DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu; Jardetzky, Theodore S.; Lamb, Robert A., E-mail: ralamb@northwestern.edu
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insightsmore » into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.« less
Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry
Bose, Sayantan; Jardetzky, Theodore S.; Lamb, Robert A.
2015-01-01
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. PMID:25771804
Paramyxovirus fusion and entry: multiple paths to a common end.
Chang, Andres; Dutch, Rebecca E
2012-04-01
The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens.
Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C
2014-01-01
Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry.
Bose, Sayantan; Jardetzky, Theodore S; Lamb, Robert A
2015-05-01
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. Copyright © 2015 Elsevier Inc. All rights reserved.
Paramyxovirus Fusion and Entry: Multiple Paths to a Common End
Chang, Andres; Dutch, Rebecca E.
2012-01-01
The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens. PMID:22590688
Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana
2013-01-20
Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, andmore » used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.« less
Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael
2012-01-01
Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.
Paramyxovirus Glycoproteins and the Membrane Fusion Process.
Aguilar, Hector C; Henderson, Bryce A; Zamora, J Lizbeth; Johnston, Gunner P
2016-09-01
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Paramyxovirus Glycoproteins and the Membrane Fusion Process
Aguilar, Hector C.; Henderson, Bryce A.; Zamora, J. Lizbeth; Johnston, Gunner P.
2016-01-01
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development. PMID:28138419
Shah, Arpeet; Farooq, Asim V; Tiwari, Vaibhav; Kim, Min-Jung; Shukla, Deepak
2010-11-20
The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors--nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression.
Optimal Cytoplasmic Transport in Viral Infections
D'Orsogna, Maria R.; Chou, Tom
2009-01-01
For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such “optimal” infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance. PMID:20046829
Zhou, Yanchen; Agudelo, Juliet; Lu, Kai; Goetz, David H.; Hansell, Elizabeth; Chen, Yen Ting; Roush, William R.; McKerrow, James; Craik, Charles S.; Amberg, Sean M.; Simmons, Graham
2011-01-01
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged as the causal agent of an endemic atypical pneumonia, infecting thousands of people worldwide. Although a number of promising potential vaccines and therapeutic agents for SARS-CoV have been described, no effective antiviral drug against SARS-CoV is currently available. The intricate, sequential nature of the viral entry process provides multiple valid targets for drug development. Here, we describe a rapid and safe cell-based high-throughput screening system, Dual Envelope Pseudovirion (DEP) Assay, for specifically screening inhibitors of viral entry. The assay system employs a novel dual envelope strategy, using lentiviral pseudovirions as targets whose entry is driven by the SARS-CoV Spike glycoprotein. A second, unrelated viral envelope is used as an internal control to reduce the number of false positives. As an example of the power of this assay a class of inhibitors is reported with the potential to inhibit SARS-CoV at two steps of the replication cycle, viral entry and particle assembly. This assay system can be easily adapted to screen entry inhibitors against other viruses with the careful selection of matching partner virus envelopes. PMID:21820471
Virion stiffness regulates immature HIV-1 entry
2013-01-01
Background Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. Results In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. Conclusions This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy. PMID:23305456
John, Nessy; Malouli, Daniel
2017-01-01
Human cytomegalovirus (HCMV) depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC), membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM) cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells. PMID:29121670
Receptors and routes of dengue virus entry into the host cells.
Cruz-Oliveira, Christine; Freire, João Miguel; Conceição, Thaís M; Higa, Luiza M; Castanho, Miguel A R B; Da Poian, Andrea T
2015-03-01
Dengue is the most prevalent arthropod-borne viral disease, caused by dengue virus, a member of the Flaviviridae family. Its worldwide incidence is now a major health problem, with 2.5 billion people living in risk areas. In this review, we integrate the structural rearrangements of each viral protein and their functions in all the steps of virus entry into the host cells. We describe in detail the putative receptors and attachment factors in mammalian and mosquito cells, and the recognition of viral immunocomplexes via Fcγ receptor in immune cells. We also discuss that virus internalization might occur through distinct entry pathways, including clathrin-mediated or non-classical clathrin-independent endocytosis, depending on the host cell and virus serotype or strain. The implications of viral maturation in virus entry are also explored. Finally, we discuss the mechanisms of viral genome access to the cytoplasm. This includes the role of low pH-induced conformational changes in the envelope protein that mediate membrane fusion, and original insights raised by our recent work that supports the hypothesis that capsid protein would also be an active player in this process, acting on viral genome translocation into the cytoplasm. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bovine parvovirus uses clathrin-mediated endocytosis for cell entry.
Dudleenamjil, Enkhmart; Lin, Chin-Yo; Dredge, Devin; Murray, Byron K; Robison, Richard A; Johnson, F Brent
2010-12-01
Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus Bocavirus.
Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry.
Wang, Jizhen; Manicassamy, Balaji; Caffrey, Michael; Rong, Lijun
2011-06-01
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.
Broad-spectrum antivirals against viral fusion
Vigant, Frederic; Santos, Nuno C.; Lee, Benhur
2015-01-01
Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364
Viral entry mechanisms: the increasing diversity of paramyxovirus entry
Smith, Everett Clinton; Popa, Andreea; Chang, Andres; Masante, Cyril; Dutch, Rebecca Ellis
2009-01-01
The paramyxovirus family contains established human pathogens such as measles virus and human respiratory syncytial virus, and emerging pathogens including the Hendra and Nipah viruses and the recently identified human metapneumovirus. Two major envelope glycoproteins, the attachment protein and the fusion protein, promote the processes of viral attachment and virus-cell membrane fusion required for entry. While common mechanisms of fusion protein proteolytic activation and the mechanism of membrane fusion promotion have been shown in recent years, considerable diversity exists in the family related to receptor binding and the potential mechanisms of fusion triggering. PMID:19878307
Entry inhibitors: New advances in HCV treatment
Qian, Xi-Jing; Zhu, Yong-Zhe; Zhao, Ping; Qi, Zhong-Tian
2016-01-01
Hepatitis C virus (HCV) infection affects approximately 3% of the world's population and causes chronic liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration, combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry. PMID:26733381
Aydin, Halil; Cook, Jonathan D.
2014-01-01
Membrane fusion is a key step in the life cycle of all envelope viruses, but this process is energetically unfavorable; the transmembrane fusion subunit (TM) of the virion-attached glycoprotein actively catalyzes the membrane merger process. Retroviral glycoproteins are the prototypical system to study pH-independent viral entry. In this study, we determined crystal structures of extramembrane regions of the TMs from Mason-Pfizer monkey virus (MPMV) and xenotropic murine leukemia virus-related virus (XMRV) at 1.7-Å and 2.2-Å resolution, respectively. The structures are comprised of a trimer of hairpins that is characteristic of class I viral fusion proteins and now completes a structural library of retroviral fusion proteins. Our results allowed us to identify a series of intra- and interchain electrostatic interactions in the heptad repeat and chain reversal regions. Mutagenesis reveals that charge-neutralizing salt bridge mutations significantly destabilize the postfusion six-helix bundle and abrogate retroviral infection, demonstrating that electrostatic stapling of the fusion subunit is essential for viral entry. Our data indicate that salt bridges are a major stabilizing force on the MPMV and XMRV retroviral TMs and likely provide the key energetics for viral and host membrane fusion. PMID:24131724
NTCP and Beyond: Opening the Door to Unveil Hepatitis B Virus Entry
Watashi, Koichi; Urban, Stephan; Li, Wenhui; Wakita, Takaji
2014-01-01
Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million people worldwide, is a major public health problem that elevates the risk of developing liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV agents is urgently needed. The viral entry process is generally an attractive target implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, as well as HepaRG cells, important determinants of viral entry have been achieved. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an HBV entry receptor and enabled the establishment of a susceptible cell line that can efficiently support HBV infection. This finding will allow a deeper understanding of the requirements for efficient HBV infection, including the elucidation of the molecular entry mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a therapeutic target. This article summarizes our current knowledge on the mechanisms of HBV entry and the role of NTCP in this process. PMID:24557582
NTCP and beyond: opening the door to unveil hepatitis B virus entry.
Watashi, Koichi; Urban, Stephan; Li, Wenhui; Wakita, Takaji
2014-02-19
Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million people worldwide, is a major public health problem that elevates the risk of developing liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV agents is urgently needed. The viral entry process is generally an attractive target implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, as well as HepaRG cells, important determinants of viral entry have been achieved. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an HBV entry receptor and enabled the establishment of a susceptible cell line that can efficiently support HBV infection. This finding will allow a deeper understanding of the requirements for efficient HBV infection, including the elucidation of the molecular entry mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a therapeutic target. This article summarizes our current knowledge on the mechanisms of HBV entry and the role of NTCP in this process.
Sakurai, Yasuteru
2015-01-01
Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.
Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert
2017-07-05
Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms
Chang, Kenneth; Baginski, John; Hassan, Samer F.; Volin, Michael; Shukla, Deepak; Tiwari, Vaibhav
2016-01-01
Filopodia are thin, actin rich bundles protruding from cell plasma membranes, serving physiological purposes, such as probing the environment and facilitating cell-to-cell adhesion. Recent studies have highlighted that actively polymerized filopodial-protrusions are exploited during virus entry, trafficking, spread, and the development of clinical pathology of viral diseases. These observations have caused a surge in investigation of the key determinants of filopodial induction and their influence on cell topography including receptor expression for viral entry. It is now very clear that filopodia can provide unique opportunities for many viruses to invade host cells vertically during primary infection, or horizontally during virus spread from cell-to-cell. These emerging concepts can explain the unprecedented ability of viruses to invade both nearby and long-distant host cells, a feature that may directly contribute to viral tropism. In this review, we summarize the significance of filopodia in viral diseases and discuss future therapeutic possibilities to precisely target filopodial-flyovers to prevent or control infectious diseases. PMID:27014223
Amiodarone affects Ebola virus binding and entry into target cells.
Salata, Cristiano; Munegato, Denis; Martelli, Francesco; Parolin, Cristina; Calistri, Arianna; Baritussio, Aldo; Palù, Giorgio
2018-03-02
Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/targets involved in the viral entry process.
Wang, Shaobo; Liu, Haibin; Zu, Xiangyang; Liu, Yang; Chen, Liman; Zhu, Xueqin; Zhang, Leike; Zhou, Zheng; Xiao, Gengfu; Wang, Wei
2016-11-01
The host-virus interaction during the cellular entry of Japanese encephalitis virus (JEV) is poorly characterized. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. Here, we showed that the proteasome inhibitors, MG132 and lactacystin, impaired the productive entry of JEV by effectively interfering with viral intracellular trafficking at the stage between crossing cell membrane and the initial translation of the viral genome after uncoating. Using confocal microscopy, it was demonstrated that a proportion of the internalized virions were misdirected to lysosomes following treatment with MG132, resulting in non-productive entry. In addition, using specific siRNAs targeting ubiquitin, we verified that protein ubiquitination was involved in the entry of JEV. Overall, our study demonstrated the UPS is essential for the productive entry of JEV and might represent a potential antiviral target for JEV infection. Copyright © 2016 Elsevier Inc. All rights reserved.
HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes
García-Expósito, Laura; Barroso-González, Jonathan; Puigdomènech, Isabel; Machado, José-David; Blanco, Julià; Valenzuela-Fernández, Agustín
2011-01-01
As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+ T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+ T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry. PMID:21346189
Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne
2011-11-04
Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.
Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry.
Borrenberghs, Doortje; Dirix, Lieve; De Wit, Flore; Rocha, Susana; Blokken, Jolien; De Houwer, Stéphanie; Gijsbers, Rik; Christ, Frauke; Hofkens, Johan; Hendrix, Jelle; Debyser, Zeger
2016-11-10
Nuclear entry is a selective, dynamic process granting the HIV-1 pre-integration complex (PIC) access to the chromatin. Classical analysis of nuclear entry of heterogeneous viral particles only yields averaged information. We now have employed single-virus fluorescence methods to follow the fate of single viral pre-integration complexes (PICs) during infection by visualizing HIV-1 integrase (IN). Nuclear entry is associated with a reduction in the number of IN molecules in the complexes while the interaction with LEDGF/p75 enhances IN oligomerization in the nucleus. Addition of LEDGINs, small molecule inhibitors of the IN-LEDGF/p75 interaction, during virus production, prematurely stabilizes a higher-order IN multimeric state, resulting in stable IN multimers resistant to a reduction in IN content and defective for nuclear entry. This suggests that a stringent size restriction determines nuclear pore entry. Taken together, this work demonstrates the power of single-virus imaging providing crucial insights in HIV replication and enabling mechanism-of-action studies.
Dengue Virus Genome Uncoating Requires Ubiquitination.
Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V
2016-06-28
The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade regarding molecular aspects of the fusion step, but little is known about the events that follow this process, which leads to viral RNA release from the nucleocapsid. Here, we investigated the fate of nucleocapsid components (capsid protein and viral genome) during the infection process and found that capsid is degraded by the ubiquitin-proteasome system. However, in contrast to that observed for other RNA and DNA viruses, dengue virus capsid degradation was not responsible for genome uncoating. Interestingly, we found that dengue virus genome release requires a nondegradative ubiquitination step. These results provide the first insights into dengue virus uncoating and present new opportunities for antiviral intervention. Copyright © 2016 Byk et al.
Luo, Xinlong; Yang, Wei; Gao, Guangxia
2018-07-01
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA. IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory activity of SUN1 toward HIV-1 relied on the interaction between CA and CypA. These results help to explain how SUN1 is involved in the HIV-1 nuclear entry process. Copyright © 2018 American Society for Microbiology.
Yan, Huan; Peng, Bo; He, Wenhui; Zhong, Guocai; Qi, Yonghe; Ren, Bijie; Gao, Zhenchao; Jing, Zhiyi; Song, Mei; Xu, Guangwei; Sui, Jianhua
2013-01-01
Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), primarily infect humans, chimpanzees, or tree shrews (Tupaia belangeri). Viral infections in other species are known to be mainly restricted at the entry level since viral replication can be achieved in the cells by transfection of the viral genome. Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for HBV and HDV, and amino acids 157 to 165 of NTCP are critical for viral entry and likely limit viral infection of macaques. However, the molecular determinants for viral entry restriction in mouse NTCP (mNTCP) remain unclear. In this study, mNTCP was found to be unable to support either HBV or HDV infection, although it can bind to pre-S1 of HBV L protein and is functional in transporting substrate taurocholate; comprehensive swapping and point mutations of human NTCP (hNTCP) and mNTCP revealed molecular determinants restricting mNTCP for viral entry of HBV and HDV. Remarkably, when mNTCP residues 84 to 87 were substituted by human counterparts, mNTCP can effectively support viral infections. In addition, a number of cell lines, regardless of their species or tissue origin, supported HDV infection when transfected with hNTCP or mNTCP with residues 84 to 87 replaced by human counterparts, highlighting the central role of NTCP for viral infections mediated by HBV envelope proteins. These studies advance our understanding of NTCP-mediated viral entry of HBV and HDV and have important implications for developing the mouse model for their infections. PMID:23678176
Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.
2006-01-05
Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxovirusesmore » (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.« less
Dengue Virus Genome Uncoating Requires Ubiquitination
Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario
2016-01-01
ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759
Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.
Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F
2016-01-14
Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.
Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors thatmore » block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.« less
2011-01-06
identified viral restriction factors that inhibit infection mediated by the influenza A virus ( IAV ) hemagglutinin (HA) protein. Here we show that IFITM...observations, interferon-b specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV...We observed distinct patterns of IFITM-mediated restriction: compared with IAV , the entry processes of MARV and EBOV were less restricted by IFITM3
Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.
Pratelli, Annamaria; Colao, Valeriana
2016-01-04
The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of phosphatidylserine receptors in enveloped virus infection.
Morizono, Kouki; Chen, Irvin S Y
2014-04-01
We recently demonstrated that a soluble protein, Gas6, can facilitate viral entry by bridging viral envelope phosphatidylserine to Axl, a receptor tyrosine kinase expressed on target cells. The interaction between phosphatidylserine, Gas6, and Axl was originally shown to be a molecular mechanism through which phagocytes recognize phosphatidylserine exposed on dead cells. Since our initial report, several groups have confirmed that Axl/Gas6, as well as other phosphatidylserine receptors, facilitate entry of dengue, West Nile, and Ebola viruses. Virus binding by viral envelope phosphatidylserine is now a viral entry mechanism generalized to many families of viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most of the known human phosphatidylserine-recognizing molecules, including MFG-E8, TIM-1, -3, and -4, CD300a, BAI1, and stabilin-1 and -2, for their abilities to facilitate virus binding and infection. Using pseudotyped lentiviral vectors, we found that a soluble phosphatidylserine-binding protein, MFG-E8, enhances transduction. Cell surface receptors TIM-1 and -4 also enhance virus binding/transduction. The extent of enhancement by these molecules varies, depending on the type of pseudotyping envelope proteins. Mutated MFG-E8, which binds viral envelope phosphatidylserine without bridging virus to cells, but, surprisingly, not annexin V, which has been used to block phagocytosis of dead cells by concealing phosphatidylserine, efficiently blocks these phosphatidylserine-dependent viral entry mechanisms. These results provide insight into understanding the role of viral envelope phosphatidylserine in viral infection. Envelope phosphatidylserine has previously been shown to be important for replication of various envelope viruses, but details of this mechanism(s) were unclear. We were the first to report that a bifunctional serum protein, Gas6, bridges envelope phosphatidylserine to a cell surface receptor, Axl. Recent studies demonstrated that many envelope viruses, including vaccinia, dengue, West Nile, and Ebola viruses, utilize Axl/Gas6 to facilitate their entry, suggesting that the phosphatidylserine-mediated viral entry mechanism can be shared by various enveloped viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most human phosphatidylserine-recognizing molecules for their abilities to facilitate viral infection. The results provide insights into the role(s) of envelope phosphatidylserine in viral infection, which can be applicable to the development of novel antiviral reagents that block phosphatidylserine-mediated viral entry.
Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang
2017-04-25
Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.
Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C
2014-09-01
Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These epidemiological findings underscore the urgency to develop novel HSV treatment or prevention strategies. This study addresses this gap by further defining the signaling pathways the virus usurps to enter human genital tract epithelial cells. Specifically, the study defines the role played by integrins and by the viral envelope glycoprotein H in entry and cell-to-cell spread. This knowledge will facilitate the identification of new targets for the development of treatment and prevention. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Targeted entry of enveloped viruses: measles and herpes simplex virus I.
Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto
2012-02-01
We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine
2015-01-01
The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03875d
Clinical Potential of Prefusion RSV F-specific Antibodies.
Rossey, Iebe; McLellan, Jason S; Saelens, Xavier; Schepens, Bert
2018-03-01
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in the very young. The RSV fusion protein (F) is essential for virus entry because it mediates viral and host membrane fusion. During this fusion process F is converted from a metastable prefusion conformation into an energetically favored postfusion state. Antibodies that target F can prevent viral entry and reduce disease caused by RSV. During recent years, many prefusion F-specific antibodies have been described. These antibodies typically have stronger RSV-neutralizing activity compared to those that also bind F in the postfusion conformation. Here, we describe how F-specific antibodies protect against RSV and why specifically targeting prefusion F could have great clinical potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early events in herpes simplex virus lifecycle with implications for an infection of lifetime.
Salameh, Sarah; Sheth, Urmi; Shukla, Deepak
2012-01-01
Affecting a large percentage of human population herpes simplex virus (HSV) types -1 and -2 mainly cause oral, ocular, and genital diseases. Infection begins with viral entry into a host cell, which may be preceded by viral "surfing" along filopodia. Viral glycoproteins then bind to one or more of several cell surface receptors, such as herpesvirus entry mediator (HVEM), nectin-1, 3-O sulfated heparan sulfate (3-OS HS), paired immunoglobulin-like receptor α, and non-muscle myosin-IIA. At least five viral envelope glycoproteins participate in entry and these include gB, gC, gD and gH-gL. Post-entry, these glycoproteins may also facilitate cell-to-cell spread of the virus, which helps in the evasion of physical barriers as well as several components of the innate and adaptive immune responses. The spread may be facilitated by membrane fusion, movement across tight junctions, transfer across neuronal synapses, or the recruitment of actin-containing structures. This review summarizes some of the recent advances in our understanding of HSV entry and cell-to-cell spread.
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
IFITM proteins-cellular inhibitors of viral entry.
Smith, Se; Weston, S; Kellam, P; Marsh, M
2014-02-01
Interferon inducible transmembrane (IFITM) proteins are a recently discovered family of cellular anti-viral proteins that restrict the replication of a number of enveloped and non-enveloped viruses. IFITM proteins are located in the plasma membrane and endosomal membranes, the main portals of entry for many viruses. Biochemical and membrane fusion studies suggest IFITM proteins have the ability to inhibit viral entry, possibly by modulating the fluidity of cellular membranes. Here we discuss the IFITM proteins, recent work on their mode of action, and future directions for research. Copyright © 2014 Elsevier B.V. All rights reserved.
