    Hussain, N.; Salimi, P.

    2014-01-01

    The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157

  4. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  5. Configurable double-sided modular jet impingement assemblies for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet

    2018-05-22

    A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.

  6. Building a Practical Natural Laminar Flow Design Capability

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2017-01-01

    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  7. Convergent evolution of modularity in metabolic networks through different community structures

    PubMed Central

    2012-01-01

    Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099

  8. IDEAS Pamphlet for CES

    NASA Technical Reports Server (NTRS)

    Miranda, David J.; Santora, Joshua D.; Hochstadt, Jake

    2017-01-01

    Pamphlet on the IDEAS project for the Game Changing Development programs NASA booth at the Consumer Electronics Show. Pamphlet covers a high level overview of the technology developed and its capabilities. The technology being developed for the Integrated Display and Environmental Awareness System (IDEAS) project is a wearable computer system with an optical heads-up display (HUD) providing various means of communication and data manipulation to the user. The wearable computer, in the form of smart glasses, would allow personnel to view and modify critical information on a transparent, interactive display. This is presented in their unobstructed field of view, without taking their eyes or hands away from their critical work. The product is being designed in a modular manner so that the user can adjust the capabilities of the device depending on need. IDEAS is a full featured hardware and softwaresystem built to enhance the capabilities of theNASA work force on the ground and in space.

  9. Cancer Theory from Systems Biology Point of View

    NASA Astrophysics Data System (ADS)

    Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping

    In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.

  10. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  11. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less

  12. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  13. The Current Status of Modular Coordination. A Research Correlation Conference of Building Research Institute, Division of Engineering and Industrial Research (Fall 1959).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference presentations include--(1) a brief review of current modular standard development, (2) the statistical status of modular practice, (3) availability of modular products, and (4) educational programs on modular coordination. Included are--(1) explanatory diagrams, (2) text of an open panel discussion, and (3) a list of…

  14. Modular Design in Treaty Verification Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macarthur, Duncan Whittemore; Benz, Jacob; Tolk, Keith

    2015-01-27

    It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffsmore » described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.« less

  15. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  16. Unbalanced Stability: Applying Lessons from American Cities in Stability Operations

    DTIC Science & Technology

    2011-05-19

    teenagers congregating on street corners, public solicitation for prostitution, begging, public drinking, verbal harassment of women on the street, and...United Nations Security Council, “United Nations Security Council Resolution 1590 (2005).” http://www.un.org/ga/search/view_doc.asp?symbol=S/RES/ 1590 (2005...Security Council. “United Nations Security Council Resolution 1590 (2005).” United Nations. http://www.un.org/ga/search/view_doc.asp?symbol=S/RES/ 1590

  17. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. STS-26 Discovery, OV-103, onboard view of the Earth sunrise

    NASA Image and Video Library

    1988-10-03

    Discovery's, Orbiter Vehicle (OV) 103's, vertical stabilizer and orbital maneuvering system (OMS) pods are backdropped against the contrasted blackness of space illuminated by a colorful Earth / sunrise panorama. View was taken through the aft flight deck viewing windows during STS-26.

  19. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  20. In Silico Investigation of a Surgical Interface for Remote Control of Modular Miniature Robots in Minimally Invasive Surgery

    PubMed Central

    Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios

    2014-01-01

    Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures. PMID:25295187

  1. In silico investigation of a surgical interface for remote control of modular miniature robots in minimally invasive surgery.

    PubMed

    Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios

    2014-01-01

    Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.

  2. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?

    PubMed

    Bellay, Sybelle; Lima, Dilermando P; Takemoto, Ricardo M; Luque, José L

    2011-12-01

    Properties of ecological networks facilitate the understanding of interaction patterns in host-parasite systems as well as the importance of each species in the interaction structure of a community. The present study evaluates the network structure, functional role of all species and patterns of parasite co-occurrence in a host-parasite network to determine the organization level of a host-parasite system consisting of 170 taxa of gastrointestinal metazoans of 39 marine fish species on the coast of Brazil. The network proved to be nested and modular, with a low degree of connectance. Host-parasite interactions were influenced by host phylogeny. Randomness in parasite co-occurrence was observed in most modules and component communities, although species segregation patterns were also observed. The low degree of connectance in the network may be the cause of properties such as nestedness and modularity, which indicate the presence of a high number of peripheral species. Segregation patterns among parasite species in modules underscore the role of host specificity. Knowledge of ecological networks allows detection of keystone species for the maintenance of biodiversity and the conduction of further studies on the stability of networks in relation to frequent environmental changes.

  3. Self mobile space manipulator project

    NASA Technical Reports Server (NTRS)

    Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo

    1992-01-01

    A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.

  4. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    PubMed Central

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  5. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  6. The effect of different protease inhibitors on stability of parathyroid hormone, insulin, and prolactin levels under different lag times and storage conditions until analysis.

    PubMed

    Baykan, Ozgur; Yaman, Ali; Gerin, Fethullah; Sirikci, Onder; Haklar, Goncagul

    2017-11-01

    Proteolytic cleavage through proteases affects peptide hormone levels, which is of particular significance when the time interval between sampling and analysis is prolonged. We evaluated the stability of parathyroid hormone, insulin, and prolactin molecules (i) with different protease inhibitors such as K 2 EDTA, aprotinin, and protease inhibitor cocktail (PIC), (ii) with different lag times (6-72 hours), and (iii) under different storage temperatures (4°C vs room temperature [RT]) until analysis. Blood samples were collected into 2 sets of 5 Vacutainer ® tubes (Becton Dickinson) from 10 healthy adults. Tubes 1 and 2 were plain gel separator tubes. Tubes 3, 4, and 5 contained PIC (1%), aprotinin (500 KIU/mL), and K 2 EDTA, respectively. After centrifugation at 1300 g for 10 minutes, PIC added to tube 2 of each set. Samples were analyzed and then one set was stored at 4°C, whereas the other at RT until analysis at 6, 24, 48, and 72 hours. Hormone levels were determined with electrochemiluminescence immunoassay (ModularE170; Roche Diagnostics). The results were compared with desirable bias limits (DBL) from Westgard QC database. Insulin at RT decreases exceeding the DBL starting from 24 hours and K 2 EDTA preserved insulin. PTH exceeded the DBL at RT for 48 hours or longer and PIC addition after centrifugation inhibited its degradation. Prolactin remained stable in all tested conditions. All parameters in the plain gel separator tubes remained within DBL when stored at 4°C until 72 hours. Different proteases may degrade peptide hormones and measures should be taken to counteract these effects especially if there is a delay before analysis. © 2017 Wiley Periodicals, Inc.

  7. Will New Metal Heads Restore Mechanical Integrity of Corroded Trunnions?

    PubMed

    Derasari, Aditya; Gold, Jonathan E; Ismaily, Sabir; Noble, Philip C; Incavo, Stephen J

    2017-04-01

    Metal wear and corrosion from modular junctions in total hip arthroplasty can lead to further unwanted surgery. Trunnion tribocorrosion is recognized as an important contributor to failure. This study was performed to determine if new metal heads restore mechanical integrity of the original modular junction after impaction on corroded trunnions, and assess which variables affect stability of the new interface created at revision total hip arthroplasty. Twenty-two trunnions, cobalt-chromium (CoCr) and titanium alloy (TiAIV), (CoCr, n = 12; TiAIV, n = 10) and new metal heads were used, 10 trunnions in pristine condition and 12 with corrosion damage. Test states were performed using an MTS Machine and included the following: 1, Assembly; 2, Disassembly; 3, Assembly; 4, Toggling; and 5, Disassembly. During loading, three-dimensional motion of the head-trunnion junction was measured using a custom jig. There were no statistical differences in the tested mechanical properties between corroded and pristine trunnions implanted with a new metal femoral head. Average micromotion of the head versus trunnion interface was greatest at the start of loading, stabilizing after approximately 50 loading cycles at an average of 30.6 ± 3.2 μm. Corrosion at the trunnion does not disrupt mechanical integrity of the junction when a CoCr head is replaced with a CoCr trunnion. However, increased interface motion of a new metal head on a corroded titanium trunnion requires additional study. The evaluation of ball head size on mechanical integrity of trunnions would also be a potential subject of future investigation, as increasing the ball head size at the time of revision is not uncommon in revisions today. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. China’s Currency: A Summary of the Economic Issues

    DTIC Science & Technology

    2008-11-20

    policy is not meant to favor exports over imports, but instead to foster economic stability through currency stability, as many other countries do...farmers (due to lower-priced imports). Chinese officials view economic stability as critical to sustaining political stability; they fear an...consumption and the development of rural areas, but they claim they want to proceed at a gradual pace to ensure economic stability . These concerns have

  9. China’s Currency: A Summary of the Economic Issues

    DTIC Science & Technology

    2009-01-29

    that its currency policy is not meant to favor exports over imports, but instead to foster economic stability through currency stability, as many...have on farmers (due to lower-priced imports). Chinese officials view economic stability as critical to sustaining political stability; they fear an...domestic consumption and the development of rural areas, but they claim they want to proceed at a gradual pace to ensure economic stability . These

  10. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  11. The Modular need for the Division Signal Battalion

    DTIC Science & Technology

    2017-06-09

    findings and analyzes them to expand on them. It is with these findings and subsequent analysis that the case studies shape the answer to the three...These case studies focus on the signal leadership development and how it occurred in the pre-modular force structure, during modularity, and the...the comparative case study research. The case studies focus on signal leader development in a pre-modular signal force, a modular signal force, and

  12. Modular Fixturing System

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)

    2017-01-01

    The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.

  13. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  14. Finding the top influential bloggers based on productivity and popularity features

    NASA Astrophysics Data System (ADS)

    Khan, Hikmat Ullah; Daud, Ali

    2017-07-01

    A blog acts as a platform of virtual communication to share comments or views about products, events and social issues. Like other social web activities, blogging actions spread to a large number of people. Users influence others in many ways, such as buying a product, having a particular political or social opinion or initiating new activity. Finding the top influential bloggers is an active research domain as it helps us in various fields, such as online marketing, e-commerce, product search and e-advertisements. There exist various models to find the influential bloggers, but they consider limited features using non-modular approach. This paper proposes a new model, Popularity and Productivity Model (PPM), based on a modular approach to find the top influential bloggers. It consists of popularity and productivity modules which exploit various features. We discuss the role of each proposed and existing features and evaluate the proposed model against the standard baseline models using datasets from the real-world blogs. The analysis using standard performance evaluation measures verifies that both productivity and popularity modules play a vital role to find influential bloggers in blogging community in an effective manner.

  15. SCORPION II persistent surveillance system update

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jon

    2010-04-01

    This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.

  16. Entropy-based divergent and convergent modular pattern reveals additive and synergistic anticerebral ischemia mechanisms.

    PubMed

    Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli; Wang, Zhong

    2016-12-01

    Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on "central hit strategy" of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology.

  17. Stability and structural properties of gene regulation networks with coregulation rules.

    PubMed

    Warrell, Jonathan; Mhlanga, Musa

    2017-05-07

    Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.

  18. A Modularized Counselor-Education Program.

    ERIC Educational Resources Information Center

    Miller, Thomas V.; Dimattia, Dominic J.

