Sample records for viewing angle characteristics

  1. Dual-mode switching of a liquid crystal panel for viewing angle control

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kwon, Yong-Hoan; Kim, Jae Chang; Yoon, Tae-Hoon

    2007-03-01

    The authors propose a method to control the viewing angle of a liquid crystal (LC) panel using dual-mode switching. To realize both wide viewing angle (WVA) characteristics and narrow viewing angle (NVA) characteristics with a single LC panel, the authors use two different dark states. The LC layer can be aligned homogeneously parallel to the transmission axis of the bottom polarizer for WVA dark state operation, while it can be aligned vertically for NVA dark state operation. The authors demonstrated that viewing angle control can be achieved with a single panel without any loss of contrast at the front.

  2. Polarimetric Thermal Imaging

    DTIC Science & Technology

    2007-03-01

    front of a large area blackbody as background. The viewing angle , defined as the angle between surface normal and camera line of sight, was varied by...and polarization angle were derived from the Stokes parameters. The dependence of these polarization characteristics on viewing angle was investigated

  3. Application of AI techniques to infer vegetation characteristics from directional reflectance(s)

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Harrison, P. A.; Harrison, P. R.

    1994-01-01

    Traditionally, the remote sensing community has relied totally on spectral knowledge to extract vegetation characteristics. However, there are other knowledge bases (KB's) that can be used to significantly improve the accuracy and robustness of inference techniques. Using AI (artificial intelligence) techniques a KB system (VEG) was developed that integrates input spectral measurements with diverse KB's. These KB's consist of data sets of directional reflectance measurements, knowledge from literature, and knowledge from experts which are combined into an intelligent and efficient system for making vegetation inferences. VEG accepts spectral data of an unknown target as input, determines the best techniques for inferring the desired vegetation characteristic(s), applies the techniques to the target data, and provides a rigorous estimate of the accuracy of the inference. VEG was developed to: infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; infer percent ground cover from any combination of nadir and/or off-nadir view angles; infer unknown view angle(s) from known view angle(s) (known as view angle extension); and discriminate between user defined vegetation classes using spectral and directional reflectance relationships developed from an automated learning algorithm. The errors for these techniques were generally very good ranging between 2 to 15% (proportional root mean square). The system is designed to aid scientists in developing, testing, and applying new inference techniques using directional reflectance data.

  4. Sun-view angle effects on reflectance factors of corn canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  5. Prediction of the Aerodynamic Characteristics of Cruciform Missiles Including Effects of Roll Angle and Control Deflection

    DTIC Science & Technology

    1986-08-01

    CHARACTERISTICS OF CRU.CIFORM MISSILES INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION N by Daniel J. Lesieutre Michael R. Mendenhall Susana M. Nazario...ANGLE AND CONTROL DEFLECTION Daniel J. Lesieutre Michael R. Mendenhal. Susana M. Nazario Nielsen Engineering & Research, Inc.00 Mountain View, CA 94043...Lo PREDICTION OF THE AERODYNAMIC CHARACTERISTICS OF CRU.CIFORM MISSILES - INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION by Daniel J

  6. New developments of a knowledge based system (VEG) for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Harrison, P. A.; Harrison, P. R.

    1992-01-01

    An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).

  7. Characterization and Discrimination of Selected Vegetation Canopies from Field Observations of Bidirectional Reflectances. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donovan, Sheila

    1985-01-01

    A full evaluation of the bidirectional reflectance properties of different vegetated surfaces was limited in past studies by instrumental inadequacies. With the development of the PARABOLA, it is now possible to sample reflectances from a large number of view angles in a short period of time, maintaining an almost constant solar zenith angle. PARABOLA data collected over five different canopies in Texas are analyzed. The objective of this investigation was to evaluate the intercanopy and intracanopy differences in bidirectional reflectance patterns. Particular attention was given to the separability of canopy types using different view angles for the red and the near infrared (NIR) spectral bands. Comparisons were repeated for different solar zenith angles. Statistical and other quantitative techniques were used to assess these differences. For the canopies investigated, the greatest reflectances were found in the backscatter direction for both bands. Canopy discrimination was found to vary with both view angle and the spectral reflectance band considered, the forward scatter view angles being most suited to observations in the NIR and backscatter view angles giving better results in the red band. Because of different leaf angle distribution characteristics, discrimination was found to be better at small solar zenith angles in both spectral bands.

  8. Visual Costs of the Inhomogeneity of Luminance and Contrast by Viewing LCD-TFT Screens Off-Axis.

    PubMed

    Ziefle, Martina; Groeger, Thomas; Sommer, Dietmar

    2003-01-01

    In this study the anisotropic characteristics of TFT-LCD (Thin-Film-Transistor-Liquid Crystal Display) screens were examined. Anisotropy occurs as the distribution of luminance and contrast changes over the screen surface due to different viewing angles. On the basis of detailed photometric measurements the detection performance in a visual reaction task was measured in different viewing conditions. Viewing angle (0 degrees, frontal view; 30 degrees, off-axis; 50 degrees, off-axis) as well as ambient lighting (a dark or illuminated room) were varied. Reaction times and accuracy of detection performance were recorded. Results showed TFT's anisotropy to be a crucial factor deteriorating performance. With an increasing viewing angle performance decreased. It is concluded that TFT's anisotropy is a limiting factor for overall suitability and usefulness of this new display technology.

  9. Optical parameters of TN display with dichroic dye

    NASA Astrophysics Data System (ADS)

    Olifierczuk, Marek; Zielinski, Jerzy; Perkowski, Pawel

    2000-05-01

    The present work contain the studies on optical parameters (contrast ratio, viewing angle, birefringence and brightness) of twisted nematic display with black dichroic dye which is designed for an application in large-area information and advertising systems. The numerical optimization of display with a dye has been done. The absorption characteristic of the dye has been obtained. Birefringence of doped mixtures (Delta) n has been measured. The contrast ratio of doped mixtures has been measured in wide temperature range from -25 degree(s)C to +70 degree(s)C. The angle characteristics of contrast ratio for +20 degree(s)C have been obtained. In the work the detailed results describing the effect of a dye on temperature dependence of birefringence and contrast ratio, moreover, the effect of dye on the viewing angle for the first and second transmission minimum will be presented. Additionally, the dielectric characteristics of different mixtures will be shown.

  10. Development of a Model to Correct Multi-View Angle above Water Measurements for the Analysis of the Bidirectional Reflectance of Coral and Other Reef Substrates

    NASA Astrophysics Data System (ADS)

    Miller, I.; Forster, B. C.; Laffan, S. W.

    2012-07-01

    Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.

  11. Optimal directional view angles for remote-sensing missions

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.

    1984-01-01

    The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.

  12. SPACE FOR AUDIO-VISUAL LARGE GROUP INSTRUCTION.

    ERIC Educational Resources Information Center

    GAUSEWITZ, CARL H.

    WITH AN INCREASING INTEREST IN AND UTILIZATION OF AUDIO-VISUAL MEDIA IN EDUCATION FACILITIES, IT IS IMPORTANT THAT STANDARDS ARE ESTABLISHED FOR ESTIMATING THE SPACE REQUIRED FOR VIEWING THESE VARIOUS MEDIA. THIS MONOGRAPH SUGGESTS SUCH STANDARDS FOR VIEWING AREAS, VIEWING ANGLES, SEATING PATTERNS, SCREEN CHARACTERISTICS AND EQUIPMENT PERFORMANCES…

  13. Challenging Popular Media's Control by Teaching Critical Viewing.

    ERIC Educational Resources Information Center

    Couch, Richard A.

    The purpose of this paper is to express the importance of visual/media literacy and the teaching of critical television viewing. An awareness of the properties and characteristics of television--including camera angles and placement, editing, and emotionally involving subject matter--aids viewers in the critical viewing process. The knowledge of…

  14. Characteristics of mist 3D screen for projection type electro-holography

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Okumura, Toshimichi; Kanaoka, Takumi; Koizumi, Shinya; Nishikawa, Satoko; Takano, Kunihiko

    2006-01-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel (time shared CGH of RGB three colors). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  15. On the viewing angle dependence of blazar variability

    NASA Astrophysics Data System (ADS)

    Eldar, Avigdor; Levinson, Amir

    2000-05-01

    Internal shocks propagating through an ambient radiation field are subject to a radiative drag that, under certain conditions, can significantly affect their dynamics, and consequently the evolution of the beaming cone of emission produced behind the shocks. The resultant change of the Doppler factor combined with opacity effects leads to a strong dependence on the viewing angle of the variability pattern produced by such systems; specifically, the shape of the light curves and the characteristics of correlated emission. One implication is that objects oriented at relatively large viewing angles to the observer should exhibit a higher level of activity at high synchrotron frequencies (above the self-absorption frequency), and also at gamma-ray energies below the threshold energy of pair production, than at lower (radio/millimetre) frequencies.

  16. Design considerations for a backlight with switchable viewing angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  17. Soybean canopy reflectance as a function of view and illumination geometry

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.

    1982-01-01

    The results of an experiment designed to characterize a soybean field by its reflectance at various view and illumination angles and by its physical and agronomic attributes are presented. Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions for various solar zenith and azimuth angles during portions of three days. An ancillary data set consisting of the agronomic and physical characteristics of the soybean field is described. The results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength and row direction, as well as the state of development of the canopy. Shadows between rows greatly affected the reflectance in the visible wavelength bands and to a lesser extent in the near infrared wavelengths. A model is proposed that describes the reflectance variation as a function of projected solar and projected viewing angles. The model appears to approximate the reflectance variations in the visible wavelength bands from a canopy with well defined row structure.

  18. Digital mammography: comparative performance of color LCD and monochrome CRT displays.

    PubMed

    Samei, Ehsan; Poolla, Ananth; Ulissey, Michael J; Lewin, John M

    2007-05-01

    To evaluate the comparative performance of high-fidelity liquid crystal display (LCD) and cathode ray tube (CRT) devices for mammography applications, and to assess the impact of LCD viewing angle on detection accuracy. Ninety 1 k x 1 k images were selected from a database of digital mammograms: 30 without any abnormality present, 30 with subtle masses, and 30 with subtle microcalcifications. The images were used with waived informed consent, Health Insurance Portability and Accountability Act compliance, and Institutional Review Board approval. With postprocessing presentation identical to those of the commercial mammography system used, 1 k x 1 k sections of images were viewed on a monochrome CRT and a color LCD in native grayscale, and with a grayscale representative of images viewed from a 30 degrees or 50 degrees off-normal viewing angle. Randomized images were independently scored by four experienced breast radiologists for the presence of lesions using a 0-100 grading scale. To compare diagnostic performance of the display modes, observer scores were analyzed using receiver operating characteristic (ROC) and analysis of variance. For masses and microcalcifications, the detection rate in terms of the area under the ROC curve (A(z)) showed a 2% increase and a 4% decrease from CRT to LCD, respectively. However, differences were not statistically significant (P > .05). The viewing angle data showed better microcalcification detection but lower mass detection at 30 degrees viewing orientation. The overall results varied notably from observer to observer yielding no statistically discernible trends across all observers, suggesting that within the 0-50 degrees viewing angle range and in a controlled observer experiment, the variation in the contrast response of the LCD has little or no impact on the detection of mammographic lesions. Although CRTs and LCDs differ in terms of angular response, resolution, noise, and color, these characteristics seem to have little influence on the detection of mammographic lesions. The results suggest comparable performance in clinical applications of the two devices.

  19. Painted Lines on an Ornament

    NASA Image and Video Library

    2013-12-23

    The globe of Saturn, seen here in natural color, is reminiscent of a holiday ornament in this wide-angle view from NASA's Cassini spacecraft. The characteristic hexagonal shape of Saturn's northern jet stream, somewhat yellow here, is visible. At the pole lies a Saturnian version of a high-speed hurricane, eye and all. This view is centered on terrain at 75 degrees north latitude, 120 degrees west longitude. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft wide-angle camera on July 22, 2013. This view was acquired at a distance of approximately 611,000 miles (984,000 kilometers) from Saturn. Image scale is 51 miles (82 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17175

  20. Thermally induced stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rousseau, Carl Q.

    1987-01-01

    Cure-induced uniform temperature change effects on the stresses, axial expansion, and thermally-induced twist of four specific angle-ply tube designs are discussed with a view to the tubes' use as major space structure components. The stresses and deformations in the tubes are studied as a function of the four designs, the off-axis angle, and the single-material and hybrid reinforcing-material construction used. It is found that tube design has a minor influence on the stresses, axial stiffness, and axial thermal expansion characteristics, which are more directly a function of off-axis angle and material selection; tube design is, however, the primary influence in the definition of thermally-induced twist and torsional stiffness characteristics. None of the designs is free of thermally induced twist.

  1. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  2. View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.

    2013-01-01

    Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.

  3. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  4. Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.

    1997-01-01

    Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.

  5. Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders.

    PubMed

    Zhang, Ying; Zhao, Huijie; Song, Ping; Shi, Shaoguang; Xu, Wujian; Liang, Xiao

    2014-04-07

    A ground-based full-sky imaging polarimeter based on liquid crystal variable retarders (LCVRs) is proposed in this paper. Our proposed method can be used to realize the rapid detection of the skylight polarization information with hemisphere field-of-view for the visual band. The characteristics of the incidence angle of light on the LCVR are investigated, based on the electrically controlled birefringence. Then, the imaging polarimeter with hemisphere field-of-view is designed. Furthermore, the polarization calibration method with the field-of-view multiplexing and piecewise linear fitting is proposed, based on the rotation symmetry of the polarimeter. The polarization calibration of the polarimeter is implemented with the hemisphere field-of-view. This imaging polarimeter is investigated by the experiment of detecting the skylight image. The consistency between the obtained experimental distribution of polarization angle with that due to Rayleigh scattering model is 90%, which confirms the effectivity of our proposed imaging polarimeter.

  6. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  7. Photometric and colorimetric measurements of CRT and TFT monitors for vision research

    NASA Astrophysics Data System (ADS)

    Klein, Johann; Zlatkova, Margarita; Lauritzen, Jan; Pierscionek, Barbara

    2013-08-01

    Visual displays have various limitations that can affect the results of vision research experiments. This study compares several characteristics of CRT (Hewlett Packard 7650) and TFT (LG Flatron L227 WT and Samsung 2233 RZ) monitors, including luminance and colour spatial homogeneity, luminance changes with viewing angle, contrast linearity and warm-up characteristics. In addition, the psychophysical performance in grating contrast sensitivity test for both CRT and TFT monitors was compared. The TFT monitors demonstrated spatial non-homogeneity ('mura') with up to 50% of luminance change across the screen and a more significant luminance viewing angle dependence compared with CRT. The chromaticity of the white point showed negligible variation across the screen. Both types of monitors required a warm-up time of the order of 60 min. Despite the physical differences between monitors, visual contrast sensitivity performance measured with the two types of monitors was similar using both static and flickering gratings.

  8. View angle effect in LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Engvall, J. L.

    1977-01-01

    The view angle effect in LANDSAT 2 imagery was investigated. The LANDSAT multispectral scanner scans over a range of view angles of -5.78 to 5.78 degrees. The view angle effect, which is caused by differing view angles, could be studied by comparing data collected at different view angles over a fixed location at a fixed time. Since such LANDSAT data is not available, consecutive day acquisition data were used as a substitute: they were collected over the same geographical location, acquired 24 hours apart, with a view angle change of 7 to 8 degrees at a latitude of 35 to 45 degrees. It is shown that there is approximately a 5% reduction in the average sensor response on the second-day acquisitions as compared with the first-day acquisitions, and that the view angle effect differs field to field and crop to crop. On false infrared color pictures the view angle effect causes changes primarily in brightness and to a lesser degree in color (hue and saturation). An implication is that caution must be taken when images with different view angles are combined for classification and a signature extension technique needs to take the view angle effect into account.

  9. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Tian, Xiaoyong; Yin, Ming; Li, Dichen; Tang, Yiping

    2013-08-01

    Traditional Luneburg lens is a dielectric spherical antenna. It can focus the incoming collimated electromagnetic waves on its spherical surface, which causes the incompatibility with the planar feeding and receiving devices. Furthermore, the difficulties in the fabrication process also limited its applications. In this paper, a three-dimensional flattened Luneburg lens with a field-of-view angle up to 180° has been realized based on a liquid medium approach and a 3D-printing process. The fabricated three-dimensional lens showed a broadband transmission characteristic from 12.4 GHz to 18 GHz. The performance of the proposed lens was demonstrated by simulation and experimental results.

  10. Partially-overlapped viewing zone based integral imaging system with super wide viewing angle.

    PubMed

    Xiong, Zhao-Long; Wang, Qiong-Hua; Li, Shu-Li; Deng, Huan; Ji, Chao-Chao

    2014-09-22

    In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.

  11. Preferred viewing distance and screen angle of electronic paper displays.

    PubMed

    Shieh, Kong-King; Lee, Der-Song

    2007-09-01

    This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.

  12. Hurricane Lilli

    Atmospheric Science Data Center

    2014-05-15

    article title:  Hurricane Lili Heads for Louisiana Landfall     ... Image Characteristics of a strengthening Category 3 Hurricane Lili are apparent in these images from the Multi-angle Imaging ... (MISR), including a well-developed clearing at the hurricane eye. When these views were acquired on October 2, 2002, Lili was ...

  13. Supersonic aerodynamic characteristics of some reentry concepts for angles of attack up to 90 deg

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    Past studies of reentry vehicles tested to high angles of attack (up to 90 deg) in the Mach number range from 2 to 4.8 have provided some fundamental insights into the aerodynamic characteristics of such vehicles. Two basic planforms are considered in this paper: highly swept deltas, and circular. The delta concepts include variations in cross section (and thus volume) and in camber distribution. The effectiveness of various types of aerodynamic control devices is also included. The purpose of the paper is to examine the characteristics of the vehicles with a view toward the potential usefulness of such concepts in a flight regime that would include reentry from space into the atmosphere, followed by a transition to sustained atmospheric flight.

  14. Facial profile parameters and their relative influence on bilabial prominence and the perceptions of facial profile attractiveness: A novel approach

    PubMed Central

    Denize, Erin Stewart; McDonald, Fraser; Sherriff, Martyn

    2014-01-01

    Objective To evaluate the relative importance of bilabial prominence in relation to other facial profile parameters in a normal population. Methods Profile stimulus images of 38 individuals (28 female and 10 male; ages 19-25 years) were shown to an unrelated group of first-year students (n = 42; ages 18-24 years). The images were individually viewed on a 17-inch monitor. The observers received standardized instructions before viewing. A six-question questionnaire was completed using a Likert-type scale. The responses were analyzed by ordered logistic regression to identify associations between profile characteristics and observer preferences. The Bayesian Information Criterion was used to select variables that explained observer preferences most accurately. Results Nasal, bilabial, and chin prominences; the nasofrontal angle; and lip curls had the greatest effect on overall profile attractiveness perceptions. The lip-chin-throat angle and upper lip curl had the greatest effect on forehead prominence perceptions. The bilabial prominence, nasolabial angle (particularly the lower component), and mentolabial angle had the greatest effect on nasal prominence perceptions. The bilabial prominence, nasolabial angle, chin prominence, and submental length had the greatest effect on lip prominence perceptions. The bilabial prominence, nasolabial angle, mentolabial angle, and submental length had the greatest effect on chin prominence perceptions. Conclusions More prominent lips, within normal limits, may be considered more attractive in the profile view. Profile parameters have a greater influence on their neighboring aesthetic units but indirectly influence related profile parameters, endorsing the importance of achieving an aesthetic balance between relative prominences of all aesthetic units of the facial profile. PMID:25133133

  15. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.

    1990-01-01

    An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).

  16. Exploitation of the UV Aerosol Index scattering angle dependence: Properties of Siberian smoke plumes

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas

    2017-04-01

    The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.

  17. View-invariant object recognition ability develops after discrimination, not mere exposure, at several viewing angles.

    PubMed

    Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji

    2010-01-01

    One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.

  18. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    PubMed

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An experimental investigation of vortex breakdown on a delta wing

    NASA Technical Reports Server (NTRS)

    Payne, F. M.; Nelson, R. C.

    1986-01-01

    An experimental investigation of vortex breakdown on delta wings at high angles is presented. Thin delta wings having sweep angles of 70, 75, 80 and 85 degrees are being studied. Smoke flow visualization and the laser light sheet technique are being used to obtain cross-sectional views of the leading edge vortices as they break down. At low tunnel speeds (as low as 3 m/s) details of the flow, which are usually imperceptible or blurred at higher speeds, can be clearly seen. A combination of lateral and longitudinal cross-sectional views provides information on the three dimensional nature of the vortex structure before, during and after breakdown. Whereas details of the flow are identified in still photographs, the dynamic characteristics of the breakdown process were recorded using high speed movies. Velocity measurements were obtained using a laser Doppler anemometer with the 70 degree delta wing at 30 degrees angle of attack. The measurements show that when breakdown occurs the core flow transforms from a jet-like flow to a wake-like flow.

  20. Surface slope characteristics from Thermal Emission Spectrometer emission phase function observations

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.

    2006-12-01

    It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.

  1. Omni-Directional Viewing-Angle Switching through Control of the Beam Divergence Angle in a Liquid Crystal Panel

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon

    2010-01-01

    This paper proposes a method of omni-directional viewing-angle switching by controlling the beam diverging angle (BDA) in a liquid crystal (LC) panel. The LCs aligned randomly by in-cell polymer structures diffuse the collimated backlight for the bright state of the wide viewing-angle mode. We align the LCs homogeneously by applying an in-plane field for the narrow viewing-angle mode. By doing this the scattering is significantly reduced so that the small BDA is maintained as it passes through the LC layer. The dark state can be obtained by aligning the LCs homeotropically with a vertical electric field. We demonstrated experimentally the omni-directional switching of the viewing-angle, without an additional panel or backlighting system.

  2. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  3. Characterization of crosstalk in stereoscopic display devices.

    PubMed

    Zafar, Fahad; Badano, Aldo

    2014-12-01

    Many different types of stereoscopic display devices are used for commercial and research applications. Stereoscopic displays offer the potential to improve performance in detection tasks for medical imaging diagnostic systems. Due to the variety of stereoscopic display technologies, it remains unclear how these compare with each other for detection and estimation tasks. Different stereo devices have different performance trade-offs due to their display characteristics. Among them, crosstalk is known to affect observer perception of 3D content and might affect detection performance. We measured and report the detailed luminance output and crosstalk characteristics for three different types of stereoscopic display devices. We recorded the effect of other issues on recorded luminance profiles such as viewing angle, use of different eye wear, and screen location. Our results show that the crosstalk signature for viewing 3D content can vary considerably when using different types of 3D glasses for active stereo displays. We also show that significant differences are present in crosstalk signatures when varying the viewing angle from 0 degrees to 20 degrees for a stereo mirror 3D display device. Our detailed characterization can help emulate the effect of crosstalk in conducting computational observer image quality assessment evaluations that minimize costly and time-consuming human reader studies.

  4. Aberration improvement of the floating 3D display system based on Tessar array and directional diffuser screen

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu

    2018-06-01

    The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.

  5. Compensation method for the influence of angle of view on animal temperature measurement using thermal imaging camera combined with depth image.

    PubMed

    Jiao, Leizi; Dong, Daming; Zhao, Xiande; Han, Pengcheng

    2016-12-01

    In the study, we proposed an animal surface temperature measurement method based on Kinect sensor and infrared thermal imager to facilitate the screening of animals with febrile diseases. Due to random motion and small surface temperature variation of animals, the influence of the angle of view on temperature measurement is significant. The method proposed in the present study could compensate the temperature measurement error caused by the angle of view. Firstly, we analyzed the relationship between measured temperature and angle of view and established the mathematical model for compensating the influence of the angle of view with the correlation coefficient above 0.99. Secondly, the fusion method of depth and infrared thermal images was established for synchronous image capture with Kinect sensor and infrared thermal imager and the angle of view of each pixel was calculated. According to experimental results, without compensation treatment, the temperature image measured in the angle of view of 74° to 76° showed the difference of more than 2°C compared with that measured in the angle of view of 0°. However, after compensation treatment, the temperature difference range was only 0.03-1.2°C. This method is applicable for real-time compensation of errors caused by the angle of view during the temperature measurement process with the infrared thermal imager. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1979-01-01

    The spatial characteristics of the data were evaluated. A program was developed to reduce the spatial distortions resulting from variable viewing distance, and geometrically adjusted data sets were generated. The potential need for some level of radiometric adjustment was evidenced by an along track band of high reflectance across different cover types in the Varian imagery. A multiple regression analysis was employed to explore the viewing angle effect on measured reflectance. Areas in the data set which appeared to have no across track stratification of cover type were identified. A program was developed which computed the average reflectance by column for each channel, over all of the scan lines in the designated areas. A regression analysis was then run using the first, second, and third degree polynomials, for each channel. An atmospheric effect as a component of the viewing angle source of variance is discussed. Cover type maps were completed and training and test field selection was initiated.

  7. Gaze and viewing angle influence visual stabilization of upright posture

    PubMed Central

    Ustinova, KI; Perkins, J

    2011-01-01

    Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978

  8. Neural Substrates of View-Invariant Object Recognition Developed without Experiencing Rotations of the Objects

    PubMed Central

    Okamura, Jun-ya; Yamaguchi, Reona; Honda, Kazunari; Tanaka, Keiji

    2014-01-01

    One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. PMID:25378169

  9. Polarimetric Imaging for the Detection of Disturbed Surfaces

    DTIC Science & Technology

    2009-06-01

    9 Figure 4. Rayleigh Roughness Criterion as a Function of Incident Angle ......................10 Figure 5. Definition of Geometrical...Terms (after Egan & Hallock, 1966).....................11 Figure 6. Haleakala Ash Depolarization for (a) °0 Viewing Angle and (b) °60 Viewing... Angle (from Egan et al., 1968)..........................................................13 Figure 7. Basalt Depolarization at (a) °0 Viewing Angle and

  10. Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array.

    PubMed

    Kim, Hwi; Hahn, Joonku; Choi, Hee-Jin

    2011-04-10

    We investigate the viewing angle enhancement of a lenticular three-dimensional (3D) display with a triplet lens array. The theoretical limitations of the viewing angle and view number of the lenticular 3D display with the triplet lens array are analyzed numerically. For this, the genetic-algorithm-based design method of the triplet lens is developed. We show that a lenticular 3D display with viewing angle of 120° and 144 views without interview cross talk can be realized with the use of an optimally designed triplet lens array. © 2011 Optical Society of America

  11. Neural substrates of view-invariant object recognition developed without experiencing rotations of the objects.

    PubMed

    Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji

    2014-11-05

    One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. Copyright © 2014 the authors 0270-6474/14/3415047-13$15.00/0.

  12. The Motion Picture and the Teaching of English.

    ERIC Educational Resources Information Center

    Sheridan, Marion C.; And Others

    Written to help a viewer watch a motion picture perceptively, this book explains the characteristics of the film as an art form and examines the role of motion pictures in the English curriculum. Specific topics covered include (1) the technical aspects of the production of films (the order of "shots," camera angle, and point of view), (2) the…

  13. Directional infrared temperature and emissivity of vegetation: Measurements and models

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Castello, S.; Balick, L. K.

    1994-01-01

    Directional thermal radiance from vegetation depends on many factors, including the architecture of the plant canopy, thermal irradiance, emissivity of the foliage and soil, view angle, slope, and the kinetic temperature distribution within the vegetation-soil system. A one dimensional model, which includes the influence of topography, indicates that thermal emissivity of vegetation canopies may remain constant with view angle, or emissivity may increase or decrease as view angle from nadir increases. Typically, variations of emissivity with view angle are less than 0.01. As view angle increases away from nadir, directional infrared canopy temperature usually decreases but may remain nearly constant or even increase. Variations in directional temperature with view angle may be 5C or more. Model predictions of directional emissivity are compared with field measurements in corn canopies and over a bare soil using a method that requires two infrared thermometers, one sensitive to the 8 to 14 micrometer wavelength band and a second to the 14 to 22 micrometer band. After correction for CO2 absorption by the atmosphere, a directional canopy emissivity can be obtained as a function of view angle in the 8 to 14 micrometer band to an accuracy of about 0.005. Modeled and measured canopy emissivities for corn varied slightly with view angle (0.990 at nadir and 0.982 at 75 deg view zenith angle) and did not appear to vary significantly with view angle for the bare soil. Canopy emissivity is generally nearer to unity than leaf emissivity may vary by 0.02 with wavelength even though leaf emissivity. High spectral resolution, canopy thermal emissivity may vary by 0.02 with wavelength even though leaf emissivity may vary by 0.07. The one dimensional model provides reasonably accurate predictions of infrared temperature and can be used to study the dependence of infrared temperature on various plant, soil, and environmental factors.

  14. Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays.

    PubMed

    Zhuang, Zhenfeng; Surman, Phil; Cheng, Qijia; Thibault, Simon; Zheng, Yuanjin; Sun, Xiao Wei

    2017-07-01

    A subpixel area-based evaluation method for an improved slanted lenticular film that minimizes the crosstalk in a quasi-three-dimensional (Q3D) display is proposed in this paper. To identify an optimal slant angle of the film, a subpixel area-based measurement is derived to evaluate the crosstalk among viewing regions of the intended subpixel and adjacent unintended subpixel by taking the real subpixel shape and black matrix into consideration. The subpixel mapping, which corresponds to the optimal slant angle of the film, can then be determined. Meanwhile, the viewing zone characteristics are analyzed to balance the light intensity in both right and left eye channels. A compact and portable Q3D system has been built and appropriate experiments have been applied. The results indicate that significant improvements in both crosstalk and resolution can be obtained with the proposed technique.

  15. On techniques for angle compensation in nonideal iris recognition.

    PubMed

    Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A

    2007-10-01

    The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.

  16. Changes of polarimetric scattering characteristics of ALOS PALSAR caused by the 2011 Eruption of Shinmoe-dake Volcano

    NASA Astrophysics Data System (ADS)

    Ohkura, Hiroshi

    Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.