Landowski, Matthew; Dabundo, Jeffrey; Liu, Qian; Nicola, Anthony V; Aguilar, Hector C
2014-12-01
Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. Drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are notably cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. NiV's attachment (G) and fusion (F) envelope glycoproteins mediate viral binding to the ephrinB2/ephrinB3 cell receptors and virus-cell membrane fusion, respectively. The NiV matrix protein (M) can autonomously induce NiV assembly and budding. Using a β-lactamase (βLa) reporter/NiV-M chimeric protein, we produced NiVLPs expressing NiV-G and wild-type or mutant NiV-F on their surfaces. By preloading target cells with the βLa fluorescent substrate CCF2-AM, we obtained viral entry kinetic curves that correlated with the NiV-F fusogenic phenotypes, validating NiVLPs as suitable viral entry kinetic tools and suggesting overall relatively slower viral entry than cell-cell fusion kinetics. Additionally, the proportions of F and G on individual NiVLPs and the extent of receptor-induced conformational changes in NiV-G were measured via flow virometry, allowing the proper interpretation of the viral entry kinetic phenotypes. The significance of these findings in the viral entry field extends beyond NiV to other paramyxoviruses and enveloped viruses. Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. For example, drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are especially cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. Our new tools allowed us the high-throughput measurement of viral entry kinetics, glycoprotein proportions on individual viral particles, and receptor-induced conformational changes in viral glycoproteins on viral surfaces. The significance of these findings extends beyond NiV to other paramyxoviruses and enveloped viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun
2014-04-18
Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less
Padilla-Parra, Sergi; Marin, Mariana; Kondo, Naoyuki; Melikyan, Gregory B
2014-06-16
The majority of viruses enter host cells via endocytosis. Current knowledge of viral entry pathways is largely based upon infectivity measurements following genetic and/or pharmacological interventions that disrupt vesicular trafficking and maturation. Imaging of single virus entry in living cells provides a powerful means to delineate viral trafficking pathways and entry sites under physiological conditions. Here, we visualized single avian retrovirus co-trafficking with markers for early (Rab5) and late (Rab7) endosomes, acidification of endosomal lumen and the resulting viral fusion measured by the viral content release into the cytoplasm. Virus-carrying vesicles either merged with the existing Rab5-positive early endosomes or slowly accumulated Rab5. The Rab5 recruitment to virus-carrying endosomes correlated with acidification of their lumen. Viral fusion occurred either in early (Rab5-positive) or intermediate (Rab5- and Rab7-positive) compartments. Interestingly, different isoforms of the cognate receptor directed virus entry from distinct endosomes. In cells expressing the transmembrane receptor, viruses preferentially entered and fused with slowly maturing early endosomes prior to accumulation of Rab7. By comparison, in cells expressing the GPI-anchored receptor, viruses entered both slowly and quickly maturing endosomes and fused with early (Rab5-positive) and intermediate (Rab5- and Rab7-positive) compartments. Since the rate of low pH-triggered fusion was independent of the receptor isoform, we concluded that the sites of virus entry are determined by the kinetic competition between endosome maturation and viral fusion. Our findings demonstrate the ability of this retrovirus to enter cells via alternative endocytic pathways and establish infection by releasing its content from distinct endosomal compartments.
Bose, Sayantan; Song, Albert S; Jardetzky, Theodore S; Lamb, Robert A
2014-04-01
Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. However, the sequence of events that closely links the timing of receptor recognition by HN, H, or G and the "triggering" interaction of the attachment protein with F is unclear. F activation results in F undergoing a series of irreversible conformational rearrangements to bring about membrane merger and virus entry. By extensive study of properties of multiple paramyxovirus HN proteins, we show that key features of F activation, including the F-activating regions of HN proteins, flexibility within this F-activating region, and changes in globular head-stalk interactions are highly conserved. These results, together with functionally active "headless" mumps and Newcastle disease virus HN proteins, provide insights into the F-triggering process. Based on these data and very recently published data for morbillivirus H and henipavirus G proteins, we extend our recently proposed "stalk exposure model" to other paramyxoviruses and propose an "induced fit" hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes. We describe here the molecular mechanism by which HN activates the F protein such that virus-cell fusion is controlled and occurs at the right time and the right place. We extend our recently proposed "stalk exposure model" first proposed for parainfluenza virus 5 to other paramyxoviruses and propose an "induced fit" hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion.
Bose, Sayantan; Song, Albert S.; Jardetzky, Theodore S.
2014-01-01
ABSTRACT Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. However, the sequence of events that closely links the timing of receptor recognition by HN, H, or G and the “triggering” interaction of the attachment protein with F is unclear. F activation results in F undergoing a series of irreversible conformational rearrangements to bring about membrane merger and virus entry. By extensive study of properties of multiple paramyxovirus HN proteins, we show that key features of F activation, including the F-activating regions of HN proteins, flexibility within this F-activating region, and changes in globular head-stalk interactions are highly conserved. These results, together with functionally active “headless” mumps and Newcastle disease virus HN proteins, provide insights into the F-triggering process. Based on these data and very recently published data for morbillivirus H and henipavirus G proteins, we extend our recently proposed “stalk exposure model” to other paramyxoviruses and propose an “induced fit” hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. IMPORTANCE Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes. We describe here the molecular mechanism by which HN activates the F protein such that virus-cell fusion is controlled and occurs at the right time and the right place. We extend our recently proposed “stalk exposure model” first proposed for parainfluenza virus 5 to other paramyxoviruses and propose an “induced fit” hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. PMID:24453369
Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B
2015-10-29
HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.
Unity in diversity: Shared mechanism of entry among paramyxoviruses
Palgen, Jean-Louis; Jurgens, Eric M.; Moscona, Anne; Palermo, Laura M.; Porotto, Matteo
2015-01-01
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral “fusion machinery”. The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process. PMID:25595799
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la
2011-10-25
Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the largemore » GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.« less
Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C
2016-02-01
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
NASA Astrophysics Data System (ADS)
Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.
2016-10-01
Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.
Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali
2016-02-09
The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry pathways. We show that the mutations differentiating the Asibi envelope (E) protein from the 17D E protein, which arose during attenuation, are key determinants for the use of these distinct entry routes. Finally, we demonstrate that 17D binds and enters host cells more efficiently than Asibi. This results in a higher uptake of viral RNA into the cytoplasm and consequently a greater cytokine-mediated antiviral response. Overall, our data provide new insights into the biology of YFV infection and the mechanisms of viral attenuation. Copyright © 2016 Fernandez-Garcia et al.
Millet, Jean Kaoru; Whittaker, Gary R.
2014-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733
An update on mechanism of entry of white spot syndrome virus into shrimps.
Verma, Arunima Kumar; Gupta, Shipra; Singh, Shivesh Pratap; Nagpure, Naresh Sahebrao
2017-08-01
Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake
2016-07-05
Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.
Electron Microscopy of Ebola Virus-Infected Cells.
Noda, Takeshi
2017-01-01
Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.
DNA Uptake by Transformable Bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacks, Sanford A.
1999-03-31
The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.
DNA UPTAKE BY TRANSFORMABLE BACTERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
LACKS,S.A.
1999-09-07
The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.
Characterizing the Anti-HIV Activity of Papuamide A
Andjelic, Cynthia D; Planelles, Vicente; Barrows, Louis R
2008-01-01
Papuamide A is representative of a class of marine derived cyclic depsipeptides, reported to have cytoprotective activity against HIV-1 in vitro. We show here that papuamide A acts as an entry inhibitor, preventing human immunodeficiency virus infection of host cells and that this inhibition is not specific to R5 or X4 tropic virus. This inhibition of viral entry was determined to not be due to papuamide A binding to CD4 or HIV gp120, the two proteins involved in the cell-virus recognition and binding. Furthermore, papuamide A was able to inhibit HIV pseudotype viruses expressing envelope glycoproteins from vesicular stomatitis virus or amphotropic murine leukemia virus indicating the mechanism of viral entry inhibition is not HIV-1 envelope glycoprotein specific. Time delayed addition studies with the pseudotyped viruses show that papuamide A inhibits viral infection only at the initial stage of the viral life cycle. Additionally, pretreatment studies revealed that the virus, and not the cell, is the target of papuamide A’s action. Together, these results suggest a direct virucidal mechanism of HIV-1 inhibition by papuamide A. We also demonstrate here that the other papuamides (B-D) are able to inhibit viral entry indicating that the free amino moiety of 2,3-diaminobutanoic acid residue is not required for the virucidal activity. PMID:19172193
Statistical Mechanics of Viral Entry
NASA Astrophysics Data System (ADS)
Zhang, Yaojun; Dudko, Olga K.
2015-01-01
Viruses that have lipid-membrane envelopes infect cells by fusing with the cell membrane to release viral genes. Membrane fusion is known to be hindered by high kinetic barriers associated with drastic structural rearrangements—yet viral infection, which occurs by fusion, proceeds on remarkably short time scales. Here, we present a quantitative framework that captures the principles behind the invasion strategy shared by all enveloped viruses. The key to this strategy—ligand-triggered conformational changes in the viral proteins that pull the membranes together—is treated as a set of concurrent, bias field-induced activated rate processes. The framework results in analytical solutions for experimentally measurable characteristics of virus-cell fusion and enables us to express the efficiency of the viral strategy in quantitative terms. The predictive value of the theory is validated through simulations and illustrated through recent experimental data on influenza virus infection.
Li, Zi; Zhao, Kui; Lan, Yungang; Lv, Xiaoling; Hu, Shiyu; Guan, Jiyu; Lu, Huijun; Zhang, Jing; Shi, Junchao; Yang, Yawen; Song, Deguang; Gao, Feng; He, Wenqi
2017-12-01
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes neurological dysfunction. Neural cells are its targets for viral progression. However, the detailed mechanism underlying PHEV entry and trafficking remains unknown. PHEV is the etiological agent of porcine hemagglutinating encephalomyelitis, which is an acute and highly contagious disease that causes numerous deaths in suckling piglets and enormous economic losses in China. Understanding the viral entry pathway will not only advance our knowledge of PHEV infection and pathogenesis but also open new approaches to the development of novel therapeutic strategies. Therefore, we employed systematic approaches to dissect the internalization and intracellular trafficking mechanism of PHEV in Neuro-2a cells. This is the first report to describe the process of PHEV entry into nerve cells via clathrin-mediated endocytosis in a dynamin-, cholesterol-, and pH-dependent manner that requires Rab5 and Rab7. Copyright © 2017 Li et al.
Liu, Chun-Chun; Zhang, Yun-Na; Li, Zhao-Yao; Hou, Jin-Xiu; Zhou, Jing; Kan, Lin; Zhou, Bin; Chen, Pu-Yan
2017-10-01
During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses. IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that requires Rab5 and Rab11. Our work provides a detailed picture of the entry of JEV into BHK-21 cells and the cellular events that follow. Copyright © 2017 American Society for Microbiology.
Porotto, Matteo; Rockx, Barry; Yokoyama, Christine C; Talekar, Aparna; Devito, Ilaria; Palermo, Laura M; Liu, Jie; Cortese, Riccardo; Lu, Min; Feldmann, Heinz; Pessi, Antonello; Moscona, Anne
2010-10-28
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Gottschalk, Elinor Y; Meneses, Patricio I
2015-09-01
The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of intracellular trafficking processes in keratinocytes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spear, Patricia G.; Manoj, Sharmila; Yoon, Miri
2006-01-05
One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, anothermore » when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL.« less
Examining Merkel Cell Polyomavirus Minor Capsid Proteins | Center for Cancer Research
Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. It is a skin-dwelling polyomavirus species that appears to cause a rare but highly lethal form of skin cancer called Merkel cell carcinoma (MCC). Despite MCC being uncommon, chronic MCV infection of human skin is widespread, and most infected people have no known symptoms. The surface of polyomavirus virions is made up of pentameric knobs of the major capsid protein VP1. VP1 enables attachment of the virus to the cell surface, permitting infectious entry and delivery of the viral genome to host cells. The VP1 protein of previously studied polyomaviruses, such as simian virus 40 and murine polyomavirus, associates with two minor capsid proteins, VP2 and VP3, which are considered to play important roles during the infectious entry process.
Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation.
Yin, Hsien-Sheng; Wen, Xiaolin; Paterson, Reay G; Lamb, Robert A; Jardetzky, Theodore S
2006-01-05
Enveloped viruses have evolved complex glycoprotein machinery that drives the fusion of viral and cellular membranes, permitting entry of the viral genome into the cell. For the paramyxoviruses, the fusion (F) protein catalyses this membrane merger and entry step, and it has been postulated that the F protein undergoes complex refolding during this process. Here we report the crystal structure of the parainfluenza virus 5 F protein in its prefusion conformation, stabilized by the addition of a carboxy-terminal trimerization domain. The structure of the F protein shows that there are profound conformational differences between the pre- and postfusion states, involving transformations in secondary and tertiary structure. The positions and structural transitions of key parts of the fusion machinery, including the hydrophobic fusion peptide and two helical heptad repeat regions, clarify the mechanism of membrane fusion mediated by the F protein.
Viral entry pathways: the example of common cold viruses.
Blaas, Dieter
2016-05-01
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagawa, Yukiko; Department of Oral and Maxillofacial Surgery II, Osaka University, Osaka 565-0871; Kameoka, Masanori
2008-03-30
The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} wasmore » not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.« less
Suda, Yuto; Fukushi, Shuetsu; Tani, Hideki; Murakami, Shin; Saijo, Masayuki; Horimoto, Taisuke; Shimojima, Masayuki
2016-06-01
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease causing severe hemorrhagic symptoms with a nearly 30 % case-fatality rate in humans. The experimental use of CCHF virus (CCHFV), which causes CCHF, requires high-biosafety-level (BSL) containment. In contrast, pseudotyping of various viral glycoproteins (GPs) onto vesicular stomatitis virus (VSV) can be used in facilities with lower BSL containment, and this has facilitated studies on the viral entry mechanism and the measurement of neutralizing activity, especially for highly pathogenic viruses. In the present study, we generated high titers of pseudotyped VSV bearing the CCHFV envelope GP and analyzed the mechanisms involved in CCHFV infection. A partial deletion of the CCHFV GP cytoplasmic domain increased the titer of the pseudotyped VSV, the entry mechanism of which was dependent on the CCHFV envelope GP. Using the pseudotype virus, DC-SIGN (a calcium-dependent [C-type] lectin cell-surface molecule) was revealed to enhance viral infection and act as an entry factor for CCHFV.
A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism
Douam, Florian; Mancip, Jimmy; Mailly, Laurent; Montserret, Roland; Ding, Qiang; Verhoeyen, Els; Baumert, Thomas F.; Ploss, Alexander; Carbone, Alessandra
2018-01-01
Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses. PMID:29505618
Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells.
Millet, Jean Kaoru; Whittaker, Gary R
2018-04-01
During viral entry, enveloped viruses require the fusion of their lipid envelope with host cell membranes. For coronaviruses, this critical step is governed by the virally-encoded spike (S) protein, a class I viral fusion protein that has several unique features. Coronavirus entry is unusual in that it is often biphasic in nature, and can occur at or near the cell surface or in late endosomes. Recent advances in structural, biochemical and molecular biology of the coronavirus S protein has shed light on the intricacies of coronavirus entry, in particular the molecular triggers of coronavirus S-mediated membrane fusion. Furthermore, characterization of the coronavirus fusion peptide (FP), the segment of the fusion protein that inserts to a target lipid bilayer during membrane fusion, has revealed its particular attributes which imparts some of the unusual properties of the S protein, such as Ca 2+ -dependency. These unusual characteristics can explain at least in part the biphasic nature of coronavirus entry. In this review, using severe acute respiratory syndrome coronavirus (SARS-CoV) as model virus, we give an overview of advances in research on the coronavirus fusion peptide with an emphasis on its role and properties within the biological context of host cell entry. Copyright © 2017 Elsevier Inc. All rights reserved.
Viral and Cellular Determinants of the Hepatitis C Virus Envelope-Heparan Sulfate Interaction▿
Barth, Heidi; Schnober, Eva K.; Zhang, Fuming; Linhardt, Robert J.; Depla, Erik; Boson, Bertrand; Cosset, Francois-Loic; Patel, Arvind H.; Blum, Hubert E.; Baumert, Thomas F.
2006-01-01
Cellular binding and entry of hepatitis C virus (HCV) are the first steps of viral infection and represent a major target for antiviral antibodies and novel therapeutic strategies. We have recently demonstrated that heparan sulfate (HS) plays a key role in the binding of HCV envelope glycoprotein E2 to target cells (Barth et al., J. Biol. Chem. 278:41003-41012, 2003). In this study, we characterized the HCV-HS interaction and analyzed its inhibition by antiviral host immune responses. Using recombinant envelope glycoproteins, virus-like particles, and HCV pseudoparticles as model systems for the early steps of viral infection, we mapped viral and cellular determinants of HCV-HS interaction. HCV-HS binding required a specific HS structure that included N-sulfo groups and a minimum of 10 to 14 saccharide subunits. HCV envelope binding to HS was mediated by four viral epitopes overlapping the E2 hypervariable region 1 and E2-CD81 binding domains. In functional studies using HCV pseudoparticles, we demonstrate that HCV binding and entry are specifically inhibited by highly sulfated HS. Finally, HCV-HS binding was markedly inhibited by antiviral antibodies derived from HCV-infected individuals. In conclusion, our results demonstrate that binding of the viral envelope to a specific HS configuration represents an important step for the initiation of viral infection and is a target of antiviral host immune responses in vivo. Mapping of viral and cellular determinants of HCV-HS interaction sets the stage for the development of novel HS-based antiviral strategies targeting viral attachment and entry. PMID:16928753
Sasaki, Michihito; Anindita, Paulina D; Phongphaew, Wallaya; Carr, Michael; Kobayashi, Shintaro; Orba, Yasuko; Sawa, Hirofumi
2018-01-02
Subviral particles (SVPs) self-assemble and are released from cells transfected with expression plasmids encoding flavivirus structural proteins. Flavivirus-like particles (VLPs), consisting of flavivirus structural proteins and a subgenomic replicon, can enter cells and cause single-round infections. Neither SVPs or VLPs possess complete viral RNA genomes, therefore are replication-incompetent systems; however, they retain the capacity to fuse and bud from target cells and follow the same maturation process as whole virions. SVPs and VLPs have been previously employed in studies analyzing entry and release steps of viral life cycles. In this study, we have developed quantitative methods for the detection of cellular entry and release of SVPs and VLPs by applying a luciferase complementation assay based on the high affinity interaction between the split NanoLuc luciferase protein, LgBiT and the small peptide, HiBiT. We introduced HiBiT into the structural protein of West Nile virus and generated SVPs and VLPs harboring HiBiT (SVP-HiBiT and VLP-HiBiT, respectively). As SVP-HiBiT emitted strong luminescence upon exposure to LgBiT and its substrate, the nascently budded SVP-HiBiT in the supernatant was readily quantified by luminometry. Similarly, the cellular entry of VLP-HiBiT generated luminescence when VLP-HiBiT was infected into LgBiT-expressing cells. These methods utilizing SVP-HiBiT and VLP-HiBiT will facilitate research into life cycles of flaviviruses, including WNV. Copyright © 2017 Elsevier B.V. All rights reserved.
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis.
Gonçalves-Carneiro, Daniel; McKeating, Jane A; Bailey, Dalan
2017-04-01
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic. Copyright © 2017 Gonçalves-Carneiro et al.
Switch from translation to RNA replication in a positive-stranded RNA virus
Gamarnik, Andrea V.; Andino, Raul
1998-01-01
In positive-stranded viruses, the genomic RNA serves as a template for both translation and RNA replication. Using poliovirus as a model, we examined the interaction between these two processes. We show that the RNA polymerase is unable to replicate RNA templates undergoing translation. We discovered that an RNA structure at the 5′ end of the viral genome, next to the internal ribosomal entry site, carries signals that control both viral translation and RNA synthesis. The interaction of this RNA structure with the cellular factor PCBP up-regulates viral translation, while the binding of the viral protein 3CD represses translation and promotes negative-strand RNA synthesis. We propose that the interaction of 3CD with this RNA structure controls whether the genomic RNA is used for translation or RNA replication. PMID:9694795
Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages.
Ma, Tong-Cui; Le Guo; Zhou, Run-Hong; Wang, Xu; Liu, Jin-Biao; Li, Jie-Liang; Zhou, Yu; Hou, Wei; Ho, Wen-Zhe
2018-01-01
Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection. Copyright © 2017. Published by Elsevier Inc.