    1978-01-01

    Counselor-education programs may be enriched through the use of modularized learning experiences. This article notes several recent articles on competency-based counselor education, the concepts of simulation and modularization, and describes the process of developing a modularized master's program at the University of Bridgeport in Connecticut.…

  19. On the classification of weakly integral modular categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Galindo, César; Ng, Siu-Hung

    In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less

  20. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    DTIC Science & Technology

    1979-08-01

    23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3

  1. Young children's use of features to reorient is more than just associative: further evidence against a modular view of spatial processing.

    PubMed

    Newcombe, Nora S; Ratliff, Kristin R; Shallcross, Wendy L; Twyman, Alexandra D

    2010-01-01

    Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association (Lee, Shusterman & Spelke, 2006). This account is contradicted by the data from two experiments. Experiment 1a sets the stage for Experiment 1b by showing that young children use geometric information to reorient in a complex geometric figure without a single principal axis of symmetry (an octagon). In such a figure, there are two sets of geometrically congruent corners, with four corners in each set. The addition of a colored wall leads to the existence of three geometrically congruent but, crucially, all unmarked corners; using the colored wall to distinguish among them could not be done associatively. In Experiment 1b, both 3- and 5-year-old children showed true non-associative reorientation using features by performing at above-chance levels on all-white trials. Experiment 2 used a paradigm without distinctive geometry, modeled on Lee et al. (2006), involving an equilateral triangle of hiding places located within a circular enclosure, but with a large stable feature rather than a small moveable one. Four-year-olds (the age group studied by Lee et al.) used features at above-chance levels. Thus, features can be used to reorient, in a way not dependent on association, in contradiction to the two-stage version of the modular view.

  2. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  3. Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment.

    PubMed

    Chandra, A; Ryu, J J; Karra, P; Shrotriya, P; Tvergaard, V; Gaisser, M; Weik, T

    2011-11-01

    Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single asperity contact is investigated experimentally to identify the influence of contact load, in-plane stress and chemical environment on mean wear rates. A range of known stress levels are applied to the specimen while its surface is mechanically stimulated in different non-reactive to oxidizing aqueous environments. Evolution of surface degradation is monitored, and its mechanism is elucidated. This phase allows estimation of Preston Constant which is later used in the analysis. Second phase of the work is semi-analytical and computational, where, based on the estimated Preston constant and other material and process parameters, the scratch propensity (consisting of magnitude of scratch depth and their frequency per unit area) due to micro-motion in modular hip implants is estimated. The third phase views these scratches as initial notches and utilizes a mixed-mode fatigue crack propagation model to estimate the critical crack length for onset of instability. The number of loading cycles needed to reach this critical crack length is then labeled as the expected life of the implant under given mechanical and chemical conditions. Implications of different material and process conditions to life expectancy of orthopedic implants are discussed. It is observed that transverse micro-motion, compared to longitudinal micro-motion, plays a far more critical role in determining the implant life. Patient body weight, as well as proximity of the joint fluid to its iso-electric point play key roles in determining wear rates and associated life expectancies of modular hip implants. Sustained aeration of joint fluid, as well as proper tolerancing of mating surfaces, along with a proper choice of material microstructure may be utilized to extend implant life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Study protocol: effect of playful training on functional abilities of older adults - a randomized controlled trial.

    PubMed

    Jessen, Jari Due; Lund, Henrik Hautop

    2017-01-19

    Loss of functional capabilities due to inactivity is one of the most common reasons for fall accidents, and it has been well established that loss of capabilities can be effectively reduced by physical activity. Pilot studies indicate a possible improvement in functional abilities of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles. The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group of 30 participants training with the interactive modular tiles, and a control group of 30 participants that will receive the usual care provided to non-patient elderly. The intervention period will be 12 weeks. The intervention group will perform group training (4-5 individuals for 1 h training session with each participant receiving 13 min training) on the interactive tiles twice a week. Follow-up tests include 6-min Walk Test (6MWT), the 8-ft Timed Up & Go Test (TUG), and the Chair-Stand Test (CS) from the Senior Fitness Test, along with balancing tests (static test on Wii Board and Line Walk test). Secondary outcomes related to adherence, motivation and acceptability will be investigated through semi-structured interviews. Data will be collected from pre- and post-tests. Data will be analyzed for statistically significant differences by checking that there is a Gaussian distribution and then using paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done. The trial tests for increased mobility, agility, balancing and general fitness of community-dwelling elderly as a result of playing, in this case on modular interactive tiles. A positive outcome may help preventing loss of functional capabilities due to inactivity. ClinicalTrials.gov: Nr. NCT02496702 , Initial Release date 7/7-2015.

  5. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties.

    PubMed

    Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali

    2009-01-01

    The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.

  6. Ecological modules and roles of species in heathland plant-insect flower visitor networks.

    PubMed

    Dupont, Yoko L; Olesen, Jens M

    2009-03-01

    1. Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2. Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three heathland sites in Denmark, separated by >or= 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3. Qualitative (presence-absence) interaction networks were tested for modularity. Modules were identified, and species classified into topological roles (peripherals, connectors, or hubs) using 'functional cartography by simulated annealing', a method recently developed by Guimerà & Amaral (2005a). 4. All networks were significantly modular. Each module consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5. Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each module was dominated by one or few insect groups. This pattern was consistent across sites. 6. Our study adds support to the conclusion that certain plant species and flower-visitor groups are nonrandomly and repeatedly associated. Within a network, these strongly interacting subgroups of species may exert reciprocal selection pressures on each other. Thus, modules may be candidates for the long-sought key units of co-evolution.

  7. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    PubMed

    Holme, Petter; Huss, Mikael; Lee, Sang Hoon

    2011-05-06

    The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  8. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training.

    PubMed

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L

    2018-01-01

    Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients' de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based "blind insertion" invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner's AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.

  10. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training

    PubMed Central

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.

    2018-01-01

    Introduction Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Methods Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. Results The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients’ de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based “blind insertion” invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner’s AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Conclusion Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074

  11. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  12. Robotic hand with modular extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Quigley, Morgan

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  13. Modular femoral neck fracture after primary total hip arthroplasty.

    PubMed

    Sotereanos, Nicholas G; Sauber, Timothy J; Tupis, Todd T

    2013-01-01

    The use of modular femoral stems in primary total hip arthroplasty has increased considerably in recent years. These modular components offer the surgeon the ability to independently alter version, offset, and length of the femoral component of a hip arthroplasty. This increases the surgeon's ability to accurately recreate the relevant anatomy but increases the possibilities of corrosion and fracture. Multiple case reports have highlighted fractures of these modular components. We present a case of a fracture of a modular design that has had no previously reported modular neck fractures. The patient was informed that data concerning the case would be submitted, and he consented. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 18. Detail view of central pivot pier, drive gear rack, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view of central pivot pier, drive gear rack, and stabilizing wheel, looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  15. Determinant Computation on the GPU using the Condensation Method

    NASA Astrophysics Data System (ADS)

    Anisul Haque, Sardar; Moreno Maza, Marc

    2012-02-01

    We report on a GPU implementation of the condensation method designed by Abdelmalek Salem and Kouachi Said for computing the determinant of a matrix. We consider two types of coefficients: modular integers and floating point numbers. We evaluate the performance of our code by measuring its effective bandwidth and argue that it is numerical stable in the floating point number case. In addition, we compare our code with serial implementation of determinant computation from well-known mathematical packages. Our results suggest that a GPU implementation of the condensation method has a large potential for improving those packages in terms of running time and numerical stability.

  16. Structural analysis of an off-grid tiny house

    NASA Astrophysics Data System (ADS)

    Calluari, Karina Arias; Alonso-Marroquín, Fernando

    2017-06-01

    The off-grid technologies and tiny house movement have experimented an unprecedented growth in recent years. Putting both sides together, we are trying to achieve an economic and environmental friendly solution to the higher cost of residential properties. This solution is the construction of off-grid tiny houses. This article presents a design for a small modular off-grid house made by pine timber. A numerical analysis of the proposed tiny house was performed to ensure its structural stability. The results were compared with the suggested serviceability limit state criteria, which are contended in the Australia Guidelines Standards making this design reliable for construction.

  17. The development of a non-cryogenic nitrogen/oxygen supply system

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.

    1972-01-01

    Development of the hydrazine/water electrolysis process in a manned spacecraft to provide metabolic oxygen and both oxygen and nitrogen for cabin leakage makeup was studied. Electrode development efforts were directed to stability, achieved with catalyst additives and improved processing techniques, and a higher hydrazine conversion efficiency, achieved by reducing catalyst loading on the cathodes. Extensive testing of the one-man breadboard N2/02 system provided complete characterization of cabin atmosphere control aspects. A detailed design of a prototype modular N2/02 unit was conducted. The contact heat exchanger which is an integral component of this design was fabricated and sucessfully design-verification tested.

  18. Modular properties of 6d (DELL) systems

    NASA Astrophysics Data System (ADS)

    Aminov, G.; Mironov, A.; Morozov, A.

    2017-11-01

    If super-Yang-Mills theory possesses the exact conformal invariance, there is an additional modular invariance under the change of the complex bare charge [InlineMediaObject not available: see fulltext.]. The low-energy Seiberg-Witten prepotential ℱ( a), however, is not explicitly invariant, because the flat moduli also change a - → a D = ∂ℱ/∂ a. In result, the prepotential is not a modular form and depends also on the anomalous Eisenstein series E 2. This dependence is usually described by the universal MNW modular anomaly equation. We demonstrate that, in the 6 d SU( N) theory with two independent modular parameters τ and \\widehat{τ} , the modular anomaly equation changes, because the modular transform of τ is accompanied by an ( N -dependent!) shift of \\widehat{τ} and vice versa. This is a new peculiarity of double-elliptic systems, which deserves further investigation.

  19. Towards a Formal Basis for Modular Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  20. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  1. Polymerizable ultraviolet stabilizers for outdoor use

    NASA Technical Reports Server (NTRS)

    Vogl, O.

    1982-01-01

    Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.

  2. Why Go Modular? A Review of Modular A-Level Mathematics.

    ERIC Educational Resources Information Center

    Taverner, Sally; Wright, Martin

    1997-01-01

    Attitudes, academic intentions, and attainment of students gaining a grade in A-level (Advanced level) mathematics were compared for those who followed a modular course and those assessed at the end of two years of study. Overall, the final grades of those assessed modularly were half a grade higher. (JOW)

  3. On Classification of Modular Categories by Rank: Table A.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  4. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  5. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  6. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  7. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  8. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  9. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    PubMed Central

    Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567

  10. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    USGS Publications Warehouse

    Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  11. Unraveling the disease consequences and mechanisms of modular structure in animal social networks.

    PubMed

    Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta

    2017-04-18

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  12. Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages

    PubMed Central

    del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth

    2007-01-01

    Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094

  13. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.

  14. 75 FR 56916 - Viruses, Serums, Toxins, and Analogous Products; Expiration Date Required for Serials and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... stability-indicating assay; require stability monitoring of products after licensing; and specify a single... monitoring the stability of the product and the suitability of its proposed dating period. \\1\\ To view the... of production serials beginning on the day of filling into final containers or the date final...