  17. BOREAS RSS-2 Level-1B ASAS Image Data: At-Sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Russell, C.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Dabney, P. W.; Kovalick, W.; Graham, D.; Bur, Michael; Irons, James R.; Tierney, M.

    2000-01-01

    The BOREAS RSS-2 team used the ASAS instrument, mounted on the NASA C-130 aircraft, to create at-sensor radiance images of various sites as a function of spectral wavelength, view geometry (combinations of view zenith angle, view azimuth angle, solar zenith angle, and solar azimuth angle), and altitude. The level-1b ASAS images of the BOREAS study areas were collected from April to September 1994 and March to July 1996.

  18. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  19. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Maslanik, J. A.; Key, J. R.

    1987-01-01

    A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested.

  20. An investigation of crankshaft oscillations for cylinder health diagnostics

    NASA Astrophysics Data System (ADS)

    Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.

    2005-09-01

    The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.

  1. Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Ashley, Holt

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.

  2. Inlet Flow Characteristics During Rapid Maneuvers for an F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Steenken, William G.; Williams, John G.; Walsh, Kevin R.

    1999-01-01

    The F404-GE-400 engine powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the characteristics of inlet airflow during rapid aircraft maneuvers. A study of the degree of similarity between inlet data obtained during rapid aircraft maneuvers and inlet data obtained at steady aerodynamic attitudes was conducted at the maximum engine airflow of approximately 145 Ibm/sec using a computer model that was generated from inlet data obtained during steady aerodynamic maneuvers. Results show that rapid-maneuver inlet recoveries agreed very well with the recoveries obtained at equivalent stabilized angle-of-attack conditions. The peak dynamic circumferential distortion values obtained during rapid maneuvers agreed within 0.01 units of distortion over the 10 - 38 degree angle of attack range with the values obtained during steady aerodynamic maneuvers while similar agreement was found for the peak dynamic radial distortion values up to 29 degrees angle-of-attack. Exceedences of the rapid-maneuver peak dynamic circumferential distortion values relative to the peak distortion model values at steady attitudes occurred only at low or negative angles of attack and were inconsequential from an engine-stability assessment point of view. The results of this study validate the current industry practice of testing at steady aerodynamic conditions to characterize inlet recovery and peak dynamic distortion levels.

  3. Simulations of Convection Zone Flows and Measurements from Multiple Viewing Angles

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L.; Hanasoge, Shravan

    2011-01-01

    A deep-focusing time-distance measurement technique has been applied to linear acoustic simulations of a solar interior perturbed by convective flows. The simulations are for the full sphere for r/R greater than 0.2. From these it is straightforward to simulate the observations from different viewing angles and to test how multiple viewing angles enhance detectibility. Some initial results will be presented.

  4. Toward a dose reduction strategy using model-based reconstruction with limited-angle tomosynthesis

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Tkaczyk, J. E.; Palma, Giovanni; Iordache, Rǎzvan; Zelakiewicz, Scott; Muller, Serge; De Man, Bruno

    2014-03-01

    Model-based iterative reconstruction (MBIR) is an emerging technique for several imaging modalities and appli- cations including medical CT, security CT, PET, and microscopy. Its success derives from an ability to preserve image resolution and perceived diagnostic quality under impressively reduced signal level. MBIR typically uses a cost optimization framework that models system geometry, photon statistics, and prior knowledge of the recon- structed volume. The challenge of tomosynthetic geometries is that the inverse problem becomes more ill-posed due to the limited angles, meaning the volumetric image solution is not uniquely determined by the incom- pletely sampled projection data. Furthermore, low signal level conditions introduce additional challenges due to noise. A fundamental strength of MBIR for limited-views and limited-angle is that it provides a framework for constraining the solution consistent with prior knowledge of expected image characteristics. In this study, we analyze through simulation the capability of MBIR with respect to prior modeling components for limited-views, limited-angle digital breast tomosynthesis (DBT) under low dose conditions. A comparison to ground truth phantoms shows that MBIR with regularization achieves a higher level of fidelity and lower level of blurring and streaking artifacts compared to other state of the art iterative reconstructions, especially for high contrast objects. The benefit of contrast preservation along with less artifacts may lead to detectability improvement of microcalcification for more accurate cancer diagnosis.

  5. Esthetic smile preferences and the orientation of the maxillary occlusal plane.

    PubMed

    Kattadiyil, Mathew T; Goodacre, Charles J; Naylor, W Patrick; Maveli, Thomas C

    2012-12-01

    The anteroposterior orientation of the maxillary occlusal plane has an important role in the creation, assessment, and perception of an esthetic smile. However, the effect of the angle at which this plane is visualized (the viewing angle) in a broad smile has not been quantified. The purpose of this study was to assess the esthetic preferences of dental professionals and nondentists by using 3 viewing angles of the anteroposterior orientation of the maxillary occlusal plane. After Institutional Review Board approval, standardized digital photographic images of the smiles of 100 participants were recorded by simultaneously triggering 3 cameras set at different viewing angles. The top camera was positioned 10 degrees above the occlusal plane (camera #1, Top view); the center camera was positioned at the level of the occlusal plane (camera #2, Center view); and the bottom camera was located 10 degrees below the occlusal plane (camera #3, Bottom view). Forty-two dental professionals and 31 nondentists (persons from the general population) independently evaluated digital images of each participant's smile captured from the Top view, Center view, and Bottom view. The 73 evaluators were asked individually through a questionnaire to rank the 3 photographic images of each patient as 'most pleasing,' 'somewhat pleasing,' or 'least pleasing,' with most pleasing being the most esthetic view and the preferred orientation of the occlusal plane. The resulting esthetic preferences were statistically analyzed by using the Friedman test. In addition, the participants were asked to rank their own images from the 3 viewing angles as 'most pleasing,' 'somewhat pleasing,' and 'least pleasing.' The 73 evaluators found statistically significant differences in the esthetic preferences between the Top and Bottom views and between the Center and Bottom views (P<.001). No significant differences were found between the Top and Center views. The Top position was marginally preferred over the Center, and both were significantly preferred over the Bottom position. When the participants evaluated their own smiles, a significantly greater number (P< .001) preferred the Top view over the Center or the Bottom views. No significant differences were found in preferences based on the demographics of the evaluators when comparing age, education, gender, profession, and race. The esthetic preference for the maxillary occlusal plane was influenced by the viewing angle with the higher (Top) and center views preferred by both dental and nondental evaluators. The participants themselves preferred the higher view of their smile significantly more often than the center or lower angle views (P<.001). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Large-viewing-angle electroholography by space projection

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko

    2004-06-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  7. Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Hayashi, Yuki

    2008-07-01

    The narrow viewing zone angle is one of the problems associated with electronic holography. We propose a technique that enables the ratio of horizontal and vertical resolutions of a spatial light modulator (SLM) to be altered. This technique increases the horizontal resolution of a SLM several times, so that the horizontal viewing zone angle is also increased several times. A SLM illuminated by a slanted point light source array is imaged by a 4f imaging system in which a horizontal slit is located on the Fourier plane. We show that the horizontal resolution was increased four times and that the horizontal viewing zone angle was increased approximately four times.

  8. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  9. The effect of viewing angle on the spectral behavior of a Gd plasma source near 6.7 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Gorman, Colm; Li Bowen; Cummins, Thomas

    2012-04-02

    We have demonstrated the effect of viewing angle on the extreme ultraviolet (EUV) emission spectra of gadolinium (Gd) near 6.7 nm. The spectra are shown to have a strong dependence on viewing angle when produced with a laser pulse duration of 10 ns, which may be attributed to absorption by low ion stages of Gd and an angular variation in the ion distribution. Absorption effects are less pronounced at a 150-ps pulse duration due to reduced opacity resulting from plasma expansion. Thus for evaluating source intensity, it is necessary to allow for variation with both viewing angle and target orientation.

  10. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    PubMed

    Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo

    2018-05-18

    Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.

  11. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  12. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  13. Color dependence with horizontal-viewing angle and colorimetric characterization of two displays using different backlighting

    NASA Astrophysics Data System (ADS)

    Castro, José J.; Pozo, Antonio M.; Rubiño, Manuel

    2013-11-01

    In this work we studied the color dependence with a horizontal-viewing angle and colorimetric characterization of two liquid-crystal displays (LCD) using two different backlighting: Cold Cathode Fluorescent Lamps (CCFLs) and light-emitting diodes (LEDs). The LCDs studied had identical resolution, size, and technology (TFT - thin film transistor). The colorimetric measurements were made with the spectroradiometer SpectraScan PR-650 following the procedure recommended in the European guideline EN 61747-6. For each display, we measured at the centre of the screen the chromaticity coordinates at horizontal viewing angles of 0, 20, 40, 60 and 80 degrees for the achromatic (A), red (R), green (G) and blue (B) channels. Results showed a greater color-gamut area for the display with LED backlight, compared with the CCFL backlight, showing a greater range of colors perceptible by human vision. This color-gamut area diminished with viewing angle for both displays. Higher differences between trends for viewing angles were observed in the LED-backlight, especially for the R- and G-channels, demonstrating a higher variability of the chromaticity coordinates with viewing angle. The best additivity was reached by the LED-backlight display (a lower error percentage). LED-backlight display provided better color performance of visualization.

  14. [Study on the characteristics of radiance calibration using nonuniformity extended source].

    PubMed

    Wang, Jian-Wei; Huang, Min; Xiangli, Bin; Tu, Xiao-Long

    2013-07-01

    Integrating sphere and diffuser are always used as extended source, and they have different effects on radiance calibration of imaging spectrometer with parameter difference. In the present paper, a mathematical model based on the theory of radiative transfer and calibration principle is founded to calculate the irradiance and calibration coefficients on CCD, taking relatively poor uniformity lights-board calibration system for example. The effects of the nonuniformity on the calibration was analyzed, which makes up the correlation of calibration coefficient matrix under ideal and unideal situation. The results show that the nonuniformity makes the viewing angle and the position of the point of intersection of the optical axis and the diffuse reflection plate have relatively large effects on calibration, while the observing distance's effect is small; under different viewing angles, a deviation value can be found that makes the calibration results closest to the desired results. So, the calibration error can be reduced by choosing appropriate deviation value.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles lessmore » than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.« less

  16. A Different Point of View towards GRB 031203

    NASA Technical Reports Server (NTRS)

    Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S. E.; Patel, S. K.; Mazzali, P. A.

    2004-01-01

    One of the most fundamental characteristics of any explosion is its energy, yet despite lively debates, the gamma-ray burst (GRB) community has still to reach a consensus on whether GRBs are standard bombs with a total energy in their relativistic ejecta approximately 10(exp 51) ergs, or a broad range of phenomena with energies varying by many orders of magnitude. While low energy GRBs may well exist, we show here that observations of GRB 031203, do not require a sub-energetic nature for that event. In fact, contrary to previous claims, the data are more consistent with a typical, powerful GRB seen at an angle of about twice the opening angle of the central jet.

  17. Relationship of individual scapular anatomy and degenerative rotator cuff tears.

    PubMed

    Moor, Beat K; Wieser, Karl; Slankamenac, Ksenija; Gerber, Christian; Bouaicha, Samy

    2014-04-01

    The etiology of rotator cuff disease is age related, as documented by prevalence data. Despite conflicting results, growing evidence suggests that distinct scapular morphologies may accelerate the underlying degenerative process. The purpose of the present study was to evaluate the predictive power of 5 commonly used radiologic parameters of scapular morphology to discriminate between patients with intact rotator cuff tendons and those with torn rotator cuff tendons. A pre hoc power analysis was performed to determine the sample size. Two independent readers measured the acromion index, lateral acromion angle, and critical shoulder angle on standardized anteroposterior radiographs. In addition, the acromial morphology according to Bigliani and the acromial slope were determined on true outlet views. Measurements were performed in 51 consecutive patients with documented degenerative rotator cuff tears and in an age- and sex-matched control group of 51 patients with intact rotator cuff tendons. Receiver operating characteristic analyses were performed to determine cutoff values and to assess the sensitivity and specificity of each parameter. Patients with degenerative rotator cuff tears demonstrated significantly higher acromion indices, smaller lateral acromion angles, and larger critical shoulder angles than patients with intact rotator cuffs. However, no difference was found between the acromial morphology according to Bigliani and the acromial slope. With an area under the receiver operating characteristic curve of 0.855 and an odds ratio of 10.8, the critical shoulder angle represented the strongest predictor for the presence of a rotator cuff tear. The acromion index, lateral acromion angle, and critical shoulder angle accurately predict the presence of degenerative rotator cuff tears. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. What convention is used for the illumination and view angles?

    Atmospheric Science Data Center

    2014-12-08

    ... Azimuth angles are measured clockwise from the direction of travel to local north. For both the Sun and cameras, azimuth describes the ... to the equator, because of its morning equator crossing time. Additionally, the difference in view and solar azimuth angle will be near ...

  19. Digital 3D holographic display using scattering layers for enhanced viewing angle and image size

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun

    2017-05-01

    In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.

  20. Wide-angle vision for road views

    NASA Astrophysics Data System (ADS)

    Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.

    2013-03-01

    The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.

  1. 10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. Two Perspectives on Forest Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Multi-angle Imaging Spectroradiometer (MISR) images of smoke plumes from wildfires in western Montana acquired on August 14, 2000. A portion of Flathead Lake is visible at the top, and the Bitterroot Range traverses the images. The left view is from MISR's vertical-viewing (nadir) camera. The right view is from the camera that looks forward at a steep angle (60 degrees). The smoke location and extent are far more visible when seen at this highly oblique angle. However, vegetation is much darker in the forward view. A brown burn scar is located nearly in the exact center of the nadir image, while in the high-angle view it is shrouded in smoke. Also visible in the center and upper right of the images, and more obvious in the clearer nadir view, are checkerboard patterns on the surface associated with land ownership boundaries and logging. Compare these images with the high resolution infrared imagery captured nearby by Landsat 7 half an hour earlier. Images by NASA/GSFC/JPL, MISR Science Team.

  3. Color representation and interpretation of special effect coatings.

    PubMed

    Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A

    2014-02-01

    A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.

  4. Field emitter displays for future avionics applications

    NASA Astrophysics Data System (ADS)

    Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.

    1995-06-01

    Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.

  5. Spatial autocorrelation of radiation measured by the Earth Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    1994-01-01

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.

  6. Miranda

    NASA Image and Video Library

    1999-08-24

    One wide-angle and eight narrow-angle camera images of Miranda, taken by NASA Voyager 2, were combined in this view. The controlled mosaic was transformed to an orthographic view centered on the south pole.

  7. Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Finstad, Daniel; De, Soumi; Brown, Duncan A.; Berger, Edo; Biwer, Christopher M.

    2018-06-01

    The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW–EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW–EM observations to measure the viewing angle of GW170817, the angle between the binary’s angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is {32}-13+10 +/- 1.7 degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of ≥13°, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

  8. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  9. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure.

    PubMed

    Kuchin, I; Starov, V

    2015-05-19

    A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr < θ < θa, which are different from the unique equilibrium contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe < θ < θa or θr < θ < θe, respectively. This "microscopic" motion almost abruptly becomes fast "macroscopic" advancing or receding motion after the contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.

  10. Field research on the spectral properties of crops and soils, volume 1. [Purdue Agronomy Farm

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Biehl, L. L.; Robinson, B. F.

    1980-01-01

    The experiment design, data acquisition and preprocessing, data base management, analysis results and development of instrumentation for the AgRISTARS Supporting Research Project, Field Research task are described. Results of several investigations on the spectral reflectance of corn and soybean canopies as influenced by cultural practices, development stage and nitrogen nutrition are reported as well as results of analyses of the spectral properties of crop canopies as a function of canopy geometry, row orientation, sensor view angle and solar illumination angle are presented. The objectives, experiment designs and data acquired in 1980 for field research experiments are described. The development and performance characteristics of a prototype multiband radiometer, data logger, and aerial tower for field research are discussed.

  11. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry.

    PubMed

    Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José

    2015-06-04

    In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D) images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°), 45° downwards view, front view (90°) and ground upwards view (-45°). The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis) were measured in each individual plant. The depth image models agreed well with 45°, 90° and -45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92) between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°). Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop biomass production, with several important advantages: low cost, low power needs and a high frame rate (frames per second) when dynamic measurements are required.

  12. A see-through holographic head-mounted display with the large viewing angle

    NASA Astrophysics Data System (ADS)

    Chen, Zhidong; sang, Xinzhu; Lin, Qiaojun; Li, Jin; Yu, Xunbo; Gao, Xin; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu; Xie, Songlin

    2017-02-01

    A novel solution for the large view angle holographic head-mounted display (HHMD) is presented. Divergent light is used for the hologram illumination to construct a large size three-dimensional object outside the display in a short distance. A designed project-type lens with large numerical aperture projects the object constructed by the hologram to its real location. The presented solution can realize a compact HHMD system with a large field of view. The basic principle and the structure of the system are described. An augmented reality (AR) prototype with the size of 50 mm×40 mm and the view angle above 60° is demonstrated.

  13. An approach to the design of wide-angle optical systems with special illumination and IFOV requirements

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey V.

    2012-06-01

    The article presents the approach to the design wide-angle optical systems with special illumination and instantaneous field of view (IFOV) requirements. The unevenness of illumination reduces the dynamic range of the system, which negatively influence on the system ability to perform their task. The result illumination on the detector depends among other factors from the IFOV changes. It is also necessary to consider IFOV in the synthesis of data processing algorithms, as it directly affects to the potential "signal/background" ratio for the case of statistically homogeneous backgrounds. A numerical-analytical approach that simplifies the design of wideangle optical systems with special illumination and IFOV requirements is presented. The solution can be used for optical systems which field of view greater than 180 degrees. Illumination calculation in optical CAD is based on computationally expensive tracing of large number of rays. The author proposes to use analytical expression for some characteristics which illumination depends on. The rest characteristic are determined numerically in calculation with less computationally expensive operands, the calculation performs not every optimization step. The results of analytical calculation inserts in the merit function of optical CAD optimizer. As a result we reduce the optimizer load, since using less computationally expensive operands. It allows reducing time and resources required to develop a system with the desired characteristics. The proposed approach simplifies the creation and understanding of the requirements for the quality of the optical system, reduces the time and resources required to develop an optical system, and allows creating more efficient EOS.

  14. Total and Differential Sputter Yields of Boron Nitride Measured by Quartz Crystal Microbalance (Preprint)

    DTIC Science & Technology

    2009-08-20

    Nomenclature As = QCM sensor area E = ion energy E* = characteristic energy describing the differential sputter yield profile shape Eth...We report differential and total sputter yields for several grades of BN at ion energies down to 60 eV, obtained with a QCM deposition sensor 3-7,9...personal computer with LabView is used for data logging. Detailed discussion of the QCM sensor is provided in subsection IIF. B. Definition of Angles

  15. Preferred viewing distance of liquid crystal high-definition television.

    PubMed

    Lee, Der-Song

    2012-01-01

    This study explored the effect of TV size, illumination, and viewing angle on preferred viewing distance in high-definition liquid crystal display televisions (HDTV). Results showed that the mean preferred viewing distance was 2856 mm. TV size and illumination significantly affected preferred viewing distance. The larger the screen size, the greater the preferred viewing distance, at around 3-4 times the width of the screen (W). The greater the illumination, the greater the preferred viewing distance. Viewing angle also correlated significantly with preferred viewing distance. The more deflected from direct frontal view, the shorter the preferred viewing distance seemed to be. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Dunelands of Titan

    NASA Image and Video Library

    2015-11-02

    Saturn's frigid moon Titan has some characteristics that are oddly similar to Earth, but still slightly alien. It has clouds, rain and lakes (made of methane and ethane), a solid surface (made of water ice), and vast dune fields (filled with hydrocarbon sands). The dark, H-shaped area seen here contains two of the dune-filled regions, Fensal (in the north) and Aztlan (to the south). Cassini's cameras have frequently monitored the surface of Titan (3200 miles or 5150 kilometers across) to look for changes in its features over the course of the mission. Any changes would help scientists better understand different phenomena like winds and dune formation on this strangely earth-like moon. For a closer view of Fensal-Aztlan, see PIA07732 . This view looks toward the leading side of Titan. North on Titan is up. The image was taken with the Cassini spacecraft narrow-angle camera on July 25, 2015 using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 450,000 miles (730,000 kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 32 degrees. Image scale is 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18341

  17. Bright field segmentation tomography (BFST) for use as surface identification in stereomicroscopy

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline R.; Namati, Eman; de Ryk, Jessica; Hoffman, Eric A.; McLennan, Geoffrey

    2004-07-01

    Stereomicroscopy is an important method for use in image acquisition because it provides a 3D image of an object when other microscopic techniques can only provide the image in 2D. One challenge that is being faced with this type of imaging is determining the top surface of a sample that has otherwise indistinguishable surface and planar characteristics. We have developed a system that creates oblique illumination and in conjunction with image processing, the top surface can be viewed. The BFST consists of the Leica MZ12 stereomicroscope with a unique attached lighting source. The lighting source consists of eight light emitting diodes (LED's) that are separated by 45-degree angles. Each LED in this system illuminates with a 20-degree viewing angle once per cycle with a shadow over the rest of the sample. Subsequently, eight segmented images are taken per cycle. After the images are captured they are stacked through image addition to achieve the full field of view, and the surface is then easily identified. Image processing techniques, such as skeletonization can be used for further enhancement and measurement. With the use of BFST, advances can be made in detecting surface features from metals to tissue samples, such as in the analytical assessment of pulmonary emphysema using the technique of mean linear intercept.

  18. ODERACS 2 White Spheres Optical Calibration Report

    NASA Technical Reports Server (NTRS)

    Culp, Robert D.; Gravseth, Ian; Gloor, Jason; Wantuch, Todd

    1995-01-01

    This report documents the status of the Orbital Debris Radar Calibration Spheres (ODERACS) 2 white spheres optical calibration study. The purpose of this study is to determine the spectral reflectivity and scattering characteristics in the visible wavelength region for the white spheres that were added to the project in the fall, 1994. Laboratory measurements were performed upon these objects and an analysis of the resulting data was conducted. These measurements are performed by illuminating the objects with a collimated beam of light and measuring the reflected light versus the phase angle. The phase angle is defined as the angle between the light source and the sensor, as viewed from the object. By measuring the reflected signal at the various phase angles, one is able to estimate the reflectance properties of the object. The methodology used in taking the measurements and reducing the data are presented. The results of this study will be used to support the calibration of ground-based optical instruments used in support of space debris research. Visible measurements will be made by the GEODDS, NASA and ILADOT telescopes.

  19. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai

    2016-12-01

    Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy at 0° to -30° (R2 = 0.835, RMSE = 0.366). As it is possible to monitor plant N status over a wide range of angles using portable spectrometers, viewing angles of as much as 0° to -30° are common. Consequently, we developed a united model across angles of 0° to -30° to reduce the effects of viewing angle on LNC prediction in wheat. The proposed combined NDRE/FWBI parameter, designated the wide-angle-adaptability nitrogen index (WANI), is superior for estimating LNC in wheat on a regional scale in China and Canada.

  20. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network.

    PubMed

    Lee, Ji-Hoon; Lee, Jung Jin; Lim, Young Jin; Kundu, Sudarshan; Kang, Shin-Woong; Lee, Seung Hee

    2013-11-04

    Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

  1. Simulated response of a multispectral scanner over wheat as a function of wavelength and view/illumination direction

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Biehl, L. L.; Vanderbilt, A. S.

    1981-01-01

    The reflectance response with view angle of wheat, was analyzed. The analyses, which assumes there are no atmospheric effects, and otherwise simulates the response of a multispectral scanner, is based upon spectra taken continuously in wavelength from 0.45 to 2.4 micrometers at more than 1200 view/illumination directions using an Exotech model 20C spectra radiometer. Data were acquired six meters above four wheat canopies, each at a different growth stage. The analysis shows that the canopy reflective response is a pronounced function of illumination angle, scanner view angle and wavelength. The variation is greater at low solar elevations compared to high solar elevations.

  2. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space.

  3. Normalization of multidirectional red and NIR reflectances with the SAVI

    NASA Technical Reports Server (NTRS)

    Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.

    1992-01-01

    Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.

  4. Effects of changing canopy directional reflectance on feature selection

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Oliver, R. E.; Kilpela, O. E.

    1973-01-01

    The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.

  5. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear-view image in all-weather conditions.

  6. THE VIEWING ANGLES OF BROAD ABSORPTION LINE VERSUS UNABSORBED QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2012-06-10

    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper, we provide more quantitative analysis of this result based on Monte Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models ofmore » the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 Degree-Sign farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.« less

  7. Fire Hazards from Combustible Ammunition, Methodology Development. Phase I

    DTIC Science & Technology

    1980-06-01

    5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame

  8. 4. Elevation view of Bunker 104 with ultrawide angle lens ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Elevation view of Bunker 104 with ultrawide angle lens shows about 70 percent of east facade including entire south end with steps and doors. View shows slope of south end and vegetation growing atop building. See also photo WA-203-C-3. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA

  9. What is MISR? MISR Instrument? MISR Project?

    Atmospheric Science Data Center

    2014-12-08

    ... to improve our understanding of the Earth's environment and climate. Viewing the sunlit Earth simultaneously at nine widely-spaced angles, ... types of atmospheric particles and clouds on climate. The change in reflection at different view angles affords the means to distinguish ...

  10. Array Of Sensors Measures Broadband Radiation

    NASA Technical Reports Server (NTRS)

    Hoffman, James W.; Grush, Ronald G.

    1994-01-01

    Multiple broadband radiation sensors aimed at various portions of total field of view. All sensors mounted in supporting frame, serving as common heat sink and temperature reference. Each sensor includes heater winding and differential-temperature-sensing bridge circuit. Power in heater winding adjusted repeatedly in effort to balance bridge circuit. Intended to be used aboard satellite in orbit around Earth to measure total radiation emitted, at various viewing angles, by mosaic of "footprint" areas (each defined by its viewing angle) on surface of Earth. Modified versions of array useful for angle-resolved measurements of broadband radiation in laboratory and field settings on Earth.

  11. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  12. Multi-viewer tracking integral imaging system and its viewing zone analysis.

    PubMed

    Park, Gilbae; Jung, Jae-Hyun; Hong, Keehoon; Kim, Yunhee; Kim, Young-Hoon; Min, Sung-Wook; Lee, Byoungho

    2009-09-28

    We propose a multi-viewer tracking integral imaging system for viewing angle and viewing zone improvement. In the tracking integral imaging system, the pickup angles in each elemental lens in the lens array are decided by the positions of viewers, which means the elemental image can be made for each viewer to provide wider viewing angle and larger viewing zone. Our tracking integral imaging system is implemented with an infrared camera and infrared light emitting diodes which can track the viewers' exact positions robustly. For multiple viewers to watch integrated three-dimensional images in the tracking integral imaging system, it is needed to formulate the relationship between the multiple viewers' positions and the elemental images. We analyzed the relationship and the conditions for the multiple viewers, and verified them by the implementation of two-viewer tracking integral imaging system.

  13. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  14. Vehicle Characteristics

    DTIC Science & Technology

    2008-02-14

    g. Material. 5.1.7 Wheel Geometry. a. Camber angle. b. Caster angle. c. Pivot angle. d. Static toe-in. e. Turning angles...the vehicle characteristics to be obtained during testing of wheeled and tracked vehicles and their components. Physical characterization of test...frontal area Characteristic data sheet Power train Suspention Wheel geometry Vehicle clearance angles Armament Gun control systems 16. SECURITY

  15. Dusk in the South

    NASA Image and Video Library

    2013-12-23

    Slipping into shadow, the south polar vortex at Saturn's moon Titan still stands out against the orange and blue haze layers that are characteristic of Titan's atmosphere. Images like this, from NASA's Cassini spacecraft, lead scientists to conclude that the polar vortex clouds form at a much higher altitude -- where sunlight can still reach -- than the lower-altitude surrounding haze. This view looks towards the trailing hemisphere of Titan (3,200 miles or 5,150 kilometers across). North on Titan is up and rotated 17 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on July 30, 2013. The view was acquired at a distance of approximately 895,000 miles (1.441 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17177

  16. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  17. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. Radio constraints on the nature of BL Lacertae objects and their parent population

    NASA Technical Reports Server (NTRS)

    Kollgaard, R. I.; Wardle, J. F. C.; Roberts, D. H.; Gabuzda, D. C.

    1992-01-01

    5 GHz VLA observations of 17 BL Lac objects with bright radio cores at both high and low resolution are reported. Extended emission is detected around most objects. None of the sources observed at low resolution show evidence of giant halos on the scale of tens of arcmin. In general, the sources with the most luminous extended emission exhibit FR II characteristics in both morphology and polarization, and less luminous sources exhibit FR I characteristics. Thus, the parent population of the BL Lac objects contains both FR I and FR II radio sources. No BL Lac objects are found that clearly exhibit quasarlike polarization at milliarcsec resolution. This argues against the view that the more luminous BL Lac objects are simply an extension of the quasar/OVV population, or that most BL Lac objects are gravitationally microlensed images of distant quasars. Other properties are generally consistent with the view the BL Lac objects are normal radio galaxies whose jets make a small angle to the line of sight.

  19. The relationship between facial 3-D morphometry and the perception of attractiveness in children.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Colombo, A; Tartaglia, G

    1997-01-01

    The aim of this investigation was to determine whether attractive children differ in their three-dimensional facial characteristics from nonattractive children of the same age, race, and sex. The facial characteristics of 36 boys and 44 girls aged 8 to 9 years were investigated. Frontal and profile photographs were analyzed independently by 21 judges, and, for each view, four groups were obtained: attractive boys, nonattractive boys, attractive girls, and nonattractive girls. For each child, the three-dimensional coordinates of 16 standardized soft tissue facial landmarks were automatically collected using an infrared system and used to calculate several three-dimensional angles, linear distances, and linear distance ratios. Mean values were computed in the eight groups, and attractive and nonattractive children were compared within sex and view. Most children received a different esthetic evaluation in the separate frontal and profile assessments; concordance in both attractive and nonattractive groups was only 50%. Moreover, three-dimensional facial morphometry was not able to separate attractive and nonattractive children.