A bio-synthetic interface for discovery of viral entry mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutzler, Mike; Maar, Dianna; Negrete, Oscar
2010-09-01
Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in themore » environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.« less
Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry
Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.
2015-01-01
Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.
Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R
2011-08-24
Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... infections where those viral infections are human immunodeficiency virus (HIV) or hepatitis C virus (HCV... Griffithsin inhibits viral binding, fusion and entry into the host cells by binding to viral envelope gp120... a viral infection (incl. HIV), as well as vaccine development, and screening assays. The second...
Characterization of the "CCR5" Chemokine Receptor Gene
ERIC Educational Resources Information Center
Thomas, John C.
2004-01-01
The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…
Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Qiuxiang; Zhu, Ya; Li, Jian
2013-10-21
The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less
[Development of viral vectors and the application for viral entry mechanisms].
Tani, Hideki
2011-06-01
Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.
Novel Roles of Focal Adhesion Kinase in Cytoplasmic Entry and Replication of Influenza A Viruses
Cline, Troy; Baranovich, Tatiana; Govorkova, Elena A.; Schultz-Cherry, Stacey
2014-01-01
ABSTRACT Viruses modulate cellular signaling pathways at almost every step of the infection cycle. Cellular signaling pathways activated at later times of influenza infection have previously been investigated; however, early influenza virus-host cell interactions remain understudied. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates phosphatidylinositol 3-kinase (PI3K) activation and actin reorganization, two critical processes during influenza A virus (IAV) infection in most cell types. Using 6 influenza A virus strains (A/Puerto Rico/8/1934, A/Aichi/2/1968 × A/Puerto Rico/8/1934 reassortant [X-31], A/California/04/2009, mouse-adapted A/California/04/2009, A/WSN/1933, and A/New Caledonia/20/1999), we examined the role of FAK during IAV entry. We found that influenza virus attachment induced PI3K-dependent FAK-Y397 phosphorylation. Pharmacological FAK inhibition or expression of a kinase-dead mutant of FAK led to disruption of the actin meshwork that resulted in sequestration of IAV at the cell periphery and reduced virion localization to early endosomes. Additionally, FAK inhibition impeded viral RNA replication at later times of infection and ultimately resulted in significantly reduced viral titers in both A549 and differentiated normal human bronchial epithelial (NHBE) cells. Although not all tested strains activated FAK, all of them exhibited a reduction in viral replication in response to inhibition of FAK signaling. These findings highlight novel biphasic roles of FAK activation during IAV infection and indicate that FAK serves as a central link between receptor-mediated PI3K activation and actin reorganization during IAV infection. IMPORTANCE We found that FAK links early activation of PI3K and actin reorganization, thereby regulating influenza virus entry. Surprisingly, we also found that FAK can regulate viral RNA replication independently of its role in entry. Our study addresses a knowledge gap in the understanding of signaling events triggered by influenza virus that mediate its internalization and initiation of the infection cycle. Understanding of these fundamental molecular events will be necessary to identify novel host targets, such as FAK, and development of future anti-influenza virus therapeutics. PMID:24696469
Spear, Mark; Guo, Jia; Turner, Amy; Yu, Dongyang; Wang, Weifeng; Meltzer, Beatrix; He, Sijia; Hu, Xiaohua; Shang, Hong; Kuhn, Jeffrey; Wu, Yuntao
2014-01-01
The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission. PMID:24415754
Spear, Mark; Guo, Jia; Turner, Amy; Yu, Dongyang; Wang, Weifeng; Meltzer, Beatrix; He, Sijia; Hu, Xiaohua; Shang, Hong; Kuhn, Jeffrey; Wu, Yuntao
2014-03-07
The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission.
Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga
2015-03-16
The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Sukun; University of Chinese Academy of Sciences, Beijing 100049; Hu, Kai
HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 ormore » N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.« less
Putcharoen, Opass; Lee, Sun Hee; Henrich, Timothy J.; Hu, Zixin; Vanichanan, Jakapat; Coakley, Eoin; Greaves, Wayne; Gulick, Roy M.; Kuritzkes, Daniel R.
2012-01-01
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance. PMID:22090117
76 FR 47148 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... work in microbiology and pathology, to study biological materials in order to identify bacterial or viral pathogens with clinical significance in veterinary medicine. Justification for Duty-Free Entry: No...
HIV and Drug Resistance: Hitting a Moving Target | Center for Cancer Research
Prior research revealed how HIV-1 makes its destructive entry into the target cell by fusing together the cholesterol-rich lipid bilayer of the viral envelope—made with key glycoproteins gp120 and gp41—and the host cell’s plasma membrane. Cell-viral interactions begin with the binding of gp120 to the CD4 receptor molecule on the target cell, followed by gp120 binding to coreceptors. These coreceptors likely reside in structures called lipid rafts—areas in the cell plasma membrane that are rich in cholesterol, saturated fatty acids, and certain proteins that facilitate the entry of viruses into host cells. Finally, sequences in gp41 trigger the fusion of the viral and cellular lipid bilayers. The lipid rafts are then involved in the production of new viral particles.
Development of novel entry inhibitors targeting emerging viruses
Zhou, Yanchen; Simmons, Graham
2013-01-01
Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus. PMID:23199399
Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus
Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann
2013-01-01
Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203
Mutagenesis Studies of the H5 Influenza Hemagglutinin Stem Loop Region*
Antanasijevic, Aleksandar; Basu, Arnab; Bowlin, Terry L.; Mishra, Rama K.; Rong, Lijun; Caffrey, Michael
2014-01-01
Influenza outbreaks, particularly the pandemic 1918 H1 and avian H5 strains, are of high concern to public health. The hemagglutinin envelope protein of influenza plays a critical role in viral entry and thus is an attractive target for inhibition of virus entry. The highly conserved stem loop region of hemagglutinin has been shown to undergo critically important conformational changes during the entry process and, moreover, to be a site for inhibition of virus entry by antibodies, small proteins, and small drug-like molecules. In this work we probe the structure-function properties of the H5 hemagglutinin stem loop region by site-directed mutagenesis. We find that most mutations do not disrupt expression, proteolytic processing, incorporation into virus, or receptor binding; however, many of the mutations disrupt the entry process. We further assess the effects of mutations on inhibition of entry by a neutralizing monoclonal antibody (C179) and find examples of increased and decreased sensitivity to the antibody, consistent with the antibody binding site observed by x-ray crystallography. In addition, we tested the sensitivity of the mutants to MBX2329, a small molecule inhibitor of influenza entry. Interestingly, the mutants exhibit increased and decreased sensitivities to MBX2329, which gives further insight into the binding site of the compound on HA and potential mechanisms of escape. Finally, we have modeled the binding site of MBX2329 using molecular dynamics and find that the resulting structure is in good agreement with the mutagenesis results. Together these studies underscore the importance of the stem loop region to HA function and suggest potential sites for therapeutic intervention of influenza entry. PMID:24947513
Mutagenesis studies of the H5 influenza hemagglutinin stem loop region.
Antanasijevic, Aleksandar; Basu, Arnab; Bowlin, Terry L; Mishra, Rama K; Rong, Lijun; Caffrey, Michael
2014-08-08
Influenza outbreaks, particularly the pandemic 1918 H1 and avian H5 strains, are of high concern to public health. The hemagglutinin envelope protein of influenza plays a critical role in viral entry and thus is an attractive target for inhibition of virus entry. The highly conserved stem loop region of hemagglutinin has been shown to undergo critically important conformational changes during the entry process and, moreover, to be a site for inhibition of virus entry by antibodies, small proteins, and small drug-like molecules. In this work we probe the structure-function properties of the H5 hemagglutinin stem loop region by site-directed mutagenesis. We find that most mutations do not disrupt expression, proteolytic processing, incorporation into virus, or receptor binding; however, many of the mutations disrupt the entry process. We further assess the effects of mutations on inhibition of entry by a neutralizing monoclonal antibody (C179) and find examples of increased and decreased sensitivity to the antibody, consistent with the antibody binding site observed by x-ray crystallography. In addition, we tested the sensitivity of the mutants to MBX2329, a small molecule inhibitor of influenza entry. Interestingly, the mutants exhibit increased and decreased sensitivities to MBX2329, which gives further insight into the binding site of the compound on HA and potential mechanisms of escape. Finally, we have modeled the binding site of MBX2329 using molecular dynamics and find that the resulting structure is in good agreement with the mutagenesis results. Together these studies underscore the importance of the stem loop region to HA function and suggest potential sites for therapeutic intervention of influenza entry. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α
Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.
2008-01-01
TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195
Structural basis of viral invasion: lessons from paramyxovirus F
Lamb, Robert A.; Jardetzky, Theodore S.
2007-01-01
Summary The structures of glycoproteins that mediate enveloped virus entry into cells have revealed dramatic structural changes that accompany membrane fusion and provided mechanistic insights into this process. The group of class I viral fusion proteins includes the influenza hemagglutinin, paramyxovirus F, HIV env and other mechanistically related fusogens, but these proteins are unrelated in sequence and exhibit clearly distinct structural features. Recently determined crystal structures of the paramyxovirus F protein in two conformations, representing prefusion and postfusion states, reveal a novel protein architecture that undergoes large-scale, irreversible refolding during membrane fusion, extending our understanding of this diverse group of membrane fusion machines. PMID:17870467
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
Ahi, Yadvinder S; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Gummuluru, Suryaram; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J; Rein, Alan
2016-11-22
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called "glycogag" (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called "glycogag." The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5. Copyright © 2016 Ahi et al.
Feng, Yuehan; Nebioglu, Firat; Heilig, Rosalie; Picotti, Paola
2014-01-01
ABSTRACT Influenza A virus (IAV) uses the low pH in late endocytic vacuoles as a cue for penetration by membrane fusion. Here, we analyzed the prefusion reactions that prepare the core for uncoating after it has been delivered to the cytosol. We found that this priming process occurs in two steps that are mediated by the envelope-embedded M2 ion channel. The first weakens the interactions between the matrix protein, M1, and the viral ribonucleoprotein bundle. It involves a conformational change in a linker sequence and the C-terminal domain of M1 after exposure to a pH below 6.5. The second step is triggered by a pH of <6.0 and by the influx of K+ ions. It causes additional changes in M1 as well as a loss of stability in the viral ribonucleoprotein bundle. Our results indicate that both the switch from Na+ to K+ in maturing endosomes and the decreasing pH are needed to prime IAV cores for efficient uncoating and infection of the host cell. IMPORTANCE The entry of IAV involves several steps, including endocytosis and fusion at late endosomes. Entry also includes disassembly of the viral core, which is composed of the viral ribonucleoproteins and the RNA genome. We have found that the uncoating process of IAV is initiated long before the core is delivered into the cytosol. M2, an ion channel in the viral membrane, is activated when the virus passes through early endosomes. Here, we show that protons entering the virus through M2 cause a conformational change in the matrix protein, M1. This weakens interactions between M1 and the viral ribonucleoproteins. A second change was found to occur when the virus enters late endosomes. The preacidified core is then exposed to a high concentration of K+, which affects the interactions between the ribonucleoproteins. Thus, when cores are finally delivered to the cytosol, they are already partially destabilized and, therefore, uncoating competent and infectious. PMID:25165113
Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry.
Qiu, Shirley; Leung, Anders; Bo, Yuxia; Kozak, Robert A; Anand, Sai Priya; Warkentin, Corina; Salambanga, Fabiola D R; Cui, Jennifer; Kobinger, Gary; Kobasa, Darwyn; Côté, Marceline
2018-01-01
For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P 2 ), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P 2 -positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P 2 production in cells to promote efficient delivery to NPC1. Copyright © 2017 Elsevier Inc. All rights reserved.
Sequence features of viral and human Internal Ribosome Entry Sites predictive of their activity
Elias-Kirma, Shani; Nir, Ronit; Segal, Eran
2017-01-01
Translation of mRNAs through Internal Ribosome Entry Sites (IRESs) has emerged as a prominent mechanism of cellular and viral initiation. It supports cap-independent translation of select cellular genes under normal conditions, and in conditions when cap-dependent translation is inhibited. IRES structure and sequence are believed to be involved in this process. However due to the small number of IRESs known, there have been no systematic investigations of the determinants of IRES activity. With the recent discovery of thousands of novel IRESs in human and viruses, the next challenge is to decipher the sequence determinants of IRES activity. We present the first in-depth computational analysis of a large body of IRESs, exploring RNA sequence features predictive of IRES activity. We identified predictive k-mer features resembling IRES trans-acting factor (ITAF) binding motifs across human and viral IRESs, and found that their effect on expression depends on their sequence, number and position. Our results also suggest that the architecture of retroviral IRESs differs from that of other viruses, presumably due to their exposure to the nuclear environment. Finally, we measured IRES activity of synthetically designed sequences to confirm our prediction of increasing activity as a function of the number of short IRES elements. PMID:28922394
Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells
Sims, Brian; Farrow, Anitra L; Williams, Sparkle D; Bansal, Anju; Krendelchtchikov, Alexandre; Gu, Linlin; Matthews, Qiana L
2017-01-01
Exosomes, 30–200 nm nanostructures secreted from donor cells and internalized by recipient cells, can play an important role in the cellular entry of some viruses. These microvesicles are actively secreted into various body fluids, including blood, urine, saliva, cerebrospinal fluid, and breast milk. We successfully isolated exosomes from human breast milk and plasma. The size and concentration of purified exosomes were measured by nanoparticle tracking, while Western blotting confirmed the presence of the exosomal-associated proteins CD9 and CD63, clathrin, and T cell immunoglobulin and mucin proteins (TIMs). Through viral infection assays, we determined that HIV-1 utilizes an exosome-dependent mechanism for entry into human immune cells. The virus contains high amounts of phosphatidylserine (PtdSer) and may bind PtdSer receptors, such as TIMs. This mechanism is supported by our findings that exosomes from multiple sources increased HIV-1 entry into T cells and macrophages, and viral entry was potently blocked with anti-TIM-4 antibodies. PMID:28740388
Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography.
Peng, Li; Ryazantsev, Sergey; Sun, Ren; Zhou, Z Hong
2010-01-13
Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.
The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release
Spiegel, Martin; Plegge, Teresa; Pöhlmann, Stefan
2016-01-01
Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle. PMID:27455305
PLC-γ1 Signaling Plays a Subtype-Specific Role in Postbinding Cell Entry of Influenza A Virus
Zhu, Liqian; Ly, Hinh
2014-01-01
Host signaling pathways and cellular proteins play important roles in the influenza viral life cycle and can serve as antiviral targets. In this study, we report the engagement of host phosphoinositide-specific phospholipase γ1 (PLC-γ1) in mediating cell entry of influenza virus H1N1 but not H3N2 subtype. Both PLC-γ1-specific inhibitor and short hairpin RNA (shRNA) strongly suppress the replication of H1N1 but not H3N2 viruses in cell culture, suggesting that PLC-γ1 plays an important subtype-specific role in the influenza viral life cycle. Further analyses demonstrate that PLC-γ1 activation is required for viral postbinding cell entry. In addition, H1N1, but not H3N2, infection leads to the phosphorylation of PLC-γ1 at Ser 1248 immediately after infection and independent of viral replication. We have further shown that H1N1-induced PLC-γ1 activation is downstream of epidermal growth factor receptor (EGFR) signaling. Interestingly, both H1N1 and H3N2 infections activate EGFR, but only H1N1 infection leads to PLC-γ1 activation. Taking our findings together, we have identified for the first time the subtype-specific interplay of host PLC-γ1 signaling and H1N1 virus that is critical for viral uptake early in the infection. Our study provides novel insights into how virus interacts with the cellular signaling network by demonstrating that viral determinants can regulate how the host signaling pathways function in virally infected cells. PMID:24155396
Musarrat, Farhana; Jambunathan, Nithya; Rider, Paul J F; Chouljenko, V N; Kousoulas, K G
2018-03-15
Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes. IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes. Copyright © 2018 American Society for Microbiology.
HIV-1 virion fusion assay: uncoating not required and no effect of Nef on fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavrois, Marielle; Neidleman, Jason; Yonemoto, Wes
2004-10-15
We recently described a sensitive and specific assay that detects the fusion of HIV-1 virions to a broad range of target cells, including primary CD4 cells. This assay involves the use of virions containing {beta}-lactamase-Vpr (BlaM-Vpr) and the loading of target cells with CCF2, a fluorogenic substrate of {beta}-lactamase. Since Vpr strongly associates with the viral core, uncoating of the viral particle might be required for effective cleavage of CCF2 by BlaM-Vpr. Here, we show that BlaM-Vpr within mature viral cores effectively cleaves CCF2, indicating that this assay measures virion fusion independently of uncoating. We also show that wildtype andmore » Nef-deficient HIV-1 virions fuse with equivalent efficiency to HeLa-CD4 cells, SupT1 T cells, and primary CD4 T cells. Since Nef enhances cytoplasmic delivery of viral cores and increases viral infectivity, these findings indicate that Nef enhances an early post-fusion event in the multistep process of viral entry. Possible sites of Nef action include enlargement of the fusion pore, enhanced uncoating of viral particles, and more efficient passage of viral cores through the dense cortical actin network located immediately beneath the plasma membrane.« less
Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael
2014-01-01
Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1–3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels. PMID:24842154
Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action.
Calland, Noémie; Sahuc, Marie-Emmanuelle; Belouzard, Sandrine; Pène, Véronique; Bonnafous, Pierre; Mesalam, Ahmed Atef; Deloison, Gaspard; Descamps, Véronique; Sahpaz, Sevser; Wychowski, Czeslaw; Lambert, Olivier; Brodin, Priscille; Duverlie, Gilles; Meuleman, Philip; Rosenberg, Arielle R; Dubuisson, Jean; Rouillé, Yves; Séron, Karin
2015-10-01
Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, K.B.
1985-04-15
The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.
Rho'ing in and out of cells: viral interactions with Rho GTPase signaling.
Van den Broeke, Céline; Jacob, Thary; Favoreel, Herman W
2014-01-01
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells
Adeyemi, Richard O.; Pintel, David J.
2014-01-01
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942
Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.
Adeyemi, Richard O; Pintel, David J
2014-01-01
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.
Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.
2012-01-01
The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329
Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao
2018-03-28
Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the Flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate viral assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. The findings expand our understanding of how host factors participate in the flavivirus replication lifecycle, and identify potential anti-viral targets for combatting flavivirus infection. Copyright © 2018 American Society for Microbiology.
Environmental contaminant mixtures modulate in vitro influenza infection.
Desforges, Jean-Pierre; Bandoro, Christopher; Shehata, Laila; Sonne, Christian; Dietz, Rune; Puryear, Wendy B; Runstadler, Jonathan A
2018-09-01
Environmental chemicals, particularly organochlorinated contaminants (OCs), are associated with a ranged of adverse health effects, including impairment of the immune system and antiviral immunity. Influenza A virus (IAV) is an infectious disease of major global public health concern and exposure to OCs can increase the susceptibility, morbidity, and mortality to disease. It is however unclear how pollutants are interacting and affecting the outcome of viral infections at the cellular level. In this study, we investigated the effects of a mixture of environmentally relevant OCs on IAV infectivity upon in vitro exposure in Madin Darby Canine Kidney (MDCK) cells and human lung epithelial cells (A549). Exposure to OCs reduced IAV infectivity in MDCK and A549 cells during both short (18-24h) and long-term (72h) infections at 0.05 and 0.5ppm, and effects were more pronounced in cells co-treated with OCs and IAV than pre-treated with OCs prior to IAV (p<0.001). Pre-treatment of host cells with OCs did not affect IAV cell surface attachment or entry. Visualization of IAV by transmission electron microscopy revealed increased envelope deformations and fewer intact virions during OC exposure. Taken together, our results suggest that disruption of IAV infection upon in vitro exposure to OCs was not due to host-cell effects influencing viral attachment and entry, but perhaps mediated by direct effects on viral particles or cellular processes involved in host-virus interactions. In vitro infectivity studies such as ours can shed light on the complex processes underlying host-pathogen-pollutant interactions. Copyright © 2018 Elsevier B.V. All rights reserved.
Ubiquitin in Influenza Virus Entry and Innate Immunity.
Rudnicka, Alina; Yamauchi, Yohei
2016-10-24
Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.
Ubiquitin in Influenza Virus Entry and Innate Immunity
Rudnicka, Alina; Yamauchi, Yohei
2016-01-01
Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. PMID:27783058
Herpesvirus Entry Mediator and Ocular Herpesvirus Infection: More than Meets the Eye
Edwards, Rebecca G.