  15. Addressing hypertext design and conversion issues

    NASA Technical Reports Server (NTRS)

    Glusko, Robert J.

    1990-01-01

    Hypertext is a network of information units connected by relational links. A hypertext system is a configuration of hardware and software that presents a hypertext to users and allows them to manage and access the information that it contains. Hypertext is also a user interface concept that closely supports the ways that people use printed information. Hypertext concepts encourage modularity and the elimination of redundancy in data bases because information can be stored only once but viewed in any appropriate context. Hypertext is such a hot idea because it is an enabling technology in that workstations and personal computers finally provide enough local processing power for hypertext user interfaces.

  16. A new concept of imaging system: telescope windows

    NASA Astrophysics Data System (ADS)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  17. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  18. Design and performance of an automated radionuclide separator: its application on the determination of ⁹⁹Tc in groundwater.

    PubMed

    Chung, Kun Ho; Choi, Sang Do; Choi, Geun Sik; Kang, Mun Ja

    2013-11-01

    A modular automated radionuclide separator for (99)Tc (MARS Tc-99) has been developed for the rapid and reproducible separation of technetium in groundwater samples. The control software of MARS Tc-99 was developed in the LabView programming language. An automated radiochemical method for separating (99)Tc was developed and validated by the purification of (99m)Tc tracer solution eluted from a commercial (99)Mo/(99m)Tc generator. The chemical recovery and analytical time for this radiochemical method were found to be 96 ± 2% and 81 min, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Status of the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuesta, C.; Abgrall, N.; Arnquist, Isaac J.

    2015-06-09

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The current status of the Demonstrator is discussed, as are plans for its completion.

  20. STRAD Wheel: Web-Based Library for Visualizing Temporal Data.

    PubMed

    Fernondez-Prieto, Diana; Naranjo-Valero, Carol; Hernandez, Jose Tiberio; Hagen, Hans

    2017-01-01

    Recent advances in web development, including the introduction of HTML5, have opened a door for visualization researchers and developers to quickly access larger audiences worldwide. Open source libraries for the creation of interactive visualizations are becoming more specialized but also modular, which makes them easy to incorporate in domain-specific applications. In this context, the authors developed STRAD (Spatio-Temporal-Radar) Wheel, a web-based library that focuses on the visualization and interactive query of temporal data in a compact view with multiple temporal granularities. This article includes two application examples in urban planning to help illustrate the proposed visualization's use in practice.

  1. Plant intentionality and the phenomenological framework of plant intelligence

    PubMed Central

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  2. Plus or Minus 30 Years in the Language Sciences

    PubMed Central

    Newport, Elissa L.

    2010-01-01

    The language sciences – Linguistics, Psycholinguistics, and Computational Linguistics – have not been broadly represented at the Cognitive Science Society meetings of the past 30 years, but they are an important part of the heart of cognitive science. This article discusses several major themes that have dominated the controversies and consensus in the study of language and suggests the most pressing issues of the future. These themes include differences among the language science disciplines in their view of numbers and symbols and of modular and distributed cognition; and the need for an increasing prominence of questions concerning language and the brain. PMID:20730034

  3. On metric structure of ultrametric spaces

    NASA Astrophysics Data System (ADS)

    Nechaev, S. K.; Vasilyev, O. A.

    2004-03-01

    In our work we have reconsidered the old problem of diffusion at the boundary of an ultrametric tree from a 'number theoretic' point of view. Namely, we use the modular functions (in particular, the Dedekind eegr-function) to construct the 'continuous' analogue of the Cayley tree isometrically embedded in the Poincaré upper half-plane. Later we work with this continuous Cayley tree as with a standard function of a complex variable. In the framework of our approach, the results of Ogielsky and Stein on dynamics in ultrametric spaces are reproduced semi-analytically or semi-numerically. The speculation on the new 'geometrical' interpretation of replica n rarr 0 limit is proposed.

  4. Thirdfloor view looking south from the north wing along what ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Third-floor view looking south from the north wing along what had been the main corridor, after demolition and stabilization. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  5. Thirdfloor view looking north from the north wing along what ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Third-floor view looking north from the north wing along what had been the main corridor, after demolition and stabilization. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  6. Portable modular detection system

    DOEpatents

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  7. Modularity-like objective function in annotated networks

    NASA Astrophysics Data System (ADS)

    Xie, Jia-Rong; Wang, Bing-Hong

    2017-12-01

    We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.

  8. Modular organization and hospital performance.

    PubMed

    Kuntz, Ludwig; Vera, Antonio

    2007-02-01

    The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms.

  9. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  10. Full characterization of modular values for finite-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2016-06-01

    Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.

  11. Stability and Responsiveness in a Self-Organized Living Architecture

    PubMed Central

    Garnier, Simon; Murphy, Tucker; Lutz, Matthew; Hurme, Edward; Leblanc, Simon; Couzin, Iain D.

    2013-01-01

    Robustness and adaptability are central to the functioning of biological systems, from gene networks to animal societies. Yet the mechanisms by which living organisms achieve both stability to perturbations and sensitivity to input are poorly understood. Here, we present an integrated study of a living architecture in which army ants interconnect their bodies to span gaps. We demonstrate that these self-assembled bridges are a highly effective means of maintaining traffic flow over unpredictable terrain. The individual-level rules responsible depend only on locally-estimated traffic intensity and the number of neighbours to which ants are attached within the structure. We employ a parameterized computational model to reveal that bridges are tuned to be maximally stable in the face of regular, periodic fluctuations in traffic. However analysis of the model also suggests that interactions among ants give rise to feedback processes that result in bridges being highly responsive to sudden interruptions in traffic. Subsequent field experiments confirm this prediction and thus the dual nature of stability and flexibility in living bridges. Our study demonstrates the importance of robust and adaptive modular architecture to efficient traffic organisation and reveals general principles regarding the regulation of form in biological self-assemblies. PMID:23555219

  12. Supramolecular PEGylation of biopharmaceuticals

    PubMed Central

    Webber, Matthew J.; Vinciguerra, Brittany; Cortinas, Abel B.; Thapa, Lavanya S.; Jhunjhunwala, Siddharth; Isaacs, Lyle; Langer, Robert; Anderson, Daniel G.

    2016-01-01

    The covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction. Here, a platform approach to biopharmaceutical modification is described that relies on noncovalent, supramolecular host–guest interactions to endow proteins with prosthetic functionality. Specifically, a series of cucurbit[7]uril (CB[7])–PEG conjugates are shown to substantially increase the stability of three distinct protein drugs in formulation. Leveraging the known and high-affinity interaction between CB[7] and an N-terminal aromatic residue on one specific protein drug, insulin, further results in altering of its pharmacological properties in vivo by extending activity in a manner dependent on molecular weight of the attached PEG chain. Supramolecular modification of therapeutic proteins affords a noncovalent route to modify its properties, improving protein stability and activity as a formulation excipient. Furthermore, this offers a modular approach to append functionality to biopharmaceuticals by noncovalent modification with other molecules or polymers, for applications in formulation or therapy. PMID:27911829

  13. On the role of sparseness in the evolution of modularity in gene regulatory networks

    PubMed Central

    2018-01-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459

  14. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    PubMed

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  15. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  16. Active vibration suppression of helicopter horizontal stabilizers

    NASA Astrophysics Data System (ADS)

    Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio

    2017-04-01

    Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.

  17. Modular Mayhem? A Case Study of the Development of the A-Level Science Curriculum in England

    ERIC Educational Resources Information Center

    Hayward, Geoff; McNicholl, Jane

    2007-01-01

    This article investigates the costs and benefits of the increased use of modular or unitized qualification designs through a case study of the GCE A-level science curriculum in England. Following a brief review of the development of modular A-levels, the various proposed advantages of modularity--short-term goals and regular feedback, flexibility…

  18. Simulation of value stream mapping and discrete optimization of energy consumption in modular construction

    NASA Astrophysics Data System (ADS)

    Chowdhury, Md Mukul

    With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.

  19. Framework for Defining and Assessing Benefits of a Modular Assembly Design Approach for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.

    2006-01-01

    A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.

  20. Modular Knowledge Representation and Reasoning in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  1. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  2. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  3. Modular multiplication in GF(p) for public-key cryptography

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub

    Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.

  4. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  5. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  6. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less

  7. The Magneto-optical Filter, Working Principles and Recent Progress

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Rhodes, E. J., Jr.

    1984-01-01

    The Magneto-Optical Filter is described which allows simultaneous magnetic and velocity measurements (in both imaging and non-imaging modes) without the need for a spectrograph. In this way the stability and alignment problems of the spectrograph are completely overcome. Its major advantages are: wavelength absolute reference and stability, high signal to noise ratio and independence of the transmission profile from the incidence angle of the solar beam. It is an imaging instrument allowing high wave number analysis in the solar oscillation spectrum and a continuous monitoring of the image position through the chromospheric facular structures. The apparatus in use at Mt. Wilson is assembled in a modular form. The most important part of it is a glass cell containing the sodium vapor. The filter is easy to use but the cell is not easy to construct in an optimal way. The technology is in progress both to use Na and K together and to prevent the windows from becoming coated during a long-term operation.

  8. Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films.

    PubMed

    Hsiao, Yu-Cheng; Lee, Wei

    2015-08-24

    A non-iridescent cholesterol liquid crystal (CLC) thin film is demonstrated by using the polymer-stabilized electrohydrodymanic (PSEHD) method. The photopolymerized cell made from a CLC/monomer mixture exhibits an optically stable gridlike pattern. The helical axis of thus-formed CLC is aligned with the hydrodynamic flow induced by a space charge motion, and the arrayed CLC grid configuration renders a wide viewing angle thanks to the limited color shift at various lines of sight. The formation of the PSEHD structure was verified with polarized optical microscopy, ascertaining that the electrohydrodymanic pattern can be photo-cured or stabilized. The PSEHD CLC is simple to fabricate and potentially suitable for applications in wide-viewing-angle or non-iridescent devices.

  9. Detail view of the lower portion of the vertical stabilizer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the lower portion of the vertical stabilizer of the Orbiter Discovery. The section below the rudder, often referred to as the "stinger", is used to house the orbiter drag chute assembly. The system consisted of a mortar deployed pilot chute, the main drag chute, a controller assembly and an attach/jettison mechanism. This system was a modification to the original design of the Orbiter Discovery to safely reduce the roll to stop distance without adversely affecting the vehicle handling qualities. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Portable or Modular? There Is a Difference....

    ERIC Educational Resources Information Center

    Morton, Mike

    2002-01-01

    Describes differences between two types of school facilities: portable (prebuilt, temporary wood structure installed on site) and modular (method of construction for permanent buildings). Provides details of modular construction. (PKP)

  11. Highly-Efficient and Modular Medium-Voltage Converters

    DTIC Science & Technology

    2015-09-28

    HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.

  12. Toward modular biological models: defining analog modules based on referent physiological mechanisms

    PubMed Central

    2014-01-01

    Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169

  13. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    PubMed

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.

  14. A modular optical sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.

  15. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.

    PubMed

    Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

  16. Biochemical defects of mutant nudel alleles causing early developmental arrest or dorsalization of the Drosophila embryo.