  20. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting

    NASA Astrophysics Data System (ADS)

    Wang, Li; Luo, Yu; Liu, ZengZeng; Feng, Xueming; Lu, Bingheng

    2018-06-01

    This work presents an economic and controllable fabricating method of high numerical aperture (NA) polymer microlens array (MLA) based on ink-jetting technology. The MLAs are ink-jetted to align on micro platforms patterned flexible PDMS substrate. The shape of a sole lens is constructed by the ink-jetted pre-cured polymer volume confined on a micro platform. In this way, MLAs with targeted geometries-as well as tailored optical characteristics-can be printed, leading to freely designed optical properties. High NA from 0.446 to 0.885 and focal lengths between 99.26 μm and 39.45 μm are demonstrated, confirming theoretical predictions. Particularly, both the simulations and experimental measurements in optical properties are carried out, demonstrating that microlenses with shapes beyond a hemisphere (CA > 90°) exhibits higher light utilization efficiency and wider viewing angle. Meanwhile, the MLAs are fabricated on flexible PDMS substrates and can be attached to other curved surfaces for wider field of view imaging and higher sensitivity.

  1. Characteristics of color optical shutter with dye-doped polymer network liquid crystal.

    PubMed

    Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E

    2011-03-01

    The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.

  2. 79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER BRIDGE, BARGES, SONAR BUOY RANGE AND MORRIS DAM IN BACKGROUND, June 10, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Mobile Robot Localization by Remote Viewing of a Colored Cylinder

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Litwin, T.; Matthies, L.

    1995-01-01

    A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.

  4. Guidance Of A Mobile Robot Using An Omnidirectional Vision Navigation System

    NASA Astrophysics Data System (ADS)

    Oh, Sung J.; Hall, Ernest L.

    1987-01-01

    Navigation and visual guidance are key topics in the design of a mobile robot. Omnidirectional vision using a very wide angle or fisheye lens provides a hemispherical view at a single instant that permits target location without mechanical scanning. The inherent image distortion with this view and the numerical errors accumulated from vision components can be corrected to provide accurate position determination for navigation and path control. The purpose of this paper is to present the experimental results and analyses of the imaging characteristics of the omnivision system including the design of robot-oriented experiments and the calibration of raw results. Errors less than one picture element on each axis were observed by testing the accuracy and repeatability of the experimental setup and the alignment between the robot and the sensor. Similar results were obtained for four different locations using corrected results of the linearity test between zenith angle and image location. Angular error of less than one degree and radial error of less than one Y picture element were observed at moderate relative speed. The significance of this work is that the experimental information and the test of coordinated operation of the equipment provide a greater understanding of the dynamic omnivision system characteristics, as well as insight into the evaluation and improvement of the prototype sensor for a mobile robot. Also, the calibration of the sensor is important, since the results provide a cornerstone for future developments. This sensor system is currently being developed for a robot lawn mower.

  5. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.

  6. Sensitivity of MODIS 2.1-(micrometers) Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.; Arnold, T.

    2000-01-01

    In this sensitivity study, we examined the ratio technique, the official method for remote sensing of aerosols over land from Moderate Resolution Imaging Spectroradiometer (MODIS) DATA, for view angles from nadir to 65 deg. off-nadir using Cloud Absorption Radiometer (CAR) data collected during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment conducted in 1995. For the data analyzed and for the view angles tested, results seem to suggest that the reflectance (rho)0.47 and (rho)0.67 are predictable from (rho)2.1 using: (rho)0.47 = (rho)2.1/6, which is a slight modification and (rho)0.67 = (rho)2.1/2. These results hold for target viewed from backscattered direction, but not for the forward direction.

  7. Sliding mode control based impact angle control guidance considering the seeker׳s field-of-view constraint.

    PubMed

    Wang, Xingliang; Zhang, Youan; Wu, Huali

    2016-03-01

    The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. 74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST SHOWING ADJUSTABLE STAIRS ON THE LEFT AND LAUNCHING TUBE ON THE RIGHT, Date unknown, circa 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Optimal design of wide-view-angle waveplate used for polarimetric diagnosis of lithography system

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Chen, Xiuguo; Liu, Shiyuan

    2016-03-01

    The diagnosis and control of the polarization aberrations is one of the main concerns in a hyper numerical aperture (NA) lithography system. Waveplates are basic and indispensable optical components in the polarimetric diagnosis tools for the immersion lithography system. The retardance of a birefringent waveplate is highly sensitive to the incident angle of the light, which makes the conventional waveplate not suitable to be applied in the polarimetric diagnosis for the immersion lithography system with a hyper NA. In this paper, we propose a method for the optimal design of a wideview- angle waveplate by combining two positive waveplates made from magnesium fluoride (MgF2) and two negative waveplates made from sapphire using the simulated annealing algorithm. Theoretical derivations and numerical simulations are performed and the results demonstrate that the maximum variation in the retardance of the optimally designed wide-view-angle waveplate is less than +/- 0.35° for a wide-view-angle range of +/- 20°.

  10. Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.

    PubMed

    Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin

    2017-09-01

    Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.

  11. The big picture: effects of surround on immersion and size perception.

    PubMed

    Baranowski, Andreas M; Hecht, Heiko

    2014-01-01

    Despite the fear of the entertainment industry that illegal downloads of films might ruin their business, going to the movies continues to be a popular leisure activity. One reason why people prefer to watch movies in cinemas may be the surround of the movie screen or its physically huge size. To disentangle the factors that might contribute to the size impression, we tested several measures of subjective size and immersion in different viewing environments. For this purpose we built a model cinema that provided visual angle information comparable with that of a real cinema. Subjects watched identical movie clips in a real cinema, a model cinema, and on a display monitor in isolation. Whereas the isolated display monitor was inferior, the addition of a contextual model improved the viewing immersion to the extent that it was comparable with the movie theater experience, provided the viewing angle remained the same. In a further study we built an identical but even smaller model cinema to unconfound visual angle and viewing distance. Both model cinemas produced similar results. There was a trend for the larger screen to be more immersive; however, viewing angle did not play a role in how the movie was evaluated.

  12. 22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD TOP OF CONCRETE 'A' FRAME STRUCTURE SHOWING DRIVE CABLES, DRIVE GEAR, BOTTOM OF CAMERA TOWER AND 'CROWS NEST' CONTROL ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. Wide angle view of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  14. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  15. Wide angle view of Mission Control Center during Apollo 14 transmission

    NASA Image and Video Library

    1971-01-31

    S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.

  16. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana G.; Marscher, Alan P.; Morozova, Daria A.; Troitsky, Ivan S.; Agudo, Iván; Casadio, Carolina; Foord, Adi; Gómez, José L.; MacDonald, Nicholas R.; Molina, Sol N.; Lähteenmäki, Anne; Tammi, Joni; Tornikoski, Merja

    2017-09-01

    We analyze the parsec-scale jet kinematics from 2007 June to 2013 January of a sample of γ-ray bright blazars monitored roughly monthly with the Very Long Baseline Array at 43 GHz. In a total of 1929 images, we measure apparent speeds of 252 emission knots in 21 quasars, 12 BL Lacertae objects (BLLacs), and 3 radio galaxies, ranging from 0.02c to 78c; 21% of the knots are quasi-stationary. Approximately one-third of the moving knots execute non-ballistic motions, with the quasars exhibiting acceleration along the jet within 5 pc (projected) of the core, and knots in BLLacs tending to decelerate near the core. Using the apparent speeds of the components and the timescales of variability from their light curves, we derive the physical parameters of 120 superluminal knots, including variability Doppler factors, Lorentz factors, and viewing angles. We estimate the half-opening angle of each jet based on the projected opening angle and scatter of intrinsic viewing angles of knots. We determine characteristic values of the physical parameters for each jet and active galactic nucleus class based on the range of values obtained for individual features. We calculate the intrinsic brightness temperatures of the cores, {T}{{b},{int}}{core}, at all epochs, finding that the radio galaxies usually maintain equipartition conditions in the cores, while ˜30% of {T}{{b},{int}}{core} measurements in the quasars and BLLacs deviate from equipartition values by a factor >10. This probably occurs during transient events connected with active states. In the Appendix, we briefly describe the behavior of each blazar during the period analyzed.

  17. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  18. Optimal angle of needle insertion for fluoroscopy-guided transforaminal epidural injection of L5.

    PubMed

    Ra, In-Hoo; Min, Woo-Kie

    2015-06-01

    Unlike other sites, there is difficulty in performing TFESI at the L5-S1 level because the iliac crest is an obstacle to needle placement. The objective of this study was to identify the optimal angle of fluoroscopy for insertion and advancement of a needle during L5 TEFSI. We conducted an observational study of patients undergoing fluoroscopy-guided L5 TFESI in the prone position. A total of 80 patients (40 men and 40 women) with radiating pain of lower limbs were enrolled. During TFESI, we measured the angle at which the L5 vertebral body forms a rectangular shape and compared men and women. Then, we measured area of safe triangle in tilting angle of fluoroscopy from 15° to 35° and compared men and women. The mean cephalocaudal angle, where the vertebral body takes the shape of a rectangle, was 11.0° in men and 13.9° in women (P = 0.007). In men, the triangular area was maximal at 18.3 mm² with an oblique view angle of 25°. In women, the area was maximal at 23.6 mm² with an oblique view angle of 30°. At an oblique view angle of 30° and 35°, the area was significantly greater in women (P < 0.05). When TFESI is performed at the L5 region in the prone position, placement of fluoroscopy at a cephalocaudal angle of 11.0° and an oblique angle of 25° in men and cephalocaudal angle of 13.9° and an oblique angle of 30° in women would be most reasonable. © 2014 World Institute of Pain.

  19. Vertical viewing angle enhancement for the 360  degree integral-floating display using an anamorphic optic system.

    PubMed

    Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam

    2014-04-15

    We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.

  20. Detection Angle Calibration of Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Uses of the pressure-sensitive paint (PSP) techniques in areas other than external aerodynamics continue to expand. The NASA Glenn Research Center has become a leader in the application of the global technique to non-conventional aeropropulsion applications including turbomachinery testing. The use of the global PSP technique in turbomachinery applications often requires detection of the luminescent paint in confined areas. With the limited viewing usually available, highly oblique illumination and detection angles are common in the confined areas in these applications. This paper will describe the results of pressure, viewing and excitation angle dependence calibrations using three popular PSP formulations to get a better understanding of the errors associated with these non-traditional views.

  1. Concept development for the ITER equatorial port visible∕infrared wide angle viewing system.

    PubMed

    Reichle, R; Beaumont, B; Boilson, D; Bouhamou, R; Direz, M-F; Encheva, A; Henderson, M; Huxford, R; Kazarian, F; Lamalle, Ph; Lisgo, S; Mitteau, R; Patel, K M; Pitcher, C S; Pitts, R A; Prakash, A; Raffray, R; Schunke, B; Snipes, J; Diaz, A Suarez; Udintsev, V S; Walker, C; Walsh, M

    2012-10-01

    The ITER equatorial port visible∕infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.

  2. 81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE RESERVOIR SHOWING TWO LAUNCHING TUBES ON THE LAUNCHER BRIDGE, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. 63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, CABLES, LAUNCHER RAILS, PROJECTILE CAR AND SUPPORT CARRIAGE, April 8, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. View angle effects on relationships between leaf area index in wheat and vegetation indices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, W.; Huang, W.; Niu, Z.

    2016-12-01

    The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.

  5. Optics of wide-angle panoramic viewing system-assisted vitreous surgery.

    PubMed

    Chalam, Kakarla V; Shah, Vinay A

    2004-01-01

    The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.

  6. Statistical analysis of the ambiguities in the asteroid period determinations

    NASA Astrophysics Data System (ADS)

    Butkiewicz-Bąk, M.; Kwiatkowski, T.; Bartczak, P.; Dudziński, G.; Marciniak, A.

    2017-09-01

    Among asteroids there exist ambiguities in their rotation period determinations. They are due to incomplete coverage of the rotation, noise and/or aliases resulting from gaps between separate lightcurves. To help to remove such uncertainties, basic characteristic of the lightcurves resulting from constraints imposed by the asteroid shapes and geometries of observations should be identified. We simulated light variations of asteroids whose shapes were modelled as Gaussian random spheres, with random orientations of spin vectors and phase angles changed every 5° from 0° to 65°. This produced 1.4 million lightcurves. For each simulated lightcurve, Fourier analysis has been made and the harmonic of the highest amplitude was recorded. From the statistical point of view, all lightcurves observed at phase angles α < 30°, with peak-to-peak amplitudes A > 0.2 mag, are bimodal. Second most frequently dominating harmonic is the first one, with the 3rd harmonic following right after. For 1 per cent of lightcurves with amplitudes A < 0.1 mag and phase angles α < 40°, 4th harmonic dominates.

  7. 57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, STAIRS AND PORTION OF LAUNCHING DECK. NOTE SUPPORT CARRIAGE ASSEMBLY IN DISTANCE. Date unknown, circa March 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. Hologram generation by horizontal scanning of a high-speed spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Okada, Naoya

    2009-06-10

    In order to increase the image size and the viewing zone angle of a hologram, a high-speed spatial light modulator (SLM) is imaged as a vertically long image by an anamorphic imaging system, and this image is scanned horizontally by a galvano scanner. The reduction in horizontal pixel pitch of the SLM provides a wide viewing zone angle. The increased image height and horizontal scanning increased the image size. We demonstrated the generation of a hologram having a 15 degrees horizontal viewing zone angle and an image size of 3.4 inches with a frame rate of 60 Hz using a digital micromirror device with a frame rate of 13.333 kHz as a high-speed SLM.

  9. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  10. Angle Measurement of Objects outside the Linear Field of View of a Strapdown Semi-Active Laser Seeker.

    PubMed

    Zheng, Yongbin; Chen, Huimin; Zhou, Zongtan

    2018-05-23

    The accurate angle measurement of objects outside the linear field of view (FOV) is a challenging task for a strapdown semi-active laser seeker and is not yet well resolved. Considering the fact that the strapdown semi-active laser seeker is equipped with GPS and an inertial navigation system (INS) on a missile, in this work, we present an angle measurement method based on the fusion of the seeker’s data and GPS and INS data for a strapdown semi-active laser seeker. When an object is in the nonlinear FOV or outside the FOV, by solving the problems of space consistency and time consistency, the pitch angle and yaw angle of the object can be calculated via the fusion of the last valid angles measured by the seeker and the corresponding GPS and INS data. The numerical simulation results demonstrate the correctness and effectiveness of the proposed method.

  11. Concept development for the ITER equatorial port visible/infrared wide angle viewing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichle, R.; Beaumont, B.; Boilson, D.

    2012-10-15

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topicsmore » are outlined.« less

  12. Human-tracking strategies for a six-legged rescue robot based on distance and view

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Gao, Feng; Qi, Chenkun; Chai, Xun

    2016-03-01

    Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.

  13. Summer Harvest in Saratov, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Russia's Saratov Oblast (province) is located in the southeastern portion of the East-European plain, in the Lower Volga River Valley. Southern Russia produces roughly 40 percent of the country's total agricultural output, and Saratov Oblast is the largest producer of grain in the Volga region. Vegetation changes in the province's agricultural lands between spring and summer are apparent in these images acquired on May 31 and July 18, 2002 (upper and lower image panels, respectively) by the Multi-angle Imaging SpectroRadiometer (MISR).

    The left-hand panels are natural color views acquired by MISR's vertical-viewing (nadir) camera. Less vegetation and more earth tones (indicative of bare soils) are apparent in the summer image (lower left). Farmers in the region utilize staggered sowing to help stabilize yields, and a number of different stages of crop maturity can be observed. The main crop is spring wheat, cultivated under non-irrigated conditions. A short growing season and relatively low and variable rainfall are the major limitations to production. Saratov city is apparent as the light gray pixels on the left (west) bank of the Volga River. Riparian vegetation along the Volga exhibits dark green hues, with some new growth appearing in summer.

    The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree backward, nadir and 60-degree forward-viewing cameras displayed as red, green and blue respectively. In these images, color variations serve as a proxy for changes in angular reflectance, and the spring and summer views were processed identically to preserve relative variations in brightness between the two dates. Urban areas and vegetation along the Volga banks look similar in the two seasonal multi-angle composites. The agricultural areas, on the other hand, look strikingly different. This can be attributed to differences in brightness and texture between bare soil and vegetated land. The chestnut-colored soils in this region are brighter in MISR's red band than the vegetation. Because plants have vertical structure, the oblique cameras observe a greater proportion of vegetation relative to the nadir camera, which sees more soil. In spring, therefore, the scene is brightest in the vertical view and thus appears with an overall greenish hue. In summer, the soil characteristics play a greater role in governing the appearance of the scene, and the angular reflectance is now brighter at the oblique view angles (displayed as red and blue), thus imparting a pink color to much of the farmland and a purple color to areas along the banks of several narrow rivers. The unusual appearance of the clouds is due to geometric parallax which splits the imagery into spatially separated components as a consequence of their elevation above the surface.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. These images are a portion of the data acquired during Terra orbits 13033 and 13732, and cover an area of about 173 kilometers x 171 kilometers. They utilize data from blocks 49 to 50 within World Reference System-2 path 170.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Data and performances of selected aircraft and rotorcraft

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2000-11-01

    The purpose of this article is to provide a synthetic and comparative view of selected aircraft and rotorcraft (nearly 300 of them) from past and present. We report geometric characteristics of wings (wing span, areas, aspect-ratios, sweep angles, dihedral/anhedral angles, thickness ratios at root and tips, taper ratios) and rotor blades (type of rotor, diameter, number of blades, solidity, rpm, tip Mach numbers); aerodynamic data (drag coefficients at zero lift, cruise and maximum absolute glide ratio); performances (wing and disk loadings, maximum absolute Mach number, cruise Mach number, service ceiling, rate of climb, centrifugal acceleration limits, maximum take-off weight, maximum payload, thrust-to-weight ratios). There are additional data on wing types, high-lift devices, noise levels at take-off and landing. The data are presented on tables for each aircraft class. A graphic analysis offers a comparative look at all types of data. Accuracy levels are provided wherever available.

  15. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  16. Stereo View of Martian Rock Target 'Funzie'

    NASA Image and Video Library

    2018-02-08

    The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212

  17. Defining Constellation Suit Helmet Field of View Requirements Employing a Mission Segment Based Reduction Process

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2008-01-01

    Field of view has always been a design feature paramount to helmet design, and in particular space suit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a slightly different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view is required. Through taxonimization of various parameters that affect suited FOV, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was able to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables without sacrificing fidelity. The specific field of view angles were defined by considering mission segment activities, historical performance of other suits, comparison between similar requirements (pressure visor up versus down, etc.), estimated requirements from other teams for field of view (Orion, Altair, EVA), previous field of view tests, medical data for shirtsleeve field of view performance, and mapping of visual field data to generate 45degree off-axis field of view requirements. Full resolution of several specific field of view angle requirements warranted further work, which consisted of low and medium fidelity field of view testing in the rear entry ISuit and DO27 helmet prototype. This paper serves to document this reduction progress and followup testing employed to write the Constellation requirements for helmet field of view.

  18. Biophysical and spectral modeling for crop identification and assessment

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1984-01-01

    The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.

  19. [Analysis of Polarization Characteristics of Wheat and Maize Crops Using Land-Based Remote Sensing Measurements].

    PubMed

    Sid'ko, A F; Botvich, I Yu; Pisman, T I; Shevyrnogov, A P

    2015-01-01

    The paper presents analysis of a study of the polarized component of the reflectance factor (Rq) and the degree of polarization (P) of wheat and maize crops depending on the wavelength. Registration of polarization characteristics was carried out in the field from the elevated work platform at heights of 10 to 18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820-nm. The viewing angle was no greater than 20 degree with respect to the nadir. The reflection spectra of wheat and maize crops obtained using a polarizer adjusted to transmit the maximum and minimum amounts of light (R(max) and R(min)) were studied. Based on these reflection spectra polarization characteristics, which. differ in the visible and infrared spectral region, were determined and analyzed.

  20. Ash from Kilauea Eruption Viewed by NASA's MISR

    Atmospheric Science Data Center

    2018-06-07

    ... title:  Ash from Kilauea Eruption Viewed by NASA's MISR View Larger Image   Ash ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. ...

  1. Polyplanar optical display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be use with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser as its optical source. In order to produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the electronic interfacing to the DLP chip, the opto-mechanical design and viewing angle characteristics.

  2. Laser-driven polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variablemore » astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.« less

  3. Laser-driven polyplanar optic display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1998-05-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid- state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  4. A novel wide-field-of-view display method with higher central resolution for hyper-realistic head dome projector

    NASA Astrophysics Data System (ADS)

    Hotta, Aira; Sasaki, Takashi; Okumura, Haruhiko

    2007-02-01

    In this paper, we propose a novel display method to realize a high-resolution image in a central visual field for a hyper-realistic head dome projector. The method uses image processing based on the characteristics of human vision, namely, high central visual acuity and low peripheral visual acuity, and pixel shift technology, which is one of the resolution-enhancing technologies for projectors. The projected image with our method is a fine wide-viewing-angle image with high definition in the central visual field. We evaluated the psychological effects of the projected images with our method in terms of sensation of reality. According to the result, we obtained 1.5 times higher resolution in the central visual field and a greater sensation of reality by using our method.

  5. 3. Elevation view of entire midsection using ultrawide angle lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Elevation view of entire midsection using ultrawide angle lens. Note opened south doors and closed north doors. The following photo WA-203-C-4 is similar except the camera position was moved right to include the slope of the south end. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA

  6. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).

  7. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  8. The pigeon's distant visual acuity as a function of viewing angle.

    PubMed

    Uhlrich, D J; Blough, P M; Blough, D S

    1982-01-01

    Distant visual acuity was determined for several viewing angles in two restrained White Carneaux pigeons. The behavioral technique was a classical conditioning procedure that paired presentation of sinusoidal gratings with shock. A conditioned heart rate acceleration during the grating presentation indicated resolution of the grating. The bird's acuity was fairly uniform across a large range of their lateral visual field; performance decreased slightly for posterior stimulus placement and sharply for frontal placements. The data suggest that foveal viewing is relatively less advantageous for acuity in pigeons than in humans. The data are also consistent with the current view that pigeons are myopic in frontal vision.

  9. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance: comment.

    PubMed

    Krotkov, N A; Vasilkov, A P

    2000-03-20

    Use of a vertical polarizer has been suggested to reduce the effects of surface reflection in the above-water measurements of marine reflectance. We suggest using a similar technique for airborne or spaceborne sensors when atmospheric scattering adds its own polarization signature to the upwelling radiance. Our own theoretical sensitivity study supports the recommendation of Fougnie et al. [Appl. Opt. 38, 3844 (1999)] (40-50 degrees vertical angle and azimuth angle near 135 degrees, polarizer parallel to the viewing plane) for above-water measurements. However, the optimal viewing directions (and the optimal orientation of the polarizer) change with altitude above the sea surface, solar angle, and atmospheric vertical optical structure. A polarization efficiency function is introduced, which shows the maximal possible polarization discrimination of the background radiation for an arbitrary altitude above the sea surface, viewing direction, and solar angle. Our comment is meant to encourage broader application of airborne and spaceborne polarization sensors in remote sensing of water and sea surface properties.

  10. Integrated large view angle hologram system with multi-slm

    NASA Astrophysics Data System (ADS)

    Yang, ChengWei; Liu, Juan

    2017-10-01

    Recently holographic display has attracted much attention for its ability to generate real-time 3D reconstructed image. CGH provides an effective way to produce hologram, and spacial light modulator (SLM) is used to reconstruct the image. However the reconstructing system is usually very heavy and complex, and the view-angle is limited by the pixel size and spatial bandwidth product (SBP) of the SLM. In this paper a light portable holographic display system is proposed by integrating the optical elements and host computer units.Which significantly reduces the space taken in horizontal direction. CGH is produced based on the Fresnel diffraction and point source method. To reduce the memory usage and image distortion, we use an optimized accurate compressed look up table method (AC-LUT) to compute the hologram. In the system, six SLMs are concatenated to a curved plane, each one loading the phase-only hologram in a different angle of the object, the horizontal view-angle of the reconstructed image can be expanded to about 21.8°.

  11. A Wide Field of View Plasma Spectrometer

    DOE PAGES

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...

    2016-07-01

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  12. On the Design of Wide-Field X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.

    2009-01-01

    X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.

  13. Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.

    PubMed

    Kim, Hwi; Hahn, Joonku; Lee, Byoungho

    2009-04-13

    Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.

  14. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    NASA Astrophysics Data System (ADS)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  15. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a stationary tower.

  16. A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Cooper, George E.

    1958-01-01

    The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.

  17. Water World

    NASA Image and Video Library

    2015-11-30

    Although Enceladus and Saturn's rings are largely made up of water ice, they show very different characteristics. The small ring particles are too tiny to retain internal heat and have no way to get warm, so they are frozen and geologically dead. Enceladus, on the other hand, is subject to forces that heat its interior to this very day. This results in its famous south polar water jets, which are just visible above the moon's dark, southern limb, along with a sub-surface ocean. Recent work by Cassini scientists suggests that Enceladus (313 miles or 504 kilometers across) has a global ocean of liquid water under its surface. This discovery increases scientists' interest in Enceladus and the quest to understand the role of water in the development of life in the solar system. (For more on the sub-surface ocean, see this story.) This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2015. The view was acquired at a distance of approximately 630,000 miles (1.0 million kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase angle of 155 degrees. Image scale is 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18343

  18. A computerized method for automated identification of erect posteroanterior and supine anteroposterior chest radiographs

    NASA Astrophysics Data System (ADS)

    Kao, E.-Fong; Lin, Wei-Chen; Hsu, Jui-Sheng; Chou, Ming-Chung; Jaw, Twei-Shiun; Liu, Gin-Chung

    2011-12-01

    A computerized scheme was developed for automated identification of erect posteroanterior (PA) and supine anteroposterior (AP) chest radiographs. The method was based on three features, the tilt angle of the scapula superior border, the tilt angle of the clavicle and the extent of radiolucence in lung fields, to identify the view of a chest radiograph. The three indices Ascapula, Aclavicle and Clung were determined from a chest image for the three features. Linear discriminant analysis was used to classify PA and AP chest images based on the three indices. The performance of the method was evaluated by receiver operating characteristic analysis. The proposed method was evaluated using a database of 600 PA and 600 AP chest radiographs. The discriminant performances Az of Ascapula, Aclavicle and Clung were 0.878 ± 0.010, 0.683 ± 0.015 and 0.962 ± 0.006, respectively. The combination of the three indices obtained an Az value of 0.979 ± 0.004. The results indicate that the combination of the three indices could yield high discriminant performance. The proposed method could provide radiologists with information about the view of chest radiographs for interpretation or could be used as a preprocessing step for analyzing chest images.

  19. Case studies of aerosol and ocean color retrieval using a Markov chain radiative transfer model and AirMSPI measurements

    NASA Astrophysics Data System (ADS)

    Xu, F.; Diner, D. J.; Seidel, F. C.; Dubovik, O.; Zhai, P.

    2014-12-01

    A vector Markov chain radiative transfer method was developed for forward modeling of radiance and polarization fields in a coupled atmosphere-ocean system. The method was benchmarked against an independent Successive Orders of Scattering code and linearized through the use of Jacobians. Incorporated with the multi-patch optimization algorithm and look-up-table method, simultaneous aerosol and ocean color retrievals were performed using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) when it was operated in step-and-stare mode with 9 viewing angles ranging between ±67°. Data from channels near 355, 380, 445, 470*, 555, 660*, and 865* nm were used in the retrievals, where the asterisk denotes the polarimetric bands. Retrievals were run for AirMSPI overflights over Southern California and Monterey Bay, CA. For the relatively high aerosol optical depth (AOD) case (~0.28 at 550 nm), the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration were compared to those reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California on 6 February 2013. For the relatively low AOD case (~0.08 at 550 nm), the retrieved aerosol concentration and size distribution were compared to those reported by the Monterey Bay AERONET site on 28 April 2014. Further, we evaluate the benefits of multi-angle and polarimetric observations by performing the retrievals using (a) all view angles and channels; (b) all view angles but radiances only (no polarization); (c) the nadir view angle only with both radiance and polarization; and (d) the nadir view angle without polarization. Optimized retrievals using different initial guesses were performed to provide a measure of retrieval uncertainty. Removal of multi-angular or polarimetric information resulted in increases in both parameter uncertainty and systematic bias. Potential accuracy improvements afforded by applying constraints on the surface and aerosol parametric models will also be discussed.

  20. Use of a microscope-mounted wide-angle point of view camera to record optimal hand position in ocular surgery.

    PubMed

    Gooi, Patrick; Ahmed, Yusuf; Ahmed, Iqbal Ike K

    2014-07-01

    We describe the use of a microscope-mounted wide-angle point-of-view camera to record optimal hand positions in ocular surgery. The camera is mounted close to the objective lens beneath the surgeon's oculars and faces the same direction as the surgeon, providing a surgeon's view. A wide-angle lens enables viewing of both hands simultaneously and does not require repositioning the camera during the case. Proper hand positioning and instrument placement through microincisions are critical for effective and atraumatic handling of tissue within the eye. Our technique has potential in the assessment and training of optimal hand position for surgeons performing intraocular surgery. It is an innovative way to routinely record instrument and operating hand positions in ophthalmic surgery and has minimal requirements in terms of cost, personnel, and operating-room space. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  2. NPP VIIRS on-orbit calibration and characterization using the moon

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polarorbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2012. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56° to -55° in the first three scheduled lunar observations and then changed to the range from -51.5° to -50.5°, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14°, 0°] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  3. NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    NASA Technical Reports Server (NTRS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  4. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  5. Measuring contact angle and meniscus shape with a reflected laser beam.