2017-01-01
ABSTRACT As its name suggests, the host receptor herpesvirus entry mediator (HVEM) facilitates herpes simplex virus (HSV) entry through interactions with a viral envelope glycoprotein. HVEM also bridges several signaling networks, binding ligands from both tumor necrosis factor (TNF) and immunoglobulin (Ig) superfamilies with diverse, and often opposing, outcomes. While HVEM was first identified as a viral entry receptor for HSV, it is only recently that HVEM has emerged as an important host factor in immunopathogenesis of ocular HSV type 1 (HSV-1) infection. Surprisingly, HVEM exacerbates disease development in the eye independently of entry. HVEM signaling has been shown to play a variety of roles in modulating immune responses to HSV and other pathogens, and there is increasing evidence that these effects are responsible for HVEM-mediated pathogenesis in the eye. Here, we review the dual branches of HVEM function during HSV infection: entry and immunomodulation. HVEM is broadly expressed; intersects two important immunologic signaling networks; and impacts autoimmunity, infection, and inflammation. We hope that by understanding the complex range of effects mediated by this receptor, we can offer insights applicable to a wide variety of disease states. PMID:28404853
Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.
Plemper, Richard K; Brindley, Melinda A; Iorio, Ronald M
2011-06-01
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.
2013-01-01
Background We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results Extensive analysis of the tannins’ mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. Conclusions CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified. PMID:23924316
Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.
2009-06-05
Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption wasmore » unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.« less
Hemagglutinin-Mediated Membrane Fusion: A Biophysical Perspective.
Boonstra, Sander; Blijleven, Jelle S; Roos, Wouter H; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M
2018-05-20
Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.
Antiviral effect of lithium chloride on infection of cells by canine parvovirus.
Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun
2015-11-01
Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.
Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel
2017-02-01
The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.
Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan
2018-06-22
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.
Integrin αvβ3 promotes infection by Japanese encephalitis virus.
Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin
2017-04-01
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.
Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L
2015-02-17
Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.
Retroviral proteases and their roles in virion maturation.
Konvalinka, Jan; Kräusslich, Hans-Georg; Müller, Barbara
2015-05-01
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation. Copyright © 2015 Elsevier Inc. All rights reserved.
Ahi, Yadvinder S.; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J.
2016-01-01
ABSTRACT Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. PMID:27879338
Inhibition of Herpes Simplex Virus gD and Lymphotoxin-α Binding to HveA by Peptide Antagonists
Sarrias, Maria Rosa; Whitbeck, J. Charles; Rooney, Isabelle; Spruce, Lynn; Kay, Brian K.; Montgomery, Rebecca I.; Spear, Patricia G.; Ware, Carl F.; Eisenberg, Roselyn J.; Cohen, Gary H.; Lambris, John D.
1999-01-01
The herpesvirus entry mediator A (HveA) is a recently characterized member of the tumor necrosis factor receptor family that mediates the entry of most herpes simplex virus type 1 (HSV-1) strains into mammalian cells. Studies on the interaction of HSV-1 with HveA have shown that of all the viral proteins involved in uptake, only gD has been shown to bind directly to HveA, and this binding mediates viral entry into cells. In addition to gD binding to HveA, the latter has been shown to interact with proteins of tumor necrosis factor receptor-associated factor family, lymphotoxin-α (LT-α), and a membrane-associated protein referred to as LIGHT. To study the relationship between HveA, its natural ligands, and the viral proteins involved in HSV entry into cells, we have screened two phage-displayed combinatorial peptide libraries for peptide ligands of a recombinant form of HveA. Affinity selection experiments yielded two peptide ligands, BP-1 and BP-2, which could block the interaction between gD and HveA. Of the two peptides, only BP-2 inhibited HSV entry into CHO cells transfected with an HveA-expressing plasmid. When we analyzed these peptides for the ability to interfere with HveA binding to its natural ligand LT-α, we found that BP-1 inhibited the interaction of cellular LT-α with HveA. Thus, we have dissected the sites of interaction between the cell receptor, its natural ligand LT-α and gD, the virus-specific protein involved in HSV entry into cells. PMID:10364318
Chen, Dayue; Nims, Raymond; Dusing, Sandra; Miller, Pamela; Luo, Wen; Quertinmont, Michelle; Parekh, Bhavin; Poorbaugh, Josh; Boose, Jeri Ann; Atkinson, E Morrey
2008-11-01
An adventitious agent contamination occurred during a routine 9 CFR bovine viral screening test at BioReliance for an Eli Lilly Chinese Hamster Ovary (CHO) cell-derived Master Cell Bank (MCB) intended for biological production. Scientists from the sponsor (Eli Lilly and Company) and the testing service company (BioReliance) jointly conducted a systematic investigation in an attempt to determine the root cause of the contamination. Our investigation resulted in the identification of the viral nature of the contaminant. Subsequent experiments indicated that the viral contaminant was a non-enveloped and non-hemadsorbing virus. Transmission electron microscopy (TEM) revealed that the viral contaminant was 25-30 nm in size and morphologically resembled viruses of the family Picornaviridae. The contaminant virus was readily inactivated when exposed to acidic pH, suggesting that the viral contaminant was a member of rhinoviruses. Although incapable of infecting CHO cells, the viral contaminant replicated efficiently in Vero cell with a life cycle of approximately 16 h. Our investigation provided compelling data demonstrating that the viral contaminant did not originate from the MCB. Instead, it was introduced into the process during cell passaging and a possible entry point was proposed. We identified the viral contaminant as an equine rhinitis A virus using molecular cloning and DNA sequencing. Finally, our investigation led us to conclude that the source of the viral contaminant was the equine serum added to the cell growth medium in the 9 CFR bovine virus test.
Aggregate complexes of HIV-1 induced by multimeric antibodies.
Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J
2014-10-02
Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.
Okubo, Yu; Wakata, Aika; Suzuki, Takuma; Shibata, Tomoko; Ikeda, Hitomi; Yamaguchi, Miki; Cohen, Justus B.; Glorioso, Joseph C.; Tagaya, Mitsuo; Hamada, Hirofumi; Tahara, Hideaki
2016-01-01
ABSTRACT Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors. PMID:27707922
2018-01-01
ABSTRACT A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo. Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics. PMID:29636433
DCAF1 controls T-cell function via p53-dependent and -independent mechanisms.
Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K; Xiong, Yue; Chen, Xian; Wan, Yisong Y
2016-01-05
On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1-cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms.
DCAF1 controls T-cell function via p53-dependent and -independent mechanisms
Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K.; Xiong, Yue; Chen, Xian; Wan, Yisong Y.
2016-01-01
On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1–cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms. PMID:26728942
Lappala, Anna; Nishima, Wataru; Miner, Jacob; Fenimore, Paul; Fischer, Will; Hraber, Peter; Zhang, Ming; McMahon, Benjamin; Tung, Chang-Shung
2018-05-10
Membrane fusion proteins are responsible for viral entry into host cells—a crucial first step in viral infection. These proteins undergo large conformational changes from pre-fusion to fusion-initiation structures, and, despite differences in viral genomes and disease etiology, many fusion proteins are arranged as trimers. Structural information for both pre-fusion and fusion-initiation states is critical for understanding virus neutralization by the host immune system. In the case of Ebola virus glycoprotein (EBOV GP) and Zika virus envelope protein (ZIKV E), pre-fusion state structures have been identified experimentally, but only partial structures of fusion-initiation states have been described. While the fusion-initiation structure is in an energetically unfavorable state that is difficult to solve experimentally, the existing structural information combined with computational approaches enabled the modeling of fusion-initiation state structures of both proteins. These structural models provide an improved understanding of four different neutralizing antibodies in the prevention of viral host entry.
Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L
2015-03-01
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.
Retargeting of Rat Parvovirus H-1PV to Cancer Cells through Genetic Engineering of the Viral Capsid
Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K.; Nettelbeck, Dirk M.; Kleinschmidt, Jürgen; Rommelaere, Jean
2012-01-01
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds αvβ3 and αvβ5 integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing αvβ5 integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy. PMID:22258256
Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.
Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio
2012-04-01
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.
Antiviral agents: structural basis of action and rational design.
Menéndez-Arias, Luis; Gago, Federico
2013-01-01
During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.
Kacanek, Deborah; Angelidou, Konstantia; Williams, Paige L; Chernoff, Miriam; Gadow, Kenneth D; Nachman, Sharon
2015-06-19
The relationship of specific psychiatric conditions to adherence has not been examined in longitudinal studies of youth with perinatal HIV infection (PHIV). We examined associations between psychiatric conditions and antiretroviral nonadherence over 2 years. Longitudinal study in 294 PHIV youth, 6-17 years old, in the United States and Puerto Rico. We annually assessed three nonadherence outcomes: missed above 5% of doses in the past 3 days, missed a dose within the past month, and unsuppressed viral load (>400 copies/ml). We fit multivariable logistic models for nonadherence using Generalized Estimating Equations, and evaluated associations of psychiatric conditions (attention deficit hyperactivity disorder, disruptive behavior, depression, anxiety) at entry with incident nonadherence using multivariable logistic regression. Nonadherence prevalence at study entry was 14% (3-day recall), 32% (past month nonadherence), and 38% (unsuppressed viral load), remaining similar over time. At entry, 38% met symptom cut-off criteria for at least one psychiatric condition. Greater odds of 3-day recall nonadherence were observed at week 96 for those with depression [adjusted odds ratio (aOR) 4.14, 95% confidence interval (CI) 1.11-15.42] or disruptive behavior (aOR 3.36, 95% CI 1.02-11.10], but not at entry. Those with vs. without attention deficit hyperactivity disorder had elevated odds of unsuppressed viral load at weeks 48 (aOR 2.46, 95% CI 1.27-4.78) and 96 (aOR 2.35, 95% CI 1.01-5.45), but not at entry. Among 232 youth adherent at entry, 16% reported incident 3-day recall nonadherence. Disruptive behavior conditions at entry were associated with incident 3-day recall nonadherence (aOR 3.01, 95% CI 1.24-7.31). In PHIV youth, comprehensive adherence interventions that address psychiatric conditions throughout the transition to adult care are needed.
Shen, Hong-Bin; Chou, Kuo-Chen
2007-02-15
Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc. 2006 Wiley Periodicals, Inc.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-07-05
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-01-01
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV–host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus–host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding. PMID:28678154
Li, Fang; Ryu, Byoung Y.; Krueger, Robin L.; Heldt, Scott A.
2012-01-01
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 106 transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins. PMID:22013043
Richard, Audrey Stéphanie; Zhang, Adam; Park, Sun-Jin; Farzan, Michael; Zong, Min; Choe, Hyeryun
2015-11-24
Phosphatidylserine (PS) receptors contribute to two crucial biological processes: apoptotic clearance and entry of many enveloped viruses. In both cases, they recognize PS exposed on the plasma membrane. Here we demonstrate that phosphatidylethanolamine (PE) is also a ligand for PS receptors and that this phospholipid mediates phagocytosis and viral entry. We show that a subset of PS receptors, including T-cell immunoglobulin (Ig) mucin domain protein 1 (TIM1), efficiently bind PE. We further show that PE is present in the virions of flaviviruses and filoviruses, and that the PE-specific cyclic peptide lantibiotic agent Duramycin efficiently inhibits the entry of West Nile, dengue, and Ebola viruses. The inhibitory effect of Duramycin is specific: it inhibits TIM1-mediated, but not L-SIGN-mediated, virus infection, and it does so by blocking virus attachment to TIM1. We further demonstrate that PE is exposed on the surface of apoptotic cells, and promotes their phagocytic uptake by TIM1-expressing cells. Together, our data show that PE plays a key role in TIM1-mediated virus entry, suggest that disrupting PE association with PS receptors is a promising broad-spectrum antiviral strategy, and deepen our understanding of the process by which apoptotic cells are cleared.
Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents
Heydmann, Laura; Barth, Heidi; Soulier, Eric; Habersetzer, François; Doffoël, Michel; Bukh, Jens; Patel, Arvind H.; Zeisel, Mirjam B.; Baumert, Thomas F.
2014-01-01
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. PMID:24830295
Hoffmann, Markus; Krüger, Nadine; Zmora, Pawel; Wrensch, Florian; Herrler, Georg; Pöhlmann, Stefan
2016-01-01
New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin. PMID:27028521
Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan
2017-05-01
The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells. In contrast, the epidemic virus showed a reduced ability to enter cells of nonhuman primates compared to the virus circulating in 1976, and a single amino acid exchange in the internal fusion loop of the viral glycoprotein was found to account for this phenotype. Copyright © 2017 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
Host cytoskeletons facilitate the entry, replication and egress of viruses; because cytoskeletons are essential for viral survival, one mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these chan...
Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis.
DiGiuseppe, Stephen; Luszczek, Wioleta; Keiffer, Timothy R; Bienkowska-Haba, Malgorzata; Guion, Lucile G M; Sapp, Martin J
2016-05-31
During the entry process, the human papillomavirus (HPV) capsid is trafficked to the trans-Golgi network (TGN), whereupon it enters the nucleus during mitosis. We previously demonstrated that the minor capsid protein L2 assumes a transmembranous conformation in the TGN. Here we provide evidence that the incoming viral genome dissociates from the TGN and associates with microtubules after the onset of mitosis. Deposition onto mitotic chromosomes is L2-mediated. Using differential staining of an incoming viral genome by small molecular dyes in selectively permeabilized cells, nuclease protection, and flotation assays, we found that HPV resides in a membrane-bound vesicle until mitosis is completed and the nuclear envelope has reformed. As a result, expression of the incoming viral genome is delayed. Taken together, these data provide evidence that HPV has evolved a unique strategy for delivering the viral genome to the nucleus of dividing cells. Furthermore, it is unlikely that nuclear vesicles are unique to HPV, and thus we may have uncovered a hitherto unrecognized cellular pathway that may be of interest for future cell biological studies.
Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy.
Garg, Himanshu; Viard, Mathias; Jacobs, Amy; Blumenthal, Robert
2011-12-01
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Secretome Screening Reveals Fibroblast Growth Factors as Novel Inhibitors of Viral Replication.
van Asten, Saskia D; Raaben, Matthijs; Nota, Benjamin; Spaapen, Robbert M
2018-06-13
Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins such as type I interferons, IL-6 or TNF-α. Here, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for their capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSV) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication and not entry. Importantly, an antiviral interferon signature was completely absent in FGF16 treated cells. Nevertheless, the antiviral effect of FGF16 is broad as it was evident on multiple cell types and also on infection of Coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy. Importance Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus we tested 756 human secreted proteins for their capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this first secretome screen on viral infection we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as Coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable to enhance oncolytic virus therapy. Copyright © 2018 American Society for Microbiology.
Proteomic Analysis of Cytoskeleton Proteins in Fish.
Gotesman, Michael; Menanteau-Ledouble, Simon; El-Matbouli, Mansour
2016-01-01
In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish.
Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier; Amara, Ali
2016-01-01
Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV infection relies on the direct recognition of phosphatidylethanolamine and to a lesser extent PtdSer associated with viral particles. This study provides novel insights into the mechanisms that mediate DENV entry and reinforce the concept that DENV uses an apoptotic mimicry strategy for viral entry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Shoemaker, Charles J.; Schornberg, Kathryn L.; Delos, Sue E.; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G.; Johansen, Lisa M.; White, Judith M.
2013-01-01
Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target. PMID:23441171
Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando
2016-01-01
ABSTRACT The live attenuated yellow fever virus (YFV) vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. PMID:26861019
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Porotto; B Rockx; C Yokoyama
2011-12-31
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viralmore » and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.« less
Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery
van Dongen, Helena M.; Masoumi, Niala
2016-01-01
SUMMARY Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors. PMID:26935137
A dormant internal ribosome entry site controls translation of feline immunodeficiency virus.
Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile
2008-04-01
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.
Zhang, Fuxian; Guo, Hong; Zhang, Jie; Chen, Qingxiu; Fang, Qin
2018-01-01
Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered the most pathogenic aquareovirus. However, its productive viral entry pathways remain largely unclear. Using a combination of quantum dot (QD)-based live-virus tracking and biochemical assays, we found that extraction of cellular membrane cholesterol with methyl-β-cyclodextrin (MβCD) and nystatin strongly inhibited the internalization of GCRVs, and supplementation with cholesterol restored viral infection. In addition, the entry of the virus was restrained by genistein, an inhibitor known to block caveolar endocytosis. Subsequent real-time tracking experiments revealed that the QD-labeled GCRV particles were colocalized with caveolin-1, and transfection of cells with dominant-negative mutant (caveolin-1 Y14F) significantly reduced GCRV infection. In contrast, no effects on virus infection were detected when the clathrin-mediated endocytosis or the macropinocytosis inhibitors were used. Our results collectively suggest that aquareoviruses can use caveolae/raft-mediated endocytosis as the primary entry pathway to initiate productive infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes.
Boulo, Sébastien; Akarsu, Hatice; Ruigrok, Rob W H; Baudin, Florence
2007-03-01
Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.
A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses
Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.
2013-01-01
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485
Antiviral Effects of Saffron and its Major Ingredients.
Soleymani, Sepehr; Zabihollahi, Rezvan; Shahbazi, Sepideh; Bolhassani, Azam
2018-01-01
The lack of an effective vaccine against viral infections, toxicity of the synthetic anti-viral drugs and the generation of resistant viral strains led to discover novel inhibitors. Recently, saffron and its compounds were used to treat different pathological conditions. In this study, we tested the anti-HSV-1 and anti-HIV-1 activities of Iranian saffron extract and its major ingredients including crocin and picrocrocin as well as cytotoxicity in vitro. The data showed that the aqueous saffron extract was not active against HIV-1 and HSV-1 virions at certain doses (i.e., a mild activity), but crocin and picrocrocin indicated significant anti-HSV-1 and also anti-HIV-1 activities. Crocin inhibited the HSV replication at before and after entry of virions into Vero cells. Indeed, crocin carotenoid suppressed HSV penetration in the target cells as well as disturbed virus replication after entry into the cells. Picrocrocin was also effective for inhibiting virus entry and also its replication. This monoterpen aldehyde showed higher anti-HSV effects after virus penetrating in the cells. Generally, these sugar-containing compounds extracted from saffron showed to be effective antiherpetic drug candidates. The recent study is the first report suggesting antiviral activities for saffron extract and its major ingredients. Crocin and picrocrocin could be a promising anti-HSV and anti-HIV agent for herbal therapy against viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Loughney, John W; Rustandi, Richard R; Wang, Dai; Troutman, Matthew C; Dick, Lawrence W; Li, Guanghua; Liu, Zhong; Li, Fengsheng; Freed, Daniel C; Price, Colleen E; Hoang, Van M; Culp, Timothy D; DePhillips, Pete A; Fu, Tong-Ming; Ha, Sha
2015-06-26
Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Rodriguez, Marisela R.; Monte, Kristen; Thackray, Larissa B.
2014-01-01
ABSTRACT Human noroviruses (HuNoV) are the leading cause of nonbacterial gastroenteritis worldwide. Similar to HuNoV, murine noroviruses (MNV) are enteric pathogens spread via the fecal-oral route and have been isolated from numerous mouse facilities worldwide. Type I and type II interferons (IFN) restrict MNV-1 replication; however, the antiviral effectors impacting MNV-1 downstream of IFN signaling are largely unknown. Studies using dendritic cells, macrophages, and mice deficient in free and conjugated forms of interferon-stimulated gene 15 (ISG15) revealed that ISG15 conjugation contributes to protection against MNV-1 both in vitro and in vivo. ISG15 inhibited a step early in the viral life cycle upstream of viral genome transcription. Directly transfecting MNV-1 RNA into IFN-stimulated mouse embryonic fibroblasts (MEFs) and bone marrow-derived dendritic cells (BMDC) lacking ISG15 conjugates bypassed the antiviral activity of ISG15, further suggesting that ISG15 conjugates restrict the MNV-1 life cycle at the viral entry/uncoating step. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of early stages of MNV-1 replication. IMPORTANCE Type I IFNs are important in controlling murine norovirus 1 (MNV-1) infections; however, the proteins induced by IFNs that restrict viral growth are largely unknown. This report reveals that interferon-stimulated gene 15 (ISG15) mitigates MNV-1 replication both in vitro and in vivo. In addition, it shows that ISG15 inhibits MNV-1 replication by targeting an early step in the viral life cycle, MNV-1 entry and/or uncoating. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of viral entry/uncoating. PMID:24899198
Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W
2016-06-01
We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain distribution. With ongoing advances, these areas could translate into significantly improved disease control. © 2016 Blackwell Verlag GmbH.
Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1
Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles
2016-01-01
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798
Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.
Bradel-Tretheway, Birgit G; Liu, Qian; Stone, Jacquelyn A; McInally, Samantha; Aguilar, Hector C
2015-07-01
Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.
2015-01-01
ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543
Analysis of the Subunit Stoichiometries in Viral Entry
Magnus, Carsten; Regoes, Roland R.
2012-01-01
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well. PMID:22479399
Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael
2014-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399
Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S
2014-04-01
Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.
Inhibitors of the entry of HIV into host cells.