    PubMed Central

    LeMosy, E K; Leclerc, C L; Hashimoto, C

    2000-01-01

    The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles. PMID:10628985

  17. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    PubMed

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  19. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

    PubMed Central

    Spröwitz, Alexander T.; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware. PMID:24639645

  20. Multiple intermediates on the energy landscape of a 15-HEAT-repeat protein

    PubMed Central

    Tsytlonok, Maksym; Craig, Patricio O.; Sivertsson, Elin; Serquera, David; Perrett, Sarah; Best, Robert B.; Wolynes, Peter G.; Itzhaki, Laura S.

    2014-01-01

    Repeat proteins are a special class of modular, non-globular proteins composed of small structural motifs arrayed to form elongated architectures and stabilised solely by short-range contacts. We find a remarkable complexity in the unfolding of the large HEAT repeat protein PR65/A. In contrast to what has been seen for small repeat proteins in which unfolding propagates from one end, the HEAT array of PR65/A ruptures at multiple distant sites, leading to intermediate states with non-contiguous folded subdomains. Kinetic analysis allows us to define a network of intermediates and to delineate the pathways that connect them. There is a dominant sequence of unfolding, reflecting a non-uniform distribution of stability across the repeat array; however the unfolding of certain intermediates is competitive, leading to parallel pathways. Theoretical models accounting for the heterogeneous contact density in the folded structure are able to rationalize the variation in stability across the array. This variation in stability also suggests how folding may direct function in a large repeat protein: The stability distribution enables certain regions to present rigid motifs for molecular recognition while affording others flexibility to broaden the search area as in a fly-casting mechanism. Thus PR65/A uses the two ends of the repeat array to bind diverse partners and thereby coordinate the dephosphorylation of many different substrates and of multiple sites within hyperphosphorylated substrates. PMID:24120762

  1. Design considerations for a compact infrared airborne imager to meet alignment and assembly requirements

    NASA Astrophysics Data System (ADS)

    Spencer, Harvey

    2002-09-01

    Helicopter mounted optical systems require compact packaging, good image performance (approaching the diffraction-limit), and must survive and operate in a rugged shock and thermal environment. The always-present requirement for low weight in an airborne sensor is paramount when considering the optical configuration. In addition, the usual list of optical requirements which must be satisfied within narrow tolerances, including field-of-view, vignetting, boresight, stray light rejection, and transmittance drive the optical design. It must be determined early in the engineering process which internal optical alignment adjustment provisions must be included, which may be included, and which will have to be omitted, since adding alignment features often conflicts with the requirement for optical component stability during operation and of course adds weight. When the system is to be modular and mates with another optical system, a telescope designed by different contractor in this case, additional alignment requirements between the two systems must be specified and agreed upon. Final delivered cost is certainly critical and "touch labor" assembly time must be determined and controlled. A clear plan for the alignment and assembly steps must be devised before the optical design can even begin to ensure that an arrangement of optical components amenable to adjustment is reached. The optical specification document should be written contemporaneously with the alignment plan to insure compatibility. The optics decisions that led to the success of this project are described and the final optical design is presented. A description of some unique pupil alignment adjustments, never performed by us in the infrared, is described.

  2. Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide

    NASA Astrophysics Data System (ADS)

    Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.

    Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  3. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy† †Electronic supplementary information (ESI) available: Details about the methodology, LabView scripts, experimental set-ups, additional spectra and self-optimization can be found in the SI. See DOI: 10.1039/c4sc03075c Click here for additional data file.

    PubMed Central

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza

    2015-01-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19F, 13C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations. PMID:29560211

  4. ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A

    NASA Technical Reports Server (NTRS)

    Terwilliger, Robert B.; Campbell, Roy H.

    1985-01-01

    ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects.

  5. Automated culture system experiments hardware: developing test results and design solutions.

    PubMed

    Freddi, M; Covini, M; Tenconi, C; Ricci, C; Caprioli, M; Cotronei, V

    2002-07-01

    The experiment proposed by Prof. Ricci University of Milan is funded by ASI with Laben as industrial Prime Contractor. ACS-EH (Automated Culture System-Experiment Hardware) will support the multigenerational experiment on weightlessness with rotifers and nematodes within four Experiment Containers (ECs) located inside the European Modular Cultivation System (EMCS) facility..Actually the Phase B is in progress and a concept design solution has been defined. The most challenging aspects for the design of such hardware are, from biological point of view the provision of an environment which permits animal's survival and to maintain desiccated generations separated and from the technical point of view, the miniaturisation of the hardware itself due to the reduce EC provided volume (160mmx60mmx60mm). The miniaturisation will allow a better use of the available EMCS Facility resources (e.g. volume. power etc.) and to fulfil the experiment requirements. ACS-EH, will be ready to fly in the year 2005 on boar the ISS.

  6. Color in the Cortex—single- and double-opponent cells

    PubMed Central

    Shapley, Robert; Hawken, Michael

    2011-01-01

    This is a review of the research during the past 25 years on cortical processing of color signals. At the beginning of the period the modular view of cortical processing predominated. However, at present an alternative view, that color and form are linked inextricably in visual cortical processing, is more persuasive than it seemed in 1985. Also, the role of the primary visual cortex, V1, in color processing now seems much larger than it did in 1985. The re-evaluation of the important role of V1 in color vision was caused in part by investigations of human V1 responses to color, measured with functional magnetic resonance imaging, fMRI, and in part by the results of numerous studies of single-unit neurophysiology in non-human primates. The neurophysiological results have highlighted the importance of double-opponent cells in V1. Another new concept is population coding of hue, saturation, and brightness in cortical neuronal population activity. PMID:21333672

  7. View of the Lunar Portable Magnetometer (LPM)

    NASA Image and Video Library

    1970-12-21

    S70-56721 (December 1970) --- A close-up view of the Lunar Portable Magnetometer (LPM), which will be used by the crew of the Apollo 14 lunar landing mission during the second extravehicular activity (EVA). The LPM's components, a tripod-mounted flux-gate magnetometer sensor head and an electronics data package, connected by a 50-feet flat cable, function together to measure variations in the lunar magnetic field at several points on the geological traverse. Data gathered will be used to determine the location, strength and dimensions of magnetic sources, as well as knowledge of the local and total selenological structure. The LPM will be carried on the Modular Equipment Transporter (MET), and deployed by the lunar module pilot, who will align the sensor head at least 35 feet from the data package. The LM pilot will then return to the MET and verbally relay the LPM readouts to Earth. Astronaut Edgar D. Mitchell is the lunar module pilot for the Apollo 14 lunar landing mission.

  8. Modular High Voltage Power Supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matthew R.

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  9. Hierarchical functional modularity in the resting-state human brain.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  10. Stability of Soil Organic Matter in Alpine Ecosystems: No Relationship with Vegetation

    NASA Astrophysics Data System (ADS)

    Matteodo, M.; Sebag, D.; Vittoz, P.; Verrecchia, E. P.

    2016-12-01

    There is an emerging understanding of mechanisms governing soil organic matter (SOM) stability, which is challenging the historical view of carbon persistence1. According to this alternative vision, SOM stability is not directly regulated by the molecular structure of plant inputs (i.e. the historical view), but the biotic and abiotic conditions of the surrounding environment which play a major role and mediate the influence of compound chemistry. The persistence of SOM is thus influenced by ecological conditions, controlling the access and activity of decomposers' enzymes and being ecosystem-dependent. In this study, we investigated differences of (1) carbon content, and (2) stability of organic matter in litter and organomineral layers from the most widespread plant communities at the subalpine-alpine level of the Swiss Alps. For this purpose, 230 samples from 47 soil profiles have been analysed across seven plant communities, along a subalpine-alpine elevation gradient. Both calcareous and siliceous grasslands were studied, as well as snowbed and ridge communities. Aboveground litter and A horizons were sampled and analysed using Rock-Eval Pyrolysis, a proxy-technique commonly used for the investigation of organic matter composition and stability2,3. Results show that the litter layers of the seven plant communities are significantly different in terms of total organic carbon (TOC) content, but slightly variable in terms of stability. The situation is radically different in the organomineral horizons where the amount of organic carbon is interestingly homogeneous, as well as the SOM stability. In mineral horizons, the amount and stability of SOM are mainly driven by the geological settings, and therefore vary in the different plant communities. These results show a clear disconnection between organic, organomineral, and mineral horizons in terms of factors governing soil organic matter stability. Consistent with the recent view of the carbon balance, plant input seems to influence the litter C dynamics (qualitatively and quantitatively) but not the SOM stability in A and mineral horizons. References 1Schmidt MWI, et al. (2011) Nature 478, 49-56. 2Disnar JR, et al. (2003) Org. Geochem. 34, 327-343. 3Sebag D, et al. (2006) Eur. J. of Soil Sci. 57, 344-355.

  11. Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS

    DTIC Science & Technology

    2016-08-24

    ADAPT DESIGN: A METHODOLOGY FOR ENABLING MODULAR DESIGN FOR MISSION SPECIFIC SUAS Zachary C. Fisher David Locascio K. Daniel Cooksey...vehicle’s small scale. This paper considers a different approach to SUAS design aimed at addressing this issue. In this approach, a hybrid modular and...Two types of platforms have been identified: scalable platforms where variants are produced by varying scalable design variables, and modular

  12. The effects of predictor method factors on selection outcomes: A modular approach to personnel selection procedures.

    PubMed

    Lievens, Filip; Sackett, Paul R

    2017-01-01

    Past reviews and meta-analyses typically conceptualized and examined selection procedures as holistic entities. We draw on the product design literature to propose a modular approach as a complementary perspective to conceptualizing selection procedures. A modular approach means that a product is broken down into its key underlying components. Therefore, we start by presenting a modular framework that identifies the important measurement components of selection procedures. Next, we adopt this modular lens for reviewing the available evidence regarding each of these components in terms of affecting validity, subgroup differences, and applicant perceptions, as well as for identifying new research directions. As a complement to the historical focus on holistic selection procedures, we posit that the theoretical contributions of a modular approach include improved insight into the isolated workings of the different components underlying selection procedures and greater theoretical connectivity among different selection procedures and their literatures. We also outline how organizations can put a modular approach into operation to increase the variety in selection procedures and to enhance the flexibility in designing them. Overall, we believe that a modular perspective on selection procedures will provide the impetus for programmatic and theory-driven research on the different measurement components of selection procedures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.

  14. Comprehensive benefits analysis of steel structure modular residence based on the entropy evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Wang, Li; Jiang, Pengming

    2017-04-01

    Steel structure modular residence is the outstanding residential industrialization. It has many advantages, such as the low whole cost, high resource recovery, a high degree of industrialization. This paper compares the comprehensive benefits of steel structural in modular buildings with prefabricated reinforced concrete residential from economic benefits, environmental benefits, social benefits and technical benefits by the method of entropy evaluation. Finally, it is concluded that the comprehensive benefits of steel structural in modular buildings is better than that of prefabricated reinforced concrete residential. The conclusion of this study will provide certain reference significance to the development of steel structural in modular buildings in China.