    PubMed

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  6. Measuring contact angle and meniscus shape with a reflected laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibach, T. F.; Nguyen, H.; Butt, H. J.

    2014-01-15

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less

  7. Investigation of the Low-Subsonic Stability and Control Characteristics of a Free-Flying Model of a Thick 70 deg Delta Reentry Configuration

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Shanks, Robert E.

    1961-01-01

    An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.

  8. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) <= 0.10. This was half the error obtained using the 3.75 micron and corresponds to an error in aerosol optical thickness of Delat.tau approximately 0.06. These results, though applicable to several biomes (e.g. forests, and brighter lower canopies), have only been tested at one view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  9. On Local Ionization Equilibrium and Disk Winds in QSOs

    NASA Astrophysics Data System (ADS)

    Pereyra, Nicolas A.

    2014-11-01

    We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.

  10. Near-field photometry for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  11. Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert

    Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1more » $${M}_{\\odot }$$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.« less

  12. Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    DOE PAGES

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; ...

    2016-08-15

    Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1more » $${M}_{\\odot }$$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.« less

  13. There is no bidirectional hot-spot in Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Li, Z.; Roy, D. P.; Zhang, H.

    2017-12-01

    The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, RSE. 199, 25-38. Zhang, H. K., Roy, D.P., Kovalskyy, V., 2016, Optimal solar geometry definition for global long term Landsat time series bi-directional reflectance normalization, IEEE TGRS. 54(3), 1410-1418.

  14. Applying Augmented Reality to a Mobile-Assisted Learning System for Martial Arts Using Kinect Motion Capture

    ERIC Educational Resources Information Center

    Hsu, Wen-Chun; Shih, Ju-Ling

    2016-01-01

    In this study, to learn the routine of Tantui, a branch of martial arts was taken as an object of research. Fitts' stages of motor learning and augmented reality (AR) were applied to a 3D mobile-assisted learning system for martial arts, which was characterized by free viewing angles. With the new system, learners could rotate the viewing angle of…

  15. Brain activation in parietal area during manipulation with a surgical robot simulator.

    PubMed

    Miura, Satoshi; Kobayashi, Yo; Kawamura, Kazuya; Nakashima, Yasutaka; Fujie, Masakatsu G

    2015-06-01

    we present an evaluation method to qualify the embodiment caused by the physical difference between master-slave surgical robots by measuring the activation of the intraparietal sulcus in the user's brain activity during surgical robot manipulation. We show the change of embodiment based on the change of the optical axis-to-target view angle in the surgical simulator to change the manipulator's appearance in the monitor in terms of hand-eye coordination. The objective is to explore the change of brain activation according to the change of the optical axis-to-target view angle. In the experiments, we used a functional near-infrared spectroscopic topography (f-NIRS) brain imaging device to measure the brain activity of the seven subjects while they moved the hand controller to insert a curved needle into a target using the manipulator in a surgical simulator. The experiment was carried out several times with a variety of optical axis-to-target view angles. Some participants showed a significant peak (P value = 0.037, F-number = 2.841) when the optical axis-to-target view angle was 75°. The positional relationship between the manipulators and endoscope at 75° would be the closest to the human physical relationship between the hands and eyes.

  16. Limited Angle Dual Modality Breast Imaging

    NASA Astrophysics Data System (ADS)

    More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.

    2007-06-01

    We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.

  17. 5. VIEW OF FRONT (WEST AND SOUTH SIDES) TO NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF FRONT (WEST AND SOUTH SIDES) TO NORTHEAST. VIEW TO NORTHEAST. NOTE THAT LARGE TREES PREVENT MORE COMPLETE VIEW FROM BETTER ANGLE. FOR MORE COMPLETE VIEW, SEE PHOTOGRAPHIC COPY OF 1916 PHOTO, NO. ID-17-C-35. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  18. Polyplanar optic display for cockpit application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  19. Polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc.more » A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  20. Polyplanar optic display for cockpit application

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.

    1998-09-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  1. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  2. Display device-adapted video quality-of-experience assessment

    NASA Astrophysics Data System (ADS)

    Rehman, Abdul; Zeng, Kai; Wang, Zhou

    2015-03-01

    Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.

  3. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  4. 59. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. GENERAL VIEW OF THE RIGHT FLANK WALL. RIGHT SHOULDER ANGLE IS INCLUDED ON THE RIGHT SIDE OF THE PHOTOGRAPH. - Fort Sumter, Charleston, Charleston County, SC

  5. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    article title:  Unique Views of a Shattered Ice Shelf     View Larger Image ... views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging ...

  6. Voyager spacecraft images of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.

    1982-01-01

    The Voyager imaging system is described, noting that it is made up of a narrow-angle and a wide-angle TV camera, each in turn consisting of optics, a filter wheel and shutter assembly, a vidicon tube, and an electronics subsystem. The narrow-angle camera has a focal length of 1500 mm; its field of view is 0.42 deg and its focal ratio is f/8.5. For the wide-angle camera, the focal length is 200 mm, the field of view 3.2 deg, and the focal ratio of f/3.5. Images are exposed by each camera through one of eight filters in the filter wheel on the photoconductive surface of a magnetically focused and deflected vidicon having a diameter of 25 mm. The vidicon storage surface (target) is a selenium-sulfur film having an active area of 11.14 x 11.14 mm; it holds a frame consisting of 800 lines with 800 picture elements per line. Pictures of Jupiter, Saturn, and their moons are presented, with short descriptions given of the area being viewed.

  7. Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM

    PubMed Central

    Zhao, Zhizhen; Singer, Amit

    2014-01-01

    We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations. PMID:24631969

  8. Imminent Approach to Dione

    NASA Image and Video Library

    2015-08-20

    This view from NASA Cassini spacecraft looks toward Saturn icy moon Dione, with giant Saturn and its rings in the background, just prior to the mission final close approach to the moon on August 17, 2015. At lower right is the large, multi-ringed impact basin named Evander, which is about 220 miles (350 kilometers) wide. The canyons of Padua Chasma, features that form part of Dione's bright, wispy terrain, reach into the darkness at left. Imaging scientists combined nine visible light (clear spectral filter) images to create this mosaic view: eight from the narrow-angle camera and one from the wide-angle camera, which fills in an area at lower left. The scene is an orthographic projection centered on terrain at 0.2 degrees north latitude, 179 degrees west longitude on Dione. An orthographic view is most like the view seen by a distant observer looking through a telescope. North on Dione is up. The view was acquired at distances ranging from approximately 106,000 miles (170,000 kilometers) to 39,000 miles (63,000 kilometers) from Dione and at a sun-Dione-spacecraft, or phase, angle of 35 degrees. Image scale is about 1,500 feet (450 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19650

  9. Perceived orientation, spatial layout and the geometry of pictures

    NASA Technical Reports Server (NTRS)

    Goldstein, E. Bruce

    1989-01-01

    The purpose is to discuss the role of geometry in determining the perception of spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives from Cutting's (1988) suggestion, based on his analysis of some of the author's data (Goldstein, 1987), that the changes in perceived orientation that occur when pictures are viewed at an angle can be explained in terms of geometrically produced changes in the picture's virtual space.

  10. Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Bauer, M. E.

    1984-01-01

    Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.

  11. Effect of structured visual environments on apparent eye level.

    PubMed

    Stoper, A E; Cohen, M M

    1989-11-01

    Each of 12 subjects set a binocularly viewed target to apparent eye level; the target was projected on the rear wall of an open box, the floor of which was horizontal or pitched up and down at angles of 7.5 degrees and 15 degrees. Settings of the target were systematically biased by 60% of the pitch angle when the interior of the box was illuminated, but by only 5% when the interior of the box was darkened. Within-subjects variability of the settings was less under illuminated viewing conditions than in the dark, but was independent of box pitch angle. In a second experiment, 11 subjects were tested with an illuminated pitched box, yielding biases of 53% and 49% for binocular and monocular viewing conditions, respectively. The results are discussed in terms of individual and interactive effects of optical, gravitational, and extraretinal eye-position information in determining judgements of eye level.

  12. Image quality improvement in MDCT cardiac imaging via SMART-RECON method

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Cao, Ximiao; Xing, Zhanfeng; Sun, Xuguang; Hsieh, Jiang; Chen, Guang-Hong

    2017-03-01

    Coronary CT angiography (CCTA) is a challenging imaging task currently limited by the achievable temporal resolution of modern Multi-Detector CT (MDCT) scanners. In this paper, the recently proposed SMARTRECON method has been applied in MDCT-based CCTA imaging to improve the image quality without any prior knowledge of cardiac motion. After the prospective ECG-gated data acquisition from a short-scan angular span, the acquired data were sorted into several sub-sectors of view angles; each corresponds to a 1/4th of the short-scan angular range. Information of the cardiac motion was thus encoded into the data in each view angle sub-sector. The SMART-RECON algorithm was then applied to jointly reconstruct several image volumes, each of which is temporally consistent with the data acquired in the corresponding view angle sub-sector. Extensive numerical simulations were performed to validate the proposed technique and investigate the performance dependence.

  13. Space shuttle: Verification of transition reentry corridor at high angles of attack and determination of transition aerodynamic characteristics and subsonic aerodynamic characteristics at low angles of attack for the Boeing H-32 booster

    NASA Technical Reports Server (NTRS)

    Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.

    1972-01-01

    Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.

  14. Inlet Distortion for an F/A-18A Aircraft During Steady Aerodynamic Conditions up to 60 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.; Yuhas, Andrew J.; Williams, John G.; Steenken, William G.

    1997-01-01

    The effects of high-angle-of-attack flight on aircraft inlet aerodynamic characteristics were investigated at NASA Dryden Flight Research Center, Edwards, California, as part of NASA's High Alpha Technology Program. The highly instrumented F/A-18A High Alpha Research Vehicle was used for this research. A newly designed inlet total-pressure rake was installed in front of the starboard F404-GE-400 engine to measure inlet recovery and distortion characteristics. One objective was to determine inlet total-pressure characteristics at steady high-angle-of-attack conditions. Other objectives include assessing whether significant differences exist in inlet distortion between rapid angle-of-attack maneuvers and corresponding steady aerodynamic conditions, assessing inlet characteristics during aircraft departures, providing data for developing and verifying computational fluid dynamic codes, and calculating engine airflow using five methods. This paper addresses the first objective by summarizing results of 79 flight maneuvers at steady aerodynamic conditions, ranging from -10 deg to 60 deg angle of attack and from -8 deg to 11 deg angle of sideslip at Mach 0.3 and 0.4. These data and the associated database have been rigorously validated to establish a foundation for understanding inlet characteristics at high angle of attack.

  15. Soybean canopy reflectance as a function of view and illumination geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.; Bauer, M. E.

    1981-01-01

    Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions, for various solar zenith and azimuth angles over portions of three days, in an experimental characterization of a soybean field by means of its reflectances and physical and agronomic attributes. Results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength, and row direction, as well as the state of canopy development. Shadows between rows were found to affect visible wavelength band reflectance to a greater extent than near-IR reflectance. A model describing reflectance variation as a function of projected solar and viewing angles is proposed, which approximates the visible wavelength band reflectance variations of a canopy with a well-defined row structure.

  16. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  17. Soybean canopy reflectance modeling data sets

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Daughtry, C. S. T.

    1984-01-01

    Numerous mathematical models of the interaction of radiation with vegetation canopies have been developed over the last two decades. However, data with which to exercise and validate these models are scarce. During three days in the summer of 1980, experiments are conducted with the objective of gaining insight about the effects of solar illumination and view angles on soybean canopy reflectance. In concert with these experiment, extensive measurements of the soybean canopies are obtained. This document is a compilation of the bidirectional reflectance factors, agronomic, characteristics, canopy geometry, and leaf, stem, and pod optical properties of the soybean canopies. These data sets should be suitable for use with most vegetation canopy reflectance models.

  18. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  19. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.

  20. 64. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. DETAIL VIEW OF THE RIGHT FACE. A PORTION OF THE RIGHT SHOULDER ANGLE IS INCLUDED ON THE LEFT-SIDE OF THE IMAGE, WITH SCALE. - Fort Sumter, Charleston, Charleston County, SC

  1. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  2. Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.

    PubMed

    Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T

    2012-01-01

    The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.

  3. Photographic measurement of head and cervical posture when viewing mobile phone: a pilot study.

    PubMed

    Guan, Xiaofei; Fan, Guoxin; Wu, Xinbo; Zeng, Ying; Su, Hang; Gu, Guangfei; Zhou, Qi; Gu, Xin; Zhang, Hailong; He, Shisheng

    2015-12-01

    With the dramatic growth of mobile phone usage, concerns have been raised with regard to the adverse health effects of mobile phone on spinal posture. The aim of this study was to determine the head and cervical postures by photogrammetry when viewing the mobile phone screen, compared with those in neutral standing posture. A total of 186 subjects (81 females and 105 males) aged from 17 to 31 years old participated in this study. Subjects were instructed to stand neutrally and using mobile phone as in daily life. Using a photographic method, the sagittal head and cervical postures were assessed by head tilt angle, neck tilt angle, forward head shift and gaze angle. The photographic method showed a high intra-rater and inter-rater reliability in measuring the sagittal posture of cervical spine and gaze angle (ICCs ranged from 0.80 to 0.99). When looking at mobile phone, the head tilt angle significantly increased (from 74.55° to 95.22°, p = 0.000) and the neck angle decreased (from 54.68° to 38.77°, p = 0.000). The forward head posture was also confirmed by the significantly increased head shift (from 10.90 to 13.85 cm, p = 0.000). The posture assumed in mobile phone use was significantly correlated with neutral posture (p < 0.05). Males displayed a more forward head posture than females (p < 0.05). The head tilt angle was positively correlated with the gaze angle (r = 0.616, p = 0.000), while the neck tilt angle was negatively correlated with the gaze angle (r = -0.628, p = 0.000). Photogrammetry is a reliable, quantitative method to evaluate the head and cervical posture during mobile phone use. Compared to neutral standing, subjects display a more forward head posture when viewing the mobile phone screen, which is correlated with neutral posture, gaze angle and gender. Future studies will be needed to investigate a dose-response relationship between mobile phone use and assumed posture.

  4. Wide-angle Optical Telescope for the EUSO Experiments

    NASA Technical Reports Server (NTRS)

    Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.

    2003-01-01

    Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.

  5. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as were captured by the UAV platform (view zenith angles up to 30°), already a huge improvement could be obtained when compared to solely using spectra simulated at nadir position. The results of this study show that the estimation of LAI and LCC by numerical inversion of the PROSAIL model can be improved when multi-angular observations are introduced. However, for the potato crop, PROSAIL inversion for measured data only showed moderate accuracy and slight improvements.

  6. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    NASA Astrophysics Data System (ADS)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  7. Pixel-level tunable liquid crystal lenses for auto-stereoscopic display

    NASA Astrophysics Data System (ADS)

    Li, Kun; Robertson, Brian; Pivnenko, Mike; Chu, Daping; Zhou, Jiong; Yao, Jun

    2014-02-01

    Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results.

  8. Angle-depended photocurrent characteristics of cascade photoelectric converters on the base of homogeneous semiconductor

    NASA Astrophysics Data System (ADS)

    Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.

    2018-05-01

    Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.

  9. Holographic elements and curved slit used to enlarge field of view in rocket detection system

    NASA Astrophysics Data System (ADS)

    Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc

    2006-09-01

    Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.

  10. Site selection and directional models of deserts used for ERBE validation targets

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  11. Departing Dione

    NASA Image and Video Library

    2015-08-20

    NASA Cassini spacecraft captured this parting view showing the rough and icy crescent of Saturn moon Dione following the spacecraft last close flyby of the moon on Aug. 17, 2015. Cassini obtained a similar crescent view in 2005 (see PIA07745). The earlier view has an image scale about four times higher, but does not show the moon's full crescent as this view does. Five visible light (clear spectral filter), narrow-angle camera images were combined to create this mosaic view. The scene is an orthographic projection centered on terrain at 0.4 degrees north latitude, 30.6 degrees west longitude on Dione. An orthographic view is most like the view seen by a distant observer looking through a telescope. The view was acquired at distances ranging from approximately 37,000 miles (59,000 kilometers) to 47,000 miles (75,000 kilometers) from Dione and at a sun-Dione-spacecraft, or phase, angle of 145 degrees. Image scale is about 1,300 feet (400 meters) per pixel. North on Dione is up and rotated 34 degrees to the right. http://photojournal.jpl.nasa.gov/catalog/PIA19649

  12. Reflective-emissive liquid-crystal displays constructed from AIE luminogens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tang, Ben Zhong; Zhao, Dongyu; Qin, Anjun

    2015-10-01

    The chiral nematic liquid crystal (N*-LC) has plenty of prospective applications in LC display (LCD) owing to the selective reflection and circular dichroism. The molecules in the N*-LC are aligned forming a helically twisted structure and the specific wavelength of incident light is reflected by the periodically varying refractive index in the N*-LC plane without the aid of a polarizer or color filter. However, N*-LC do not emit light which restricts its application in the dark environment. Moreover, the view angle of N*-LC display device was severe limited due to the strong viewing angle dependence of the structure color of the one dimensional photonic crystal of a N*-LC. In order to overcome these weaknesses, we have synthesized a luminescent liquid crystalline compound consisting of a tetraphenylethene (TPE) core, TPE-PPE, as a luminogen with mesogenic moieties. TPE-PPE exhibits both the aggregate-induced emission (AIE) and thermotropic liquid crystalline characteristics. By dissolving a little amount of TPE-PPE into N*-LC host, a circular polarized emission was obtained on the unidirectional orientated LC cell. Utilizing the circular polarized luminescence property of the LC mixture, we fabricated a photoluminescent liquid crystal display (PL-LCD) device which can work under both dark and sunlit conditions. This approach has simplified the device design, lowered the energy consumption and increased brightness and application of the LCD.

  13. India: Gujarat

    Atmospheric Science Data Center

    2013-04-16

    ... Gujarat), and in areas close to the earthquake epicenter.  Research uses the unique capabilities of the Multi-angle Imaging ... Indo-Pakistani border, which were not easily accessible to survey teams on the ground. Changes in reflection at different view angles ...

  14. Knee Moment-Angle Characteristics and Semitendinosus Muscle Morphology in Children with Spastic Paresis Selected for Medial Hamstring Lengthening

    PubMed Central

    Haberfehlner, Helga; Jaspers, Richard T.; Rutz, Erich; Becher, Jules G.; Harlaar, Jaap; van der Sluijs, Johannes A.; Witbreuk, Melinda M.; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald

    2016-01-01

    To increase knee range of motion and improve gait in children with spastic paresis (SP), the semitendinosus muscle (ST) amongst other hamstring muscles is frequently lengthened by surgery, but with variable success. Little is known about how the pre-surgical mechanical and morphological characteristics of ST muscle differ between children with SP and typically developing children (TD). The aims of this study were to assess (1) how knee moment-angle characteristics and ST morphology in children with SP selected for medial hamstring lengthening differ from TD children, as well as (2) how knee moment-angle characteristics and ST morphology are related. In nine SP and nine TD children, passive knee moment-angle characteristics and morphology of ST (i.e. fascicle length, muscle belly length, tendon length, physiological cross-sectional area, and volume) were assessed by hand-held dynamometry and freehand 3D ultrasound, respectively. At net knee flexion moments above 0.5 Nm, more flexed knee angles were found for SP compared to TD children. The measured knee angle range between 0 and 4 Nm was 30% smaller in children with SP. Muscle volume, physiological cross-sectional area, and fascicle length normalized to femur length were smaller in SP compared to TD children (62%, 48%, and 18%, respectively). Sixty percent of the variation in knee angles at 4 Nm net knee moment was explained by ST fascicle length. Altered knee moment-angle characteristics indicate an increased ST stiffness in SP children. Morphological observations indicate that in SP children planned for medial hamstring lengthening, the longitudinal and cross-sectional growth of ST muscle fibers is reduced. The reduced fascicle length can partly explain the increased ST stiffness and, hence, a more flexed knee joint in these SP children. PMID:27861523

  15. Knee Moment-Angle Characteristics and Semitendinosus Muscle Morphology in Children with Spastic Paresis Selected for Medial Hamstring Lengthening.

    PubMed

    Haberfehlner, Helga; Jaspers, Richard T; Rutz, Erich; Becher, Jules G; Harlaar, Jaap; van der Sluijs, Johannes A; Witbreuk, Melinda M; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Maas, Huub; Buizer, Annemieke I

    2016-01-01

    To increase knee range of motion and improve gait in children with spastic paresis (SP), the semitendinosus muscle (ST) amongst other hamstring muscles is frequently lengthened by surgery, but with variable success. Little is known about how the pre-surgical mechanical and morphological characteristics of ST muscle differ between children with SP and typically developing children (TD). The aims of this study were to assess (1) how knee moment-angle characteristics and ST morphology in children with SP selected for medial hamstring lengthening differ from TD children, as well as (2) how knee moment-angle characteristics and ST morphology are related. In nine SP and nine TD children, passive knee moment-angle characteristics and morphology of ST (i.e. fascicle length, muscle belly length, tendon length, physiological cross-sectional area, and volume) were assessed by hand-held dynamometry and freehand 3D ultrasound, respectively. At net knee flexion moments above 0.5 Nm, more flexed knee angles were found for SP compared to TD children. The measured knee angle range between 0 and 4 Nm was 30% smaller in children with SP. Muscle volume, physiological cross-sectional area, and fascicle length normalized to femur length were smaller in SP compared to TD children (62%, 48%, and 18%, respectively). Sixty percent of the variation in knee angles at 4 Nm net knee moment was explained by ST fascicle length. Altered knee moment-angle characteristics indicate an increased ST stiffness in SP children. Morphological observations indicate that in SP children planned for medial hamstring lengthening, the longitudinal and cross-sectional growth of ST muscle fibers is reduced. The reduced fascicle length can partly explain the increased ST stiffness and, hence, a more flexed knee joint in these SP children.

  16. Smartphone-Guided Needle Angle Selection During CT-Guided Procedures.

    PubMed

    Xu, Sheng; Krishnasamy, Venkatesh; Levy, Elliot; Li, Ming; Tse, Zion Tsz Ho; Wood, Bradford John

    2018-01-01

    In CT-guided intervention, translation from a planned needle insertion angle to the actual insertion angle is estimated only with the physician's visuospatial abilities. An iPhone app was developed to reduce reliance on operator ability to estimate and reproduce angles. The iPhone app overlays the planned angle on the smartphone's camera display in real-time based on the smartphone's orientation. The needle's angle is selected by visually comparing the actual needle with the guideline in the display. If the smartphone's screen is perpendicular to the planned path, the smartphone shows the Bull's-Eye View mode, in which the angle is selected after the needle's hub overlaps the tip in the camera. In phantom studies, we evaluated the accuracies of the hardware, the Guideline mode, and the Bull's-Eye View mode and showed the app's clinical efficacy. A proof-of-concept clinical case was also performed. The hardware accuracy was 0.37° ± 0.27° (mean ± SD). The mean error and navigation time were 1.0° ± 0.9° and 8.7 ± 2.3 seconds for a senior radiologist with 25 years' experience and 1.5° ± 1.3° and 8.0 ± 1.6 seconds for a junior radiologist with 4 years' experience. The accuracy of the Bull's-Eye View mode was 2.9° ± 1.1°. Combined CT and smart-phone guidance was significantly more accurate than CT-only guidance for the first needle pass (p = 0.046), which led to a smaller final targeting error (mean distance from needle tip to target, 2.5 vs 7.9 mm). Mobile devices can be useful for guiding needle-based interventions. The hardware is low cost and widely available. The method is accurate, effective, and easy to implement.

  17. The solid angle hidden in polyhedron gravitation formulations

    NASA Astrophysics Data System (ADS)

    Werner, Robert A.

    2017-03-01

    Formulas of a homogeneous polyhedron's gravitational potential typically include two arctangent terms for every edge of every face and a special term to eliminate a possible facial singularity. However, the arctangent and singularity terms are equivalent to the face's solid angle viewed from the field point. A face's solid angle can be evaluated with a single arctangent, saving computation.

  18. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    NASA Astrophysics Data System (ADS)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  19. Numerical study on influence of single control surface on aero elastic behavior of forward-swept wing

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei

    2017-10-01

    In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.

  20. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  1. Astronomy in Denver: Polarization of bow shock nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha; Hoffman, Jennifer L.; Ignace, Richard; Neilson, Hilding; Richard Ignace

    2018-06-01

    Stellar wind bow shocks are structures created when stellar winds with supersonic relative velocities interact with the local interstellar medium (ISM). They can be studied to understand the properties of stars as well as the ISM. Since bow shocks are asymmetric, light becomes polarized by scattering in the regions of enhanced density they create. We use a Monte Carlo radiative transfer code calle SLIP to simulate the polarization signatures produced by both resolved and unresolved bow shocks with analytically derived shapes and density structures. When electron scattering is the polarizing mechanism, we find that optical depth plays an important role in the polarization signatures. While results for low optical depths reproduce theoretical predictions, higher optical depths produce higher polarization and position angle rotations at specific viewing angles. This is due to the geometrical properties of the bow shock along with multiple scattering effects. For dust scattering, we find that the polarization signature is strongly affected by wavelength, dust size, dust composition, and viewing angle. Depending on the viewing angle, the polarization magnitude may increase or decrease as a function of wavelength. We will present results from these simulations and preliminary comparisons with observational data.

  2. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan

    2018-01-01

    Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.

  3. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  4. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.

    1989-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.

  5. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  6. Multi-Angle View of the Canary Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . ... Center Atmospheric Science Data Center in Hampton, VA. Photo credit: NASA/GSFC/LaRC/JPL, MISR Science Team Other formats ...

  8. Eyjafjallajökull Ash Plume Particle Properties

    NASA Image and Video Library

    2010-04-21

    As NASA Terra satellite flew over Iceland erupting Eyjafjallajökull volcano, its Multi-angle Imaging SpectroRadiometer instrument acquired 36 near-simultaneous images of the ash plume, covering nine view angles in each of four wavelengths.

  9. Three paths toward the quantum angle operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazeau, Jean Pierre, E-mail: gazeau@apc.univ-paris7.fr; Szafraniec, Franciszek Hugon, E-mail: franciszek.szafraniec@uj.edu.pl

    2016-12-15

    We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin–Klauder approaches. One method pertains to Weyl–Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of “weight”more » functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.« less

  10. Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection

    NASA Astrophysics Data System (ADS)

    Song, Bokwang; Johansen, Villads Egede; Sigmund, Ole; Shin, Jung H.

    2017-04-01

    The scales of Morpho butterflies are covered with intricate, hierarchical ridge structures that produce a bright, blue reflection that remains stable across wide viewing angles. This effect has been researched extensively, and much understanding has been achieved using modeling that has focused on the positional disorder among the identical, multilayered ridges as the critical factor for producing angular independent color. Realizing such positional disorder of identical nanostructures is difficult, which in turn has limited experimental verification of different physical mechanisms that have been proposed. In this paper, we suggest an alternative model of inter-structural disorder that can achieve the same broad-angle color reflection, and is applicable to wafer-scale fabrication using conventional thin film technologies. Fabrication of a thin film that produces pure, stable blue across a viewing angle of more than 120 ° is demonstrated, together with a robust, conformal color coating.

  11. Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.

    1986-01-01

    In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.

  12. Description of a landing site indicator (LASI) for light aircraft operation

    NASA Technical Reports Server (NTRS)

    Fuller, H. V.; Outlaw, B. K. E.

    1976-01-01

    An experimental cockpit mounted head-up type display system was developed and evaluated by LaRC pilots during the landing phase of light aircraft operations. The Landing Site Indicator (LASI) system display consists of angle of attack, angle of sideslip, and indicated airspeed images superimposed on the pilot's view through the windshield. The information is made visible to the pilot by means of a partially reflective viewing screen which is suspended directly in frot of the pilot's eyes. Synchro transmitters are operated by vanes, located at the left wing tip, which sense angle of attack and sideslip angle. Information is presented near the center of the display in the form of a moving index on a fixed grid. The airspeed is sensed by a pitot-static pressure transducer and is presented in numerical form at the top center of the display.

  13. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh

    2017-11-01

    Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop physiology.

  14. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  15. Distributed antenna system and method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)

    2004-01-01

    System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.

  16. Acousto-Optical Evaluation Of Fiber Size In Wood Pulp

    NASA Astrophysics Data System (ADS)

    Dion, J. L.; Garceau, J. J.; Morissette, J. C.

    1986-10-01

    In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.

  17. Longitudinal Aerodynamic Characteristics to Large Angles of Attack of a Cruciform Missile Configuration at a Mach Number of 2

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.

    1954-01-01

    The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing-tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing-tail interference over the angle-of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg. The wing-tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the crossflow drag coefficient along the body and the effect of the wing downwash field on the afterbody loading.

  18. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  19. Hurricane Debby and the Appalachians Highlight New MISR Data Products

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The MISR team has developed new methods for retrieving information about clouds, airborne particles, and surface properties that capitalize on the instrument's unique, multi-angle imaging approach. This illustration, based upon results contained in sample products that have just been publicly released at the Atmospheric Sciences Data Center (ASDC), highlights some of these new capabilities. The ASDC, located at NASA's Langley Research Center, is the primary processing and archive center for MISR data (http://eosweb.larc.nasa.gov/).

    On August 21, 2000, during Terra orbit 3600, MISR imaged Hurricane Debby in the Atlantic Ocean. The first panel on the left is the MISR downward-looking (nadir) view of the storm's eastern edge. The next two panels show the results of a new approach that uses MISR's stereoscopic observations to retrieve cloud heights and winds. In the middle panel of this set, gradations from low to high cloud are depicted in shades ranging from blue to red. Since it takes seven minutes for all nine MISR cameras to view any location on Earth, and the clouds moved during this time, the data also contain information about wind speed and direction. Derived wind vectors, shown in the third panel, reveal Hurricane Debby's cyclonic motion. The highest wind speed measured is nearly 100 kilometers/hour. MISR obtains this type of information on a global basis, which will help scientists study the relationship between climate change and the three-dimensional characteristics of clouds.