Meanwell, Nicholas A; Kadow, John F
2003-07-01
The development of mechanistic insight into the process by which HIV enters host cells has revealed a panoply of targets that offer considerable potential as sites for pharmacological intervention. The gp120/gp41 protein complex, expressed on the virion surface, mediates HIV entry by a process initiated by the engagement of the host cell receptor CD4. Subtle conformational changes triggered by this interaction expose elements of gp120 to the seven-transmembrane, G protein-coupled chemokine receptors CCR5 or CXCR4 expressed on host cells, a contact that relieves constraints imposed on gp41 by gp120. This leads to a major conformational rearrangement of gp41, which results in the insertion of the fusion peptide into the host cell membrane and the assembly of the amino terminus heptad repeat into a trimeric form that is subsequently recognized by the carboxy terminal heptad repeat. The latter process leads to juxtaposition of the viral and host cell membranes, a prelude to fusion. The most prominent strategies and targets that are actively being exploited as drug discovery opportunities are inhibition of the attachment of HIV to host cells, blockade of chemokine receptors and interference with the function of gp41. Inhibitors of each of these steps in the HIV entry process with potential clinical relevance are reviewed in the context of their status in the drug development process. The most significant entity to emerge from this area of research to date is enfuvirtide, a 36-amino acid derivative that interferes with the function of gp41. Enfuvirtide is the first HIV entry inhibitor to be granted a license for marketing (it was approved in the US and Europe in March 2003), and its introduction portends the beginning of what promises to be an exciting new era of HIV therapy.
Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu
2002-01-01
Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.
NASA Astrophysics Data System (ADS)
Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan
2016-10-01
Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.
Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus.
Ziem, Benjamin; Rahn, Jessica; Donskyi, Ievgen; Silberreis, Kim; Cuellar, Luis; Dernedde, Jens; Keil, Günther; Mettenleiter, Thomas C; Haag, Rainer
2017-06-01
African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed. Another highly relevant virus infection in pigs is Aujeszky's disease caused by the alphaherpesvirus pseudorabies virus (PrV). This article reports the synthesis and biological evaluation of novel extracellular matrix-inspired entry inhibitors based on polyglycerol sulfate-functionalized graphene sheets. The developed 2D architectures bind enveloped viruses during the adhesion process and thereby exhibit strong inhibitory effects, which are equal or better than the common standards enrofloxacin and heparin as demonstrated for ASFV and PrV. Overall, the developed polyvalent 2D entry inhibitors are nontoxic and efficient nanoarchitectures, which interact with various types of enveloped viruses. Therefore they prevent viral adhesion to the host cell and especially target viruses that rely on a heparan sulfate-dependent cell entry mechanism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf
2012-01-01
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258
Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses
Nora, Tamara; Bouchonnet, Francine; Labrosse, Béatrice; Charpentier, Charlotte; Mammano, Fabrizio; Clavel, François; Hance, Allan J
2008-01-01
Background Numerous studies have shown that viral quasi-species with genetically diverse envelope proteins (Env) replicate simultaneously in patients infected with the human immunodeficiency virus type 1 (HIV-1). Less information is available concerning the extent that envelope sequence diversity translates into a diversity of phenotypic properties, including infectivity and resistance to entry inhibitors. Methods To study these questions, we isolated genetically distinct contemporaneous clonal viral populations from the plasma of 5 HIV-1 infected individuals (n = 70), and evaluated the infectivity of recombinant viruses expressing Env proteins from the clonal viruses in several target cells. The sensitivity to entry inhibitors (enfuvirtide, TAK-799), soluble CD4 and monoclonal antibodies (2G12, 48d, 2F5) was also evaluated for a subset of the recombinant viruses (n = 20). Results Even when comparisons were restricted to viruses with similar tropism, the infectivity for a given target cell of viruses carrying different Env proteins from the same patient varied over an approximately 10-fold range, and differences in their relative ability to infect different target cells were also observed. Variable region haplotypes associated with high and low infectivity could be identified for one patient. In addition, clones carrying unique mutations in V3 often displayed low infectivity. No correlation was observed between viral infectivity and sensitivity to inhibition by any of the six entry inhibitors evaluated, indicating that these properties can be dissociated. Significant inter-patient differences, independent of infectivity, were observed for the sensitivity of Env proteins to several entry inhibitors and their ability to infect different target cells. Conclusion These findings demonstrate the marked functional heterogeneity of HIV-1 Env proteins expressed by contemporaneous circulating viruses, and underscore the advantage of clonal analyses in characterizing the spectrum of functional properties of the genetically diverse viral populations present in a given patient. PMID:18312646
Yan, Huan; Peng, Bo; Liu, Yang; Xu, Guangwei; He, Wenhui; Ren, Bijie; Jing, Zhiyi; Sui, Jianhua
2014-01-01
ABSTRACT The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. IMPORTANCE Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection. PMID:24390325
Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R.; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi
2011-01-01
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR. PMID:21642441
Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi
2011-07-22
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.
A Stiffness Switch in Human Immunodeficiency Virus
Kol, Nitzan; Shi, Yu; Tsvitov, Marianna; Barlam, David; Shneck, Roni Z.; Kay, Michael S.; Rousso, Itay
2007-01-01
After budding from the cell, human immunodeficiency virus (HIV) and other retrovirus particles undergo a maturation process that is required for their infectivity. During maturation, HIV particles undergo a significant internal morphological reorganization, changing from a roughly spherically symmetric immature particle with a thick protein shell to a mature particle with a thin protein shell and conical core. However, the physical principles underlying viral particle production, maturation, and entry into cells remain poorly understood. Here, using nanoindentation experiments conducted by an atomic force microscope (AFM), we report the mechanical measurements of HIV particles. We find that immature particles are more than 14-fold stiffer than mature particles and that this large difference is primarily mediated by the HIV envelope cytoplasmic tail domain. Finite element simulation shows that for immature virions the average Young's modulus drops more than eightfold when the cytoplasmic tail domain is deleted (930 vs. 115 MPa). We also find a striking correlation between the softening of viruses during maturation and their ability to enter cells, providing the first evidence, to our knowledge, for a prominent role for virus mechanical properties in the infection process. These results show that HIV regulates its mechanical properties at different stages of its life cycle (i.e., stiff during viral budding versus soft during entry) and that this regulation may be important for efficient infectivity. Our report of this maturation-induced “stiffness switch” in HIV establishes the groundwork for mechanistic studies of how retroviral particles can regulate their mechanical properties to affect biological function. PMID:17158573
Viral Suppression and Resistance in a Cohort of Perinatally-HIV Infected (PHIV+) Pregnant Women
Cruz, Maria Letícia; Santos, Edwiges; Benamor Teixeira, Maria de Lourdes; Poletti, Monica; Sousa, Carolina; Gouvea, Maria Isabel; Nielsen-Saines, Karin; João, Esaú
2016-01-01
Our objective was to describe viral suppression and antiretroviral (ARV) resistance mutations in an ongoing cohort of perinatally-infected HIV+ (PHIV+) pregnant women. Descriptive analysis was performed using SPSS 18.0. From 2011 to 2014, we followed 22 PHIV+ pregnant women. Median age at prenatal entry was 19 years (Interquartile range (IQR) 17.6–21.0); 86% had an AIDS diagnosis; 81% had disclosed their HIV status to partner 11. The median age at HIV diagnosis was 8.3 y (IQR 4.0–13.6), the median age at sexual debut was 16 years (IQR 14–18). At the time of prenatal care initiation, four (18%) were on their first antiretroviral treatment (ART), eight (36%) in their second regimen and nine (41%) in their third regimen or beyond, and one had no data. Seventeen of 22 (77%) had HIV-viral load (VL) > 50 copies/mL at prenatal care entry, 16 had a genotyping exam performed. Seventeen of 22 PHIV+ had VL results near delivery: 7/17 (41%) had VL < 50 copies/mL. Among those who had genotyping at prenatal entry, 11/16 (69%) had mutations associated with ARV resistance. The most frequent major mutations were K103N, M184V, T215, M41L, D67N at reverse transcriptase gene and M46, I54V and V82A at protease gene. No vertical transmissions occurred. Management of pregnancy among PHIV+ is challenging. Individualized ART are needed to achieve viral suppression in a highly ART-exposed subpopulation. PMID:27338425
Viral Suppression and Resistance in a Cohort of Perinatally-HIV Infected (PHIV+) Pregnant Women.
Cruz, Maria Letícia; Santos, Edwiges; Benamor Teixeira, Maria de Lourdes; Poletti, Monica; Sousa, Carolina; Gouvea, Maria Isabel; Nielsen-Saines, Karin; João, Esaú
2016-06-07
Our objective was to describe viral suppression and antiretroviral (ARV) resistance mutations in an ongoing cohort of perinatally-infected HIV+ (PHIV+) pregnant women. Descriptive analysis was performed using SPSS 18.0. From 2011 to 2014, we followed 22 PHIV+ pregnant women. Median age at prenatal entry was 19 years (Interquartile range (IQR) 17.6-21.0); 86% had an AIDS diagnosis; 81% had disclosed their HIV status to partner 11. The median age at HIV diagnosis was 8.3 y (IQR 4.0-13.6), the median age at sexual debut was 16 years (IQR 14-18). At the time of prenatal care initiation, four (18%) were on their first antiretroviral treatment (ART), eight (36%) in their second regimen and nine (41%) in their third regimen or beyond, and one had no data. Seventeen of 22 (77%) had HIV-viral load (VL) > 50 copies/mL at prenatal care entry, 16 had a genotyping exam performed. Seventeen of 22 PHIV+ had VL results near delivery: 7/17 (41%) had VL < 50 copies/mL. Among those who had genotyping at prenatal entry, 11/16 (69%) had mutations associated with ARV resistance. The most frequent major mutations were K103N, M184V, T215, M41L, D67N at reverse transcriptase gene and M46, I54V and V82A at protease gene. No vertical transmissions occurred. Management of pregnancy among PHIV+ is challenging. Individualized ART are needed to achieve viral suppression in a highly ART-exposed subpopulation.
Glycoprotein Targeted Therapeutics: A New Era of Anti-Herpes Simplex Virus-1 Therapeutics
Antoine, Thessicar; Park, Paul J.; Shukla, Deepak
2013-01-01
Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Due to the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting. PMID:23440920
Productive Entry of HIV-1 during Cell-to-Cell Transmission via Dynamin-Dependent Endocytosis
Sloan, Richard D.; Kuhl, Björn D.; Mesplède, Thibault; Münch, Jan; Donahue, Daniel A.
2013-01-01
HIV-1 can be transmitted as cell-free virus or via cell-to-cell contacts. Cell-to-cell transmission between CD4+ T cells is the more efficient mode of transmission and is predominant in lymphoid tissue, where the majority of virus resides. Yet the cellular mechanisms underlying productive cell-to-cell transmission in uninfected target cells are unclear. Although it has been demonstrated that target cells can take up virus via endocytosis, definitive links between this process and productive infection remain undefined, and this route of transmission has been proposed to be nonproductive. Here, we report that productive cell-to-cell transmission can occur via endocytosis in a dynamin-dependent manner and is sensitive to clathrin-associated antagonists. These data were obtained in a number of CD4+ T-cell lines and in primary CD4+ T cells, using both CXCR4- and CCR5-tropic virus. However, we also found that HIV-1 demonstrated flexibility in its use of such endocytic pathways as certain allogeneic transmissions were seen to occur in a dynamin-dependent manner but were insensitive to clathrin-associated antagonists. Also, depleting cells of the clathrin accessory protein AP180 led to a viral uptake defect associated with enhanced infection. Collectively, these data demonstrate that endosomal uptake of HIV-1 during cell-to-cell transmission leads to productive infection, but they are also indicative of a flexible model of viral entry during cell-to-cell transmission, in which the virus can alter its entry route according to the pressures that it encounters. PMID:23678185
Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan
2012-01-01
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045
A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus▿
Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile
2008-01-01
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5′ untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5′ UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a “dormant” IRES that becomes activated by viral infection and cellular stress. PMID:18234788
Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo
2013-01-01
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574
Platelet activation suppresses HIV-1 infection of T cells
2013-01-01
Background Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. Results We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Conclusions Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens. PMID:23634812
Platelet activation suppresses HIV-1 infection of T cells.
Solomon Tsegaye, Theodros; Gnirß, Kerstin; Rahe-Meyer, Niels; Kiene, Miriam; Krämer-Kühl, Annika; Behrens, Georg; Münch, Jan; Pöhlmann, Stefan
2013-05-01
Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruel, Nancy; Zago, Anna; Spear, Patricia G.
2006-03-01
Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo
2017-01-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. PMID:28213527
IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES)
Kolekar, Pandurang; Pataskar, Abhijeet; Kulkarni-Kale, Urmila; Pal, Jayanta; Kulkarni, Abhijeet
2016-01-01
Cellular mRNAs are predominantly translated in a cap-dependent manner. However, some viral and a subset of cellular mRNAs initiate their translation in a cap-independent manner. This requires presence of a structured RNA element, known as, Internal Ribosome Entry Site (IRES) in their 5′ untranslated regions (UTRs). Experimental demonstration of IRES in UTR remains a challenging task. Computational prediction of IRES merely based on sequence and structure conservation is also difficult, particularly for cellular IRES. A web server, IRESPred is developed for prediction of both viral and cellular IRES using Support Vector Machine (SVM). The predictive model was built using 35 features that are based on sequence and structural properties of UTRs and the probabilities of interactions between UTR and small subunit ribosomal proteins (SSRPs). The model was found to have 75.51% accuracy, 75.75% sensitivity, 75.25% specificity, 75.75% precision and Matthews Correlation Coefficient (MCC) of 0.51 in blind testing. IRESPred was found to perform better than the only available viral IRES prediction server, VIPS. The IRESPred server is freely available at http://bioinfo.net.in/IRESPred/. PMID:27264539
Oral CCR5 inhibitors: will they make it through?
Biswas, Priscilla; Nozza, Silvia; Scarlatti, Gabriella; Lazzarin, Adriano; Tambussi, Giuseppe
2006-05-01
The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Kouki; Hattori, Shinichiro; Kariya, Ryusho
Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.
Talaei Zanjani, Negar; Miranda-Saksena, Monica; Valtchev, Peter; Hueston, Linda; Diefenbach, Eve; Sairi, Fareed; Gomes, Vincent G.
2015-01-01
A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections. PMID:26643336
Structure and Uncoating of Immature Adenovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Berna, A.J.; Mangel, W.; Marabini, R.
2009-09-18
Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less
Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.
Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence
2018-03-15
Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of VAP blocks HPV infectious entry at a step after capsid uncoating but prior to localization at the trans -Golgi network. These results define a critical role for ER-associated VAP in endocytic tubulation and in HPV-16 infectious entry. Copyright © 2018 American Society for Microbiology.
Kurosaki, Yohei; Ueda, Mahoko Takahashi; Nakano, Yusuke; Yasuda, Jiro; Koyanagi, Yoshio; Sato, Kei; Nakagawa, So
2018-01-04
Ebola virus (EBOV), which belongs to the genus Ebolavirus, causes a severe and often fatal infection in primates, including humans, whereas Reston virus (RESTV) only causes lethal disease in non-human primates. Two amino acids (aa) at positions 82 and 544 of the EBOV glycoprotein (GP) are involved in determining viral infectivity. However, it remains unclear how these two aa residues affect the infectivity of Ebolavirus species in various hosts. Here we performed viral pseudotyping experiments with EBOV and RESTV GP derivatives in 10 cell lines from 9 mammalian species. We demonstrated that isoleucine at position 544/545 increases viral infectivity in all host species, whereas valine at position 82/83 modulates viral infectivity, depending on the viral and host species. Structural modelling suggested that the former residue affects viral fusion, whereas the latter residue influences the interaction with the viral entry receptor, Niemann-Pick C1.
Nakano, Yusuke; Yasuda, Jiro; Koyanagi, Yoshio; Sato, Kei; Nakagawa, So
2018-01-01
Ebola virus (EBOV), which belongs to the genus Ebolavirus, causes a severe and often fatal infection in primates, including humans, whereas Reston virus (RESTV) only causes lethal disease in non-human primates. Two amino acids (aa) at positions 82 and 544 of the EBOV glycoprotein (GP) are involved in determining viral infectivity. However, it remains unclear how these two aa residues affect the infectivity of Ebolavirus species in various hosts. Here we performed viral pseudotyping experiments with EBOV and RESTV GP derivatives in 10 cell lines from 9 mammalian species. We demonstrated that isoleucine at position 544/545 increases viral infectivity in all host species, whereas valine at position 82/83 modulates viral infectivity, depending on the viral and host species. Structural modelling suggested that the former residue affects viral fusion, whereas the latter residue influences the interaction with the viral entry receptor, Niemann–Pick C1. PMID:29300152
Ng, Wy Ching; Londrigan, Sarah L; Nasr, Najla; Cunningham, Anthony L; Turville, Stuart; Brooks, Andrew G; Reading, Patrick C
2016-01-01
It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan
2016-01-01
Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100
Liu, Qian; Stone, Jacquelyn A.; Bradel-Tretheway, Birgit; Dabundo, Jeffrey; Benavides Montano, Javier A.; Santos-Montanez, Jennifer; Biering, Scott B.; Nicola, Anthony V.; Iorio, Ronald M.; Lu, Xiaonan; Aguilar, Hector C.
2013-01-01
Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry. PMID:24278018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Eric G.; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599; Coffield, Vernon M.
2005-06-05
We previously described a thymus-tropic HIV-1 envelope (R3A Env) from a rapid progressor obtained at the time of transmission. An HIV-1 molecular recombinant with the R3A Env supported extensive replication and pathogenesis in the thymus and did not require Nef. Another Env from the same patient did not display the same thymus-tropic pathogenesis (R3B Env). Here, we show that relative to R3B Env, R3A Env enhances viral entry of T cells, increases fusion-induced cytopathicity, and shows elevated binding efficiency for both CD4 and CXCR4, but not CCR5, in vitro. We created chimeric envelopes to determine the region(s) responsible for eachmore » in vitro phenotype and for thymic pathogenesis. Surprisingly, while V1/V2 contributed to enhanced viral entry, CD4 binding efficiency, and cytopathicity in vitro, it made no contribution to thymic pathogenesis. Rather, CXCR4 binding efficiency and V5-gp41-associated activity appear to independently contribute to thymic pathogenesis of the R3A Env. These data highlight the contribution of unique HIV pathogenic factors in the thymic microenvironment and suggest that novel mechanisms may be involved in Env pathogenic activity in vivo.« less
Cui, Xiaohong; Adler, Stuart P.; Schleiss, Mark R.; Demmler Harrison, Gail J.
2017-01-01
ABSTRACT Cytomegalovirus (CMV) causes sensorineural hearing loss and developmental disabilities in newborns when infections are acquired in utero. Pregnant women may acquire CMV from oral exposure to CMV in urine or saliva from young children. Neutralizing antibodies in maternal saliva have the potential to prevent maternal infection and, in turn, fetal infection. As CMV uses different viral glycoprotein complexes to enter different cell types, the first cells to be infected in the oral cavity could determine the type of antibodies needed to disrupt oral transmission. Antibodies targeting the pentameric complex (PC) should block CMV entry into epithelial cells but not into fibroblasts or Langerhans cells (which do not require the PC for entry), while antibodies targeting glycoprotein complexes gB or gH/gL would be needed to block entry into fibroblasts, Langerhans cells, or other cell types. To assess the potential for antibodies to disrupt oral acquisition, CMV from culture-positive urine samples (uCMV) was used to study cell tropisms and sensitivity to antibody neutralization. uCMV entered epithelial cells poorly compared with the entry into fibroblasts. CMV-hyperimmune globulin or monoclonal antibodies targeting gB, gH/gL, or the PC were incapable of blocking the entry of uCMV into either fibroblasts or epithelial cells. Both phenotypes were lost after one passage in cultured fibroblasts, suggestive of a nongenetic mechanism. These results suggest that uCMV virions have a reversible block to epithelial cell entry. Antibodies may be ineffective in preventing maternal oral CMV acquisition but may limit viral spread in blood or tissues, thereby reducing or preventing fetal infection and disease. PMID:28404573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knipe, David M., E-mail: david_knipe@hms.harvard.edu
Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing ofmore » HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.« less
Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok
2012-01-01
Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425
Human herpes simplex viruses in benign and malignant thyroid tumours.
Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl
2010-06-01
To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.