  15. OpenStructure: a flexible software framework for computational structural biology.

    PubMed

    Biasini, Marco; Mariani, Valerio; Haas, Jürgen; Scheuber, Stefan; Schenk, Andreas D; Schwede, Torsten; Philippsen, Ansgar

    2010-10-15

    Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure consists primarily of a set of libraries written in C++ with a cleanly designed application programmer interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the requirements for high efficiency and ease of use. Powerful selection queries and the notion of entity views to represent these selections greatly facilitate the development and implementation of algorithms on structural data. The modular integration of computational core methods with powerful visualization tools makes OpenStructure an ideal working and development environment. Several applications, such as the latest versions of IPLT and QMean, have been implemented based on OpenStructure-demonstrating its value for the development of next-generation structural biology algorithms. Source code licensed under the GNU lesser general public license and binaries for MacOS X, Linux and Windows are available for download at http://www.openstructure.org. torsten.schwede@unibas.ch Supplementary data are available at Bioinformatics online.

  16. Modular Classification of Endoscopic Endonasal Transsphenoidal Approaches to Sellar Region: Anatomic Quantitative Study.

    PubMed

    Belotti, Francesco; Doglietto, Francesco; Schreiber, Alberto; Ravanelli, Marco; Ferrari, Marco; Lancini, Davide; Rampinelli, Vittorio; Hirtler, Lena; Buffoli, Barbara; Bolzoni Villaret, Andrea; Maroldi, Roberto; Rodella, Luigi Fabrizio; Nicolai, Piero; Fontanella, Marco Maria

    2018-01-01

    Endoscopic visualization does not necessarily correspond to an adequate working space. The need for balancing invasiveness and adequacy of sellar tumor exposure has recently led to the description of multiple endoscopic endonasal transsphenoidal approaches. Comparative anatomic data on these variants are lacking. We sought to quantitatively compare endoscopic endonasal transsphenoidal approaches to the sella and parasellar region, using the concept of "surgical pyramid." Four endoscopic transsphenoidal approaches were performed in 10 injected specimens: 1) hemisphenoidotomy; 2) transrostral; 3) extended transrostral (with superior turbinectomy); and 4) extended transrostral with posterior ethmoidectomy. ApproachViewer software (part of GTx-Eyes II, University Health Network, Toronto, Canada) with a dedicated navigation system was used to quantify the surgical pyramid volume, as well as exposure of sellar and parasellar areas. Statistical analyses were performed with Friedman's tests and Nemenyi's procedure. Hemisphenoidotomy provided limited exposure of the sellar area and a small working volume. A transrostral approach was necessary to expose the entire sella. Exposure of lateral parasellar areas required superior turbinectomy or posterior ethmoidectomy. The differences between each of the modules was statistically significant. The present study validates, from an anatomic point of view, a modular classification of endoscopic endonasal transsphenoidal approaches to the sellar region. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The new generation of OpenGL support in ROOT

    NASA Astrophysics Data System (ADS)

    Tadel, M.

    2008-07-01

    OpenGL has been promoted to become the main 3D rendering engine of the ROOT framework. This required a major re-modularization of OpenGL support on all levels, from basic window-system specific interface to medium-level object-representation and top-level scene management. This new architecture allows seamless integration of external scene-graph libraries into the ROOT OpenGL viewer as well as inclusion of ROOT 3D scenes into external GUI and OpenGL-based 3D-rendering frameworks. Scene representation was removed from inside of the viewer, allowing scene-data to be shared among several viewers and providing for a natural implementation of multi-view canvas layouts. The object-graph traversal infrastructure allows free mixing of 3D and 2D-pad graphics and makes implementation of ROOT canvas in pure OpenGL possible. Scene-elements representing ROOT objects trigger automatic instantiation of user-provided rendering-objects based on the dictionary information and class-naming convention. Additionally, a finer, per-object control over scene-updates is available to the user, allowing overhead-free maintenance of dynamic 3D scenes and creation of complex real-time animations. User-input handling was modularized as well, making it easy to support application-specific scene navigation, selection handling and tool management.

  18. SCORPION II persistent surveillance system with universal gateway

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jonathan; Brunck, Albert

    2009-05-01

    This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.

  19. Entropy-based divergent and convergent modular pattern reveals additive and synergistic anticerebral ischemia mechanisms

    PubMed Central

    Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli

    2016-01-01

    Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on “central hit strategy” of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology. PMID:27480252

  20. Brain Modularity Mediates the Relation between Task Complexity and Performance

    NASA Astrophysics Data System (ADS)

    Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael

    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.

  1. Research on multi-switch synchronization based on single trigger generator

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Cheng, Xinbing; Yang, Jianhua; Yang, Xiao; Chen, Rong

    2018-05-01

    Multi-switch synchronous operation is an effective approach to provide high-voltage high-current for a high-power device. In this paper, we present a synchronization system with a corona stabilized triggered switch (CSTS) as main switch and an all-solid modularized quasi-square pulse forming system. In addition, this paper provides explanations of low jitter and accurate triggering of CSTS based on streamer theory. Different switches of the module are triggered by an electrical pulse created by a trigger generator, a quasi-square pulse can be created on the load. The experimental results show that it is able to switch voltages in excess of 40kV with nanosecond system jitter for three-module synchronous operation.

  2. High-stability Shuttle pointing system

    NASA Technical Reports Server (NTRS)

    Van Riper, R.

    1981-01-01

    It was recognized that precision pointing provided by the Orbiter's attitude control system would not be good enough for Shuttle payload scientific experiments or certain Defense department payloads. The Annular Suspension Pointing System (ASPS) is being developed to satisfy these more exacting pointing requirements. The ASPS is a modular pointing system which consists of two principal parts, including an ASPS Gimbal System (AGS) which provides three conventional ball-bearing gimbals and an ASPS Vernier System (AVS) which magnetically isolates the payload. AGS performance requirements are discussed and an AGS system description is given. The overall AGS system consists of the mechanical hardware, sensors, electronics, and software. Attention is also given to system simulation and performance prediction, and support facilities.

  3. Calibration requirements and methodology for remote sensors viewing the ocean in the visible

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1987-01-01

    The calibration requirements for ocean-viewing sensors are outlined, and the present methods of effecting such calibration are described in detail. For future instruments it is suggested that provision be made for the sensor to view solar irradiance in diffuse reflection and that the moon be used as a source of diffuse light for monitoring the sensor stability.

  4. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  5. Modularity: An Application of General Systems Theory to Military Force Development

    DTIC Science & Technology

    2005-01-01

    1999). Context, modularity, and the cultural constitution of development. In P. Lloyd & C. Fernyhough (Eds.), Lev Vygotsky : Critical assessments...of General Systems Theory to Military Force Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Prescribed by ANSI Std Z39-18 MODULARITY: AN APPLICATION OF GENERAL SYSTEMS THEORY TO MILITARY FORCE DEVELOPMENT 279 R SEARCH MODULARITY: AN APPLICATION OF

  6. Gone to Fiddler’s Green: Reconnaissance and Security for the Corps

    DTIC Science & Technology

    2011-05-01

    based reconnaissance and security organization. A U.S. corps in major combat operations must contend with an enemy’s armored advance guard or...screen, guard, and cover. Andrew D. Goldin, “ Ruminations on Modular Cavalry,” Armor Magazine, (September-October 2006): 14. 22 Goldin, “ Ruminations ...on Modular Cavalry,” 15. 23 Goldin, “ Ruminations on Modular Cavalry,” 16. 10 capabilities compared to modular force brigade combat teams in support

  7. Local modular Hamiltonians from the quantum null energy condition

    NASA Astrophysics Data System (ADS)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  8. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  9. Measuring, Enabling and Comparing Modularity, Regularity and Hierarchy in Evolutionary Design

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2005-01-01

    For computer-automated design systems to scale to complex designs they must be able to produce designs that exhibit the characteristics of modularity, regularity and hierarchy - characteristics that are found both in man-made and natural designs. Here we claim that these characteristics are enabled by implementing the attributes of combination, control-flow and abstraction in the representation. To support this claim we use an evolutionary algorithm to evolve solutions to different sizes of a table design problem using five different representations, each with different combinations of modularity, regularity and hierarchy enabled and show that the best performance happens when all three of these attributes are enabled. We also define metrics for modularity, regularity and hierarchy in design encodings and demonstrate that high fitness values are achieved with high values of modularity, regularity and hierarchy and that there is a positive correlation between increases in fitness and increases in modularity. regularity and hierarchy.

  10. NASA’s Universe of Learning: Providing a Direct Connection to NASA Science for Learners of all Ages with ViewSpace

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience needs and using evaluation to support a dedicated user base across the country.

  11. Protein stability: a crystallographer’s perspective

    PubMed Central

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758

  12. Division Artillery: Linking Strategy to Tactics

    DTIC Science & Technology

    2017-05-25

    operational artist, while within modularity , there is no advocate for ensuring that subordinate field artillery units are getting the manning...adaptability, and synchronization. The division artillery is the operational artist, while within modularity , there is no advocate for ensuring...30 Modularization

  13. Status of the Majorana Demonstrator

    DOE PAGES

    Cuesta, C.; Abgrall, N.; Arnquist, I. J.; ...

    2015-08-06

    In this study, the Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. Lastly, the current status of the Demonstrator is discussed, as are plansmore » for its completion.« less

  14. a Generic Augmented Reality Telescope for Heritage Valorization

    NASA Astrophysics Data System (ADS)

    Chendeb, S.; Ridene, T.; Leroy, L.

    2013-08-01

    Heritage valorisation is one of the greatest challenges that face countries in preserving their own identity from the globalization process. One of those scientific areas which allow this valorisation to be more attractive and at its bravest is the augmented reality. In this paper, we present an innovative augmented reality telescope used by tourists to explore a panoramic view with optional zooming facility, allowing thereby an accurate access to heritage information. The telescope we produced is generic, ergonomic, extensible, and modular by nature. It is designed to be conveniently set up anywhere in the world. We improve the practical use of our system by testing it right in the heart of Paris within a specific use case.

  15. A perception system for a planetary explorer

    NASA Technical Reports Server (NTRS)

    Hebert, M.; Krotkov, E.; Kanade, T.

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.

  16. Modular thought in the circuit analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2018-04-01

    Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.

  17. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  18. Defense Acquisition Research Journal. Volume 23, Number 1, Issue 76, January 2016

    DTIC Science & Technology

    2016-04-21

    January 2016 Vol. 23 No. 1 | ISSUE 76 The Method MATTERS Article List ARJ Extra Survey of Modular Military Vehicles: Benefits and Burdens Jean M...15 years. p. 2 Survey of Modular Military Vehicles: Benefits and Burdens Jean M. Dasch and David J. Gorsich Military vehicles can be designed from a... modular standpoint to maximize cost savings and/or adapt- ability. This article surveys vehicle modularity from a historical viewpoint and considers

  19. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  20. Modular health services: a single case study approach to the applicability of modularity to residential mental healthcare.

    PubMed

    Soffers, Rutger; Meijboom, Bert; van Zaanen, Jos; van der Feltz-Cornelis, Christina

    2014-05-09

    The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research.

  1. Modular health services: a single case study approach to the applicability of modularity to residential mental healthcare

    PubMed Central

    2014-01-01

    Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research. PMID:24886367

  2. Modularization and Flexibilization.

    ERIC Educational Resources Information Center

    Van Meel, R. M.