    MISR imaged the eastern United States on March 6, 2000, during Terra orbit 1155. The first panel in the righthand set is the downward-looking (nadir) view, covering the region from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The middle panel is the image taken by the forward-viewing 70.5-degree camera. At this increased slant angle, the line-of-sight through the atmosphere is three times longer, and a thin haze over the Appalachians is significantly more apparent. MISR uses this enhanced sensitivity along with the variation of brightness with angle to monitor particulate pollution and to measure haze properties. The third panel shows the airborne particle (aerosol) amount, derived using new methods that take advantage of MISR's moderately high spatial resolution at very oblique angles. The aerosol results are obtained at coarser resolution than the underlying images; gradations from blue to red indicate increasing aerosol abundance. These data indicate how airborne particles are interacting with sunlight, a measure of their impact on Earth's climate.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  20. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

  1. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    PubMed Central

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  2. Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images

    NASA Astrophysics Data System (ADS)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2017-10-01

    Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.

  3. The moon illusion: a different view through the legs.

    PubMed

    Coren, S

    1992-12-01

    The fact that the overestimation of the horizon moon is reduced when individuals bend over and view it through their legs has been used as support for theories of the moon illusion based upon angle of regard and vestibular inputs. Inversion of the visual scene, however, can also reduce the salience of depth cue, so illusion reduction might be consistent with size constancy explanations. A sample of 70 subjects viewed normal and inverted pictorial arrays. The moon illusion was reduced in the inverted arrays, suggesting that the "through the legs" reduction of the moon illusion may reflect the alteration in perceived depth associated with scene inversion rather than angle of regard or vestibular effects.

  4. A Fractured Pole

    NASA Image and Video Library

    2015-10-15

    NASA's Cassini spacecraft zoomed by Saturn's icy moon Enceladus on Oct. 14, 2015, capturing this stunning image of the moon's north pole. A companion view from the wide-angle camera (PIA20010) shows a zoomed out view of the same region for context. Scientists expected the north polar region of Enceladus to be heavily cratered, based on low-resolution images from the Voyager mission, but high-resolution Cassini images show a landscape of stark contrasts. Thin cracks cross over the pole -- the northernmost extent of a global system of such fractures. Before this Cassini flyby, scientists did not know if the fractures extended so far north on Enceladus. North on Enceladus is up. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 4,000 miles (6,000 kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 9 degrees. Image scale is 115 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19660

  5. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  6. Epimetheus Above the Rings

    NASA Image and Video Library

    2015-11-09

    Although Epimetheus appears to be lurking above the rings here, it's actually just an illusion resulting from the viewing angle. In reality, Epimetheus and the rings both orbit in Saturn's equatorial plane. Inner moons and rings orbit very near the equatorial plane of each of the four giant planets in our solar system, but more distant moons can have orbits wildly out of the equatorial plane. It has been theorized that the highly inclined orbits of the outer, distant moons are remnants of the random directions from which they approached the planets they orbit. This view looks toward the unilluminated side of the rings from about -0.3 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 500,000 miles (800,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 62 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18342

  7. Emissive and reflective properties of curved displays in relation to image quality

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne

    2016-03-01

    Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.

  8. Celtic Sea

    Atmospheric Science Data Center

    2013-04-17

    article title:  Coccoliths in the Celtic Sea     View Larger Image As ... This image is a natural-color view of the Celtic Sea and English Channel regions, and was acquired by the Multi-angle Imaging ...

  9. Active Planning, Sensing and Recognition Using a Resource-Constrained Discriminant POMDP

    DTIC Science & Technology

    2014-06-28

    classes of military vehicles, with sample images shown in Fig. 1. The vehicles were captured from various angles. 4785 images with depression angles 17...and 30◦ are used for training, and 4351 images with depression angles 15◦ and 45◦ are used for testing. The azimuth angles are quantized into 12...selection by collecting the engine sounds for the 8 vehicle classes from the Youtube . The sounds are attenuated differently in 6 view directions

  10. Geometry of the Large Magellanic Cloud Using Multi- wavelength Photometry of Classical Cepheids

    NASA Astrophysics Data System (ADS)

    Deb, Sukanta; Ngeow, Chow-Choong; Kanbur, Shashi M.; Singh, Harinder P.; Wysocki, Daniel; Kumar, Subhash

    2018-05-01

    We determine the geometrical and viewing angle parameters of the Large Magellanic Cloud (LMC) using the Leavitt law based on a sample of more than 3500 common classical Cepheids (FU and FO) in optical (V, I), near-infrared (JHKs) and mid-infrared ([3.6] μm and [4.5] μm) photometric bands. Statistical reddening and distance modulus free from the effect of reddening to each of the individual Cepheids are obtained using the simultaneous multi-band fit to the apparent distance moduli from the analysis of the resulting Leavitt laws in these seven photometric bands. A reddening map of the LMC obtained from the analysis shows good agreement with the other maps available in the literature. Extinction free distance measurements along with the information of the equatorial coordinates (α, δ) for individual stars are used to obtain the corresponding Cartesian coordinates with respect to the plane of the sky. By fitting a plane solution of the form z = f(x, y) to the observed three dimensional distribution, the following viewing angle parameters of the LMC are obtained: inclination angle i = 25°.110 ± 0°.365, position angle of line of nodes θlon = 154°.702 ± 1°.378. On the other hand, modelling the observed three dimensional distribution of the Cepheids as a triaxial ellipsoid, the following values of the geometrical axes ratios of the LMC are obtained: 1.000 ± 0.003: 1.151 ± 0.003: 1.890 ± 0.014 with the viewing angle parameters: inclination angle of i = 11°.920 ± 0°.315 with respect to the longest axis from the line of sight and position angle of line of nodes θlon = 128°.871 ± 0°.569. The position angles are measured eastwards from north.

  11. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    PubMed

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  12. The influence of radiographic viewing perspective and demographics on the Critical Shoulder Angle

    PubMed Central

    Suter, Thomas; Popp, Ariane Gerber; Zhang, Yue; Zhang, Chong; Tashjian, Robert Z.; Henninger, Heath B.

    2014-01-01

    Background Accurate assessment of the critical shoulder angle (CSA) is important in clinical evaluation of degenerative rotator cuff tears. This study analyzed the influence of radiographic viewing perspective on the CSA, developed a classification system to identify malpositioned radiographs, and assessed the relationship between the CSA and demographic factors. Methods Glenoid height, width and retroversion were measured on 3D CT reconstructions of 68 cadaver scapulae. A digitally reconstructed radiograph was aligned perpendicular to the scapular plane, and retroversion was corrected to obtain a true antero-posterior (AP) view. In 10 scapulae, incremental anteversion/retroversion and flexion/extension views were generated. The CSA was measured and a clinically applicable classification system was developed to detect views with >2° change in CSA versus true AP. Results The average CSA was 33±4°. Intra- and inter-observer reliability was high (ICC≥0.81) but decreased with increasing viewing angle. Views beyond 5° anteversion, 8° retroversion, 15° flexion and 26° extension resulted in >2° deviation of the CSA compared to true AP. The classification system was capable of detecting aberrant viewing perspectives with sensitivity of 95% and specificity of 53%. Correlations between glenoid size and CSA were small (R≤0.3), and CSA did not vary by gender (p=0.426) or side (p=0.821). Conclusions The CSA was most susceptible to malposition in ante/retroversion. Deviations as little as 5° in anteversion resulted in a CSA >2° from true AP. A new classification system refines the ability to collect true AP radiographs of the scapula. The CSA was unaffected by demographic factors. PMID:25591458

  13. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    NASA Technical Reports Server (NTRS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data. from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. and meet the levels of accuracy needed for aerosol monitoring.

  14. Characterizing Response Versus Scan-Angle for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.

  15. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET

    NASA Astrophysics Data System (ADS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-03-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and unmatched seasonally gridded data, are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with Aerosol Robotic Network level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however, there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products' capability over the Western Hemisphere.

  16. Telescope aperture optimization for spacebased coherent wind lidar

    NASA Astrophysics Data System (ADS)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  17. Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

    NASA Astrophysics Data System (ADS)

    Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm

    2017-04-01

    The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is  <10% from 30 to 75° at 514.5 nm, and  <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.

  18. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    PubMed Central

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2018-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of −0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. PMID:29796366

  19. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET.

    PubMed

    Superczynski, Stephen D; Kondragunta, Shobha; Lyapustin, Alexei I

    2017-03-16

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere.

  20. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.

  1. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  2. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  3. Are two different projections of the inlet view necessary for the percutaneous placement of iliosacral screws?

    PubMed

    Ozmeric, A; Yucens, M; Gultaç, E; Açar, H I; Aydogan, N H; Gül, D; Alemdaroglu, K B

    2015-05-01

    We hypothesised that the anterior and posterior walls of the body of the first sacral vertebra could be visualised with two different angles of inlet view, owing to the conical shape of the sacrum. Six dry male cadavers with complete pelvic rings and eight dry sacrums with K-wires were used to study the effect of canting (angling the C-arm) the fluoroscope towards the head in 5° increments from 10° to 55°. Fluoroscopic images were taken in each position. Anterior and posterior angles of inclination were measured between the upper sacrum and the vertical line on the lateral view. Three authors separately selected the clearest image for overlapping anterior cortices and the upper sacral canal in the cadaveric models. The dry bone and K-wire models were scored by the authors, being sure to check whether the K-wire was in or out. In the dry bone models the mean score of the relevant inlet position of the anterior or posterior inclination was 8.875 (standard deviation (sd) 0.35), compared with the inlet position of the opposite inclination of -5.75 (sd 4.59). We found that two different inlet views should be used separately to evaluate the borders of the body of the sacrum using anterior and posterior inclination angles of the sacrum, during placement of iliosacral screws. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Rings Through Atmosphere

    NASA Image and Video Library

    2010-05-26

    NASA Cassini spacecraft looks toward the limb of Saturn and, on the right of this image, views part of the rings through the planet atmosphere. Saturn atmosphere can distort the view of the rings from some angles.

  5. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  6. A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy

    NASA Astrophysics Data System (ADS)

    Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.

    1989-05-01

    A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.

  7. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  8. Magnetic Fields in Blazar Jets: Radio and Optical Polarization over 20-30 Years

    NASA Astrophysics Data System (ADS)

    Caldwell, Caroline; Wills, B.; Wills, D.; Aller, H.; Aller, M.

    2011-01-01

    Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: non-BL Lac blazars with strong broad emission lines (quasars), and BL Lac objects with only weak lines. We have compiled optical linear polarization measurements of 22 blazars, incorporating much archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks. These data enabled us to compare optical and radio polarization position angles. We constructed histograms of the separation of polarization position angles of the optical and radio. We found that in BL Lac objects, the histogram has a significant peak at zero separation. Since the polarization position angle indicates the direction perpendicular to the magnetic field vector, finding similar polarization position angles indicates a similar magnetic field at the origin of the optical and radio synchrotron radiation. Non-BL Lac blazars show peaks at zero and 90 degree separation of position angle. The 90 degree separation may be caused by optical depth effects within the jet. Although there are a few sources that do not strongly display the characteristics summarized by the histograms, most sources produce optical and radio polarization position angles that nearly coincide or are separated by 90 degrees. Using VLBA and VLA radio maps, we interpret the results in terms of the position angle of the jet in the sky plane.

  9. Self-contained eye-safe laser radar using an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard

    2003-07-01

    An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.

  10. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  11. ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.

    1985-07-01

    Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.

  12. The interpretation of digital recordings of SIR-A, Seasat, and Landsat data of the Algerian salt deposits

    NASA Technical Reports Server (NTRS)

    Rebillard, P.; Ballais, J.-P.

    1983-01-01

    Seasat and SIR-A SAR and Landsat MSS imagery of the salt beds of western Algeria are compared. The Landsat image was made 5 yr before the Seasat image, which was taken nearly 9 yr before the Shuttle radar image. The latter was processed in the visible channel. Differences in the backscatter in the radar imagery are attributed to the viewing angle and the characteristics of each salt deposit. The imagery allowed a determination of the changes in the shapes and areal extent of the salt pools over time, as well as alterations in nearby vegetation cover and the evolution of aeolian formations.

  13. [Advances in understanding Drosophila salivary gland polytene chromosome and its applications in genetics teaching].

    PubMed

    Li, Gang; Chen, Fan-guo

    2015-06-01

    Drosophila salivary gland polytene chromosome, one of the three classical chromosomes with remarkable characteristics, has been used as an outstanding model for a variety of genetic studies since 1934. The greatest contribution of this model to genetics has been providing extraordinary angle of view in studying interphase chromosome structure and gene expression regulation. Additionally, it has been extensively used to understand some special genetic phenomena, such as dosage compensation and position-effect variegation. In this paper, we briefly review the advances in the study of Drosophila salivary gland chromosome, and try to systematically and effectively introduce this model system into genetics teaching practice in order to steer and inspire students' interest in genetics.

  14. [Clinical value evaluation of Chinese herbal formula in context of multi-omics network].

    PubMed

    Li, Bing; Han, Fei; Wang, Zhong; Wang, Yong-Yan

    2017-03-01

    Clinical value evaluation is the key issue to solve the problems such as high repetition rate, fuzzy clinical positioning, broad indications and unclear clinical values in Chinese herbal formula(Chinese patent medicine). By analyzing the challenges and opportunities of Chinese herbal formula in clinical value evaluation, this paper introduced a strategy of multi-omic network analysis. Through comparative analysis of three stroke treatment formulas, we suggested their different characteristic advantages for variant symptoms or phenotypes of stroke, which may provide reference for rational clinical choice. Such multi-omic network analysis strategy may open a unique angle of view for clinical evaluation and comparison of Chinese herbal formula. Copyright© by the Chinese Pharmaceutical Association.

  15. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    PubMed Central

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  16. High-efficiency directional backlight design for an automotive display.

    PubMed

    Chen, Bo-Tsuen; Pan, Jui-Wen

    2018-06-01

    We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.

  17. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles

    NASA Astrophysics Data System (ADS)

    Yi, Bo; Shen, Huifang

    2018-01-01

    Non-iridescent structural colors and lotus effect universally existing in the nature provide a great inspiration for artificially developing angle-independent and high hydrophobic structurally colored films. To this end, a facile strategy is put forward for achieving superhydrophobic structurally colored films with wide viewing angles and high visibility based on bumpy melanin-like polydopamine-coated polystyrene particles. Here, hierarchical and amorphous structures are assembled in a self-driven manner due to particles' protrusive surfaces. The superhydrophobicity of the structurally colored films, with water contact angle up to 151°, is realized by combining the hierarchical surface roughness with a dip-coating process of polydimethylsiloxane-hexane solution, while angle-independence revealed in the films is ascribed to amorphous arrays. In addition, benefited from an essential light-absorbing property and high refractive index of polydopamine, the visibility of as-prepared colored films is fundamentally enhanced. Moreover, the mechanical robustness of the films is considerably boosted by inletting 3-aminopropyltriethoxysilane. This fabrication strategy might provide an opportunity for promoting the open-air application of structurally colored coatings.

  18. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.; Klioner, Sergei A.; Lindegren, Lennart; Hobbs, David; van Leeuwen, Floor

    2017-07-01

    Context. Determination of absolute parallaxes by means of a scanning astrometric satellite such as Hipparcos or Gaia relies on the short-term stability of the so-called basic angle between the two viewing directions. Uncalibrated variations of the basic angle may produce systematic errors in the computed parallaxes. Aims: We examine the coupling between a global parallax shift and specific variations of the basic angle, namely those related to the satellite attitude with respect to the Sun. Methods: The changes in observables produced by small perturbations of the basic angle, attitude, and parallaxes were calculated analytically. We then looked for a combination of perturbations that had no net effect on the observables. Results: In the approximation of infinitely small fields of view, it is shown that certain perturbations of the basic angle are observationally indistinguishable from a global shift of the parallaxes. If these kinds of perturbations exist, they cannot be calibrated from the astrometric observations but will produce a global parallax bias. Numerical simulations of the astrometric solution, using both direct and iterative methods, confirm this theoretical result. For a given amplitude of the basic angle perturbation, the parallax bias is smaller for a larger basic angle and a larger solar aspect angle. In both these respects Gaia has a more favourable geometry than Hipparcos. In the case of Gaia, internal metrology is used to monitor basic angle variations. Additionally, Gaia has the advantage of detecting numerous quasars, which can be used to verify the parallax zero point.

  19. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  20. Complete 360° circumferential gonioscopic optical coherence tomography imaging of the iridocorneal angle

    PubMed Central

    McNabb, Ryan P.; Challa, Pratap; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic. PMID:25909021

  1. Calculation of gas turbine characteristic

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  2. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. 3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN PRESSURE GAUGES, LOOKING NORTH. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. Development of a 3-D visible limiter imaging system for the HSX stellarator

    NASA Astrophysics Data System (ADS)

    Buelo, C.; Stephey, L.; Anderson, F. S. B.; Eisert, D.; Anderson, D. T.

    2017-12-01

    A visible camera diagnostic has been developed to study the Helically Symmetric eXperiment (HSX) limiter plasma interaction. A straight line view from the camera location to the limiter was not possible due to the complex 3D stellarator geometry of HSX, so it was necessary to insert a mirror/lens system into the plasma edge. A custom support structure for this optical system tailored to the HSX geometry was designed and installed. This system holds the optics tube assembly at the required angle for the desired view to both minimize system stress and facilitate robust and repeatable camera positioning. The camera system has been absolutely calibrated and using Hα and C-III filters can provide hydrogen and carbon photon fluxes, which through an S/XB coefficient can be converted into particle fluxes. The resulting measurements have been used to obtain the characteristic penetration length of hydrogen and C-III species. The hydrogen λiz value shows reasonable agreement with the value predicted by a 1D penetration length calculation.

  5. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Measuring the Radius of the Earth from a Mountain Top Overlooking the Ocean

    ERIC Educational Resources Information Center

    Gangadharan, Dhevan

    2009-01-01

    A clear view of the ocean may be used to measure the radius of the Earth. To an observer looking out at the ocean, the horizon will always form some angle [theta] with the local horizontal plane. As the observer's elevation "h" increases, so does the angle [theta]. From measurements of the elevation "h" and the angle [theta],…

  7. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced the lowest angles for the Southern Hemisphere. For descending node, morning orbits produced the lowest mean solar zenith angles for the Northern Hemisphere; afternoon orbits produced the lowest angles for the Southern Hemisphere.

  8. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54127 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  9. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54119 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  10. Inventory and monitoring of natural vegetation and related resources in an arid environment

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Johnson, J. R.; Mouat, D. A.

    1973-01-01

    The author has identified the following significant results. A vegetation classification has been established for the test site (approx. 8300 sq km); 31 types are recognized. Some relationships existing among vegetation types and associated terrain features have been characterized. Terrain features can be used to discriminate vegetation types. Macrorelief interpretations on ERTS-1 imagery can be performed with greater accuracy when using high sun angle stereoscopic viewing rather than low sun angle monoscopic viewing. Some plant phenological changes are being recorded by the MSS system.

  11. Scheduling Randomly-Deployed Heterogeneous Video Sensor Nodes for Reduced Intrusion Detection Time

    NASA Astrophysics Data System (ADS)

    Pham, Congduc

    This paper proposes to use video sensor nodes to provide an efficient intrusion detection system. We use a scheduling mechanism that takes into account the criticality of the surveillance application and present a performance study of various cover set construction strategies that take into account cameras with heterogeneous angle of view and those with very small angle of view. We show by simulation how a dynamic criticality management scheme can provide fast event detection for mission-critical surveillance applications by increasing the network lifetime and providing low stealth time of intrusions.

  12. Leaf bidirectional reflectance and transmittance in corn and soybean

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.

    1989-01-01

    Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.

  13. Analysis of the multigroup model for muon tomography based threat detection

    NASA Astrophysics Data System (ADS)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-01

    We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  14. 2. OBLIQUE VIEW OF WEST FRONT. The frames on an ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW OF WEST FRONT. The frames on an angle originally held mirrors for viewing the tests from inside the building. Vertical frame originally held bullet glass. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  15. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Suttles, J. T.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.

  16. Color image generation for screen-scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi

    2015-10-19

    Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

  17. 8. VAL CAMERA CAR, CLOSEUP VIEW OF 'FLARE' OR TRAJECTORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VAL CAMERA CAR, CLOSE-UP VIEW OF 'FLARE' OR TRAJECTORY CAMERA ON SLIDING MOUNT. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. 18. DETAIL VIEW OF DEVICE ON OUTSIDE OF COFFEE HUSKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL VIEW OF DEVICE ON OUTSIDE OF COFFEE HUSKER THAT ADJUSTED ANGLE OF HUSKER VAT WALLS - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  19. 2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, WINDOWS AND CONTROL PANELS, LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  20. Shortwave radiation parameterization scheme for subgrid topography

    NASA Astrophysics Data System (ADS)

    Helbig, N.; LöWe, H.

    2012-02-01

    Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.

  1. CFD investigation of pentamaran ship model with chine hull form on the resistance characteristics

    NASA Astrophysics Data System (ADS)

    Yanuar; Sulistyawati, W.

    2018-03-01

    This paper presents an investigation of pentamaran hull form with chine hull form to the effects of outriggers position, asymmetry, and deadrise angles on the resistance characteristics. The investigation to the resistance characteristics by modelling pentamaran hull form using chine with symmetrical main hull and asymmetric outboard on the variation deadrise angles: 25°, 30°, 35° and Froude number 0,1 to 0,7. On calm water resistance characteristics of six pentamaran models with chine-hull form examined by variation of deadrise angles by using CFD. Comparation with Wigley hull form, the maximum resistance drag reduction of the chine hull form was reduced by 15.81% on deadrise 25°, 13.8% on deadrise 30°, and 20.38% on deadrise 35°. While the smallest value of total resistance coefficient was generated from chine 35° at R/L:1/14 and R/L:1/7. Optimum hull form for minimum resistance has been obtained, so it is interesting to continue with angle of entrance and stem angle of hull for further research.

  2. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display.

    PubMed

    Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G

    2013-03-21

    Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.

  3. Flow Behavior in Side-View Plane of Pitching Delta Wing

    NASA Astrophysics Data System (ADS)

    Pektas, Mehmet Can; Tasci, Mehmet Oguz; Karasu, Ilyas; Sahin, Besir; Akilli, Huseyin

    2018-06-01

    In the present investigation, a delta wing which has 70° sweep angle, Λ was oscillated on its midcord according to the equation of α(t)=αm+α0sin(ωet). This study focused on understanding the effect of pitching and characterizing the interaction of vortex breakdown with oscillating leading edges under different yaw angles, β over a slender delta wing. The value of mean angle of attack, αm was taken as 25°. The yaw angle, β was varied with an interval of 4° over the range of 0°≤β≤ 16°. The delta wing was sinusoidally pitched within the range of period of time 5s≤Te≤60s and reduced frequency was set as K=0.16, 0.25, 0.49, 1.96 and lastly amplitude of pitching motion was arranged as α0=±5°.Formations and locations of vortex breakdown were investigated by using the dye visualization technique in side view plane.

  4. Multi-Angle Snowflake Camera Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Martin; Bailey, J.

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASCmore » cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.« less

  5. Radiology of adolescent slipped capital femoral epiphysis: measurement of epiphyseal angles and diagnosis.

    PubMed

    Gekeler, Jörg

    2007-10-01

    AIMS OF DIAGNOSTIC RADIOGRAPHY: Visualization of the proximal femur in two clearly defined projections. Radiologic and morphological diagnosis of slipped capital femoral epiphysis. Evaluation of the stability of the femoral epiphysis: chronic slippage or acute interruption of continuity between the femoral epiphysis and the femoral neck metaphysis. Radiometric measurement of the spatial deformity of the femoral epiphysis. Measurement of the projected epiphyseal angle on the radiograph as the basis for possible conversion into anatomically correct angles at the proximal femur. Preoperative planning of therapeutic surgical procedures. Idiopathic hip pain in the growing child or adolescent. Referred pain to the knee or thigh. Unusual gait pattern with external rotation deformity of the leg, limping that favors one leg or limping due to leg length discrepancy. Abnormal sonography, CT or MRI findings. Eventful history including minor injury or genuine trauma. Symptoms and uncommon physical constitution: obesity, exceptional longitudinal growth of the extremities, and absence of secondary sex characteristics. Indications for Radiographic Imaging of the Hip Joint in Two Planes None. Standard positioning of the patient or the affected extremity. First standard radiograph: proximal femur in anteroposterior projection. Position of the leg with the patella directed anteriorly. Contraction of the external rotators at the hip joint is compensated by elevation of the hip until the leg is in the neutral position. Second standard radiograph: axial view of the proximal femur in anteroposterior projection. Leg flexed to 90 degrees at the hip and in 45 degrees abduction. Thigh position parallel to the longitudinal axis of the table (zero rotation). Early signs of incipient or imminent femoral epiphyseolysis: --Disintegration, widening and blurred margins of the epiphyseal plate. --Increasing loss of height of the femoral epiphysis due to incipient dislocation. --The tangent to the lateral femoral neck intersects only slightly with the femoral head or runs tangential to the epiphysis. --Important second radiograph in axial projection: incipient slippage is seen early here. Comparison with the contralateral side. Chronic slipped capital femoral epiphysis in adolescents: --Advanced epiphyseal dislocation visible in both planes. The tangent to the lateral femoral neck no longer intersects with the dislocated femoral epiphysis. In some cases, varus deformity of the femoral neck and periosteal elevation at the borders of the medial femoral neck. --Epiphyseal dislocation even more apparent in the axial view. Acute slipped capital femoral epiphysis in adolescents: --Complete interruption of continuity between epiphysis and metaphysis. --Widened gap between epiphysis and metaphysis. --Cystic irregularities of the metaphysis. --In most cases, substantial dislocation between epiphysis and metaphysis. --"Acute on chronic slip": specific type of acute epiphyseal dislocation subsequent to chronic epiphyseolysis. In addition to signs of acute separation, secondary symptoms of chronic epiphyseolysis such as femoral neck arcuation and spur formation at the head-neck junction. --Dynamic fluoroscopy may be indicated to confirm acute dislocation. Defined axes are marked on the radiograph: anatomic axis of the femur, femoral neck axis, and so-called epiphyseal axis (perpendicular to the base of the epiphysis). Measurement of the projected epiphysis-diaphysis angle (ED' angle) on the anteroposterior radiograph and the projected epiphyseal torsion angle (ET' angle) on the axial radiograph. For slight to moderate slippage, the difference between the epiphyseal dislocation angle obtained from the radiographs (as projected in two planes) compared with the anatomic, i.e., real dislocation angle at the proximal femur is generally relatively minor. Conversion of the projected angle to the real angle is not essential in these cases (if in doubt, see Table 1). For more severe dislocations, the differences between the projected and real angles are far more apparent. Table 1 facilitates conversion of the epiphyseal dislocation angles taken from the radiograph into anatomically correct dislocation angles at the proximal femur. Conversion to real angles, especially for preoperative planning of complex corrective surgery, is indicated for more severe deformities of the femoral epiphysis. Conversion into real (anatomic) angles is indicated for exact prognostic evaluation of prearthrotic deformities.

  6. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  7. Limited-angle tomography for analyzer-based phase-contrast X-ray imaging

    PubMed Central

    Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G

    2014-01-01

    Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume. PMID:24898008

  8. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume.

  9. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen R.; Warren, Stephen G.; Brandt, Richard E.; Grenfell, Thomas C.; Six, Delphine

    2006-09-01

    The bidirectional reflectance distribution function (BRDF) of snow was measured from a 32-m tower at Dome C, at latitude 75°S on the East Antarctic Plateau. These measurements were made at 96 solar zenith angles between 51° and 87° and cover wavelengths 350-2400 nm, with 3- to 30-nm resolution, over the full range of viewing geometry. The BRDF at 900 nm had previously been measured at the South Pole; the Dome C measurement at that wavelength is similar. At both locations the natural roughness of the snow surface causes the anisotropy of the BRDF to be less than that of flat snow. The inherent BRDF of the snow is nearly constant in the high-albedo part of the spectrum (350-900 nm), but the angular distribution of reflected radiance becomes more isotropic at the shorter wavelengths because of atmospheric Rayleigh scattering. Parameterizations were developed for the anisotropic reflectance factor using a small number of empirical orthogonal functions. Because the reflectance is more anisotropic at wavelengths at which ice is more absorptive, albedo rather than wavelength is used as a predictor in the near infrared. The parameterizations cover nearly all viewing angles and are applicable to the high parts of the Antarctic Plateau that have small surface roughness and, at viewing zenith angles less than 55°, elsewhere on the plateau, where larger surface roughness affects the BRDF at larger viewing angles. The root-mean-squared error of the parameterized reflectances is between 2% and 4% at wavelengths less than 1400 nm and between 5% and 8% at longer wavelengths.

  10. Seasonal Surface Changes in Namibia and Central Angola

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Brightness variations in the terrain along a portion of southwestern Africa are displayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The panels portray an area that includes Namibia's Skeleton Coast and Etosha National Park as well as Angola's Cuando Cubango. The top panels were acquired on March 6, 2001, during the region's wet season, and the bottom panels were acquired on September 1, 2002, during the dry season. Corresponding changes in the abundance of vegetation are apparent. The images on the left are natural color (red, green, blue) images from MISR's vertical-viewing (nadir) camera. The images on the right represent one of MISR's derived surface products.