Early virologic response to abacavir/lamivudine and tenofovir/emtricitabine during ACTG A5202
Grant, Philip M.; Tierney, Camlin; Budhathoki, Chakra; Daar, Eric S.; Sax, Paul E.; Collier, Ann C.; Fischl, Margaret A.; Zolopa, Andrew R.; Balamane, Maya; Katzenstein, David
2014-01-01
Background ACTG A5202 randomized treatment-naive individuals to tenofovir-emtricitabine (TDF/FTC) or abacavir-lamivudine (ABC/3TC) combined with efavirenz (EFV) or atazanavir/ritonavir (ATV/r). Individuals in the high screening viral load (VL) stratum (≥100,000 copies/mL) had increased rates of virologic failure with ABC/3TC. Objective Compare regimen-specific early virologic response. Methods Using Wilcoxon rank-sum tests, we compared regimen-specific VL changes from entry to week 4 in A5202 subjects (n=1813) and from entry to week 1, 2 and 4 in a 179-patient substudy. We evaluated associations between week 4 VL change and time to virologic failure with Cox proportional-hazards models. Results TDF/FTC- and ABC/3TC produced similar Week 4 viral load declines in the entire study population and in the high VL stratum. EFV produced greater VL declines from baseline at week 4 than ATV/r (median −2.1 vs. −1.9 log10 copies/mL; p<0.001). In the substudy of subjects with week 1, 2 and 4 VL data, there was no difference in viral load decline in those randomized to TDF/FTC versus ABC/3TC, but EFV resulted in greater VL decline from entry at each of these timepoints than ATV/r. Smaller Week 4 viral load decline was associated with increased risk of virologic failure. Conclusions Within all treatment arms, a less robust week 4 virologic response was associated with higher risk for subsequent virologic failure. However, between-regimen differences in week 4 VL declines did not parallel the previously reported differences in longer term virologic efficacy in A5202, suggesting that between-regimen differences in responses were not due to intrinsic differences in antiviral activity. PMID:24334181
Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity
Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin
2015-01-01
Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection. PMID:25835532
Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity.
Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin
2015-03-31
Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.
Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R; Li, Melody M H; Rice, Charles M; MacDonald, Margaret R
2016-01-06
DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.
2016-01-01
ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development. PMID:26739057
Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward
2014-01-01
Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215
Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry
Brandenberg, Oliver F.; Magnus, Carsten; Rusert, Peter; Regoes, Roland R.; Trkola, Alexandra
2015-01-01
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. PMID:25569556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng,Y.; Liu, J.; Zheng, Q.
Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct a-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest amore » possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.« less
Huang, Jiaoyan; Yan, Wenzhong; Wang, Jinglan; Su, Dan; Ni, Cheng; Li, Jian; Rao, Zihe; Liu, Lei; Lou, Zhiyong
2014-01-01
Viruses utilize host factors for their efficient proliferation. By evaluating the inhibitory effects of compounds in our library, we identified inhibitors of cyclophilin A (CypA), a known immunosuppressor with peptidyl-prolyl cis-trans isomerase activity, can significantly attenuate EV71 proliferation. We demonstrated that CypA played an essential role in EV71 entry and that the RNA interference-mediated reduction of endogenous CypA expression led to decreased EV71 multiplication. We further revealed that CypA directly interacted with and modified the conformation of H-I loop of the VP1 protein in EV71 capsid, and thus regulated the uncoating process of EV71 entry step in a pH-dependent manner. Our results aid in the understanding of how host factors influence EV71 life cycle and provide new potential targets for developing antiviral agents against EV71 infection. PMID:25275585
Nelson, Elizabeth A.; Barnes, Alyson B.; Wiehle, Ronald D.; Fontenot, Gregory K.; Hoenen, Thomas; White, Judith M.
2016-01-01
The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors. PMID:27490565
Nelson, Elizabeth A; Barnes, Alyson B; Wiehle, Ronald D; Fontenot, Gregory K; Hoenen, Thomas; White, Judith M
2016-08-02
The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors.
Protoparvovirus Knocking at the Nuclear Door.
Mäntylä, Elina; Kann, Michael; Vihinen-Ranta, Maija
2017-10-02
Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
2009-04-01
USA.) Abstract: The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated...of the fusion activity of F. Key words: Hendra virus; Nipah virus; Henipavirus; Paramyxovirus; Viral entry Hendra virus (HeV) and Nipah virus...distribution unlimited 13. SUPPLEMENTARY NOTES Virologica Sinica, April 2009, 24(2) 110-120 14. ABSTRACT The henipaviruses, represented by Nipah
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J
2017-05-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Questing for an optimal, universal viral agent for oncolytic virotherapy
NASA Astrophysics Data System (ADS)
Paiva, L. R.; Martins, M. L.; Ferreira, S. C.
2011-10-01
One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.
Stone, Jacquelyn A; Vemulapati, Bhadra M; Bradel-Tretheway, Birgit; Aguilar, Hector C
2016-12-01
The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G) and fusion (F) glycoproteins. Binding of G to the ephrinB2 or ephrinB3 cell receptors triggers conformational changes in G that in turn cause F to undergo conformational changes that result in virus-host cell membrane fusion and viral entry. It is currently unknown, however, which specific regions of G and F interact during membrane fusion. Past efforts to determine the interacting regions have relied mainly on coimmunoprecipitation, a technique with some pitfalls. We developed a flow-cytometric assay to study membrane protein-protein interactions, and using this assay we report a bidentate interaction whereby both the head and stalk regions of NiV G interact with NiV F, a new finding for the paramyxovirus family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endsley, Mark A., E-mail: maendsle@utmb.edu; Somasunderam, Anoma D., E-mail: asomasun@utmb.edu; Li, Guangyu, E-mail: LIG001@mail.etsu.edu
Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizesmore » with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.« less
König, Alexander; Glebe, Dieter
2017-01-01
To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.
Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J S Malik; Poon, Leo Lit Man; Tan, Yee-Joo
2014-01-01
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941-50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.
TAM Receptors Are Not Required for Zika Virus Infection in Mice.
Hastings, Andrew K; Yockey, Laura J; Jagger, Brett W; Hwang, Jesse; Uraki, Ryuta; Gaitsch, Hallie F; Parnell, Lindsay A; Cao, Bin; Mysorekar, Indira U; Rothlin, Carla V; Fikrig, Erol; Diamond, Michael S; Iwasaki, Akiko
2017-04-18
Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl -/- , Mertk -/- , Axl -/- Mertk -/- , and Axl -/- Tyro3 -/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Modes of Paramyxovirus Fusion: a Henipavirus perspective
Lee, Benhur; Akyol-Ataman, Zeynep
2011-01-01
Henipavirus is a new genus of paramyxovirus that uses protein-based receptors (EphrinB2 and EphrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including recent structures of Nipah and Hendra virus G bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion differs mechanistically from paramyxoviruses that use glycan-based receptors. PMID:21511478
Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells
2011-01-01
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry. PMID:21816061
Sainz, Bruno; Barretto, Naina; Martin, Danyelle N.; Hiraga, Nobuhiko; Imamura, Michio; Hussain, Snawar; Marsh, Katherine A.; Yu, Xuemei; Chayama, Kazuaki; Alrefai, Waddah A.; Uprichard, Susan L.
2011-01-01
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent. PMID:22231557
Analysis of HSV viral reactivation in explants of sensory neurons
Turner, Anne-Marie W.; Kristie, Thomas M.
2014-01-01
As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271
Quantitative Analysis of HIV-1 Preintegration Complexes
Engelman, Alan; Oztop, Ilker; Vandegraaff, Nick; Raghavendra, Nidhanapati K.
2009-01-01
Retroviral replication proceeds through the formation of a provirus, an integrated DNA copy of the viral RNA genome. The linear cDNA product of reverse transcription is the integration substrate and two different integrase activities, 3′ processing and DNA strand transfer, are required for provirus formation. Integrase nicks the cDNA ends adjacent to phylogenetically-conserved CA dinucleotides during 3′ processing. After nuclear entry and locating a suitable chromatin acceptor site, integrase joins the recessed 3′-OHs to the 5′-phosphates of a double-stranded staggered cut in the DNA target. Integrase functions in the context of a large nucleoprotein complex, called the preintegration complex (PIC), and PICs are analyzed to determine levels of integrase 3′ processing and DNA strand transfer activities that occur during acute virus infection. Denatured cDNA end regions are monitored by indirect end-labeling to measure the extent of 3′ processing. Native PICs can efficiently integrate their viral cDNA into exogenously added target DNA in vitro, and Southern blotting or nested PCR assays are used to quantify the resultant DNA strand transfer activity. This study details HIV-1 infection, PIC extraction, partial purification, and quantitative analyses of integrase 3′ processing and DNA strand transfer activities. PMID:19233280
Reinke, Lennart Michel; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated. PMID:28636671
Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan
2017-01-01
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.
Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.
2018-01-01
Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454
Yang, Shu; Xu, Miao; Lee, Emily M; Gorshkov, Kirill; Shiryaev, Sergey A; He, Shihua; Sun, Wei; Cheng, Yu-Shan; Hu, Xin; Tharappel, Anil Mathew; Lu, Billy; Pinto, Antonella; Farhy, Chen; Huang, Chun-Teng; Zhang, Zirui; Zhu, Wenjun; Wu, Yuying; Zhou, Yi; Song, Guang; Zhu, Heng; Shamim, Khalida; Martínez-Romero, Carles; García-Sastre, Adolfo; Preston, Richard A; Jayaweera, Dushyantha T; Huang, Ruili; Huang, Wenwei; Xia, Menghang; Simeonov, Anton; Ming, Guoli; Qiu, Xiangguo; Terskikh, Alexey V; Tang, Hengli; Song, Hongjun; Zheng, Wei
2018-01-01
The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC 50 ) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.
HIV and Drug Resistance: Hitting a Moving Target | Center for Cancer Research
Prior research revealed how HIV-1 makes its destructive entry into the target cell by fusing together the cholesterol-rich lipid bilayer of the viral envelope—made with key glycoproteins gp120 and gp41—and the host cell’s plasma membrane. Cell-viral interactions begin with the binding of gp120 to the CD4 receptor molecule on the target cell, followed by gp120 binding to
Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells
Hagedorn, Curt H.
2015-01-01
Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid’s structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation. PMID:26186636
RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry
Siddiqui, Mohammad Adnan; Dayal, Shubham; Naji, Merna; Ezelle, Heather J.; Zeng, Chun; Zhou, Aimin; Hassel, Bret A.
2014-01-01
ABSTRACT The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. PMID:25352621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Anwar M.; Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON
Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it couldmore » be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.« less
Nain, Minu; Mukherjee, Sriparna; Karmakar, Sonali Porey; Paton, Adrienne W; Paton, James C; Abdin, M Z; Basu, Anirban; Kalia, Manjula; Vrati, Sudhanshu
2017-03-15
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the leading cause of viral encephalitis in Southeast Asia with potential to become a global pathogen. Here, we identify glucose-regulated protein 78 (GRP78) as an important host protein for virus entry and replication. Using the plasma membrane fractions from mouse neuronal (Neuro2a) cells, mass spectroscopy analysis identified GRP78 as a protein interacting with recombinant JEV envelope protein domain III. GRP78 was found to be expressed on the plasma membranes of Neuro2a cells, mouse primary neurons, and human epithelial Huh-7 cells. Antibodies against GRP78 significantly inhibited JEV entry in all three cell types, suggesting an important role of the protein in virus entry. Depletion of GRP78 by small interfering RNA (siRNA) significantly blocked JEV entry into Neuro2a cells, further supporting its role in virus uptake. Immunofluorescence studies showed extensive colocalization of GRP78 with JEV envelope protein in virus-infected cells. This interaction was also confirmed by immunoprecipitation studies. Additionally, GRP78 was shown to have an important role in JEV replication, as treatment of cells post-virus entry with subtilase cytotoxin that specifically cleaved GRP78 led to a substantial reduction in viral RNA replication and protein synthesis, resulting in significantly reduced extracellular virus titers. Our results indicate that GRP78, an endoplasmic reticulum chaperon of the HSP70 family, is a novel host factor involved at multiple steps of the JEV life cycle and could be a potential therapeutic target. IMPORTANCE Recent years have seen a rapid spread of mosquito-borne diseases caused by flaviviruses. The flavivirus family includes West Nile, dengue, Japanese encephalitis, and Zika viruses, which are major threats to public health with potential to become global pathogens. JEV is the major cause of viral encephalitis in several parts of Southeast Asia, affecting a predominantly pediatric population with a high mortality rate. This study is focused on identification of crucial host factors that could be targeted to cripple virus infection and ultimately lead to development of effective antivirals. We have identified a cellular protein, GRP78, that plays a dual role in virus entry and virus replication, two crucial steps of the virus life cycle, and thus is a novel host factor that could be a potential therapeutic target. Copyright © 2017 American Society for Microbiology.
Live-Cell Imaging of Early Steps of Single HIV-1 Infection.
Francis, Ashwanth C; Melikyan, Gregory B
2018-05-19
Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.
Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site
Ding, Kejia; Wang, Annie; Boerneke, Mark A.; Dibrov, Sergey M.; Hermann, Thomas
2014-01-01
We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex. PMID:24856063
Saso, Wakana; Tsukuda, Senko; Ohashi, Hirofumi; Fukano, Kento; Morishita, Ryo; Matsunaga, Satoko; Ohki, Mio; Ryo, Akihide; Park, Sam-Yong; Suzuki, Ryosuke; Aizaki, Hideki; Muramatsu, Masamichi; Sureau, Camille; Wakita, Takaji; Matano, Tetsuro; Watashi, Koichi
2018-06-22
Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J
2014-12-01
Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.
Chen, Qing; Tang, Ke; Zhang, Xiaoyu; Chen, Panpan; Guo, Ying
2018-03-01
Filoviruses cause severe and fatal viral hemorrhagic fever in humans. Filovirus research has been extensive since the 2014 Ebola outbreak. Due to their high pathogenicity and mortality, live filoviruses require Biosafety Level-4 (BSL-4) facilities, which have restricted the development of anti-filovirus vaccines and drugs. An HIV-based pseudovirus cell infection assay is widely used for viral entry studies in BSL-2 conditions. Here, we successfully constructed nine in vitro pseudo-filovirus models covering all filovirus genera and three in vivo pseudo-filovirus-infection mouse models using Ebola virus, Marburg virus, and Lloviu virus as representative viruses. The pseudo-filovirus-infected mice showed visualizing bioluminescence in a dose-dependent manner. A bioluminescence peak in mice was reached on day 5 post-infection for Ebola virus and Marburg virus and on day 4 post-infection for Lloviu virus. Two known filovirus entry inhibitors, clomiphene and toremiphene, were used to validate the model. Collectively, our study shows that all genera of filoviruses can be well-pseudotyped and are infectious in vitro . The pseudo-filovirus-infection mouse models can be used for in vivo activity evaluation of anti-filovirus drugs. This sequential in vitro and in vivo evaluation system of filovirus entry inhibitors provides a secure and efficient platform for screening and assessing anti-filovirus agents in BSL-2 facilities.
Archaeal viruses at the cell envelope: entry and egress
Quemin, Emmanuelle R. J.; Quax, Tessa E. F.
2015-01-01
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane. PMID:26097469
Human La binds mRNAs through contacts to the poly(A) tail.
Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A
2018-05-04
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
IFITM3-containing exosome as a novel mediator for anti-viral response in dengue virus infection.
Zhu, Xun; He, Zhenjian; Yuan, Jie; Wen, Weitao; Huang, Xuan; Hu, Yiwen; Lin, Cuiji; Pan, Jing; Li, Ran; Deng, Haijing; Liao, Shaowei; Zhou, Rui; Wu, Jueheng; Li, Jun; Li, Mengfeng
2015-01-01
Interferon-inducible transmembrane proteins 1, 2 and 3 (IFITM1, IFITM2 and IFITM3) have recently been identified as potent antiviral effectors that function to suppress the entry of a broad range of enveloped viruses and modulate cellular tropism independent of viral receptor expression. However, the antiviral effect and mechanisms of IFITMs in response to viral infections remain incompletely understood and characterized. In this work, we focused our investigation on the function of the extracellular IFITM3 protein. In cell models of DENV-2 infection, we found that IFITM3 contributed to both the baseline and interferon-induced inhibition of DENV entry. Most importantly, our study for the first time demonstrated the presence of IFITM-containing exosome in the extracellular environment, and identified an ability of cellular exosome to intercellularly deliver IFITM3 and thus transmit its antiviral effect from infected to non-infected cells. Thus, our findings provide new insights in the basic mechanisms underlying the actions of IFITM3, which might lead to future development of exosome-mediated anti-viral strategies using IFITM3 as a therapeutic agent. Conceivably, variations in the basal and inducible levels of IFITMs, as well as in intracellular and extracellular levels of IFITMs, might predict the severity of dengue virus infections among individuals or across species. © 2014 John Wiley & Sons Ltd.
2012-01-01
Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (−) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (−) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection. PMID:22857383
Design and characterization of ebolavirus GP prehairpin intermediate mimics as drug targets
Clinton, Tracy R; Weinstock, Matthew T; Jacobsen, Michael T; Szabo-Fresnais, Nicolas; Pandya, Maya J; Whitby, Frank G; Herbert, Andrew S; Prugar, Laura I; McKinnon, Rena; Hill, Christopher P; Welch, Brett D; Dye, John M; Eckert, Debra M; Kay, Michael S
2015-01-01
Ebolaviruses are highly lethal filoviruses that cause hemorrhagic fever in humans and nonhuman primates. With no approved treatments or preventatives, the development of an anti-ebolavirus therapy to protect against natural infections and potential weaponization is an urgent global health need. Here, we describe the design, biophysical characterization, and validation of peptide mimics of the ebolavirus N-trimer, a highly conserved region of the GP2 fusion protein, to be used as targets to develop broad-spectrum inhibitors of ebolavirus entry. The N-trimer region of GP2 is 90% identical across all ebolavirus species and forms a critical part of the prehairpin intermediate that is exposed during viral entry. Specifically, we fused designed coiled coils to the N-trimer to present it as a soluble trimeric coiled coil as it appears during membrane fusion. Circular dichroism, sedimentation equilibrium, and X-ray crystallography analyses reveal the helical, trimeric structure of the designed N-trimer mimic targets. Surface plasmon resonance studies validate that the N-trimer mimic binds its native ligand, the C-peptide region of GP2. The longest N-trimer mimic also inhibits virus entry, thereby confirming binding of the C-peptide region during viral entry and the presence of a vulnerable prehairpin intermediate. Using phage display as a model system, we validate the suitability of the N-trimer mimics as drug screening targets. Finally, we describe the foundational work to use the N-trimer mimics as targets in mirror-image phage display, which will be used to identify d-peptide inhibitors of ebolavirus entry. PMID:25287718
Baculovirus GP64-mediated entry into mammalian cells.
Kataoka, Chikako; Kaname, Yuuki; Taguwa, Shuhei; Abe, Takayuki; Fukuhara, Takasuke; Tani, Hideki; Moriishi, Kohji; Matsuura, Yoshiharu
2012-03-01
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.
Design and characterization of ebolavirus GP prehairpin intermediate mimics as drug targets.
Clinton, Tracy R; Weinstock, Matthew T; Jacobsen, Michael T; Szabo-Fresnais, Nicolas; Pandya, Maya J; Whitby, Frank G; Herbert, Andrew S; Prugar, Laura I; McKinnon, Rena; Hill, Christopher P; Welch, Brett D; Dye, John M; Eckert, Debra M; Kay, Michael S
2015-04-01
Ebolaviruses are highly lethal filoviruses that cause hemorrhagic fever in humans and nonhuman primates. With no approved treatments or preventatives, the development of an anti-ebolavirus therapy to protect against natural infections and potential weaponization is an urgent global health need. Here, we describe the design, biophysical characterization, and validation of peptide mimics of the ebolavirus N-trimer, a highly conserved region of the GP2 fusion protein, to be used as targets to develop broad-spectrum inhibitors of ebolavirus entry. The N-trimer region of GP2 is 90% identical across all ebolavirus species and forms a critical part of the prehairpin intermediate that is exposed during viral entry. Specifically, we fused designed coiled coils to the N-trimer to present it as a soluble trimeric coiled coil as it appears during membrane fusion. Circular dichroism, sedimentation equilibrium, and X-ray crystallography analyses reveal the helical, trimeric structure of the designed N-trimer mimic targets. Surface plasmon resonance studies validate that the N-trimer mimic binds its native ligand, the C-peptide region of GP2. The longest N-trimer mimic also inhibits virus entry, thereby confirming binding of the C-peptide region during viral entry and the presence of a vulnerable prehairpin intermediate. Using phage display as a model system, we validate the suitability of the N-trimer mimics as drug screening targets. Finally, we describe the foundational work to use the N-trimer mimics as targets in mirror-image phage display, which will be used to identify D-peptide inhibitors of ebolavirus entry. © 2014 The Protein Society.
Poliovirus Cell Entry: Common Structural Themes in Viral Cell Entry Pathways
Hogle, James M.