    Publications in the fields of educational science, organization theory, and project management were analyzed to identify the possibilities that modularization offers to institutions of higher professional education and to obtain background information for use in developing a method for modularization in higher professional education. It was…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfferich, Julian; Lyubimov, Ivan; Reid, Daniel

    Glasses produced via physical vapor deposition can display greater kinetic stability and lower enthalpy than glasses prepared by liquid cooling. While the reduced enthalpy has often been used as a measure of the stability, it is not obvious whether dynamic measures of stability provide the same view. Here, we study dynamics in vapor-deposited and liquid-cooled glass films using molecular simulations of a bead-spring polymer model as well as a Lennard-Jones binary mixture in two and three dimensions. We confirm that the dynamics in vapor-deposited glasses is indeed slower than in ordinary glasses. We further show that the inherent structure energymore » is a good reporter of local dynamics, and that aged systems and glasses prepared by cooling at progressively slower rates exhibit the same behavior as vapor-deposited materials when they both have the same inherent structure energy. These findings suggest that the stability inferred from measurements of the energy is also manifested in dynamic observables, and they strengthen the view that vapor deposition processes provide an effective strategy for creation of stable glasses.« less

  4. Functional modularity in lake-dwelling characin fishes of Mexico

    PubMed Central

    Bautista, Amando; Herder, Fabian; Doadrio, Ignacio

    2017-01-01

    Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi, which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi). Skull shape showed significant differences among species and sex (P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi. PMID:28951817

  5. Functional modularity in lake-dwelling characin fishes of Mexico.

    PubMed

    Ornelas-García, Claudia Patricia; Bautista, Amando; Herder, Fabian; Doadrio, Ignacio

    2017-01-01

    Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi , which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi ) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi ). Skull shape showed significant differences among species and sex ( P  < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi .

  6. Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F

    2010-01-01

    The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.

  7. "Far" and "Near" Visual Acuity While Walking and the Collective Contributions of Non-Ocular Mechanisms to Gaze Stabilization

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.

    2006-01-01

    Gaze stabilization was quantified in subjects (n=11) as they walked on a motorized treadmill (1.8 m/s) and viewed visual targets at two viewing distances. A "far" target was positioned at 4 m (FAR) in front of the subject and the "near" target was placed at a distance of 0.5 m (NEAR). A direct measure of visual acuity was used to assess the overall effectiveness of the gaze stabilization system. The contributions of nonocular mechanisms to the gaze goal were also quantified using a measure of the distance between the subject and point in space where fixation of the visual target would require the least eye movement amplitude (i.e. the head fixation distance (HFD)). Kinematic variables mirrored those of previous investigations with the vertical trunk translation and head pitch signals, and the lateral translation and head yaw signals maintaining what appear as antiphase relationships. However, an investigation of the temporal relationships between the maxima and minima of the vertical translation and head pitch signals show that while the maximum in vertical translation occurs at the point of the minimum head pitch signal, the inverse is not true. The maximum in the head pitch signal lags the vertical translation minimum by an average of greater than 12 percent of the step cycle time. Three HFD measures, one each for data in the sagittal and transverse planes, and one that combined the movements from both planes, all revealed changes between the FAR and NEAR target viewing conditions. This reorganization of the nonocular degrees of freedom while walking was consistent with a strategy to reduce the magnitude of the eye movements required when viewing the NEAR target. Despite this reorganization, acuity measures show that image stabilization is not occurring while walking and viewing the NEAR target. Group means indicate that visual acuity is not affected while walking in the FAR condition, but a decrement of 0.15 logMAR (i.e. 1.5 eye chart lines) exists between the standing and walking acuity measures when viewing the NEAR target.

  8. Models of vocal learning in the songbird: Historical frameworks and the stabilizing critic.

    PubMed

    Nick, Teresa A

    2015-10-01

    Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning. © 2014 Wiley Periodicals, Inc.

  9. Development and analysis of a modular approach to payload specialist training. [training of spacecrews for Spacelab

    NASA Technical Reports Server (NTRS)

    Watters, H.; Steadman, J.

    1976-01-01

    A modular training approach for Spacelab payload crews is described. Representative missions are defined for training requirements analysis, training hardware, and simulations. Training times are projected for each experiment of each representative flight. A parametric analysis of the various flights defines resource requirements for a modular training facility at different flight frequencies. The modular approach is believed to be more flexible, time saving, and economical than previous single high fidelity trainer concepts. Block diagrams of training programs are shown.

  10. A Modular Set of Mixed Reality Simulators for Blind and Guided Procedures

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0113 TITLE: A Modular Set of Mixed Reality Simulators for “blind” and Guided Procedures PRINCIPAL INVESTIGATOR...2015 – 07/31/2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Modular Set of Mixed Reality Simulators for “Blind” and Guided Procedures 5b...editor developed to facilitate creation by non-technical educators of ITs for the set of modular simulators, (c) a curriculum for self-study and self

  11. Compositions and methods for adoptive and active immunotherapy

    DOEpatents

    Fahmy, Tarek; Steenblock, Erin

    2014-01-14

    Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.

  12. Nuclear Energy Policy

    DTIC Science & Technology

    2009-12-10

    Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,

  13. Investigation on changes of modularity and robustness by edge-removal mutations in signaling networks.

    PubMed

    Truong, Cong-Doan; Kwon, Yung-Keun

    2017-12-21

    Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks. In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis. Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.

  14. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, whichmore » is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.« less

  15. Mapping and Engineering Functional Domains of the Assembly Activating Protein of Adeno-Associated Viruses.

    PubMed

    Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind

    2018-04-25

    Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions. Copyright © 2018 American Society for Microbiology.

  16. Finding modules and hierarchy in weighted financial network using transfer entropy

    NASA Astrophysics Data System (ADS)

    Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup

    2016-04-01

    We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.

  17. Automatic Modeling and Simulation of Modular Robots

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  18. Curriculum Development through YTS Modular Credit Accumulation.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This document reports the evaluation of the collaborately developed Modular Training Framework (MainFrame), a British curriculum development project, built around a commitment to a competency-based, modular credit accumulation program. The collaborators were three local education authorities (LEAs), those of Bedfordshire, Haringey, and Sheffield,…

  19. Modular support blocks for fluid lines

    NASA Technical Reports Server (NTRS)

    Dimino, J. M.; Deskin, R. D.

    1974-01-01

    Modular line block comprises matched modular elements machined to accept fluid lines of different diameters. Modules can support different fluid-line configurations. Top and bottom surfaces are machined to accept dovetail strip used for holding modules together. End modules have holes drilled through to accept fastening screws.

  20. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity

    PubMed Central

    Zhang, Pan; Moore, Cristopher

    2014-01-01

    Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096

  1. Multiple D3-Instantons and Mock Modular Forms II

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris

    2018-03-01

    We analyze the modular properties of D3-brane instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In Part I, we found a necessary condition for the existence of an isometric action of S-duality on this moduli space: the generating function of DT invariants in the large volume attractor chamber must be a vector-valued mock modular form with specified modular properties. In this work, we prove that this condition is also sufficient at two-instanton order. This is achieved by producing a holomorphic action of {SL(2,Z)} on the twistor space which preserves the holomorphic contact structure. The key step is to cancel the anomalous modular variation of the Darboux coordinates by a local holomorphic contact transformation, which is generated by a suitable indefinite theta series. For this purpose we introduce a new family of theta series of signature (2, n - 2), find their modular completion, and conjecture sufficient conditions for their convergence, which may be of independent mathematical interest.

  2. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  3. Narrative Language Pedagogy and the Stabilization of Indigenous Languages

    ERIC Educational Resources Information Center

    Warford, Mark K.

    2011-01-01

    This paper discusses recent trends in language pedagogy that emphasize movement from a psycholinguistic to a more sociocultural view of language teaching and learning. Nourished primarily by sociocultural theory and Hinton's (2002, 2003) efforts to promote the stabilization of indigenous languages, the author presents Narrative Language…

  4. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  5. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Roshani, Amir; Erfanian, Abbas

    2016-08-01

    Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.

  6. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  7. China’s Currency: A Summary of the Economic Issues

    DTIC Science & Technology

    2008-01-09

    lower-priced imports). Chinese officials view economic stability as critical to sustaining political stability; they fear an appreciated currency...development of rural areas, but they claim they want to proceed at a gradual pace to ensure economic stability . Implications of China’s Currency...Modifying Its Currency Policy Chinese officials argue that its currency policy is not meant to favor exports over imports, but instead to foster economic

  8. Stability Operations in East Timor 1999-2000: A Case Study

    DTIC Science & Technology

    2016-04-11

    Institute April 11, 2016 Raymond A. Millen Senior Editor The views expressed in this report are those of the authors and do not necessarily reflect...Stability Operations Institute (PKSOI) publications enjoy full academic freedom, pro- vided they do not disclose classified information, jeopardize...to this report are invited and should be forwarded to: Director, Peacekeeping and Stability Operations Institute , U.S. Army War College, 22 Ashburn

  9. Implementing Modular A Levels.

    ERIC Educational Resources Information Center

    Holding, Gordon

    This document, which is designed for curriculum managers at British further education (FE) colleges, presents basic information on the implementation and perceived benefits of the General Certificate of Education (GCE) modular A (Advanced) levels. The information was synthesized from a survey of 12 FE colleges that introduced the modular A levels…

  10. 24 CFR 3282.12 - Excluded structures-modular homes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Excluded structures-modular homes... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME PROCEDURAL AND ENFORCEMENT REGULATIONS General § 3282.12 Excluded structures—modular homes. (a) The purpose of this section is to provide the certification...

  11. 24 CFR 3282.12 - Excluded structures-modular homes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Excluded structures-modular homes... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME PROCEDURAL AND ENFORCEMENT REGULATIONS General § 3282.12 Excluded structures—modular homes. (a) The purpose of this section is to provide the certification...

  12. Self-contained image mapping of placental vasculature in 3D ultrasound-guided fetoscopy.

    PubMed

    Yang, Liangjing; Wang, Junchen; Ando, Takehiro; Kubota, Akihiro; Yamashita, Hiromasa; Sakuma, Ichiro; Chiba, Toshio; Kobayashi, Etsuko

    2016-09-01

    Surgical navigation technology directed at fetoscopic procedures is relatively underdeveloped compared with other forms of endoscopy. The narrow fetoscopic field of views and the vast vascular network on the placenta make examination and photocoagulation treatment of twin-to-twin transfusion syndrome challenging. Though ultrasonography is used for intraoperative guidance, its navigational ability is not fully exploited. This work aims to integrate 3D ultrasound imaging and endoscopic vision seamlessly for placental vasculature mapping through a self-contained framework without external navigational devices. This is achieved through development, integration, and experimentation of novel navigational modules. Firstly, a framework design that addresses the current limitations based on identified gaps is conceptualized. Secondly, integration of navigational modules including (1) ultrasound-based localization, (2) image alignment, and (3) vision-based tracking to update the scene texture map is implemented. This updated texture map is projected to an ultrasound-constructed 3D model for photorealistic texturing of the 3D scene creating a panoramic view of the moving fetoscope. In addition, a collaborative scheme for the integration of the modular workflow system is proposed to schedule updates in a systematic fashion. Finally, experiments are carried out to evaluate each modular variation and an integrated collaborative scheme of the framework. The modules and the collaborative scheme are evaluated through a series of phantom experiments with controlled trajectories for repeatability. The collaborative framework demonstrated the best accuracy (5.2 % RMS error) compared with all the three single-module variations during the experiment. Validation on an ex vivo monkey placenta shows visual continuity of the freehand fetoscopic panorama. The proposed developed collaborative framework and the evaluation study of the framework variations provide analytical insights for effective integration of ultrasonography and endoscopy. This contributes to the development of navigation techniques in fetoscopic procedures and can potentially be extended to other applications in intraoperative imaging.