    The radiance (light intensity) in each pixel of the so-called 'top-of-atmosphere' images on the left includes light that is reflected by the Earth's surface in addition to light that is transmitted and reflected by the atmosphere. The amount of radiation reflected by the surface into all upward directions, as opposed to any single direction, is important when studying Earth's energy budget. A quantity called the surface 'directional hemispherical reflectance' (DHR), sometimes called the 'black-sky albedo', captures this information, and is depicted in the images on the right. MISR's multi-angle views lead to more accurate estimates of the amount of radiation reflected into all directions than can be obtained as a result of looking at a single (e.g., vertically downward) view angle. Furthermore, to generate this surface product accurately, it is necessary to compensate for the effects of the intervening atmosphere, and MISR provides the ability to characterize and account for scattering of light by airborne particulates (aerosols).

    The DHR is called a hemispherical reflectance because it measures the amount of radiation reflected into all upward directions, and which therefore traverses an imaginary hemisphere situated above each surface point. The 'directional' part of the name describes the illumination geometry, and indicates that in the absence of an intervening atmosphere, light from the Sun illuminates the surface from a single direction (that is, there is no diffuse skylight, hence the 'black-sky' terminology). The DHR is retrieved over land surfaces in each of MISR's four wavelength bands, and the images on the right are red, green, blue spectral composites. Regions where DHR could not be derived, either due to an inability to retrieve the necessary atmospheric characteristics or due to the presence of clouds, are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 6466 and 14388. The panels cover an area of about 380 kilometers x 760 kilometers, and utilize data from blocks 102 to 107 within World Reference System-2 path 181.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.

  11. Smoke from Fires in Southern Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 2, 2002, numerous fires in southern Mexico sent smoke drifting northward over the Gulf of Mexico. These views from the Multi-angle Imaging SpectroRadiometer illustrate the smoke extent over parts of the Gulf and the southern Mexican states of Tabasco, Campeche and Chiapas. At the same time, dozens of other fires were also burning in the Yucatan Peninsula and across Central America. A similar situation occurred in May and June of 1998, when Central American fires resulted in air quality warnings for several U.S. States.

    The image on the left is a natural color view acquired by MISR's vertical-viewing (nadir) camera. Smoke is visible, but sunglint in some ocean areas makes detection difficult. The middle image, on the other hand, is a natural color view acquired by MISR's 70-degree backward-viewing camera; its oblique view angle simultaneously suppresses sunglint and enhances the smoke. A map of aerosol optical depth, a measurement of the abundance of atmospheric particulates, is provided on the right. This quantity is retrieved using an automated computer algorithm that takes advantage of MISR's multi-angle capability. Areas where no retrieval occurred are shown in black.

    The images each represent an area of about 380 kilometers x 1550 kilometers and were captured during Terra orbit 12616.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. Fin Buffeting Features of an Early F-22 Model

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Huttsell, Lawrence

    2000-01-01

    Fin buffeting is an aeroelastic phenomenon encountered by high performance aircraft, especially those with twin vertical tails that must operate at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. To date, the buffet (unsteady pressures) and buffeting (structural response) characteristics of the F-15 and F/A-18 fins have been studied extensively using flow visualization, flow velocity measurements, pressure transducers, and response gages. By means of windtunnel and flight tests of the F-15 and F/A-18, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can he increased by structural enhancements to these airframes. However, prior to the present research, data was not available outside the F-22 program regarding fin buffeting on the F-22 configuration. During a test in the Langley Transonic Dynamics Tunnel, flow visualization and unsteady fin surface pressures were recorded for a 13.3%-scale F-22 model at high angles of attack for the purpose of comparing with results available for similar aircraft configurations. Details of this test and fin buffeting are presented herein.

  13. Logarithmic spiral trajectories generated by Solar sails

    NASA Astrophysics Data System (ADS)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  14. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.

    PubMed

    Albert, A; Mobley, C

    2003-11-03

    Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.

  15. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  16. Metrical assessment of cutmarks on bone: is size important?

    PubMed

    Cerutti, E; Magli, F; Porta, D; Gibelli, D; Cattaneo, C

    2014-07-01

    Extrapolating type of blade from a bone lesion has always been a challenge for forensic anthropologists: literature has mainly focused on the morphological characteristics of sharp force lesions, whereas scarce indications are available concerning the metrical assessment of cut marks and their correlation with the size of blade. The present study aims at verifying whether it is possible to reconstruct the metrical characteristics of the blade from the measurements taken from the lesion. Eleven blades with different thickness, height and shape were used for this study. A metallic structure was built, in order to simulate incised wounds and reiterate hits with the same energy. Perpendicular and angled tests were performed on fragments of pig femurs, in order to produce 110 lesions (10 for each blade). Depth, height and angle were measured and compared with metrical characteristics of each blade. Results showed a wide superimposition of metrical characteristics of width and angle of lesions regardless the type and the orientation of blade: for symmetric blades a high correlation index was observed between the depth of the lesion and the angle of the blade in perpendicular tests (0.89) and between the angle of lesion and the height of the blade in angled tests (-0.76); for asymmetric blades in both the tests a high correlation was observed between the angle of the blade and angle and width of the lesion (respectively 0.90 and 0.76 for perpendicular tests, and 0.80 and 0.90 for angled ones). This study provides interesting data concerning the interpretation of cutmarks on bone and suggests caution in assessing the size of weapons from the metrical measurements of lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Anthropometric comparison of painting portraits of beautiful women, femme fatales, and artists' mothers.

    PubMed

    Park, Ju Yong; Hwang, Se Won; Hwang, Kun

    2013-11-01

    The aim of this study was to compare the painting portraits of beautiful women, femme fatales, and artists' mothers using anthropometry.Portraits of each theme were selected in modern novels, essays and picture books, and categorized portraits. A total of 52 samples were collected, including 20 beautiful women, 20 femme fatales, and 12 artists' mothers. In 5 persons, 17 anthropometric ratios including the alae-alae/zygion-zygion ratio were compared in a 15-degree oblique view and in anteroposterior view photographs, and they were proved to not differ significantly. To distinguish oblique portraits less than 15 degrees, we measured the exocanthion-stomion-exocanthion (ESE) angle in photographs of 5 volunteers. The mean ± SD of the ESE angle was 64.52 ± 4.87 in the 15-degree angle view and 57.68 ± 54.09 in the 30-degree angle view. Thereafter, if the ESE angle was greater than 65 degrees, we considered the portrait to have less than a 15-degree angle and included it in the samples.The ratio did not differ significantly in 11 anthropometric proportions. However, the remaining 5 proportions were statistically significant. Beautiful women had wider noses (85% of the endocanthion-endocanthion width) than those of the femme fatale group (77%). Lips in the beautiful woman group are nicer and thicker (36% of lip's width) compared with the artists' mother group (27%). Femme fatales were relatively similar to beautiful women such as those women with nice and thick lips. However, the femme fatale group had an attractive midface ratio (36% of the total face height) that has been mentioned in the older literature, and the noses of the femme fatale group were narrower and sharper (77% of the endocanthion-endocanthion width) than those of the beautiful women (85%). The artists' mother group has a relatively narrower upper face (29% of the total face height) and thinner lips (27% of the lip width) compared with the other 2 groups (36%).Proportions from works of art are more ideal and attractive than clinically measured proportions. The ideal ratios measured from historical portraits might be useful in planning facial surgeries.

  18. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  19. Colorado

    Atmospheric Science Data Center

    2014-05-15

    ... the Multi-angle Imaging SpectroRadiometer (MISR). On the left, a natural-color view acquired by MISR's vertical-viewing (nadir) camera ... Gunnison River at the city of Grand Junction. The striking "L" shaped feature in the lower image center is a sandstone monocline known as ...

  20. Anthropometric study of the caucasian nose in the city of Curitiba: relevance of population evaluation.

    PubMed

    Ballin, Annelyse Cristine; Carvalho, Bettina; Dolci, José Eduardo Lutaif; Becker, Renata; Berger, Cezar; Mocellin, Marcos

    2017-07-03

    Norms and patterns of nasal esthetics are essential for an adequate preoperative evaluation and surgical programming. The esthetic nasal patterns used are a blend of artistic beauty ideals and tracings in models and celebrities. Because they do not consider population measures, they vary according to the period, and allow a discrepancy between the surgeon's preference and the patient's real desire for rhinoplasty. Not all populations wish to obtain an esthetic result according to these values, but prefer a natural result, that is, one with some of the nasal characteristics of the population to which they belong to. The Brazilian population lacks population studies to evaluate its nose measurements. (1) To evaluate the anthropometric measures of Caucasian noses of people living in the city of Curitiba (state of Paraná), and to compare them to the ideal esthetic pattern of the literature; (2) To compare them between genders. This is a prospective cohort study involving 100 Caucasian volunteers at a tertiary hospital in Southern Brazil. Through the frontal and lateral view photos, intercanthal distance, alar distance, nasal dorsum length, nasofrontal angle, nasolabial angle, and nasal tip projection (Goode's method) were obtained. A statistical analysis was performed to compare the measures obtained between genders and with the ideal patterns. Comparing the results obtained with those predicted by the esthetic ideals, the sample presented: similar nasolabial angle (p=0.07), alar width greater than intercanthal distance (p<0.001), higher nasal tip projection (p<0.001), larger width-length ratio (p<0.001), and more obtuse nasofrontal angle (p<0.001). The nasofrontal angle (p=0.0008) and the tip projection (p=0.032) were statistically different between the genders. Men had a smaller nasofrontal angle, and a larger Goode's ratio. Except for the nasolabial angle, the measures obtained in the population sample differed from the published esthetic ideals. Comparing the genders, men had a sharper nasofrontal angle, and higher tip projection than women. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propellers

    NASA Technical Reports Server (NTRS)

    Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank

    1987-01-01

    An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.

  2. A cylindrical specimen holder for electron cryo-tomography

    PubMed Central

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. PMID:24275523

  3. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance.

    PubMed

    Fougnie, B; Frouin, R; Lecomte, P; Deschamps, P Y

    1999-06-20

    Reflected skylight in above-water measurements of diffuse marine reflectance can be reduced substantially by viewing the surface through an analyzer transmitting the vertically polarized component of incident radiance. For maximum reduction of effects, radiometric measurements should be made at a viewing zenith angle of approximately 45 degrees (near the Brewster angle) and a relative azimuth angle between solar and viewing directions greater than 90 degrees (backscattering), preferably 135 degrees. In this case the residual reflected skylight in the polarized signal exhibits minimum sensitivity to the sea state and can be corrected to within a few 10(-4) in reflectance units. For most oceanic waters the resulting relative error on the diffuse marine reflectance in the blue and green is less than 1%. Since the water body polarizes incident skylight, the measured polarized reflectance differs from the total reflectance. The difference, however, is small for the considered geometry. Measurements made at the Scripps Institution of Oceanography pier in La Jolla, Calif., with a specifically designed scanning polarization radiometer, confirm the theoretical findings and demonstrate the usefulness of polarization radiometry for measuring diffuse marine reflectance.

  4. Objective measurements for grading the nasal esthetics on Basal view in individuals with secondary cleft nasal deformity.

    PubMed

    He, Xing; Li, Hua; Shao, Yan; Shi, Bing

    2015-01-01

    The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.

  5. View of the launch of STS 51-A shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).

  6. Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Pang; Yu, Yue

    2017-05-01

    This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..

  7. 10. Elevation view of south side of FrankJensen Summer Home. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Elevation view of south side of Frank-Jensen Summer Home. Note that the steep angle of view gives an illusion of a flat roof. For a more accurate depiction of the roof line, see photos WA-207-4 and WA-207-8. - Frank-Jensen Summer Home, 17423 North Lake Shore Drive, Telma, Chelan County, WA

  8. Individualized optimal release angles in discus throwing.

    PubMed

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  10. Analysis of polarization characteristics of plant canopies using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sid'ko, A. F.; Botvich, I. Yu.; Pisman, T. I.; Shevyrnogov, A. P.

    2014-09-01

    The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10-18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (Rmax and Rmin), polarized component of the reflectance factor (Rq), and the degree of polarization (Р). Wheat, corn, and grass canopies have higher Rmax and Rmin values than forest plants. The Rq and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data.

  11. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  13. Dreamy Swirls on Saturn

    NASA Image and Video Library

    2017-09-12

    NASA's Cassini spacecraft gazed toward the northern hemisphere of Saturn to spy subtle, multi-hued bands in the clouds there. This view looks toward the terminator -- the dividing line between night and day -- at lower left. The sun shines at low angles along this boundary, in places highlighting vertical structure in the clouds. Some vertical relief is apparent in this view, with higher clouds casting shadows over those at lower altitude. Images taken with the Cassini spacecraft narrow-angle camera using red, green and blue spectral filters were combined to create this natural-color view. The images were acquired on Aug. 31, 2017, at a distance of approximately 700,000 miles (1.1 million kilometers) from Saturn. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21888

  14. Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method.

    PubMed

    Alam, Md Ashraful; Piao, Mei-Lan; Bang, Le Thanh; Kim, Nam

    2013-10-01

    Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.

  15. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  16. 16. SOUTH TO VIEW OF CIRCA 1900 MICHIGAN MACHINERY MFG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SOUTH TO VIEW OF CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS WITH WOOD-BURNING HEATING STOVE LOCATED IN THE CENTER OF THE FACTORY BUILDING. BESIDE THE HEATING STOVE, POINTING TOWARD THE PUNCH PRESS, IS A JIG USED TO POSITION ANGLE STEEL COMPONENTS OF STEEL WINDMILL TOWER LEGS FOR PUNCHING BOLT HOLES. THE SUPPORT FOR THE BRICK FLUE OF THE HEATING STOVE IS CONSTRUCTED FROM SALVAGED GALVANIZED ANGLE STEEL OF THE TYPE USED IN FABRICATING WINDMILL TOWERS MANUFACTURED IN THE FACTORY. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  17. A Summer View of Russia's Lena Delta and Olenek

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These views of the Russian Arctic were acquired by NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument on July 11, 2004, when the brief arctic summer had transformed the frozen tundra and the thousands of lakes, channels, and rivers of the Lena Delta into a fertile wetland, and when the usual blanket of thick snow had melted from the vast plains and taiga forests. This set of three images cover an area in the northern part of the Eastern Siberian Sakha Republic. The Olenek River wends northeast from the bottom of the images to the upper left, and the top portions of the images are dominated by the delta into which the mighty Lena River empties when it reaches the Laptev Sea. At left is a natural color image from MISR's nadir (vertical-viewing) camera, in which the rivers appear murky due to the presence of sediment, and photosynthetically-active vegetation appears green. The center image is also from MISR's nadir camera, but is a false color view in which the predominant red color is due to the brightness of vegetation at near-infrared wavelengths. The most photosynthetically active parts of this area are the Lena Delta, in the lower half of the image, and throughout the great stretch of land that curves across the Olenek River and extends northeast beyond the relatively barren ranges of the Volyoi mountains (the pale tan-colored area to the right of image center).

    The right-hand image is a multi-angle false-color view made from the red band data of the 60o backward, nadir, and 60o forward cameras, displayed as red, green and blue, respectively. Water appears blue in this image because sun glitter makes smooth, wet surfaces look brighter at the forward camera's view angle. Much of the landscape and many low clouds appear purple since these surfaces are both forward and backward scattering, and clouds that are further from the surface appear in a different spot for each view angle, creating a rainbow-like appearance. However, the vegetated region that is darker green in the natural color nadir image, also appears to exhibit a faint greenish hue in the multi-angle composite. A possible explanation for this subtle green effect is that the taiga forest trees (or dwarf-shrubs) are not too dense here. Since the the nadir camera is more likly to observe any gaps between the trees or shrubs, and since the vegetation is not as bright (in the red band) as the underlying soil or surface, the brighter underlying surface results in an area that is relatively brighter at the nadir view angle. Accurate maps of vegetation structural units are an essential part of understanding the seasonal exchanges of energy and water at the Earth's surface, and of preserving the biodiversity in these regions.

    The Multiangle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 24273. The panels cover an area of about 230 kilometers x 420 kilometers, and utilize data from blocks 30 to 34 within World Reference System-2 path 134.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Impact Angle and Time Control Guidance Under Field-of-View Constraints and Maneuver Limits

    NASA Astrophysics Data System (ADS)

    Shim, Sang-Wook; Hong, Seong-Min; Moon, Gun-Hee; Tahk, Min-Jea

    2018-04-01

    This paper proposes a guidance law which considers the constraints of seeker field-of-view (FOV) as well as the requirements on impact angle and time. The proposed guidance law is designed for a constant speed missile against a stationary target. The guidance law consists of two terms of acceleration commands. The first one is to achieve zero-miss distance and the desired impact angle, while the second is to meet the desired impact time. To consider the limits of FOV and lateral maneuver capability, a varying-gain approach is applied on the second term. Reduction of realizable impact times due to these limits is then analyzed by finding the longest course among the feasible ones. The performance of the proposed guidance law is demonstrated by numerical simulation for various engagement conditions.

  19. Analysis of the restricting factors of laser countermeasure active detection technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  20. Surface morphology and electrical properties of Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n-Ga{sub 2}O{sub 3}/p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket hybrid structures fabricated on the basis of a layered semiconductor with nanoscale ferroelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtinov, A. P., E-mail: chimsp@ukrpost.ua; Vodopyanov, V. N.; Netyaga, V. V.

    2012-03-15

    Features of the formation of Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n-Ga{sub 2}O{sub 3} hybrid nanostructures on a Van der Waals surface (0001) of 'layered semiconductor-ferroelectric' composite nanostructures (p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket ) are studied using atomic-force microscopy. The room-temperature current-voltage characteristics and the dependence of the impedance spectrum of hybrid structures on a bias voltage are studied. The current-voltage characteristic includes a resonance peak and a portion with negative differential resistance. The current attains a maximum at a certain bias voltage, when electric polarization switching in nanoscale three-dimensional inclusions in the layered GaSe matrix occurs. In the high-frequency region (fmore » > 10{sup 6} Hz), inductive-type impedance (a large negative capacitance of structures, {approx}10{sup 6} F/mm{sup 2}) is detected. This effect is due to spinpolarized electron transport in a series of interconnected semiconductor composite nanostructures with multiple p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket quantum wells and a forward-biased 'ferromagnetic metal-semiconductor' polarizer (Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n{sup +}-Ga{sub 2}O{sub 3}/n-Ga{sub 2}O{sub 3}). A shift of the maximum (current hysteresis) is detected in the current-voltage characteristics for various directions of the variations in bias voltage.« less

  1. Aerosol Optical Depth Retrievals from High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    DTIC Science & Technology

    2006-06-01

    angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar

  2. Lightweight ZERODUR®: Optimized athermal performance for Space Telescopes

    NASA Astrophysics Data System (ADS)

    Hull, Anthony; Westerhoff, Thomas

    2018-01-01

    ZERODUR’s extreme homogeneity and low CTE make it a strong candidate for ultrastable space telescopes. It’s excellent thermal match to CFRP supports stability and cost-effective solutions. Since the response to thermal transients is small, a spaceborne telescope using ZERODUR has reduced requirements for the implementation and validation of complex heater networks. We will describe the use of ZERODUR in a current NASA Probe Mission Study, CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), where the1.5m WFOV telescope operates at an L2 Halo Orbit, and with solar view factor is modulated by pointing requirements that extend between sun angles of 85 degrees and 135 degrees. Discussion will include recent experience on material characteristics, and new facilities for lightweight mirrors at SCHOTT.

  3. Stability analysis of automobile driver steering control

    NASA Technical Reports Server (NTRS)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  4. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  5. Recent ARPES experiments on quasi-1D bulk materials and artificial structures.

    PubMed

    Grioni, M; Pons, S; Frantzeskakis, E

    2009-01-14

    The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.

  6. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  7. New ways in creating pixelgram images

    NASA Astrophysics Data System (ADS)

    Malureanu, Radu; Di Fabrizio, Enzo

    2006-09-01

    Since the diffraction gratings were invented, their use in various security systems has been exploited. Their big advantage is the low production cost and, in the same time, the difficulty of replicating them. Most of the nowadays security systems are using those gratings to prove their originality. They can be seen on all the CDs, DVDs, most of the major credit cards and even on the wine bottles. In this article we present a new way of making such gratings without changing the production steps but generating an even more difficult to be replicated item. This new way consists not only in changing the grating period so that various false colours can be seen, but also their orientation so that for a complete check of the grating it should be seen under a certain solid angle. In the same time, one can also keep the possibility to change the grating period so this way various colours can be seen for each angle variation. By combining these two techniques (changing period and changing the angle ones) one can indeed create different images for each view angle and thus increasing the security of the object. In the same time, as can be seen, from the fabrication point of view no further complications appear. The production steps are identical, the only difference being the pattern. The resolution of the grating is not increased necessarily so neither from this point of view will complications appear.

  8. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  9. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  10. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Ergonomic evaluation of interior design of Shoka vehicle and proposing recommendations for improvement.

    PubMed

    Mazloumi, Adel; Mohammadreze, Fallah

    2012-01-01

    One of the applications of ergonomics disciplinary is designing driver workstation compatible to users' characteristics. The aim of this study was evaluation of interior design of Shoka vehicle with respect to the accommodation for Iranian population and proposing suggestions for customizing design of this vehicle. This study was a descriptive-analytical study conducted among thirty men from Iranian drivers population in 5, 50, 95 percentiles of the stature variable. Objective variables related to the occupant packaging and vehicle visual aspects including anthropometric variables, frontal, lateral, and side view and so on were investigated first. Then, subjective variables related to the driver mental workload and body comfort discomfort were studied using BMDMW and comfort questionnaires during 2-hour driving trial sessions. Occupant packaging variables and hand-arm angle showed the least accommodation percent (%53). Seating angles showed low accommodation as well (%73). Among three percentile groups there were no significant differences between the mean values of mental workload during two hours driving task. And, the mean value related to the comfort discomfort was 3.9 during driving sessions. Considering the findings in this study, it can be conclude that seating angles need correction and optimization. Taking mental workload results into account, it can be concluded that the interior design of the studied car had no influence on drivers' mental workload. From the aspect of comfort discomfort, Shoka vehicle showed neutral state among drivers. Optimizing seating angles, decreasing vibration, correcting stiffness of seating pan are suggested for customization of the ergonomics aspect of this vehicle.

  12. Investigation of dynamic characteristics of a turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Jacques, James R

    1951-01-01

    Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.

  13. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept.

    PubMed

    Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung

    2017-02-01

    A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.

  14. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  15. 126. AERIAL FORWARD VIEW OF ENCLOSED HURRICANE BOW WITH FLIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. AERIAL FORWARD VIEW OF ENCLOSED HURRICANE BOW WITH FLIGHT DECK GUN MOUNTS REMOVED AND ANGLED FLIGHT DECK. 1 OCTOBER 1956. (NATIONAL ARCHIVES NO. 80-G-1001445) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. 10. View northwest Typical panel detail (south chord) of variable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View northwest Typical panel detail (south chord) of variable section girder showing riveted connections, angle stiffeners for girder web, and nuts securing wind bracing rods. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  17. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2005-08-16

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  18. Faint F Ring and Prometheus

    NASA Image and Video Library

    2016-11-21

    Surface features are visible on Saturn's moon Prometheus in this view from NASA's Cassini spacecraft. Most of Cassini's images of Prometheus are too distant to resolve individual craters, making views like this a rare treat. Saturn's narrow F ring, which makes a diagonal line beginning at top center, appears bright and bold in some Cassini views, but not here. Since the sun is nearly behind Cassini in this image, most of the light hitting the F ring is being scattered away from the camera, making it appear dim. Light-scattering behavior like this is typical of rings comprised of small particles, such as the F ring. This view looks toward the unilluminated side of the rings from about 14 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 226,000 miles (364,000 kilometers) from Prometheus and at a sun-Prometheus-spacecraft, or phase, angle of 51 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20508

  19. Usability of multiangular imaging spectroscopy data for analysis of vegetation canopy shadow fraction in boreal forest

    NASA Astrophysics Data System (ADS)

    Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío

    2016-04-01

    Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schläpfer, Switzerland). However, even after meticulous geolocation, the canopy elements (needles) seen from the three view angles were different: at each overpass, different parts of the same crowns were observed. To overcome this, we used a 200m x 200m test site covered with pure pine stands. We assumed that for sunlit, shaded and understory spectral signatures are independent of viewing direction to the accuracy of a constant BRDF factor. Thus, we compared the spectral signatures for sunlit and shaded canopy and understory obtained for each view direction. We selected visually six hundred of the brightest and darkest canopy pixels. Next, we performed a minimum noise fraction (MNF) transformation, created a pixel purity index (PPI) and used Envi's n-D scatterplot to determine pure spectral signatures for the two classes. The pure endmembers for different view angles were compared to determine the BRDF factor and to analyze its spectral invariance. We demonstrate the compatibility of multi-angle data with high spatial resolution data. In principle, both carry similar information on structured (non-flat) targets thus as a vegetation canopy. Nevertheless, multiple view angles helped us to extend the range of shadow fraction in the images. Also, correct separation of shaded crown and shaded understory pixels remains a challenge.

  20. Alpha and Omega

    NASA Image and Video Library

    2017-11-27

    These two images illustrate just how far Cassini traveled to get to Saturn. On the left is one of the earliest images Cassini took of the ringed planet, captured during the long voyage from the inner solar system. On the right is one of Cassini's final images of Saturn, showing the site where the spacecraft would enter the atmosphere on the following day. In the left image, taken in 2001, about six months after the spacecraft passed Jupiter for a gravity assist flyby, the best view of Saturn using the spacecraft's high-resolution (narrow-angle) camera was on the order of what could be seen using the Earth-orbiting Hubble Space Telescope. At the end of the mission (at right), from close to Saturn, even the lower resolution (wide-angle) camera could capture just a tiny part of the planet. The left image looks toward Saturn from 20 degrees below the ring plane and was taken on July 13, 2001 in wavelengths of infrared light centered at 727 nanometers using the Cassini spacecraft narrow-angle camera. The view at right is centered on a point 6 degrees north of the equator and was taken in visible light using the wide-angle camera on Sept. 14, 2017. The view on the left was acquired at a distance of approximately 317 million miles (510 million kilometers) from Saturn. Image scale is about 1,900 miles (3,100 kilometers) per pixel. The view at right was acquired at a distance of approximately 360,000 miles (579,000 kilometers) from Saturn. Image scale is 22 miles (35 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21353

  1. Aerodynamic characteristics at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1977-01-01

    An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.

  2. Ash from Kilauea Eruption Viewed by NASA's MISR

    NASA Image and Video Library

    2018-05-09

    On May 3, 2018, a new eruption began at a fissure of the Kilauea volcano on the Island of Hawaii. Kilauea is the most active volcano in the world, having erupted almost continuously since 1983. Advancing lava and dangerous sulfur dioxide gas have forced thousands of residents in the neighborhood of Leilani Estates to evacuate. A number of homes have been destroyed, and no one can say how soon the eruption will abate and evacuees can return home. On May 6, 2018, at approximately 11 a.m. local time, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. Much of the island was shrouded by clouds, including the fissure on its eastern point. However, an eruption plume is visible streaming southwest over the ocean. The MISR instrument is unique in that it has nine cameras that view Earth at different angles: one pointing downward, four at various angles in the forward direction, and four in the backward direction. This image shows the view from one of MISR's forward-pointing cameras (60 degrees), which shows the plume more distinctly than the near-vertical views. The information from the images acquired at different view angles is used to calculate the height of the plume, results of which are superimposed on the right-hand image. The top of the plume near the fissure is at approximately 6,500 feet (2,000 meters) altitude, and the height of the plume decreases as it travels south and west. These relatively low altitudes mean that the ash and sulfur dioxide remained near the ground, which can cause health issues for people on the island downwind of the eruption. The "Ocean View" air quality monitor operated by the Clean Air Branch of the State of Hawaii Department of Health recorded a concentration of 18 μg/m3 of airborne particles less than 2.5 micrometers in diameter at 11 a.m. local time. This amount corresponds to an air quality rating of "moderate" and supports the MISR results indicating that ash was most likely present at ground level on this side of the island. These data were acquired during Terra orbit 97780. An annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA22451

  3. Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, Joseph L.

    1964-01-01

    The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of 27.5 deg and 30 deg, this minimum free-stream Mach number was above 1.5. Consequently, solutions at this Mach number were not computed for these two cone angles.

  4. A Description of a Family of Heron Quadrilaterals

    ERIC Educational Resources Information Center

    Sastry, K. R. S.

    2005-01-01

    Mathematical historians place Heron in the first century. Right-angled triangles with integer sides and area had been determined before Heron, but he discovered such a "non" right-angled triangle, viz 13, 14, 15; 84. In view of this, triangles with integer sides and area are named "Heron triangles." The Indian mathematician Brahmagupta, born in…

  5. Highlighting Titan's Hazes

    NASA Image and Video Library

    2017-08-11

    NASA's Cassini spacecraft looks toward the night side of Saturn's moon Titan in a view that highlights the extended, hazy nature of the moon's atmosphere. During its long mission at Saturn, Cassini has frequently observed Titan at viewing angles like this, where the atmosphere is backlit by the Sun, in order to make visible the structure of the hazes. Titan's high-altitude haze layer appears blue here, whereas the main atmospheric haze is orange. The difference in color could be due to particle sizes in the haze. The blue haze likely consists of smaller particles than the orange haze. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on May 29, 2017. The view was acquired at a distance of approximately 1.2 million miles (2 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21625

  6. Dual-view-zone tabletop 3D display system based on integral imaging.

    PubMed

    He, Min-Yang; Zhang, Han-Le; Deng, Huan; Li, Xiao-Wei; Li, Da-Hai; Wang, Qiong-Hua

    2018-02-01

    In this paper, we propose a dual-view-zone tabletop 3D display system based on integral imaging by using a multiplexed holographic optical element (MHOE) that has the optical properties of two sets of microlens arrays. The MHOE is recorded by a reference beam using the single-exposure method. The reference beam records the wavefronts of a microlens array from two different directions. Thus, when the display beam is projected on the MHOE, two wavefronts with the different directions will be rebuilt and the 3D virtual images can be reconstructed in two viewing zones. The MHOE has angle and wavelength selectivity. Under the conditions of the matched wavelength and the angle of the display beam, the diffraction efficiency of the MHOE is greatest. Because the unmatched light just passes through the MHOE, the MHOE has the advantage of a see-through display. The experimental results confirm the feasibility of the dual-view-zone tabletop 3D display system.

  7. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    PubMed

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  8. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    PubMed Central

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597

  9. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    PubMed

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data.

  10. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of bias are apparent when files are processed manually and can be filtered out when producing automated software estimates. Multibeam sonar estimates of fish size should be useful for research and management if these potential sources of bias and imprecision are addressed.

  11. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granot, J

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission,more » and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the observed prompt emission arises. Future observations with Swift could help test this unification scheme in which GRBs, XRGRBs and XRFs share the same basic physics and differ only by their orientation relative to our line of sight.« less

  12. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R.

    1991-02-26

    This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to amore » graduation or graduations on a reticle in the magnifying scope is noted.« less

  13. A wide-angle camera module for disposable endoscopy

    NASA Astrophysics Data System (ADS)

    Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee

    2016-08-01

    A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.

  14. SSPX thermistor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, K I

    The SSPX Thermistor is a glass encapsulated bead thermistor made by Thermometrics, a BR 14 P A 103 J. The BR means ruggedized bead structure, 14 is the nominal bead diameter in mils, P refers to opposite end leads, A is the material system code letter, 103 refers to its 10 k{Omega} zero-power resistance at 25 C, and the tolerance letter J indicates {+-} 5% at 25 C. It is football shaped, with height ->, and is viewed through a slot of height h = 0.01 inches. The slot is perpendicular to the long axis of the bead, and ismore » a distance s {approx} 0.775 cm in front of the thermistor. So plasma is viewed over a large angle along the slot, but over a small angle {alpha} perpendicular to the slot. The angle {alpha} is given by 2s tan{alpha} = -> + h.« less

  15. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  16. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  17. Objective for monitoring the corona discharge

    NASA Astrophysics Data System (ADS)

    Obrezkov, Andrey; Rodionov, Andrey Yu.; Pisarev, Viktor N.; Chivanov, Alexsey N.; Baranov, Yuri P.; Korotaev, Valery V.

    2016-04-01

    Remote optoelectronic probing is one of the most actual aspects of overhead electric line maintenances. By installing such systems on a helicopter (for example) it becomes possible to monitor overhead transmission line status and to search damaged parts of the lines. Thermal and UV-cameras are used for more effective diagnostic. UV-systems are fitted with filters, that attenuate visible spectrum, which is an undesired type of signal. Also these systems have a wide view angle for better view and proper diagnostics. For even more effectiveness, it is better to use several spectral channels: like UV and IR. Such spectral selection provides good noise reduction. Experimental results of spectral parameters of the wide view angle multispectral objective for such systems are provided in this report. There is also data on point spread function, UV and IR scattering index data and technical requirements for detectors.

  18. Development of an imaging system for single droplet characterization using a droplet generator.

    PubMed

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  19. Height and Motion of the Chikurachki Eruption Plume

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The height and motion of the ash and gas plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). Situated within the northern portion of the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of the Kamchatka Peninsula).

    In the upper panel of the still image pair, this scene is displayed as a natural-color view from MISR's vertical-viewing (nadir) camera. The white and brownish-grey plume streaks several hundred kilometers from the eastern edge of Paramushir Island toward the southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano on April 22 was -12o C.

    The lower panel shows heights derived from automated stereoscopic processing of MISR's multi-angle imagery, in which the plume is determined to reach heights of about 2.5 kilometers above sea level. Heights for clouds above and below the eruption plume were also retrieved, including the high-altitude cirrus clouds in the lower left (orange pixels). The distinctive patterns of these features provide sufficient spatial contrast for MISR's stereo height retrieval to perform automated feature matching between the images acquired at different view angles. Places where clouds or other factors precluded a height retrieval are shown in dark gray.

    The multi-angle 'fly-over' animation (below) allows the motion of the plume and of the surrounding clouds to be directly observed. The frames of the animation consist of data acquired by the 70-degree, 60-degree, 46-degree and 26-degree forward-viewing cameras in sequence, followed by the images from the nadir camera and each of the four backward-viewing cameras, ending with the view from the 70-degree backward camera.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17776. The panels cover an area of approximately 296 kilometers x 216 kilometers (still images) and 185 kilometers x 154 kilometers (animation), and utilize data from blocks 50 to 51 within World Reference System-2 path 100.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    [figure removed for brevity, see original site

  20. Influence of yaw on propeller aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Bang; Rozehnal, Dalibor; Hnidka, Jakub; Pham, Vu Uy

    2018-06-01

    Between the propeller axis and free stream direction, it can still be a non-zero yaw angle. This paper introduces some propeller experiments, in which the propeller aerodynamic characteristics have been determined in various yaw angle and different rotational speeds. The experimental aerodynamic characteristics are acquired dynamic values, from which the influence of yaw conditions on the frequency and the amplitude of propeller thrust and torque can be obtained.

  1. Unveiling the nature of the  $$\\gamma$$-ray emitting active galactic nucleus PKS 0521-36

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Tavecchio, F.; ...

    2015-05-19

    PKS 0521-36 is an active galactic nucleus (AGN) with uncertain classification. Here, we investigate the properties of this source from radio to γ-rays. The broad emission lines in the optical and ultraviolet bands and steep radio spectrum indicate a possible classification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521-36 shows a knotty structure similar to misaligned AGN. The core dominance and the γ-ray properties are similar to those estimated for other SSRQ and BLRG detected in γ-rays, suggesting an intermediate viewing angle with respect to the observer. In thismore » context the flaring activity detected from this source by Fermi-Large Area Telescope between 2010 June and 2012 February is very intriguing. We discuss the γ-ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles θv = 6°, 15°, and 20°. We obtain a good fit for the first two cases, but the SED obtained with θv = 15° if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (~100) the inverse Compton component. This suggests that a viewing angle between 6° and 15° is preferred, with the rapid variability observed during γ-ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521-36 is the misaligned counterpart of a synchrotron-dominated blazar.« less

  2. Angular Normalization of Ground and Satellite Observations of Sun-induced Chlorophyll Fluorescence for Assessing Vegetation Productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.

  3. Scleral Buckling Using a Non-contact Wide-Angle Viewing System with a 25-Gauge Chandelier Endoilluminator.

    PubMed

    Jo, Jaehyuck; Moon, Byung Gil; Lee, Joo Yong

    2017-12-01

    To report the outcome of scleral buckling using a non-contact wide-angle viewing system with a 25-gauge chandelier endoilluminator. Retrospective analyses of medical records were performed for 17 eyes of 16 patients with primary rhegmatogenous retinal detachment (RRD) without proliferative vitreoretinopathy who had undergone conventional scleral buckling with cryoretinopexy using the combination of a non-contact wide-angle viewing system and chandelier endoillumination. The patients were eight males and five females with a mean age of 26.8 ± 10.2 (range, 11 to 47) years. The mean follow-up period was 7.3 ± 3.1 months. Baseline best-corrected visual acuity was 0.23 ± 0.28 logarithm of the minimum angle of resolution units. Best-corrected visual acuity at the final visit showed improvement (0.20 ± 0.25 logarithm of the minimum angle of resolution units), but the improvement was not statistically significant (p = 0.722). As a surgery-related complication, there was vitreous loss at the end of surgery in one eye. As a postoperative complication, increased intraocular pressure (four cases) and herpes simplex epithelial keratitis (one case) were controlled postoperatively with eye drops. One case of persistent RRD after primary surgery needed additional vitrectomy, and the retina was postoperatively attached. Scleral buckling with chandelier illumination as a surgical technique for RRD has the advantages of relieving the surgeon's neck pain from prolonged use of the indirect ophthalmoscope and sharing the surgical procedure with another surgical team member. In addition, fine retinal breaks that are hard to identify using an indirect ophthalmoscope can be easily found under the microscope by direct endoillumination. © 2017 The Korean Ophthalmological Society

  4. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    NASA Astrophysics Data System (ADS)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  5. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

    PubMed

    Melki, Lea; Costet, Alexandre; Konofagou, Elisa E

    2017-10-01

    Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly.

    PubMed

    Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei

    2018-03-01

    Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A cylindrical specimen holder for electron cryo-tomography.

    PubMed

    Palmer, Colin M; Löwe, Jan

    2014-02-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the "missing wedge" problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Using Relative Position and Temporal Judgments to Assess the Effects of Texture and Field of View on Spatial Awareness for Synthetic Vision Systems Displays

    NASA Technical Reports Server (NTRS)

    Bolton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.

    2006-01-01

    Synthetic Vision Systems (SVS) depict computer generated views of terrain surrounding an aircraft. In the assessment of textures and field of view (FOV) for SVS, no studies have directly measured the 3 levels of spatial awareness: identification of terrain, its relative spatial location, and its relative temporal location. This work introduced spatial awareness measures and used them to evaluate texture and FOV in SVS displays. Eighteen pilots made 4 judgments (relative angle, distance, height, and abeam time) regarding the location of terrain points displayed in 112 5-second, non-interactive simulations of a SVS heads down display. Texture produced significant main effects and trends for the magnitude of error in the relative distance, angle, and abeam time judgments. FOV was significant for the directional magnitude of error in the relative distance, angle, and height judgments. Pilots also provided subjective terrain awareness ratings that were compared with the judgment based measures. The study found that elevation fishnet, photo fishnet, and photo elevation fishnet textures best supported spatial awareness for both the judgments and the subjective awareness measures.

  9. Nicaraguan Volcanoes, 26 February 2000

    NASA Image and Video Library

    2000-04-19

    The true-color image at left is a downward-looking (nadir) view of the area around the San Cristobal volcano, which erupted the previous day. This image is oriented with east at the top and north at the left. The right image is a stereo anaglyph of the same area, created from red band multi-angle data taken by the 45.6-degree aftward and 70.5-degree aftward cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. View this image through red/blue 3D glasses, with the red filter over the left eye. A plume from San Cristobal (approximately at image center) is much easier to see in the anaglyph, due to 3 effects: the long viewing path through the atmosphere at the oblique angles, the reduced reflection from the underlying water, and the 3D stereoscopic height separation. In this image, the plume floats between the surface and the overlying cumulus clouds. A second plume is also visible in the upper right (southeast of San Cristobal). This very thin plume may originate from the Masaya volcano, which is continually degassing at as low rate. The spatial resolution is 275 meters (300 yards). http://photojournal.jpl.nasa.gov/catalog/PIA02600

  10. Landing of the Shuttle Discovery and end of STS 51-I mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Landing of the Shuttle Discovery and end of STS 51-I mission. Views include photo of Discovery's main landing gear just touching down, a cloud of dirt appearing behind it (225); Side view of the main landing gear touching down, the nose gear still above the runway (226); Aft-angle view of the Space Shuttle Discovery as it makes a successful landing (227).

  11. Experimental aerodynamic characteristics for a cylindrical body of revolution with various noses at angles of attack from 0 deg to 58 deg and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Nelson, E. R.

    1974-01-01

    An experimental investigation was conducted to determine the effect of forebody geometry, a grit ring around the nose, Reynolds number, Mach number, and angle of attack on the aerodynamic characteristics of a body of revolution. Aerodynamic force and moment characteristics were measured for a cylindrical body with tangent ogive noses of fineness ratio 2.5, 3.0, 3.5, and 5.0. The cylindrical body was tested with an ogive nose having a rounded tip and an ogive nose with two different nose strake arrangements. Aerodynamic configurations were tested at various Mach numbers, angles of attack, and Reynolds numbers. The data demonstrate that the aerodynamic characteristics for a body of revolution can be significantly affected by changes in nose fineness ratio, nose bluntness, Reynolds number, Mach number, and, of course, angle of attack. Nose strakes increased the normal forces but had little effect on the side forces that developed at subsonic Mach numbers for alpha greater than about 25. A grit ring around the nose had little or no effect on the aerodynamic characteristics.

  12. A statistical approach for generating synthetic tip stress data from limited CPT soundings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basalams, M.K.

    CPT tip stress data obtained from a Uranium mill tailings impoundment are treated as time series. A statistical class of models that was developed to model time series is explored to investigate its applicability in modeling the tip stress series. These models were developed by Box and Jenkins (1970) and are known as Autoregressive Moving Average (ARMA) models. This research demonstrates how to apply the ARMA models to tip stress series. Generation of synthetic tip stress series that preserve the main statistical characteristics of the measured series is also investigated. Multiple regression analysis is used to model the regional variationmore » of the ARMA model parameters as well as the regional variation of the mean and the standard deviation of the measured tip stress series. The reliability of the generated series is investigated from a geotechnical point of view as well as from a statistical point of view. Estimation of the total settlement using the measured and the generated series subjected to the same loading condition are performed. The variation of friction angle with depth of the impoundment materials is also investigated. This research shows that these series can be modeled by the Box and Jenkins ARMA models. A third degree Autoregressive model AR(3) is selected to represent these series. A theoretical double exponential density function is fitted to the AR(3) model residuals. Synthetic tip stress series are generated at nearby locations. The generated series are shown to be reliable in estimating the total settlement and the friction angle variation with depth for this particular site.« less

  13. A new illusion of projected three-dimensional space

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur

    1987-01-01

    When perspective projections of orbital trajectories plotted in local-vertical local-horizontal coordinates are viewed with certain viewing angles, their appearance becomes perceptually unstable. They often lose their trochoidal appearance and reorganize as helices. This reorganization may be due to the viewer's familiarity with coiled springs.

  14. Hurricane Alex

    Atmospheric Science Data Center

    2013-04-19

    article title:  Hurricane Alex Disrupts Gulf Cleanup     View Larger Image This view of Hurricane Alex in the western Gulf of Mexico was acquired by the Multi-angle ... Time on June 30, 2010. Around this time NOAA's National Hurricane Center reported Alex to be a strengthening Category 1 hurricane with ...

  15. MISR Global Images See the Light of Day

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As of July 31, 2002, global multi-angle, multi-spectral radiance products are available from the MISR instrument aboard the Terra satellite. Measuring the radiative properties of different types of surfaces, clouds and atmospheric particulates is an important step toward understanding the Earth's climate system. These images are among the first planet-wide summary views to be publicly released from the Multi-angle Imaging SpectroRadiometer experiment. Data for these images were collected during the month of March 2002, and each pixel represents monthly-averaged daylight radiances from an area measuring 1/2 degree in latitude by 1/2 degree in longitude.

    The top panel is from MISR's nadir (vertical-viewing) camera and combines data from the red, green and blue spectral bands to create a natural color image. The central view combines near-infrared, red, and green spectral data to create a false-color rendition that enhances highly vegetated terrain. It takes 9 days for MISR to view the entire globe, and only areas within 8 degrees of latitude of the north and south poles are not observed due to the Terra orbit inclination. Because a single pole-to-pole swath of MISR data is just 400 kilometers wide, multiple swaths must be mosaiced to create these global views. Discontinuities appear in some cloud patterns as a consequence of changes in cloud cover from one day to another.

    The lower panel is a composite in which red, green, and blue radiances from MISR's 70-degree forward-viewing camera are displayed in the northern hemisphere, and radiances from the 70-degree backward-viewing camera are displayed in the southern hemisphere. At the March equinox (spring in the northern hemisphere, autumn in the southern hemisphere), the Sun is near the equator. Therefore, both oblique angles are observing the Earth in 'forward scattering', particularly at high latitudes. Forward scattering occurs when you (or MISR) observe an object with the Sun at a point in the sky that is in front of you. Relative to the nadir view, this geometry accentuates the appearance of polar clouds, and can even reveal clouds that are invisible in the nadir direction. In relatively clear ocean areas, the oblique-angle composite is generally brighter than its nadir counterpart due to enhanced reflection of light by atmospheric particulates.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Optical Properties of Ice Particles in Young Contrails

    NASA Technical Reports Server (NTRS)

    Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.

    2008-01-01

    The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.

  17. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  18. Adjustable Bracket For Entry Of Welding Wire

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-01-01

    Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.

  19. Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.

    2005-01-01

    Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.

  20. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  1. Assessment of BRDF effect of Kunlun Mountain glacier on Tibetan Plateau as a potential pseudo-invariant calibration site

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Hu, Xiuqing; Chen, Lin

    2017-09-01

    Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF model is 3.60%, which is only half of the RMSE when using Ross-Li model.

  2. Analytical study of the reflection and transmission coefficient of the submarine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Guangli; Hao, Chongtao; Yao, Chen

    2018-05-01

    The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.

  3. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  4. Earth orbiting Sisyphus system study

    NASA Technical Reports Server (NTRS)

    Jurkevich, I.; Krause, K. W.; Neste, S. L.; Soberman, R. K.

    1971-01-01

    The feasibility of employing an optical meteoroid detecting system, known as Sisyphus, to measure the near-earth particulates from an earth orbiting vehicle, is considered. A Sisyphus system can discriminate between natural and man-made particles since the system measures orbital characteristics of particles. A Sisyphus system constructed for the Pioneer F/G missions to Jupiter is used as the baseline, and is described. The amount of observing time which can be obtained by a Sisyphus instrument launched into various orbits is determined. Observation time is lost when, (1) the Sun is in or near the field of view, (2) the lighted Earth is in or near the field of view, (3) the instrument is eclipsed by the Earth, and (4) the phase angle measured at the particle between the forward scattering direction and the instrument is less than a certain critical value. The selection of the launch system and the instrument platform with a dedicated, attitude controlled payload package is discussed. Examples of such systems are SATS and SOLRAD 10(C) vehicles, and other possibilities are AVCO Corp. S4 system, the OWL system, and the Delta Payload Experiment Package.

  5. Ocean color remote sensing using polarization properties of reflected sunlight

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  6. Establishment of the Relationship between the Photochemical Reflectance Index and Canopy Light Use Efficiency Using Multi-angle Hyperspectral Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin

    2017-04-01

    The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using the least squares regression with multi-angle observations. In both the half-hourly and daily time steps, the canopy-level two-leaf PRI (PRIt) can effectively enhance (>50% and >35%, respectively) the correlation between PRI and LUE derived from the tower flux measurements over the big-leaf PRI (PRIb) taken as the arithmetic average of the multi-angle measurements in a given time interval. PRIt is very effective in detecting the low-moderate drought stress on LUE at half-hourly time steps, while ineffective in detecting severe atmospheric water and heat stresses, which is probably due to alternative radiative energy sink, i.e. photorespiration. Overall, the two-leaf approach well overcomes some external effects (e.g. sun-target-view geometry) that interfere with PRI signals.

  7. Effect of image scaling on stereoscopic movie experience

    NASA Astrophysics Data System (ADS)

    Häkkinen, Jukka P.; Hakala, Jussi; Hannuksela, Miska; Oittinen, Pirkko

    2011-03-01

    Camera separation affects the perceived depth in stereoscopic movies. Through control of the separation and thereby the depth magnitudes, the movie can be kept comfortable but interesting. In addition, the viewing context has a significant effect on the perceived depth, as a larger display and longer viewing distances also contribute to an increase in depth. Thus, if the content is to be viewed in multiple viewing contexts, the depth magnitudes should be carefully planned so that the content always looks acceptable. Alternatively, the content can be modified for each viewing situation. To identify the significance of changes due to the viewing context, we studied the effect of stereoscopic camera base distance on the viewer experience in three different situations: 1) small sized video and a viewing distance of 38 cm, 2) television and a viewing distance of 158 cm, and 3) cinema and a viewing distance of 6-19 meters. We examined three different animations with positive parallax. The results showed that the camera distance had a significant effect on the viewing experience in small display/short viewing distance situations, in which the experience ratings increased until the maximum disparity in the scene was 0.34 - 0.45 degrees of visual angle. After 0.45 degrees, increasing the depth magnitude did not affect the experienced quality ratings. Interestingly, changes in the camera distance did not affect the experience ratings in the case of television or cinema if the depth magnitudes were below one degree of visual angle. When the depth was greater than one degree, the experience ratings began to drop significantly. These results indicate that depth magnitudes have a larger effect on the viewing experience with a small display. When a stereoscopic movie is viewed from a larger display, other experiences might override the effect of depth magnitudes.

  8. Spectral characteristics of earth-space paths at 2 and 30 FHz

    NASA Technical Reports Server (NTRS)

    Baxter, R. A.; Hodge, D. B.

    1978-01-01

    Spectral characteristics of 2 and 30 GHz signals received from the Applications Technology Satellite-6 (ATS-6) are analyzed in detail at elevation angles ranging from 0 deg to 44 deg. The spectra of the received signals are characterized by slopes and break frequencies. Statistics of these parameters are presented as probability density functions. Dependence of the spectral characteristics on elevation angle is investigated. The 2 and 30 GHz spectral shapes are contrasted through the use of scatter diagrams. The results are compared with those predicted from turbulence theory. The average spectral slopes are in close agreement with theory, although the departure from the average value at any given elevation angle is quite large.

  9. Wind-tunnel free-flight investigation of a supersonic persistence fighter

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Wendel, Thomas R.; Boland, Joseph R.

    1993-01-01

    Wind-tunnel free-flight tests have been conducted in the Langley 30- by 60-Foot Wind Tunnel to examine the high-angle-of-attack stability and control characteristics and control law design of a supersonic persistence fighter (SSPF) at 1 g flight conditions. In addition to conventional control surfaces, the SSPF incorporated deflectable wingtips (tiperons) and pitch and yaw thrust vectoring. A direct eigenstructure assignment technique was used to design control laws to provide good flying characteristics well into the poststall angle-of-attack region. Free-flight tests indicated that it was possible to blend effectively conventional and unconventional control surfaces to achieve good flying characteristics well into the poststall angle-of-attack region.

  10. Cross-coupling between accommodation and convergence is optimized for a broad range of directions and distances of gaze.

    PubMed

    Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton

    2008-03-01

    Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles, respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quantified. However, targets at non-zero azimuth angles, when viewed with asymmetric convergence, present unequal stimuli for accommodation and convergence. Are the cross-links between the two systems calibrated to compensate for stimulus mismatches that increase with gaze-azimuth? We measured the response AC/A and stimulus CA/C ratios at zero azimuth, 17.5 and 30 deg of rightward gaze eccentricities with a Badal Optometer and Wheatstone-mirror haploscope. AC/A ratios were measured under open-loop convergence conditions along the iso-accommodation circle (locus of points that stimulate approximately equal amounts of accommodation to the two eyes at all azimuth angles). CA/C ratios were measured under open-loop accommodation conditions along the iso-vergence circle (locus of points that stimulate constant convergence at all azimuth angles). Our results show that the gain of accommodative-convergence (AC/A ratio) decreased and the bias of convergence-accommodation increased at the 30 deg gaze eccentricity. These changes are in directions that compensate for stimulus mismatches caused by spatial-viewing geometry during asymmetric convergence.

  11. Impact characteristics for high-pressure large-flow water-based emulsion pilot operated check valve reverse opening

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Huang, Chuanhui; Yu, Ping; Zhang, Lei

    2017-10-01

    To improve the dynamic characteristics and cavitation characteristics of large-flow pilot operated check valve, consider the pilot poppet as the research object, analyses working principle and design three different kinds of pilot poppets. The vibration characteristics and impact characteristics are analyzed. The simulation model is established through flow field simulation software. The cavitation characteristics of large-flow pilot operated check valve are studied and discussed. On this basis, high-pressure large-flow impact experimental system is used for impact experiment, and the cavitation index is discussed. Then optimal structure is obtained. Simulation results indicate that the increase of pilot poppet half cone angle can effectively reduce the cavitation area, reducing the generation of cavitation. Experimental results show that the pressure impact is not decreasing with increasing of pilot poppet half cone angle in process of unloading, but the unloading capacity, response speed and pilot poppet half cone angle are positively correlated. The impact characteristics of 60° pilot poppet, and its cavitation index is lesser, which indicates 60° pilot poppet is the optimal structure, with the theory results are basically identical.

  12. A history of gonioscopy.

    PubMed

    Alward, Wallace L M

    2011-01-01

    The first view of the iridocorneal angle in a living human occurred accidentally in the late 1800s. Lenses were first used to see the angle in 1914, but practical gonioscopy would not come into existence for many years as the slitlamp and lenses that could be used at the slitlamp were developed. This article reviews the history of gonioscopy.

  13. Master Volunteer Life Cycle: A Wide Angle Lens on the Volunteer Experience

    ERIC Educational Resources Information Center

    Strauss, Andrea Lorek; Rager, Amy

    2017-01-01

    Extension master volunteer programs, such as master naturalist and master gardener, often focus heavily on volunteer education. The model presented here describes the full life cycle of a master volunteer's experience in the program, putting education in the context of other essential program components. By zooming out to a wide-angle view of the…

  14. The impact of acquisition angle differences on three-dimensional quantitative coronary angiography.

    PubMed

    Tu, Shengxian; Holm, Niels R; Koning, Gerhard; Maeng, Michael; Reiber, Johan H C

    2011-08-01

    Three-dimensional (3D) quantitative coronary angiography (QCA) requires two angiographic views to restore vessel dimensions. This study investigated the impact of acquisition angle differences (AADs) of the two angiographic views on the assessed dimensions by 3D QCA. X-ray angiograms of an assembled brass phantom with different types of straight lesions were recorded at multiple angiographic projections. The projections were randomly matched as pairs and 3D QCA was performed in those pairs with AAD larger than 25°. The lesion length and diameter stenosis in three different lesions, a circular concentric severe lesion (A), a circular concentric moderate lesion (B), and a circular eccentric moderate lesion (C), were measured by 3D QCA. The acquisition protocol was repeated for a silicone bifurcation phantom, and the bifurcation angles and bifurcation core volume were measured by 3D QCA. The measurements were compared with the true dimensions if applicable and their correlation with AAD was studied. 50 matched pairs of angiographic views were analyzed for the brass phantom. The average value of AAD was 48.0 ± 14.1°. The percent diameter stenosis was slightly overestimated by 3D QCA for all lesions: A (error 1.2 ± 0.9%, P < 0.001); B (error 0.6 ± 0.5%, P < 0.001); C (error 1.1 ± 0.6%, P < 0.001). The correlation of the measurements with AAD was only significant for lesion A (R(2) = 0.151, P = 0.005). The lesion length was slightly overestimated by 3D QCA for lesion A (error 0.06 ± 0.18 mm, P = 0.026), but well assessed for lesion B (error -0.00 ± 0.16 mm, P = 0.950) and lesion C (error -0.01 ± 0.18 mm, P = 0.585). The correlation of the measurements with AAD was not significant for any lesion. Forty matched pairs of angiographic views were analyzed for the bifurcation phantom. The average value of AAD was 49.1 ± 15.4°. 3D QCA slightly overestimated the proximal angle (error 0.4 ± 1.1°, P = 0.046) and the distal angle (error 1.5 ± 1.3°, P < 0.001). The correlation with AAD was only significant for the distal angle (R(2) = 0.256, P = 0.001). The correlation of bifurcation core volume measurements with AAD was not significant (P = 0.750). Of the two aforementioned measurements with significant correlation with AAD, the errors tended to increase as AAD became larger. 3D QCA can be used to reliably assess vessel dimensions and bifurcation angles. Increasing the AAD of the two angiographic views does not increase accuracy and precision of 3D QCA for circular lesions or bifurcation dimensions. Copyright © 2011 Wiley-Liss, Inc.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutic, S; Low, D; Chmielewski, T

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate themore » beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).« less

  16. 6. Elevation view of east side of southernmost end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Elevation view of east side of southernmost end of building. When joined with photo WA-116-A-7, these photos give a virtually complete elevation view of the east side of the 1896 south section of Building 59. Note that the steep angle of view gives the illusion of a flat roof. For a more accurate depiction of the roof slope, see previous photo's including WA-116-5. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  17. Telepractice: A Wide-Angle View for Persons with Hearing Loss

    ERIC Educational Resources Information Center

    Cohn, Ellen R.; Cason, Jana

    2012-01-01

    This paper presents the current status of telepractice as a service delivery model for persons with hearing loss. Telepractice can be broadly viewed as the delivery of preventative, habilitation, or rehabilitation services through telecommunications technology. Telemedicine and telehealth are closely aligned to telepractice, often with overlapping…

  18. INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED CHAMBER. THE ANGLED PASSAGE RUNS PARALLEL TO WHAT WAS AN EXTERIOR WALL OF THE THREE-SIDED WINDOW BOW PRESENT IN THE HOUSE’S ORIGINAL CA. 1770 STATE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  19. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Yin, F; Ren, L

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to furthermore » reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The technique enables LIVE to accurately reconstruct 4D-CBCT images using only orthogonal 6° angle, which greatly improves the efficiency and reduces dose of LIVE for intrafraction verification.« less

  20. Comparative study on the processing of armour steels with various unconventional technologies

    NASA Astrophysics Data System (ADS)

    Herghelegiu, E.; Schnakovszky, C.; Radu, M. C.; Tampu, N. C.; Zichil, V.

    2017-08-01

    The aim of the current paper is to analyse the suitability of three unconventional technologies - abrasive water jet (AWJ), plasma and laser - to process armour steels. In view of this, two materials (Ramor 400 and Ramor 550) were selected to carry out the experimental tests and the quality of cuts was quantified by considering the following characteristics: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), inclination angle (a), deviation from perpendicularity (u), surface roughness (Ra) and surface hardness. It was fond that in terms of cut quality and environmental impact, the best results are offered by abrasive water jet technology. However, it has the lowest productivity comparing to the other two technologies.

  1. Digital data from shuttle photography: The effects of platform variables

    NASA Technical Reports Server (NTRS)

    Davis, Bruce E.

    1987-01-01

    Two major criticisms of using Shuttle hand held photography as an Earth science sensor are that it is nondigital, nonquantitative and that it has inconsistent platform characteristics, e.g., variable look angles, especially as compared to remote sensing satellites such as LANDSAT and SPOT. However, these criticisms are assumptions and have not been systematically investigated. The spectral effects of off-nadir views of hand held photography from the Shuttle and their role in interpretation of lava flow morphology on the island of Hawaii are studied. Digitization of photography at JSC and use of LIPS image analysis software in obtaining data is discussed. Preliminary interpretative results of one flow are given. Most of the time was spent in developing procedures and overcoming equipment problems. Preliminary data are satisfactory for detailed analysis.