  13. The stability of steady state accommodation in human infants

    PubMed Central

    Candy, T. Rowan; Bharadwaj, Shrikant R.

    2009-01-01

    Retinal image quality in infants is largely determined by the accuracy and the stability of their accommodative responses. Although the accuracy of infants’ accommodation has been investigated previously, little is known about the stability of their responses. We performed two experiments that characterized the stability of infants’ steady state accommodation. Analyses were performed in the time domain (root mean square [RMS] deviation) and in the frequency domain (spectral analysis). In Experiment 1, accommodation responses were recorded for a period of 3 s from the left eye of four groups of infants (8–10, 11–13, 14–19, and 20–30 weeks of age) and eight prepresbyopic adults while they focused on a small toy placed at a dioptric viewing distance of 1.0 D (at 1 m). In Experiment 2, accommodation responses were recorded for a period of 14 s from the left eye of a group of 8- to 12-week-old infants and six prepresbyopic adults while they focused on a cartoon image placed at three different dioptric viewing distances (1.25, 2.0, and 3.0 D). The data, collected using a photorefractor sampling at 25 Hz, showed two important characteristics. First, the RMS deviations and the power were quantitatively similar across different infant age groups, and they were significantly larger in infants than in adults. Second, the overall and relative power also increased with the dioptric viewing distance both in infants and adults. At all three dioptric viewing distances, the measures of power were larger in infants than in adults. These data demonstrate that infants’ accommodative responses contain instabilities that are qualitatively very similar to those observed in adults. However, the larger RMS deviations suggest that infants are likely to experience larger fluctuations in retinal image quality than adults. PMID:17997659

  14. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.

  15. Design Control for Clinical Translation of 3D Printed Modular Scaffolds

    PubMed Central

    Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.

    2015-01-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  16. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids.

    PubMed

    Eichhorn, Timon; Ludwig, Ute; Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H/23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography.

  17. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids

    PubMed Central

    Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Introduction Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. Materials and Methods The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Results and Conclusion Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H / 23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography. PMID:26496192

  18. 77 FR 28861 - Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee AGENCY: Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy Advisory Board (SEAB), Small Modular Reactor Subcommittee (SMR). The Federal Advisory...

  19. Modular Access and Progression Routes: Support Issues and Student Directed Learning.

    ERIC Educational Resources Information Center

    Ward, Jill

    1995-01-01

    The effects of modularizing Access Courses provided by the University of Derby were examined for 299 adult students. No significant differences appeared in retention, but the modular approach had increased recruitment/retention of unskilled and lower achieving students. Students with lower entry qualifications had higher achievement than similar…

  20. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  1. Manufactured Housing--The Modular Home in Texas.

    ERIC Educational Resources Information Center

    Sindt, Roger P.

    This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…

  2. Modular standards for emerging avionics technologies

    NASA Astrophysics Data System (ADS)

    Radcliffe, B.; Boaz, J.

    The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.

  3. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    PubMed

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Fretting-corrosion at the modular tapers interface: Inspection of standard ASTM F1875-98.

    PubMed

    Bingley, Rachel; Martin, Alan; Manfredi, Olivia; Nejadhamzeeigilani, Mahdiyar; Oladokun, Abimbola; Beadling, Andrew Robert; Siddiqui, Sohail; Anderson, James; Thompson, Jonathan; Neville, Anne; Bryant, Michael

    2018-05-01

    Interest in the degradation mechanisms at the modular tapers interfaces has been renewed due to increased reported cases of adverse reactions to metal debris and the appearance of wear and corrosion at the modular tapers interfaces at revision. Over the past two decades, a lot of research has been expended to understand the degradation mechanisms, with two primary implant loading procedures and orientations used consistently across the literature. ASTM F1875-98 is often used as a guide to understand and benchmark the tribocorrosion processes occurring within the modular tapers interface. This article presents a comparison of the two methods outlined in ASTM F1875-98 as well as a critique of the standard considering the current paradigm in pre-clinical assessment of modular tapers.

  5. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  6. Pressurized bellows flat contact heat exchanger interface

    NASA Technical Reports Server (NTRS)

    Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)

    1990-01-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  7. 2,6-Diaminopurine to TNA: Effect on Duplex Stabilities and on the Efficiency of Template-Controlled Ligations

    NASA Technical Reports Server (NTRS)

    Wu, Xiaolin; Delgado, Guillermo; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2003-01-01

    Replacement of adenine by 2,6-diaminopurine-two nucleobases to be considered equivalent from an etlological point of view-strongly enhances the stability of TNA/TNA, TNA/RNA, or TNA/DNA duplexes and efficiently accelerates template-directed ligation of TNA ligands.

  8. Development of a Dual Windowed Test Vehicle for Live Streaming of Cook-Off in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Cheese, Phil; Reeves, Tom; White, Nathan; Stennett, Christopher; Wood, Andrew; Cook, Malcolm; Syanco Ltd Team; Cranfield University Team; DE&S, MoD Abbey Wood Team

    2017-06-01

    A modular, axially connected test vehicle for researching the influence of various heating rates (cook-off) on energetic materials and how they fundamentally decompose, leading to a violent reaction has been developed and tested. The vehicle can accommodate samples measuring up to 50 mm in diameter, with thicknesses variable from 0.5 mm up to 50 mm long. A unique feature of this vehicle is the ability to have a live high speed camera view, without compromising confinement during the cook-off process. This is achieved via two special windows that allow artificial backlighting to be provided at one end for clear observation of the test sample; this has allowed unprecedented views of how explosives decompose and runaway to violent reactions, and has given insight into the reaction mechanisms operating, and challenges current theories. Using glass windows, a burst pressure of 20 MPa has been measured. The heating rate is fully adjustable from slow to fast rates, and its design allows for confinement to be varied to study the influence on the violence of reaction during cook-off. In addition to being able to view the test sample during cook-off, embedded thermocouples provide detailed temperature records and the ability to use PDV instrumentation is also incorporated.

  9. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.

  10. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa, Satoshi; Deng, Kai; Wang, George

    2016-08-22

    Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed in this paper the segments of AT domains and associated linkers in AT exchanges in vitro andmore » have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. Finally, these results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.« less

  11. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  12. Selection for protection in an ant–plant mutualism: host sanctions, host modularity, and the principal–agent game

    PubMed Central

    Edwards, David P; Hassall, Mark; Sutherland, William J; Yu, Douglas W

    2005-01-01

    Retaliation against cheaters can prevent the breakdown of cooperation. Here we ask whether the ant–plant Cordia nodosa is able to apply retaliatory sanctions against its ant symbiont Allomerus octoarticulatus, which patrols new shoots to prevent herbivory. We test the hypothesis that the modular design of C. nodosa physiologically ties the growth of housing (stem swellings known as domatia) to the successful development of the attached leaves. We experimentally simulated herbivory by cutting leaves from patrolled shoots and found that the domatia on such ‘cheated’ shoots suffered higher mortality and lower growth than did controls, evidence for a host sanction. On the other hand, patrolling is costly to the ant, and experiment shows that non-patrollers run a low risk of being sanctioned because most leaves (and the attached domatia) escape heavy herbivory even when patrollers are absent. This suggests that cheaters might enjoy a higher fitness than do mutualists, despite sanctions, but we find that patrolling provides a net fecundity benefit when the colony and plant exceed a minimum size, which requires sustained ant investment in patrolling. These results map directly onto the principal–agent (P–A) game from economics, which we suggest can be used as a framework for studying stability in mutualisms, where high sampling costs and cheating do not allow market effects to select for mutual benefits. PMID:16537131

  13. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  14. Selection for protection in an ant-plant mutualism: host sanctions, host modularity, and the principal-agent game.

    PubMed

    Edwards, David P; Hassall, Mark; Sutherland, William J; Yu, Douglas W

    2006-03-07

    Retaliation against cheaters can prevent the breakdown of cooperation. Here we ask whether the ant-plant Cordia nodosa is able to apply retaliatory sanctions against its ant symbiont Allomerus octoarticulatus, which patrols new shoots to prevent herbivory. We test the hypothesis that the modular design of C. nodosa physiologically ties the growth of housing (stem swellings known as domatia) to the successful development of the attached leaves. We experimentally simulated herbivory by cutting leaves from patrolled shoots and found that the domatia on such 'cheated' shoots suffered higher mortality and lower growth than did controls, evidence for a host sanction. On the other hand, patrolling is costly to the ant, and experiment shows that non-patrollers run a low risk of being sanctioned because most leaves (and the attached domatia) escape heavy herbivory even when patrollers are absent. This suggests that cheaters might enjoy a higher fitness than do mutualists, despite sanctions, but we find that patrolling provides a net fecundity benefit when the colony and plant exceed a minimum size, which requires sustained ant investment in patrolling. These results map directly onto the principal-agent (P-A) game from economics, which we suggest can be used as a framework for studying stability in mutualisms, where high sampling costs and cheating do not allow market effects to select for mutual benefits.

  15. Design of a Modular Test Loop for Study of Two-Phase Flow and Heat Transfer in Low and High Accelerations

    DTIC Science & Technology

    1990-07-01

    probably cannot afford to have such a large pressure drop (orifice or throttling valve ) in the loop to stabilize the flow. For a given flow rate, the...rate was set by a calibrated valve and the water flow rate was set by the pump speed. The loop was not equipped with flowmeters and it was assumed that...Configuration. 3-28 jCk z < [D - a~ - Z Li-c I Li CL- a ow L~j Z 4) ,,l C0 0 Q.(-C - CL Li Ln LJ r o~C:) Z CC Ck LLj ZJ LOL Li Ln ( 3-2 ~ Tf1 FFFFF ~< L~iK

  16. Engineering the robustness of industrial microbes through synthetic biology.

    PubMed

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Non-Abelian S =1 chiral spin liquid on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Tu, Hong-Hao; Wu, Ying-Hai; He, Rong-Qiang; Liu, Xiong-Jun; Zhou, Yi; Ng, Tai-Kai

    2018-05-01

    We study S =1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+i py superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices S and T , we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the S O (3) 1 (or, equivalently, S U (2) 2 ) field-theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study, we observe a topological phase transition from the NACSL to the Z2 Abelian spin liquid.

  18. Environmental testing of the ATHENA mirror modules (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Landgraf, Boris; Girou, David; Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; van Baren, Coen; Eigenraam, Alexander

    2017-09-01

    The European Space Agency (ESA) is studying the ATHENA (Advanced Telescope for High ENergy Astrophysics) X-ray telescope, the second L-class mission in their Cosmic Vision 2015 - 2025 program with a launch spot in 2028. The baseline technology for the X-ray lens is the newly developed high-performance, light-weight and modular Silicon Pore Optics (SPO). As part of the technology preparation, ruggedisation and environmental testing studies are being conducted to ensure mechanical stability and optical performance of the optics during and after launch, respectively. At cosine, a facility with shock, vibration, tensile strength, long time storage and thermal testing equipment has been set up in order to test SPO mirror module (MM) materials for compliance with an Ariane launch vehicle and the mission requirements. In this paper, we report on the progress of our ongoing investigations regarding tests on mechanical and thermal stability of MM components like single SPO stacks with and without multilayer coatings and complete MMs of inner (R = 250 mm), middle (R = 737 mm) and outer (R = 1500 mm) radii.

  19. Spatial aspects of prebiotic replicator coexistence and community stability in a surface-bound RNA world model

    PubMed Central

    2013-01-01

    Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177

  20. Bidirectional relations between parenting practices and child externalizing behavior: a cross-lagged panel analysis in the context of a psychosocial treatment and 3-year follow-up.

    PubMed

    Shaffer, Anne; Lindhiem, Oliver; Kolko, David J; Trentacosta, Christopher J

    2013-02-01

    In the current study, we examined longitudinal changes in, and bidirectional effects between, parenting practices and child behavior problems in the context of a psychosocial treatment and 3-year follow-up period. The sample comprised 139 parent-child dyads (child ages 6-11) who participated in a modular treatment protocol for early-onset ODD or CD. Parenting practices and child behavior problems were assessed at six time-points using multiple measures and multiple reporters. The data were analyzed using cross-lagged panel analyses. Results indicated robust temporal stabilities of parenting practices and child behavior problems, in the context of treatment-related improvements, but bidirectional effects between parenting practices and child behavior were less frequently detected. Our findings suggest that bidirectional effects are relatively smaller than the temporal stability of each construct for school-age children with ODD/CD and their parents, following a multi-modal clinical intervention that is directed at both parents and children. Implications for treatment and intervention are discussed.

  1. A Nucleus-Imaging Probe That Selectively Stabilizes a Minor Conformation of c-MYC G-quadruplex and Down-regulates c-MYC Transcription in Human Cancer Cells

    PubMed Central

    Panda, Deepanjan; Debnath, Manish; Mandal, Samir; Bessi, Irene; Schwalbe, Harald; Dash, Jyotirmayee

    2015-01-01

    The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for “turn-on” detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection. PMID:26286633

  2. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    PubMed

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  3. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory

    PubMed Central

    Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721

  4. China’s Currency: A Summary of the Economic Issues

    DTIC Science & Technology

    2007-07-11

    officials argue that its currency policy is not meant to favor exports over imports, but instead to foster economic stability through currency...would have on farmers (due to lower-priced imports). Chinese officials view economic stability as CRS-3 2 U.S. production has moved away from...they want to proceed at a gradual pace to ensure economic stability . Implications of China’s Currency Policy for its Economy If the yuan is undervalued

  5. Strategic group stability: evidence from the health care industry.

    PubMed

    Churchman, Richard L; Woodard, Beth

    2004-01-01

    To better understand strategic group stability and the associated mobility barriers concept, we surveyed health care administrators on their reasons for remaining in their current strategic group. We offer administrators' responses to the strategic group stability (mobility barrier) question. Decision-makers may be unaware of these cognitive biases (e.g., group-level world-view and resource similarity) and may not recognize the extent to which they are reducing their strategic alternatives.

  6. Fractures above and below a modular nail for knee arthrodesis. A case report.

    PubMed

    Hinarejos, Pedro; Ginés, Alberto; Monllau, Juan C; Puig, Lluis; Cáceres, Enric

    2005-06-01

    Several techniques have been advocated for knee arthrodesis, and there has been an increasing interest in modular intramedullary nails in the recent last years. We report a case of femoral and tibial fractures at each end of a modular nail in a solidly fused knee 8 months after an arthrodesis.

  7. Modularized and Outcomes-Led Planning of Higher Education in Post-Apartheid South Africa.

    ERIC Educational Resources Information Center

    Ntshoe, I. M.

    1999-01-01

    Examines modularization and outcomes-based planning of higher education in South Africa as part of transforming higher education in a post-apartheid society. Discusses principles and assumptions of modularization and outcomes-based planning, identifies intended and unintended outcomes, and notes such issues as the origins of outcome-based…

  8. Going Modular--For Better or Worse? AIR 1994 Annual Forum Paper.

    ERIC Educational Resources Information Center

    McLachlan, Jeffrey E.; Wood, Vivienne

    A modular system for undergraduate programs was implemented in three degree programs at Napier University in Scotland. This paper describes the degree course structure prior to 1992-93 and factors leading to change, including university response to government policy encouraging wider access to higher education. A rationale for modularization is…

  9. Modular Vocational Education and Training in Scotland and the Netherlands: Between Specificity and Coherence.

    ERIC Educational Resources Information Center

    de Bruijn, E.; Howieson, C.

    1995-01-01

    Draws on sociological and learning theory perspectives to compare Scottish and Dutch initiatives in the modularization of initial (postcompulsory) vocational education and training. Features of the modular system in both countries seem closely related to strategies chosen to offer customized vocational training for various client groups while not…

  10. Modular Training Systems and Strategies: An International Meeting (Washington, D.C., May 11-12, 1992).

    ERIC Educational Resources Information Center

    American Society for Training and Development, Alexandria, VA.

    This publication contains materials from a conference to discuss modular approaches to curriculum design. The materials from the United States and five other countries address both national skills standards and modular systems of training delivery. An introduction provides brief summaries of the conference materials and the agenda. "National…

  11. Model of brain activation predicts the neural collective influence map of the brain

    PubMed Central

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Makse, Hernán A.

    2017-01-01

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory. PMID:28351973

  12. EEGVIS: A MATLAB Toolbox for Browsing, Exploring, and Viewing Large Datasets.

    PubMed

    Robbins, Kay A

    2012-01-01

    Recent advances in data monitoring and sensor technology have accelerated the acquisition of very large data sets. Streaming data sets from instrumentation such as multi-channel EEG recording usually must undergo substantial pre-processing and artifact removal. Even when using automated procedures, most scientists engage in laborious manual examination and processing to assure high quality data and to indentify interesting or problematic data segments. Researchers also do not have a convenient method of method of visually assessing the effects of applying any stage in a processing pipeline. EEGVIS is a MATLAB toolbox that allows users to quickly explore multi-channel EEG and other large array-based data sets using multi-scale drill-down techniques. Customizable summary views reveal potentially interesting sections of data, which users can explore further by clicking to examine using detailed viewing components. The viewer and a companion browser are built on our MoBBED framework, which has a library of modular viewing components that can be mixed and matched to best reveal structure. Users can easily create new viewers for their specific data without any programming during the exploration process. These viewers automatically support pan, zoom, resizing of individual components, and cursor exploration. The toolbox can be used directly in MATLAB at any stage in a processing pipeline, as a plug-in for EEGLAB, or as a standalone precompiled application without MATLAB running. EEGVIS and its supporting packages are freely available under the GNU general public license at http://visual.cs.utsa.edu/eegvis.

  13. A Multi-object Exoplanet Detecting Technique

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.

  14. The Human Thalamus Is an Integrative Hub for Functional Brain Networks

    PubMed Central

    Bertolero, Maxwell A.

    2017-01-01

    The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543

  15. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  16. A modular and programmable development platform for capsule endoscopy system.

    PubMed

    Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A

    2014-06-01

    The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.

  17. Radical antegrade modular pancreatosplenectomy for adenocarcinomaof the body of the pancreas in a patient with portal annular pancreas, aberrant hepatic artery, and absence of the celiac trunk: A case report.

    PubMed

    Yuan, Hao; Wu, Pengfei; Chen, Jianmin; Lu, Zipeng; Chen, Lei; Wei, Jishu; Guo, Feng; Cai, Baobao; Yin, Jie; Xu, Dong; Jiang, Kuirong; Miao, Yi

    2017-12-01

    Portal annular pancreas is a rare anatomic variation, where the uncinated process of the pancreas connects with the dorsal pancreas and the pancreas tissue encases the portal vein (PV), superior mesenteric vein (SMV) or splenic vein (SV). Malignancies are quite uncommon in the patients, who have an annular pancreas especially portal annular pancreas. Ectopic common hepatic artery and absence of the celiac trunk (CT) are the other infrequent abnormalities. A 74-year-old man suffered from upper abdominal and back pain. Contrast enhanced computed tomography indicated a low-density mass in the body of the pancreas. Pathological report showed adenocarcinoma of the body of pancreas after radical antegrade modular pancreatosplenectomy (RAMPS). In the operation, we found the superior vein and portal vein was surrounded by the pancreatic tissue. The left gastric artery and splenic artery originated respectively from abdominal aorta, and celiac trunk was not viewed. In addition, the common hepatic artery was a branch from the superior mesenteric artery. In general, this is a novel clinical case of pancreatic carcinoma happening in the portal annular pancreas which was accompanied with aberrant hepatic artery and absence of the celiac trunk at the same time. Confronted with the pancreatic neoplasms, the possibility of coexistent annular pancreas and arterial variations should be considered.

  18. A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings

    PubMed Central

    Lu, Qiang; Liu, Guanghui; Xiao, Chuanli; Hu, Chuanzhen; Zhang, Shiwu; Xu, Ronald X.; Chu, Kaiqin; Xu, Qianming

    2018-01-01

    In this paper we report the development of a cost-effective, modular, open source, and fully automated slide-scanning microscope, composed entirely of easily available off-the-shelf parts, and capable of bright field and fluorescence modes. The automated X-Y stage is composed of two low-cost micrometer stages coupled to stepper motors operated in open-loop mode. The microscope is composed of a low-cost CMOS sensor and low-cost board lenses placed in a 4f configuration. The system has approximately 1 micron resolution, limited by the f/# of available board lenses. The microscope is compact, measuring just 25×25×30 cm, and has an absolute positioning accuracy of ±1 μm in the X and Y directions. A Z-stage enables autofocusing and imaging over large fields of view even on non-planar samples, and custom software enables automatic determination of sample boundaries and image mosaicking. We demonstrate the utility of our device through imaging of fluorescent- and transmission-dye stained blood and fecal smears containing human and animal parasites, as well as several prepared tissue samples. These results demonstrate image quality comparable to high-end commercial microscopes at a cost of less than US$400 for a bright-field system, with an extra US$100 needed for the fluorescence module. PMID:29543835

  19. Detail view of the aft section, port side, of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the aft section, port side, of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the removed Orbiter Maneuvering System/Reaction Control System pod from the base of the vertical stabilizer the strongback ground-support equipment attached to the payload bay door. This view is also a good view of the leading edge and top surface of the Orbiter wing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Human primary motor cortex is both activated and stabilized during observation of other person's phasic motor actions.

    PubMed

    Hari, Riitta; Bourguignon, Mathieu; Piitulainen, Harri; Smeds, Eero; De Tiège, Xavier; Jousmäki, Veikko

    2014-01-01

    When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, 'mirroring' or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer's primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex-muscle coherence at 16-20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person's actions, thereby withholding unintentional imitation.

Top