  2. Research of an optimization design method of integral imaging three-dimensional display system

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Yan, Zhiqiang; Wen, Jun; Jiang, Guanwu

    2016-03-01

    The information warfare needs a highly transparent environment of battlefield, it follows that true three-dimensional display technology has obvious advantages than traditional display technology in the current field of military science and technology. It also focuses on the research progress of lens array imaging technology and aims at what restrict the development of integral imaging, main including low spatial resolution, narrow depth range and small viewing angle. This paper summarizes the principle, characteristics and development history of the integral imaging. A variety of methods are compared and analyzed that how to improve the resolution, extend depth of field, increase scope and eliminate the artifact aiming at problems currently. And makes a discussion about the experimental results of the research, comparing the display performance of different methods.

  3. Display screen and method of manufacture therefor

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)

    2001-01-01

    A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen is disclosed. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. The prescreen is preferably formed by a collection of light transmitting and refracting elements, preferably spheres 80, partially embedded in a light blocking layer. Toward the back of the spheres 80 are effective apertures 82 where the light blocking layer 81 is absent or at least thinner than in other regions toward the side of the spheres. The projected image enters spheres 80 through the effective apertures 82, and exits the spheres 80 centered orientationally about the normal to the lens axis. The re-oriented light rays then enter the diffusion screen for viewing.

  4. Analysis of polarization characteristics of plant canopies using land-based remote sensing measurements for development of ground truth methods

    NASA Astrophysics Data System (ADS)

    Sidko, Aleksandr; Pisman, Tamara; Botvich, Irina; Shevyrnogov, Anatoly

    In order to develop satellite technology for monitoring of terrestrial plant canopies and land-based optical remote sensing techniques, one should employ new approaches to identifying farmlands and determining the plant species composition. The results present a study on polarized characteristics of spectral reflection factor of plant canopies (forests and farm crop canopies) under field conditions, using optical remote sensing techniques. The polarized components of the reflectance factor and the degree of polarization were calculated. Measurements were performed using a spectrophotometer with a polarized light filter attachment. Measurements were done within the spectral range from 400 to 840 nm. The viewing angle was no greater than 200 with respect to the nadir. Measurements of the polarization characteristics of the vegetation on the test ranges were conducted during June-July month when the height of the sun was at its zenith. Different wavelength dependences of the spectral reflection factor polarized component (Rq) and degree of polarization (P) were found both for the coniferous and broadleaf forests (pine and birch) and for farm crops (wheat and corn) and grass canopies. These differences can be used to determine species composition of plant canopies.

  5. A beam-splitter-type 3-D endoscope for front view and front-diagonal view images.

    PubMed

    Kamiuchi, Hiroki; Masamune, Ken; Kuwana, Kenta; Dohi, Takeyoshi; Kim, Keri; Yamashita, Hiromasa; Chiba, Toshio

    2013-01-01

    In endoscopic surgery, surgeons must manipulate an endoscope inside the body cavity to observe a large field-of-view while estimating the distance between surgical instruments and the affected area by reference to the size or motion of the surgical instruments in 2-D endoscopic images on a monitor. Therefore, there is a risk of the endoscope or surgical instruments physically damaging body tissues. To overcome this problem, we developed a Ø7- mm 3-D endoscope that can switch between providing front and front-diagonal view 3-D images by simply rotating its sleeves. This 3-D endoscope consists of a conventional 3-D endoscope and an outer and inner sleeve with a beam splitter and polarization plates. The beam splitter was used for visualizing both the front and front-diagonal view and was set at 25° to the outer sleeve's distal end in order to eliminate a blind spot common to both views. Polarization plates were used to avoid overlap of the two views. We measured signal-to-noise ratio (SNR), sharpness, chromatic aberration (CA), and viewing angle of this 3-D endoscope and evaluated its feasibility in vivo. Compared to the conventional 3-D endoscope, SNR and sharpness of this 3-D endoscope decreased by 20 and 7 %, respectively. No significant difference was found in CA. The viewing angle for both the front and front-diagonal views was about 50°. In the in vivo experiment, this 3-D endoscope can provide clear 3-D images of both views by simply rotating its inner sleeve. The developed 3-D endoscope can provide the front and front-diagonal view by simply rotating the inner sleeve, therefore the risk of damage to fragile body tissues can be significantly decreased.

  6. Military display performance parameters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  7. Comparing artistic and geometrical perspective depictions of space in the visual field

    PubMed Central

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections. PMID:26034563

  8. Comparing artistic and geometrical perspective depictions of space in the visual field.

    PubMed

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.

  9. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...

  10. Dynamic behavior of the weld pool in stationary GMAW

    NASA Astrophysics Data System (ADS)

    Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.

    2010-06-01

    Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.

  11. Experimental determination of useful resistance value during pasta dough kneading

    NASA Astrophysics Data System (ADS)

    Podgornyj, Yu I.; Martynova, T. G.; Skeeba, V. Yu; Kosilov, A. S.; Chernysheva, A. A.; Skeeba, P. Yu

    2017-10-01

    There is a large quantity of materials produced in the form of dry powder or low humidity granulated masses in the modern market, and there is a need to develop new manufacturing machinery and to renew the existing facilities involved in the production of various loose mixtures. One of the machinery upgrading tasks is enhancing its performance. In view of the fact that experimental research is not feasible in full-scale samples, an experimental installation was to be constructed. The article contains its kinematic scheme and the 3D model. The angle of the kneading blade location, the volume of the loose mixture, rotating frequency and the number of the work member double passes were chosen as variables to carry out the experiment. The technique of the experiment, which includes two stages for the rotary and reciprocating movement of the work member, was proposed. The results of the experimental data processing yield the correlations between the load characteristics of the mixer work member and the angle of the blade, the volume of the mixture and the work member rotating frequency, allowing for the recalculation of loads for this type machines.

  12. Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.

    2017-11-01

    Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org

    Purpose: To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Methods: Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according tomore » measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (E{sub avg}) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusions: The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Pasciak, A; Wagner, L

    Purpose: To evaluate the sensitivity of the Diagnostic Radiological Index of Protection (DRIP) to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams (SMPB) to be used in measuring the DRIP. Methods: A series of clinical and factorial Monte Carlo simulations were conducted to determine the shape of the scattered X-ray spectra incident on the operator in different clinical fluoroscopy scenarios. Two clinical evaluations studied the sensitivity of the scattered spectrum to gantry angle and patient size while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial evaluationsmore » studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size and beam quality for constant technical factors. Average energy was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affected the scattered spectrum indirectly through their effects on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in interventional cardiology, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusion: The scattered spectrum striking the operator in fluoroscopy, and therefore the DRIP, is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle. These results will help determine an appropriate set of SMPB to be used for measuring the DRIP.« less

  15. Sensitivity of the diagnostic radiological index of protection to procedural factors in fluoroscopy.

    PubMed

    Jones, A Kyle; Pasciak, Alexander S; Wagner, Louis K

    2016-07-01

    To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (Eavg) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.

  16. Biomarkers in primary open angle glaucoma.

    PubMed

    Kokotas, Haris; Kroupis, Christos; Chiras, Dimitrios; Grigoriadou, Maria; Lamnissou, Klea; Petersen, Michael B; Kitsos, George

    2012-12-01

    Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘ open angle ’ and ‘ closed angle ’ glaucoma.Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma(POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.

  17. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.

  18. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  19. Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1995-01-01

    An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.

  20. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  1. Determination of Ice Cloud Models Using MODIS and MISR Data

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.

    2012-01-01

    Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.

  2. Grooves and Kinks in the Rings

    NASA Image and Video Library

    2017-06-19

    Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333

  3. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.

  4. A contact angle hysteresis model based on the fractal structure of contact line.

    PubMed

    Wu, Shuai; Ma, Ming

    2017-11-01

    Contact angle is one of the most popular concept used in fields such as wetting, transport and microfludics. In practice, different contact angles such as equilibrium, receding and advancing contact angles are observed due to hysteresis. The connection among these contact angles is important in revealing the chemical and physical properties of surfaces related to wetting. Inspired by the fractal structure of contact line, we propose a single parameter model depicting the connection of the three angles. This parameter is decided by the fractal structure of the contact line. The results of this model agree with experimental observations. In certain cases, it can be reduced to other existing models. It also provides a new point of view in understanding the physical nature of the contact angle hysteresis. Interestingly, some counter-intuitive phenomena, such as the binary receding angles, are indicated in this model, which are waited to be validated by experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Refraction of Radio Waves on the Radio-Occultation Satellite-to-Satellite Paths as a Characteristic of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Matyugov, S. S.; Yakovlev, O. I.; Pavelyev, A. G.; Pavelyev, A. A.; Anufriev, V. A.

    2017-10-01

    We present the results of analyzing the radio-wave refractive characteristics measured on the radio-occultation paths between the GPS navigation satellites and the FORMOSAT-3 research satellites in the central region of the European territory of Russia in 2007-2013. The diurnal, seasonal, and annual variations in the refraction angle at altitudes of 2 to 25 km are discussed. It is shown that the refraction angle can be used as an independent characteristic of the atmospheric state and its long-term variation trends. Diurnal and nocturnal variations in the refraction angle in the winter and summer seasons are analyzed. Trends in the atmospheric refraction variations over seven years are discussed.

  6. Upper wide-angle viewing system for ITER.

    PubMed

    Lasnier, C J; McLean, A G; Gattuso, A; O'Neill, R; Smiley, M; Vasquez, J; Feder, R; Smith, M; Stratton, B; Johnson, D; Verlaan, A L; Heijmans, J A C

    2016-11-01

    The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. This paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows calculations of signal-to-noise ratios for the two-color temperature output as a function of integration time and divertor temperature. Accurate temperature output requires correction for vacuum window absorption vs. wavelength and for self-emitted IR, which requires good measurement of the temperature of the optical components. The anticipated signal-to-noise ratio using presently available IR cameras is adequate for the required 500 Hz frame rate.

  7. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly.

    PubMed

    Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik

    2015-04-22

    The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.

  8. Accommodation measurements of horizontally scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Yokouchi, Masahito

    2012-02-13

    Eye accommodation is considered to function properly for three-dimensional (3D) images generated by holography. We developed a horizontally scanning holographic display technique that enlarges both the screen size and viewing zone angle. A 3D image generated by this technique can be easily seen by both eyes. In this study, we measured the accommodation responses to a 3D image generated by the horizontally scanning holographic display technique that has a horizontal viewing zone angle of 14.6° and screen size of 4.3 in. We found that the accommodation responses to a 3D image displayed within 400 mm from the display screen were similar to those of a real object.

  9. The holographic display of three-dimensional medical objects through the usage of a shiftable cylindrical lens

    NASA Astrophysics Data System (ADS)

    Teng, Dongdong; Liu, Lilin; Zhang, Yueli; Pang, Zhiyong; Wang, Biao

    2014-09-01

    Through the creative usage of a shiftable cylindrical lens, a wide-view-angle holographic display system is developed for medical object display in real three-dimensional (3D) space based on a time-multiplexing method. The two-dimensional (2D) source images for all computer generated holograms (CGHs) needed by the display system are only one group of computerized tomography (CT) or magnetic resonance imaging (MRI) slices from the scanning device. Complicated 3D message reconstruction on the computer is not necessary. A pelvis is taken as the target medical object to demonstrate this method and the obtained horizontal viewing angle reaches 28°.

  10. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly

    NASA Astrophysics Data System (ADS)

    Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik

    2015-04-01

    The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.

  11. Does hemipelvis structure and position influence acetabulum orientation?

    PubMed

    Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej

    2016-03-16

    Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.

  12. Cornering characteristics of the nose-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Vogler, W. A.; Tanner, J. A.

    1981-01-01

    An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.

  13. MISR Scans the Texas-Oklahoma Border

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These MISR images of Oklahoma and north Texas were acquired on March 12, 2000 during Terra orbit 1243. The three images on the left, from top to bottom, are from the 70-degree forward viewing camera, the vertical-viewing (nadir) camera, and the 70-degree aftward viewing camera. The higher brightness, bluer tinge, and reduced contrast of the oblique views result primarily from scattering of sunlight in the Earth's atmosphere, though some color and brightness variations are also due to differences in surface reflection at the different angles. The longer slant path through the atmosphere at the oblique angles also accentuates the appearance of thin, high-altitude cirrus clouds.

    On the right, two areas from the nadir camera image are shown in more detail, along with notations highlighting major geographic features. The south bank of the Red River marks the boundary between Texas and Oklahoma. Traversing brush-covered and grassy plains, rolling hills, and prairies, the Red River and the Canadian River are important resources for farming, ranching, public drinking water, hydroelectric power, and recreation. Both originate in New Mexico and flow eastward, their waters eventually discharging into the Mississippi River.

    A smoke plume to the north of the Ouachita Mountains and east of Lake Eufaula is visible in the detailed nadir imagery. The plume is also very obvious at the 70-degree forward view angle, to the right of center and about one-fourth of the way down from the top of the image.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  15. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  16. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-05-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  17. Experimental research on the electromagnetic radiation (EMR) characteristics of cracked rock.

    PubMed

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Cheng, Fuqi; Zhang, Zhibo; Niu, Yue

    2018-03-01

    Coal rock would emit the electromagnetic radiation (EMR) while deformation and fracture, and there exists structural body in the coal rock because of mining and geological structure. In this paper, we conducted an experimental test the EMR characteristics of cracked rock under loading. Results show that crack appears firstly in the prefabricated crack tip then grows stably parallel to the maximum principal stress, and the coal rock buckling failure is caused by the wing crack tension. Besides, the compressive strength significantly decreases because of the precrack, and the compressive strength increases with the crack angle. Intact rock EMR increases with the loading, and the cracked rock EMR shows stage and fluctuant characteristics. The bigger the angle, the more obvious the stage and fluctuant characteristics, that is EMR becomes richer. While the cracked angle is little, EMR is mainly caused by the electric charge rapid separates because of friction sliding. While the cracked angle is big, there is another significant contribution to EMR, which is caused by the electric dipole transient of crack expansion. Through this, we can know more clear about the crack extends route and the corresponding influence on the EMR characteristic and mechanism, which has important theoretical and practical significance to monitor the coal rock dynamical disasters.

  18. The neuron net method for processing the clear pixels and method of the analytical formulas for processing the cloudy pixels of POLDER instrument images

    NASA Astrophysics Data System (ADS)

    Melnikova, I.; Mukai, S.; Vasilyev, A.

    Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic formula inversion for optically thick stratus clouds. The model of horizontally infinite layer is considered. The slight horizontal heterogeneity is approximately taken into account. Formulas containing only the measured values of two-direction radiance and functions of solar and view angles were derived earlier. The 6 azimuth harmonics of reflection function are taken into account. The simple approximation of the cloud top boarder heterogeneity is used. The clouds, projecting upper the cloud top plane causes the increase of diffuse radiation in the incident flux. It is essential for calculation of radiative characteristics, which depends on lighting conditions. Escape and reflection functions describe this dependence for reflected radiance and local albedo of semi-infinite medium - for irradiance. Thus the functions depending on solar incident angle is to replace by their modifications. Firstly optical thickness of every pixel is obtained with simple formula assuming conservative scattering for all available view directions. Deviations between obtained values may be taken as a measure of the cloud top deviation from the plane. The special parameter is obtained, which takes into account the shadowing effect. Then single scattering albedo and optical thickness (with the true absorption assuming) are obtained for pairs of view directions with equal optical thickness. After that the averaging of values obtained and relative error evaluation is accomplished for all viewing directions of every pixel. The procedure is repeated for all wavelengths and pixels independently.

  19. 40 CFR 52.128 - Rule for unpaved parking lots, unpaved roads and vacant lots.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... where the exemption in paragraph (c)(2) of this section applies. (9) Motor vehicle—A self-propelled.... Research Triangle Park, N.C. May 1982. 3. “Method 9—Visible Determination of the Opacity of Emissions from... of the human eye—Reference 4.1 of section 4.) c. Angle of view 15 degrees maximum total angle d...

  20. 40 CFR 52.128 - Rule for unpaved parking lots, unpaved roads and vacant lots.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... where the exemption in paragraph (c)(2) of this section applies. (9) Motor vehicle—A self-propelled.... Research Triangle Park, N.C. May 1982. 3. “Method 9—Visible Determination of the Opacity of Emissions from... of the human eye—Reference 4.1 of section 4.) c. Angle of view 15 degrees maximum total angle d...

  1. Enhancement of Dual-Band Reflection-Mode Circular Polarizers Using Dual-Layer Rectangular Frequency Selective Surfaces

    NASA Astrophysics Data System (ADS)

    Fartookzadeh, M.; Mohseni Armaki, S. H.

    2016-10-01

    A new kind of dual-band reflection-mode circular polarizers (RMCPs) is introduced with wide bandwidth and wide-view at the operating frequencies. The proposed RMCPs are based on dual-layer rectangular patches on both sides of a substrate, separated by a foam or air layer from the ground plane. Required TE susceptance of the first layer patches to produce circular polarization is calculated using the equivalent transmission line model. Dimensions of the RMCP are obtained using parametrical study for the two frequency bands, 1.9-2.3 GHz and 7.9-8.3 GHz. In addition, it is indicated that the accepted view angle and bandwidth of the proposed dual-layer RMCP are improved compared with the single layer RMCP, significantly. Moreover, a tradeoff is observed for the dual-layer RMCP on the bandwidths of X band and S band that can be controlled by propagation angle of the incident wave. The proposed RMCP has 30.5 % and 33.7 % bandwidths for less than 3 dB axial ratio with incident angles {\\theta}max=50{\\deg} and {\\theta}min=35{\\deg}. Finally, simulation results are met by the measurement for three angles of the incident wave.

  2. Effect of winglets on a first-generation jet transport wing. 6: Stability characteristics for a full-span model at subsonic speeds. [conducted in Langley 8 foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.

    1979-01-01

    A wind tunnel investigation to identify changes in stability and control characteristics of a model KC-135A due to the addition of winglets is presented. Static longitudinal and lateral-directional aerodynamic characteristics were determined for the model with and without winglets. Variations in the aerodynamic characteristics at various Mach numbers, angles of attack, and angles of slidslip are discussed. The effect of the winglets on the drag and lift coefficients are evaluated and the low speed and high speed characteristics of the model are reported.

  3. The Effect of Angle Restriction on the Topological Characteristics of Minicircle Networks

    NASA Astrophysics Data System (ADS)

    Arsuaga, J.; Diao, Y.; Hinson, K.

    2012-01-01

    Networks of topologically linked minicircle polymers are found in diverse natural systems and are a subject of intense research in nanotechonology. In a recent report the authors introduced a new theoretical model to study the effects of polymer density on the formation and on the topological properties of minicircle networks. Three key topological characteristics were identified in the formation and characterization of a network: the critical percolation density, the average saturation density and the mean valence of the network. In this work we report how these characteristics change when an orientation bias is imposed on the minicircles forming the network. We observe that such restrictions have significant effects on the key topological characteristics of the network. In particular while the effects of restriction of the tilting angle can be predicted we find that those of the azimuthal angle can have somewhat unexpected results.

  4. Scale Effect on Clark Y Airfoil Characteristics from NACA Full-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe

    1935-01-01

    This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds numbers. Three airfoils of aspect ratio 6 and with 4, 6, and 8 foot chords were tested at velocities between 25 and 118 miles per hour, and the characteristics were obtained for Reynolds numbers (based on the airfoil chord) in the range between 1,000,000 and 9,000,000 at the low angles of attack, and between 1,000,000 and 6,000,000 at maximum lift. With increasing Reynolds number the airfoil characteristics are affected in the following manner: the drag at zero lift decreases, the maximum lift increases, the slope of the lift curve increases, the angle of zero lift occurs at smaller negative angles, and the pitching moment at zero lift does not change appreciably.

  5. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  6. OPTIMUM PHYSICAL VIEWING CONDITIONS FOR A REAR PROJECTION DAYLIGHT SCREEN.

    ERIC Educational Resources Information Center

    ASH, PHILIP; JASPEN, NATHAN

    AN EXPERIMENT DESIGNED TO DISCOVER WHETHER THERE WERE DIFFERENCES IN LEARNING WHICH COULD BE ATTRIBUTED TO DIFFERENCES IN ROOM ILLUMINATION, VIEWING ANGLE, AND DISTANCE FROM THE SCREEN AS THEY RELATED TO THE CABINET-TYPE PROJECTOR WAS PRESENTED. PARTICIPANTS WERE 721 TRAINEES AT THE GREAT LAKES NAVAL TRAINING STATION. THE TASK CHOSEN WAS THE…

  7. Exterior view of the Cupola

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016246 (12 July 2011) --- This is a high angle view showing the Cupola, backdropped against a solar array panel, on the International Space Station. In some of the images in this series, faces of several of the Atlantis STS-135 and Expedition 28 crew members can be seen in the Cupola's windows.

  8. Waving Goodbye

    NASA Image and Video Library

    2017-05-30

    Before NASA's Cassini entered its Grand Finale orbits, it acquired unprecedented views of the outer edges of the main ring system. For example, this close-up view of the Keeler Gap, which is near the outer edge of Saturn's main rings, shows in great detail just how much the moon Daphnis affects the edges of the gap. Daphnis creates waves in the edges of the gap through its gravitational influence. Some clumping of ring particles can be seen in the perturbed edge, similar to what was seen on the edges of the Encke Gap back when Cassini arrived at Saturn in 2004. This view looks toward the sunlit side of the rings from about 3 degrees above the ring plane. The view was acquired at a distance of approximately 18,000 miles (30,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 69 degrees. Image scale is 581 feet (177 meters) per pixel. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 16, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21329

  9. The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei

    2007-01-01

    We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.

  10. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.

    PubMed

    Zhang, You; Yin, Fang-Fang; Segars, W Paul; Ren, Lei

    2013-12-01

    To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy. Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground-truth" onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)∕4.9 mm (±3.0 mm), 96.07% (±31.48%)∕12.1 mm (±3.9 mm) and 11.45% (±9.37%)∕1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)∕4.9 mm (±3.0 mm), 75.98% (±27.21%)∕9.9 mm (±4.0 mm), and 5.22% (±2.12%)∕0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)∕3.2 mm (±2.2 mm), 24.57% (±18.18%)∕2.9 mm (±2.0 mm), and 10.48% (±9.50%)∕1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD∕COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased. The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.

  11. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes tomore » the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion in estimated and “ground-truth” onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)/4.9 mm (±3.0 mm), 96.07% (±31.48%)/12.1 mm (±3.9 mm) and 11.45% (±9.37%)/1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)/4.9 mm (±3.0 mm), 75.98% (±27.21%)/9.9 mm (±4.0 mm), and 5.22% (±2.12%)/0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)/3.2 mm (±2.2 mm), 24.57% (±18.18%)/2.9 mm (±2.0 mm), and 10.48% (±9.50%)/1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD/COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased.Conclusions: The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.« less

  12. Low-speed longitudinal and lateral-directional aerodynamic characteristics of the X-31 configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Gatlin, Gregory M.; Paulson, John W., Jr.

    1992-01-01

    An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).

  13. A novel screen design for anti-ambient light front projection display with angle-selective absorber

    NASA Astrophysics Data System (ADS)

    Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu

    2016-03-01

    Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.

  14. Multi-angle lensless digital holography for depth resolved imaging on a chip.

    PubMed

    Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-04-26

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

  15. Hip morphologic measurements in an Egyptian population.

    PubMed

    Aly, Tarek A

    2011-04-11

    The study of acetabular morphology has shown that there are geographic differences in the morphology and prevalence of acetabular dysplasia among different ethnic groups. However, few data exist on the shape of the acetabulum in various populations around the world. In this study, we examined samples of pelvic radiographs from Egyptian adults. Acetabular dysplasia in adults is characterized by a shallow and relatively vertical acetabulum.The aim of this study was to examine acetabular morphology to determine the prevalence of hip dysplasia in adult Egyptians. This included 244 adults, 134 men and 110 women between 18 and 60 years, who were used to measure center edge angle, acetabular Sharp angle, acetabular head index on anteroposterior radiographic views of the hip joints, and vertical center anterior margin angle on false profile views. The radiographs were taken of patients with no hip complaints at Tanta University Hospital.The results were statistically studied according to the age, height, and weight of patients. The prevalence of acetabular dysplasia was 2.25% for Egyptian men and 3.6% for women with respect to center edge angles, vertical center anterior margin angle, and acetabular head index.We concluded that gender variations in the morphology of the acetabulum and sex influences geometrical measurements of the acetabulum. Egyptian women were more dysplastic than men using the 4 parameters of hip measurements. There are also racial variations in hip morphology. Copyright 2011, SLACK Incorporated.

  16. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging.

    PubMed

    Molière, Sébastien; Dillenseger, Jean-Philippe; Ehlinger, Matthieu; Kremer, Stéphane; Bierry, Guillaume

    2017-09-01

    The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression.

  17. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.

    2018-06-01

    Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.

  18. New Insight from Using Spatiotemporal Image Correlation in Prenatal Screening of Fetal Conotruncal Defects

    PubMed Central

    Xie, Zuo-ping; Zhao, Bo-wen; Yuan, Hua; Hua, Qi-qi; Jin, She-hong; Shen, Xiao-yan; Han, Xin-hong; Zhou, Jia-mei; Fang, Min; Chen, Jin-hong

    2013-01-01

    Background: To establish the reference range of the angle between ascending aorta and main pulmonary artery of fetus in the second and third trimester using spatiotemporal image correlation (STIC), and to investigate the value of this angle in prenatal screening of conotruncal defects (CTDs). Materials and Methods: Volume images of 311 normal fetuses along with 20 fetuses with congenital heart diseases were recruited in this cross-sectional study. An offline analysis of acquired volume datasets was carried out with multiplanar mode. The angle between aorta and pulmonary artery was measured by navigating the pivot point and rotating axes and the reference range was established. The images of ascending aorta and main pulmonary artery in fetuses with congenital heart diseases were observed by rotating the axes within the normal angle reference range. Results: The angle between ascending aorta and main pulmonary artery of the normal fetus (range: 59.1˚~97.0˚, mean ± SD: 78.0˚ ± 9.7˚) was negatively correlated with gestational age (r = -0.52; p<0.01). By rotating the normal angle range corresponding to gestational age, the fetuses with CTD could not display views of their left ventricular long axis and main pulmonary trunk correctly. Conclusion: The left ventricular long axis and main pulmonary trunk views can be displayed using STIC so that the echocardiographic protocol of the cardiovascular joint could be standardized. The reference range of the angle between ascending aorta and main pulmonary artery is clinically useful in prenatal screening of CTD and provides a reliable quantitative standard to estimate the spatial relationship of the large arteries of fetus. PMID:24520485

  19. Postlaunch Assessment of the Response Versus Scan Angle for the Thermal Emissive Bands of Visible Infrared Imaging Radiometer Suite On-Board the Suomi National Polar-Orbiting Partnership Satellite

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Chiang, Kwofu

    2017-01-01

    The visible infrared imaging radiometer suite (VIIRS) is a key sensor carried on the Suomi national polar-orbiting partnership (S-NPP) satellite, which was launched in October 2011. It has several on-board calibration components, including a solar diffuser and a solar diffuser stability monitor for the reflective solar bands, a V-groove blackbody for the thermal emissive bands (TEB), and a space view port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle. Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first 3 months of intensive Cal/Val. The S-NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of Earth view scan angles, which can be used to characterize the TEB RVS. This study provides our analysis of the pitch maneuver data and assessment of the derived TEB RVS by comparison with prelaunch results. In addition, the stability of the RVS after the first 5 years of operation is examined using observed brightness temperatures (BT) over a clear ocean at various angles of incidence (AOI). To reduce the impact of variations in the BT measurements, the daily overpasses collected over the ocean are screened for cloud contamination, normalized to the results obtained at the blackbody AOI, and averaged each year.

  20. Do BRDF effects dominate seasonal changes in tower-based remote sensing imagery?

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Morton, D. C.; Rubio, J.; Cook, B. D.; Rishmawi, K.

    2014-12-01

    In situ remote sensing complements data from airborne and space-based sensors, in particular for intensive study sites where optical imagery can be paired with detailed ground and tower measurements. The characteristics of tower-mounted imaging systems are quite different from the nadir viewing geometry of other remote sensing platforms. In particular, tower-mounted systems are quite sensitive to artifacts of seasonal and diurnal sun angle variations. Most systems are oriented in a fixed north or south direction (depending on latitude), placing them in the principal plane at solar noon. The strength of the BRDF (Bidirectional Reflectance Distribution Function) effect is strongest for images acquired at that time. Phenological metrics derived from tower based oblique angle imaging systems are particularly prone to BRDF effects, as shadowing within and between tree crowns varies seasonally. For sites in the northern hemisphere, the fraction of sunlit and shaded vegetation declines following the June solstice to leaf senescence in September. Correcting tower-based remote sensing imagery for artifacts of BRDF is critical to isolate real changes in canopy phenology and reflectance. Here, we used airborne lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT) to develop a 3D forest scene for Harvard Forest in the Discrete Anisotrophic Radiative Transfer (DART) model. Our objective was to model the contribution of changes in shadowing and illumination to observations of changes in greenness from the Phenocam image time series at the Harvard Forest site. Diurnal variability in canopy greenness from the Phenocam time series provides an independent evaluation of BRDF effects from changes in illumination and sun-sensor geometries. The overall goal of this work is to develop a look-up table solution to correct major components of BRDF for tower-mounted imaging systems such as Phenocam, based on characteristics of the forest structure (forest height, canopy rugosity, fractional cover, and composition) and viewing geometry of the sensor. Given the sensitivity of tower-based systems to BRDF effects, efforts to correct artifacts of BRDF in phenology time series is critical to isolate seasonal changes in vegetation reflectance.

Top