2006-01-01
Structural studies of polio- and closely related viruses have provided a series of snapshots along their cell entry pathways. Based on the structures and related kinetic, biochemical, and genetic studies, we have proposed a model for the cell entry pathway for polio- and closely related viruses. In this model a maturation cleavage of a capsid protein precursor locks the virus in a metastable state, and the receptor acts like a transition-state catalyst to overcome an energy barrier and release the mature virion from the metastable state. This initiates a series of conformational changes that allow the virus to attach to membranes, form a pore, and finally release its RNA genome into the cytoplasm. This model has striking parallels with emerging models for the maturation and cell entry of more complex enveloped viruses such as influenza virus and HIV. PMID:12142481
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
The minimalist architectures of viroporins and their therapeutic implications
OuYang, Bo; Chou, James J.
2014-01-01
Many viral genomes encode small, integral membrane proteins that form homo-oligomeric channels in membrane, and they transport protons, cations, and other molecules across the membrane barrier to aid various steps of viral entry and maturation. These viral proteins, collectively named viroporins, are crucial for viral pathogenicity. In the past five years, structures obtained by nuclear magnetic resonance (NMR), X-ray crystallography, and electron microscopy (EM) showed that viroporins often adopt minimalist architectures to achieve their functions. A number of small molecules have been identified to interfere with their channel activity and thereby inhibit viral infection, making viroporins potential drug targets for therapeutic intervention. The known architectures and inhibition mechanisms of viroporins differ significantly from each other, but some common principles are shared between them. This review article summarizes the recent developments in the structural investigation of viroporins and their inhibition by antiviral compounds. PMID:24055819
Porotto, Matteo; DeVito, Ilaria; Palmer, Samantha G.; Jurgens, Eric M.; Yee, Jia L.; Yokoyama, Christine C.; Pessi, Antonello; Moscona, Anne
2011-01-01
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry. PMID:21976650
Porotto, Matteo; Devito, Ilaria; Palmer, Samantha G; Jurgens, Eric M; Yee, Jia L; Yokoyama, Christine C; Pessi, Antonello; Moscona, Anne
2011-12-01
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.; ...
2016-12-08
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection
Millet, Jean Kaoru; Whittaker, Gary R.
2016-01-01
Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942
Belnap, David M.; Filman, David J.; Trus, Benes L.; Cheng, Naiqian; Booy, Frank P.; Conway, James F.; Curry, Stephen; Hiremath, Chaitanya N.; Tsang, Simon K.; Steven, Alasdair C.; Hogle, James M.
2000-01-01
Upon interacting with its receptor, poliovirus undergoes conformational changes that are implicated in cell entry, including the externalization of the viral protein VP4 and the N terminus of VP1. We have determined the structures of native virions and of two putative cell entry intermediates, the 135S and 80S particles, at ∼22-Å resolution by cryo-electron microscopy. The 135S and 80S particles are both ∼4% larger than the virion. Pseudoatomic models were constructed by adjusting the beta-barrel domains of the three capsid proteins VP1, VP2, and VP3 from their known positions in the virion to fit the 135S and 80S reconstructions. Domain movements of up to 9 Å were detected, analogous to the shifting of tectonic plates. These movements create gaps between adjacent subunits. The gaps at the sites where VP1, VP2, and VP3 subunits meet are plausible candidates for the emergence of VP4 and the N terminus of VP1. The implications of these observations are discussed for models in which the externalized components form a transmembrane pore through which viral RNA enters the infected cell. PMID:10627545
Belnap, D M; Filman, D J; Trus, B L; Cheng, N; Booy, F P; Conway, J F; Curry, S; Hiremath, C N; Tsang, S K; Steven, A C; Hogle, J M
2000-02-01
Upon interacting with its receptor, poliovirus undergoes conformational changes that are implicated in cell entry, including the externalization of the viral protein VP4 and the N terminus of VP1. We have determined the structures of native virions and of two putative cell entry intermediates, the 135S and 80S particles, at approximately 22-A resolution by cryo-electron microscopy. The 135S and 80S particles are both approximately 4% larger than the virion. Pseudoatomic models were constructed by adjusting the beta-barrel domains of the three capsid proteins VP1, VP2, and VP3 from their known positions in the virion to fit the 135S and 80S reconstructions. Domain movements of up to 9 A were detected, analogous to the shifting of tectonic plates. These movements create gaps between adjacent subunits. The gaps at the sites where VP1, VP2, and VP3 subunits meet are plausible candidates for the emergence of VP4 and the N terminus of VP1. The implications of these observations are discussed for models in which the externalized components form a transmembrane pore through which viral RNA enters the infected cell.
Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.
Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy
2014-01-28
Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus vaccines and therapeutics are being developed, there are no licensed products. The sole viral envelope glycoprotein, which is a principal immunogenic target, contains a heavy shield of glycans surrounding the conserved receptor-binding domain. We find that disruption of this shield through targeted mutagenesis leads to an increase in cell entry, protease sensitivity, and antiserum/antibody sensitivity but is not sufficient to allow virion binding to the intracellular receptor NPC1. Therefore, our studies provide evidence that filoviruses maintain glycoprotein glycosylation to protect against proteases and antibody neutralization at the expense of efficient entry. Our results unveil interesting insights into the unique entry process of filoviruses and potential immune evasion tactics of the virus.
Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor
Chou, Yi-ying; Cuevas, Christian; Carocci, Margot; Stubbs, Sarah H.; Ma, Minghe; Cureton, David K.; Evesson, Frances; He, Kangmin; Yang, Priscilla L.; Whelan, Sean P.
2016-01-01
ABSTRACT Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus. Although ZCL278 did not interfere with JUNV attachment to the cell surface or virus particle internalization into host cells, it prevented the release of JUNV ribonucleoprotein cores into the cytosol and decreased pH-mediated viral fusion with host membranes. We also identified SVG-A astroglial cell-derived cells to be highly permissive for JUNV infection and generated new cell lines expressing fluorescently tagged Rab5c or Rab7a or lacking Cdc42 using clustered regularly interspaced short palindromic repeat (CRISPR)-caspase 9 (Cas9) gene-editing strategies. Aided by these tools, we uncovered that perturbations in the actin cytoskeleton or Cdc42 activity minimally affect JUNV entry, suggesting that the inhibitory effect of ZCL278 is not mediated by ZCL278 interfering with the activity of Cdc42. Instead, ZCL278 appears to redistribute viral particles from endosomal to lysosomal compartments. ZCL278 also inhibited JUNV replication in a mouse model, and no toxicity was detected. Together, our data suggest the unexpected antiviral activity of ZCL278 and highlight its potential for use in the development of valuable new tools to study the intracellular trafficking of pathogens. IMPORTANCE The Junin virus is responsible for outbreaks of Argentine hemorrhagic fever in South America, where 5 million people are at risk. Limited options are currently available to treat infections by Junin virus or other viruses of the Arenaviridae, making the identification of additional tools, including small-molecule inhibitors, of great importance. How Junin virus enters cells is not yet fully understood. Here we describe new cell culture models in which the cells are susceptible to Junin virus infection and to which we applied CRISPR-Cas9 genome engineering strategies to help characterize early steps during virus entry. We also uncovered ZCL278 to be a new antiviral small molecule that potently inhibits the cellular entry of the Junin virus and other enveloped viruses. Moreover, we show that ZCL278 also functions in vivo, thereby preventing Junin virus replication in a mouse model, opening the possibility for the discovery of ZCL278 derivatives of therapeutic potential. PMID:26912630
Zhang, Li Feng; Chin, Wei Xin; Muschin, Tegshi; Heinig, Lars; Suzuki, Youichi; Nanjundappa, Haraprasad; Yoshinaka, Yoshiyuki; Ryo, Akihide; Nomura, Nobuo; Ooi, Eng Eong; Vasudevan, Subhash G.; Yoshida, Takashi; Yamamoto, Naoki
2013-01-01
Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered. PMID:23658845
Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.
Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav
2015-01-01
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.
Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes
Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran
2015-01-01
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902
Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias
2014-11-01
Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Webb, Stacy R.; Smith, Stacy E.; Fried, Michael G.
2018-01-01
ABSTRACT Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families. IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens—Ebola virus, influenza virus, SARS CoV, and rabies virus—self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development. PMID:29669880
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ping; Swanson, Kurt A.; Leser, George P.
2014-10-02
The paramyxovirus hemagglutinin-neuraminidase (HN) protein plays multiple roles in viral entry and egress, including binding to sialic acid receptors, activating the fusion (F) protein to activate membrane fusion and viral entry, and cleaving sialic acid from carbohydrate chains. HN is an oligomeric integral membrane protein consisting of an N-terminal transmembrane domain, a stalk region, and an enzymatically active neuraminidase (NA) domain. Structures of the HN NA domains have been solved previously; however, the structure of the stalk region has remained elusive. The stalk region contains specificity determinants for F interactions and activation, underlying the requirement for homotypic F and HNmore » interactions in viral entry. Mutations of the Newcastle disease virus HN stalk region have been shown to affect both F activation and NA activities, but a structural basis for understanding these dual affects on HN functions has been lacking. Here, we report the structure of the Newcastle disease virus HN ectodomain, revealing dimers of NA domain dimers flanking the N-terminal stalk domain. The stalk forms a parallel tetrameric coiled-coil bundle (4HB) that allows classification of extensive mutational data, providing insight into the functional roles of the stalk region. Mutations that affect both F activation and NA activities map predominantly to the 4HB hydrophobic core, whereas mutations that affect only F-protein activation map primarily to the 4HB surface. Two of four NA domains interact with the 4HB stalk, and residues at this interface in both the stalk and NA domain have been implicated in HN function.« less
Virus and Host Mechanics Support Membrane Penetration and Cell Entry
2016-01-01
Viruses are quasi-inert macromolecular assemblies. Their metastable conformation changes during entry into cells, when chemical and mechanical host cues expose viral membrane-interacting proteins. This leads to membrane rupture or fusion and genome uncoating. Importantly, virions tune their physical properties and enhance penetration and uncoating. For example, influenza virus softens at low pH to uncoat. The stiffness and pressure of adenovirus control uncoating and membrane penetration. Virus and host mechanics thus present new opportunities for antiviral therapy. PMID:26842477
Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan
2011-01-01
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420
Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor.
Jing, Peng; Burris, Benjamin; Zhang, Rong
2016-07-12
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Nipah virus entry can occur by macropinocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pernet, Olivier; Pohl, Christine; Ainouze, Michelle
2009-12-20
Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosinemore » residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.« less
1998-12-16
Coxsackie A virus (CAV) Coxsackie B virus (CBV) Bovine enterovirus (BEV) Apbthoviruses Foot and mouth disease virus ( FMDV ) Cardioviruses Mengovirus...disease viruses ( FMDV ) contain a stretch ofpoly (C), of unknown function, located within the 5’ UTRs. To determine whether the 5’ UIR ofEMCV...human rhinovirus. Type 2 IRES elements are found in EMCV, TMEV, and FMDV . Type 3 IRES elements are found in hepatitis A virus. There is very little
Barrero, Roberto A; Napier, Kathryn R; Cunnington, James; Liefting, Lia; Keenan, Sandi; Frampton, Rebekah A; Szabo, Tamas; Bulman, Simon; Hunter, Adam; Ward, Lisa; Whattam, Mark; Bellgard, Matthew I
2017-01-11
Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21-25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21-22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21-22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21-22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.
Alandijany, Thamir; Conn, Kristen L.; McFarlane, Steven; Orr, Anne
2018-01-01
Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2’-deoxyuridine (EdU) labelling of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication. PMID:29309427
Zhang, Jing; Wu, Na; Gao, Na; Yan, Wenli; Sheng, Ziyang; Fan, Dongying; An, Jing
2016-05-01
Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.
NASA Astrophysics Data System (ADS)
Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng
2011-07-01
Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.
Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-09-09
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.
Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-01-01
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577
Mechanism of Fusion Triggering by Human Parainfluenza Virus Type III
Porotto, Matteo; Palmer, Samantha G.; Palermo, Laura M.; Moscona, Anne
2012-01-01
Parainfluenza viruses enter host cells by fusing the viral and target cell membranes via concerted action of their two envelope glycoproteins: the hemagglutinin-neuraminidase (HN) and the fusion protein (F). Receptor-bound HN triggers F to undergo conformational changes that render it fusion-competent. To address the role of receptor engagement and to elucidate how HN and F interact during the fusion process, we used bimolecular fluorescence complementation to follow the dynamics of human parainfluenza virus type 3 (HPIV3) HN/F pairs in living cells. We show that HN and F associate before receptor engagement. HN drives the formation of HN-F clusters at the site of fusion, and alterations in HN-F interaction determine the fusogenicity of the glycoprotein pair. An interactive site, at the HN dimer interface modulates HN fusion activation property, which is critical for infection of the natural host. This first evidence for the sequence of initial events that lead to viral entry may indicate a new paradigm for understanding Paramyxovirus infection. PMID:22110138
Carvalho, Carlos A.M.; Silva, Jerson L.; Oliveira, Andréa C.
2017-01-01
Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell. PMID:28462045
Kachko, Alla; Costafreda, Maria Isabel; Zubkova, Iryna; Jacques, Jerome; Takeda, Kazuyo; Wells, Frances; Kaplan, Gerardo; Major, Marian E
2018-03-15
Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81. IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the interaction of HAVCR1 with HCV early during infection enhances entry but is not required for infection support the hypothesis that HAVCR1 facilitates entry by stabilizing or enhancing virus binding to the cell surface membrane and allowing the correct virus-receptor positioning for interaction with the main HCV receptors. Furthermore, our data show that in addition to the phospholipid-binding function of HAVCR1, the enhancement of HCV infection involves other determinants in the IgV domain of HAVCR1. These findings expand the repertoire of molecules that HCV uses for cell entry, adding to the already complex mechanism of HCV infection and pathogenesis. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.
Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F
2018-05-01
Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune system are characteristic features of EVD, statins could be explored as part of EVD therapeutics.
Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses.
Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K
2015-07-07
Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.
Natural history of chronic hepatitis B virus infection.
Busch, Katrin; Thimme, Robert
2015-02-01
Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.
Baker, T. S.; Olson, N. H.; Fuller, S. D.
1999-01-01
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969
Jaag, Hannah Miriam; Kawchuk, Lawrence; Rohde, Wolfgang; Fischer, Rainer; Emans, Neil; Prüfer, Dirk
2003-01-01
Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5′-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that regulates Rap1 translation. Core structural elements for internal ribosome entry include a conserved AUG codon and a downstream GGAGAGAGAGG motif with inverted symmetry. Reporter gene expression in potato protoplasts confirmed the internal ribosome entry function. Unlike known IRES motifs, the PLRV IRES is located completely within the coding region of Rap1 at the center of the PLRV genome. PMID:12835413
Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roller, Devin G.; Dollery, Stephen J.; Doyle, James L.
2008-12-20
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with itsmore » ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.
Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainlymore » plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.« less
Sheridan, D A; Price, D A; Schmid, M L; Toms, G L; Donaldson, P; Neely, D; Bassendine, M F
2009-06-15
Hepatitis C virus (HCV) co-opts very-low-density lipoprotein (VLDL) pathways for replication, secretion and entry into hepatocytes and associates with apolipoprotein B (apoB) in plasma. Each VLDL contains apoB-100 and variable amounts of apolipoproteins E and C, cholesterol and triglycerides. To determine whether baseline lipid levels predicted treatment outcome. Retrospective analysis was performed of 250 chronic hepatitis C (CHC) patients who had received anti-viral agents interferon-alpha and ribavirin; 165 had a sustained virological response (SVR). Pre- and post-treatment nonfasting lipid profiles were measured and non-high-density lipoprotein (non-HDL) cholesterol (i.e. apoB-associated) was calculated. Binary logistic regression analysis assessed factors independently associated with treatment outcome. There was an independent association between higher apoB-associated cholesterol (non-HDL-C) and increased odds of SVR (odds ratio 2.09, P = 0.042). In multivariate analysis, non-HDL-C was significantly lower in HCV genotype 3 (g3) than genotype 1 (P = 0.007); this was reversible upon eradication of HCVg3 (pre-treatment non-HDL-C = 2.8 mmol/L, SVR = 3.6 mmol/L, P < 0.001). Higher apoB-associated cholesterol is positively associated with treatment outcome in CHC patients receiving anti-viral therapy, possibly due to competition between apoB-containing lipoproteins and infectious low-density HCV lipo-viral particles for hepatocyte entry via shared lipoprotein receptors.
Xiang, Yangfei; Zheng, Kai; Ju, Huaiqiang; Wang, Shaoxiang; Pei, Ying; Ding, Weichao; Chen, Zhenping; Wang, Qiaoli; Qiu, Xianxiu; Zhong, Meigong; Zeng, Fanli; Ren, Zhe; Qian, Chuiwen; Liu, Ge
2012-01-01
Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis. PMID:22623803
Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry
Molotkovsky, Rodion J.; Alexandrova, Veronika V.; Galimzyanov, Timur R.; Jiménez-Munguía, Irene; Pavlov, Konstantin V.; Akimov, Sergey A.
2018-01-01
Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as “rafts” play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of ‘line active components’ of the membrane (‘linactants’). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses. PMID:29772704
Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry.
Molotkovsky, Rodion J; Alexandrova, Veronika V; Galimzyanov, Timur R; Jiménez-Munguía, Irene; Pavlov, Konstantin V; Batishchev, Oleg V; Akimov, Sergey A
2018-05-16
Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as "rafts" play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of 'line active components' of the membrane ('linactants'). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses.
Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng,Q.; Deng, Y.; Liu, J.
2006-01-01
Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARSmore » coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.« less
Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D
2016-07-01
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
Potent D-peptide inhibitors of HIV-1 entry
Welch, Brett D.; VanDemark, Andrew P.; Heroux, Annie; Hill, Christopher P.; Kay, Michael S.
2007-01-01
During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. PMID:17942675
Interleukin 6 inhibits HBV entry through NTCP down regulation.
Bouezzedine, Fidaa; Fardel, Olivier; Gripon, Philippe
2015-07-01
Hepatitis B virus (HBV) infection is a major public health problem. Recently, the human liver bile acid transporter Na(+)/taurocholate cotransporting polypeptide (NTCP) has been identified as an HBV specific receptor. NTCP expression is known to be strongly regulated by IL-6. This study was aimed at characterizing the effect of IL-6 on HBV entry. HBV entry was inhibited by up to 90% when cells were pretreated with IL-6 as shown by a strong inhibition of long term HBsAg secretion. This effect was confirmed by showing a severe reduction of intracellular HBV cccDNA. In parallel, we observed a 98% decrease in NTCP mRNA steady state level and an 80% reduction in NTCP-mediated taurocholate uptake. IL-6-mediated inhibition of NTCP-mediated taurocholate uptake and viral entry exhibited similar dose-dependence and kinetics while restoration of NTCP expression suppressed the inhibitory effect of IL-6. NTCP-mediated HBV entry is therefore markedly inhibited by IL-6. Copyright © 2015 Elsevier Inc. All rights reserved.
Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.
Nicola, Anthony V
2016-09-01
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa
Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm
2017-01-01
ABSTRACT Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. PMID:28878080
Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.
Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar
2017-11-15
Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. Copyright © 2017 American Society for Microbiology.
Hyun, Seong-In; Weisberg, Andrea
2017-01-01
ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. PMID:28490596
Petit, Nicolas; Dorgham, Karim; Levacher, Béatrice; Burlion, Aude; Gorochov, Guy; Marodon, Gilles
2014-08-01
Numerous strategies targeting early and late steps of the HIV life cycle have been proposed for gene therapy. However, targeting viral and host determinants of HIV entry is the only strategy that would prevent viral DNA-mediated CD4(+) cell death while diminishing the possibility for the virus to escape. To this end, we devised a bicistronic lentiviral vector expressing the membrane-bound form of the T20 fusion inhibitor, referred to as the C46 peptide, and a CCR5 superagonist, modified to sequester CCR5 away from the cell surface, referred to as the P2-CCL5 intrakine. We tested the effects of the vector on HIV infection and replication, using the human CEMR5 cell line expressing CD4 and CCR5, and primary human T cells. Transduced cells expressed the C46 peptide, detected with the 2F5 monoclonal antibody by flow cytometry. Expression of the P2-CCL5 intrakine correlates with lower levels of cell surface CCR5. Complete protection against HIV infection could be observed in cells expressing the protective transgenes. Importantly, we show that the combination of the transgenes was more potent than either transgene alone, showing the interest of expressing two entry inhibitors to inhibit HIV infection. Last, genetically modified cells possessed a selective advantage over nonmodified cells on HIV challenge in vitro, showing that modified cells were protected from HIV-induced cell death. Our results demonstrate that lentiviral vectors coexpressing the T20 fusion inhibitor and the P2-CCL5 intrakine represent promising tools for HIV gene therapy.
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E.; Schief, William R.; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D.
2009-01-01
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded β-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate—and structurally plastic—layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated β-sandwich and providing for conformational diversity used in immune evasion. A “layered” gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a β-sandwich clamp maintains gp120–gp41 interaction and regulates gp41 transitions. PMID:20080564
Cathepsin B & L are not required for ebola virus replication.
Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz
2012-01-01
Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.
Singh, A; Yi, Y; Isaacs, S N; Kolson, D L; Collman, R G
2001-07-01
There is considerable diversity among HIV-1 strains in terms of their ability to use entry coreceptors on macrophages, especially CXCR4, but it is not known whether virus-specific differences exist among related members of a viral swarm. Defining how entry coreceptors on primary target cells are utilized by the spectrum of HIV-1 variants that emerge in vivo is important for understanding the relationship between coreceptor selectivity and pathogenesis. HIV-1 89.6(PI) is a dual-tropic primary isolate, and the prototype 89.6-cloned R5X4 Env uses both CXCR4 and CCR5 on macrophages. We generated a panel of env clones from the 89.6(PI) quasispecies and found a mixture of R5, R5X4, and X4 variants on the basis of fusion and infection of coreceptor-transfected cell lines. Here we address the use of macrophage coreceptors by these related Envs by analyzing fusion and infection of primary monocyte-derived macrophages mediated specifically through each coreceptor. All R5X4 Envs utilized both CXCR4 and CCR5 on macrophages, while R5 variants used CCR5 only. One variant characterized in cell lines as X4 used both CXCR4 and CCR5 on macrophages. No Env variant fused with macrophages through alternative coreceptor pathways. Thus, there was heterogeneity in coreceptor use among the related Env variants, but use of each coreceptor specifically in macrophages was consistent among members of the viral swarm. Coreceptor use in transfected cells generally predicted use in primary macrophages, although for some Envs macrophages may be a more sensitive indicator of CCR5 use than transfected cell lines.
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D
2010-01-19
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.
Incoming human papillomavirus 16 genome is lost in PML protein-deficient HaCaT keratinocytes.
Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Keiffer, Timothy R; Guion, Lucile G M; DiGiuseppe, Stephen; Scott, Rona S; Sapp, Martin
2017-05-01
Human papillomaviruses (HPVs) target promyelocytic leukemia (PML) nuclear bodies (NBs) during infectious entry and PML protein is important for efficient transcription of incoming viral genome. However, the transcriptional down regulation was shown to be promoter-independent in that heterologous promoters delivered by papillomavirus particles were also affected. To further investigate the role of PML protein in HPV entry, we used small hairpin RNA to knockdown PML protein in HaCaT keratinocytes. Confirming previous findings, PML knockdown in HaCaT cells reduced HPV16 transcript levels significantly following infectious entry without impairing binding and trafficking. However, when we quantified steady-state levels of pseudogenomes in interphase cells, we found strongly reduced genome levels compared with parental HaCaT cells. Because nuclear delivery was comparable in both cell lines, we conclude that viral pseudogenome must be removed after successful nuclear delivery. Transcriptome analysis by gene array revealed that PML knockdown in clonal HaCaT cells was associated with a constitutive interferon response. Abrogation of JAK1/2 signaling prevented genome loss, however, did not restore viral transcription. In contrast, knockdown of PML protein in HeLa cells did not affect HPV genome delivery and transcription. HeLa cells are transformed by HPV18 oncogenes E6 and E7, which have been shown to interfere with the JAK/Stat signaling pathway. Our data imply that PML NBs protect incoming HPV genomes. Furthermore, they provide evidence that PML NBs are key regulators of the innate immune response in keratinocytes. Promyelocytic leukemia nuclear bodies (PML NBs) are important for antiviral defense. Many DNA viruses target these subnuclear structures and reorganize them. Reorganization of PML NBs by viral proteins is important for establishment of infection. In contrast, HPVs require the presence of PML protein for efficient transcription of incoming viral genome. Our finding that PML protein prevents the loss of HPV genome following infection implies that the host cell may be able to recognize chromatinized HPV genome or the associated capsid proteins. A constitutively active interferon response in absence of PML protein suggests that PML NBs are key regulators of the innate immune response in keratinocytes. © 2016 John Wiley & Sons Ltd.
Rotavirus RRV associates with lipid membrane microdomains during cell entry.
Isa, Pavel; Realpe, Mauricio; Romero, Pedro; López, Susana; Arias, Carlos F
2004-05-01
Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits alpha2 and beta3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits alpha2 and beta3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 degrees C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 degrees C. The virus was excluded from DRMs if the cells were treated with methyl-beta-cyclodextrin (MbetaCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 degrees C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Son; CSIRO Australian Animal Health Laboratory, Victoria 3220; Tabarin, Thibault
Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstratemore » that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.« less
Stochastic Modeling of the Clathrin-dependent and -independent Endocytic Pathways
NASA Astrophysics Data System (ADS)
Deng, Hua; Dutta, Prashanta; Liu, Jin
2017-11-01
Endocytosis is one of the important processes that bioparticles use to enter the cells. During endocytosis the membrane-bound vesicles are formed by the invagination of plasma membrane as a result of interactions among many proteins and cytoskeletons. The clathrin-mediated endocytosis is one of the most significant form of endocytosis, where the dynamic assembly of clathrin-coated pits play a critical role. While herpes simplex virus-1 has recently shown to infect cell by a novel phagocytosis-like endocytic pathway where actin polymerization may facilitate the viral entry. In this work, we propose a stochastic model for both clathrin-dependent and -independent endocytic pathways based on Monte Carlo simulations. The important roles of clathrin coating and actin cytoskeleton as well as the impact of other biological parameters are studied. Our preliminary results indicate that there exist an intermediate particle size and ligand density that maximize the internalization efficiency. Below a critical size or surface ligand density, it is difficult for the entry of a single particle, which means clustering may needed for more efficient internalization. We also find that lower membrane bending rigidity may help promote the bioparticle entry. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.
Human La binds mRNAs through contacts to the poly(A) tail
Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A
2018-01-01
Abstract In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail. PMID:29447394
Ray, Bimalendu; Hutterer, Corina; Bandyopadhyay, Shruti S; Ghosh, Kanika; Chatterjee, Udipta R; Ray, Sayani; Zeitträger, Isabel; Wagner, Sabrina; Marschall, Manfred
2013-12-27
Attachment and entry of many viruses are mediated by their affinity for polysaccharides present on the surface of target cells. In this paper, we demonstrate that sulfated glucans isolated from rice (Oryza sativa) can be utilized as experimental drugs exerting strong antiviral activity. In particular, oleum-DMF-based extraction is described as a procedure for the generation of chemically engineered glucans from commercially available rice bran. The one-step procedure has the potential to provide a spectrum of related glucans with varying molecular masses and modifications, including sulfation. The sulfated glucans P444, P445, and P446 possess increased antiviral activity compared to a previously described glucan (S1G). P444, P445, and P446 were highly active against human cytomegalovirus (HCMV), moderately active against other members of the family Herpesviridae, while not active against unrelated viruses. Specific experimentation with HCMV-infected cells provided evidence that antiviral activity was based on inhibition of viral entry and that inhibition occurred in the absence of drug-induced cytotoxicity. These findings underline the high potential of sulfated glucans for antiviral research and drug development. In addition, the procedure described for the efficient transformation of glucan hydroxy groups to sulfate groups may be similarly beneficial for the chemical alteration of other natural products.
Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction
Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude
2016-01-01
Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476
Allen, Sariah J.; Rhode-Kurnow, Antje; Mott, Kevin R.; Jiang, Xianzhi; Carpenter, Dale; Rodriguez-Barbosa, J. Ignacio; Jones, Clinton; Wechsler, Steven L.; Ware, Carl F.
2014-01-01
Herpesvirus entry mediator (HVEM) is one of several cell surface proteins herpes simplex virus (HSV) uses for attachment/entry. HVEM regulates cellular immune responses and can also increase cell survival. Interestingly, latency-associated transcript (LAT), the only viral gene consistently expressed during neuronal latency, enhances latency and reactivation by promoting cell survival and by helping the virus evade the host immune response. However, the mechanisms of these LAT activities are not well understood. We show here for the first time that one mechanism by which LAT enhances latency and reactivation appears to be by upregulating HVEM expression. HSV-1 latency/reactivation was significantly reduced in Hvem−/− mice, indicating that HVEM plays a significant role in HSV-1 latency/reactivation. Furthermore, LAT upregulated HVEM expression during latency in vivo and also when expressed in vitro in the absence of other viral factors. This study suggests a mechanism whereby LAT upregulates HVEM expression potentially through binding of two LAT small noncoding RNAs to the HVEM promoter and that the increased HVEM then leads to downregulation of immune responses in the latent microenvironment and increased survival of latently infected cells. Thus, one of the mechanisms by which LAT enhances latency/reactivation appears to be through increasing expression of HVEM. PMID:24307582
Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar
2018-01-21
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50-60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex.
Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar
2018-01-01
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex. PMID:29361739
Virus vaccines: principles and prospects.
Melnick, J. L.
1989-01-01
The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217
Romero-López, Cristina; Barroso-delJesus, Alicia; García-Sacristán, Ana; Briones, Carlos; Berzal-Herranz, Alfredo
2012-01-01
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3′-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3′-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3′-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest. Our results suggest that a complex, direct and long-distance RNA–RNA interaction network plays an important role in the regulation of HCV translation and replication, as well as in the switching between different steps of the viral cycle. PMID:23066110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, H.-P.; Hsieh, S.-C.; King, C.-C.
In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibitedmore » by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates.« less
Svitkin, Yuri V.; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum
2005-01-01
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection. PMID:16287867
Svitkin, Yuri V; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum
2005-12-01
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-01-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. PMID:23606583
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-05-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.
Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun
2017-03-06
Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.
Characterization of resistance to rhabdovirus and retrovirus infection in a human myeloid cell line.
Boso, Guney; Somia, Nikunj V
2015-01-01
Viruses interact with various permissive and restrictive factors in host cells throughout their replication cycle. Cell lines that are non-permissive to viral infection have been particularly useful in discovering host cell proteins involved in viral life cycles. Here we describe the characterization of a human myeloid leukemia cell line, KG-1, that is resistant to infection by retroviruses and a Rhabdovirus. We show that KG-1 cells are resistant to infection by Vesicular Stomatits Virus as well as VSV Glycoprotein (VSVG) pseudotyped retroviruses due to a defect in binding. Moreover our results indicate that entry by xenotropic retroviral envelope glycoprotein RD114 is impaired in KG-1 cells. Finally we characterize a post- entry block in the early phase of the retroviral life cycle in KG-1 cells that renders the cell line refractory to infection. This cell line will have utility in discovering proteins involved in infection by VSV and HIV-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Yanning; Beijing Center for Diseases Prevention and Control, 16 Hepingli Middle Street, Dongcheng District, Beijing 100013; Neo, T.L.
SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalaninemore » substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.« less
Belouzard, Sandrine; Cordo, Sandra M.; Candurra, Nélida A.; Whittaker, Gary R.
2014-01-01
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host. PMID:24183720
Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses
Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K.
2015-01-01
Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system. PMID:26198243
Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry
Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.
2014-01-01
ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs. PMID:24696470
King, Benjamin R; Samacoits, Aubin; Eisenhauer, Philip L; Ziegler, Christopher M; Bruce, Emily A; Zenklusen, Daniel; Zimmer, Christophe; Mueller, Florian; Botten, Jason
2018-06-15
Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population. IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses. Copyright © 2018 American Society for Microbiology.
Acciani, Marissa; Alston, Jacob T; Zhao, Guohui; Reynolds, Hayley; Ali, Afroze M; Xu, Brian; Brindley, Melinda A
2017-09-15
Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions. IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals. Copyright © 2017 American Society for Microbiology.
Viral and Synthetic RNA Vector Technologies and Applications
Schott, Juliane W; Morgan, Michael; Galla, Melanie; Schambach, Axel
2016-01-01
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy. PMID:27377044
Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection
Jagdeo, Julienne M.; Dufour, Antoine; Fung, Gabriel; Luo, Honglin; Kleifeld, Oded; Overall, Christopher M.
2015-01-01
ABSTRACT Picornavirus infection involves a dynamic interplay of host and viral protein interactions that modulates cellular processes to facilitate virus infection and evade host antiviral defenses. Here, using a proteomics-based approach known as TAILS to identify protease-generated neo-N-terminal peptides, we identify a novel target of the poliovirus 3C proteinase, the heterogeneous nuclear ribonucleoprotein M (hnRNP M), a nucleocytoplasmic shuttling RNA-binding protein that is primarily known for its role in pre-mRNA splicing. hnRNP M is cleaved in vitro by poliovirus and coxsackievirus B3 (CVB3) 3C proteinases and is targeted in poliovirus- and CVB3-infected HeLa cells and in the hearts of CVB3-infected mice. hnRNP M relocalizes from the nucleus to the cytoplasm during poliovirus infection. Finally, depletion of hnRNP M using small interfering RNA knockdown approaches decreases poliovirus and CVB3 infections in HeLa cells and does not affect poliovirus internal ribosome entry site translation and viral RNA stability. We propose that cleavage of and subverting the function of hnRNP M is a general strategy utilized by picornaviruses to facilitate viral infection. IMPORTANCE Enteroviruses, a member of the picornavirus family, are RNA viruses that cause a range of diseases, including respiratory ailments, dilated cardiomyopathy, and paralysis. Although enteroviruses have been studied for several decades, the molecular basis of infection and the pathogenic mechanisms leading to disease are still poorly understood. Here, we identify hnRNP M as a novel target of a viral proteinase. We demonstrate that the virus subverts the function of hnRNP M and redirects it to a step in the viral life cycle. We propose that cleavage of hnRNP M is a general strategy that picornaviruses use to facilitate infection. PMID:25926642
Hernáez, Bruno; Guerra, Milagros; Salas, María L.
2016-01-01
African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717
Churqui, Marianela Patzi; Lind, Liza; Thörn, Karolina; Svensson, Alexandra; Savolainen, Otto; Aranda, Katty Terrazas; Eriksson, Kristina
2018-01-10
Equisetum giganteum L and Copaifera reticulate Ducke have been traditionally used by women of the Tacana tribe in the Bolivian Amazonas for genital hygiene and for treatment of genital infection/inflammation. To assess the ability of extracts from Equisetum giganteum L and Copaifera reticulate Ducke to block genital viral infection by herpes simplex virus type 2. Equisetum giganteum L and Copaifera reticulate Ducke were collected from the Amazon region of La Paz, Bolivia. Extracts were prepared and screened for anti-viral activity against herpes simplex virus type 2 (HSV-2) using both in vitro and in in vivo models of infection. Equisetum giganteum L and Copaifera reticulate Ducke efficiently blocked HSV-2 infection of cell cultures without major cell cytotoxic effects. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke could prevent HSV-2 disease development when administered together with virus in a mouse model of genital HSV-2 infection. In vitro analyses revealed that both plant extracts exerted their anti-HSV-2 effects by interfering with viral cell attachment and entry, but could not block viral replication post entry. These studies show that extracts of Equisetum giganteum L and Copaifera reticulate Ducke have potent antiviral activities against HSV-2 comparable to those two previously identified plants, Croton lechleri Müll. Arg. and Uncaria tomentosa (Willd. ex Schult.) DC. These studies confirm that plants used by the Tacana tribe could be explored further for the development of novel topical antiviral microbicides. Copyright © 2017. Published by Elsevier B.V.
Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus
Mor, Sunil K.; Higgins, LeeAnn; Armien, Anibal; Youssef, Mohammed M.; Bruggeman, Peter J.; Goyal, Sagar M.
2018-01-01
Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid. PMID:29566061
Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses.
Huber, Roland G; Marzinek, Jan K; Holdbrook, Daniel A; Bond, Peter J
2017-09-01
Viral pathogens are a significant source of human morbidity and mortality, and have a major impact on societies and economies around the world. One of the challenges inherent in targeting these pathogens with drugs is the tight integration of the viral life cycle with the host's cellular machinery. However, the reliance of the virus on the host cell replication machinery is also an opportunity for therapeutic targeting, as successful entry- and exit-inhibitors have demonstrated. An understanding of the extracellular and intracellular structure and dynamics of the virion - as well as of the entry and exit pathways in host and vector cells - is therefore crucial to the advancement of novel antivirals. In recent years, advances in computing architecture and algorithms have begun to allow us to use simulations to study the structure and dynamics of viral ultrastructures at various stages of their life cycle in atomistic or near-atomistic detail. In this review, we outline specific challenges and solutions that have emerged to allow for structurally detailed modelling of viruses in silico. We focus on the history and state of the art of atomistic and coarse-grained approaches to simulate the dynamics of the large, macromolecular structures associated with viral infection, and on their usefulness in explaining and expanding upon experimental data. We discuss the types of interactions that need to be modeled to describe major components of the virus particle and advances in modelling techniques that allow for the treatment of these systems, highlighting recent key simulation studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martín-Acebes, Miguel A.; Blázquez, Ana-Belén; de Oya, Nereida Jiménez; Escribano-Romero, Estela; Shi, Pei-Yong; Saiz, Juan-Carlos
2013-01-01
West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses. PMID:23874963
May, Jared; Johnson, Philip; Saleem, Huma
2017-01-01
ABSTRACT To maximize the coding potential of viral genomes, internal ribosome entry sites (IRES) can be used to bypass the traditional requirement of a 5′ cap and some/all of the associated translation initiation factors. Although viral IRES typically contain higher-order RNA structure, an unstructured sequence of about 84 nucleotides (nt) immediately upstream of the Turnip crinkle virus (TCV) coat protein (CP) open reading frame (ORF) has been found to promote internal expression of the CP from the genomic RNA (gRNA) both in vitro and in vivo. An absence of extensive RNA structure was predicted using RNA folding algorithms and confirmed by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing. Analysis of the IRES region in vitro by use of both the TCV gRNA and reporter constructs did not reveal any sequence-specific elements but rather suggested that an overall lack of structure was an important feature for IRES activity. The CP IRES is A-rich, independent of orientation, and strongly conserved among viruses in the same genus. The IRES was dependent on eIF4G, but not eIF4E, for activity. Low levels of CP accumulated in vivo in the absence of detectable TCV subgenomic RNAs, strongly suggesting that the IRES was active in the gRNA in vivo. Since the TCV CP also serves as the viral silencing suppressor, early translation of the CP from the viral gRNA is likely important for countering host defenses. Cellular mRNA IRES also lack extensive RNA structures or sequence conservation, suggesting that this viral IRES and cellular IRES may have similar strategies for internal translation initiation. IMPORTANCE Cap-independent translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5′ cap structure. Viral IRES, in general, contain extensive secondary structure that is critical for activity. In contrast, we demonstrate that a region of viral RNA devoid of extensive secondary structure has IRES activity and produces low levels of viral coat protein in vitro and in vivo. Our findings may be applicable to cellular mRNA IRES that also have little or no sequences/structures in common. PMID:28179526
'A unique 5’ translation element discoverd in Triticum mosaic virus'
USDA-ARS?s Scientific Manuscript database
Many RNA viruses rely on internal ribosome entry site (IRES) elements to deviate from the canonical cap-dependent translation mechanism. In contrast to the well-defined IRES elements found in animal viruses, plant viral IRESes identified to date reportedly consist of relatively short, ill-defined se...
Hsu, Mei-Ju; Rixon, Frazer J.; Knebel-Mörsdorf, Dagmar
2011-01-01
Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol. PMID:22022400
Capturing a flavivirus pre-fusion intermediate.
Kaufmann, Bärbel; Chipman, Paul R; Holdaway, Heather A; Johnson, Syd; Fremont, Daved H; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G
2009-11-01
During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting approximately 60 A-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.
Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane; Sams, Clarence; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather
2010-01-01
The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented.
Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states
NASA Astrophysics Data System (ADS)
McReynolds, Susanna; Jiang, Shaokai; Rong, Lijun; Caffrey, Michael
2009-12-01
The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR 15N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.
Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth; Contreras, Nataly; Hertz, Marla I; Olivares, Eduardo; Cáceres, Carlos J; Pino, Karla; Letelier, Alejandro; Thompson, Sunnie R; López-Lastra, Marcelo
2016-07-01
The 5' leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work, we examine the internal ribosome entry site (IRES) located in the 5' leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5' leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis. © 2016 Federation of European Biochemical Societies.
Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.
Martinez-Gil, Luis; Mingarro, Ismael
2015-06-26
Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.
Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth A.; Contreras, Nataly; Hertz, Marla I.; Olivares, Eduardo; Cáceres, C. Joaquín; Pino, Karla; Letelier, Alejandro; Thompson, Sunnie R.; López-Lastra, Marcelo
2016-01-01
The 5′leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work we examine the internal ribosome entry site (IRES) located in the 5′leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5′leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis. PMID:27191820
Adeyemi, Richard O.
2012-01-01
The DNA damage response to infection with minute virus of mice (MVM) leads to activated p53; however, p21 levels are reduced via a proteasome-mediated mechanism. This loss was sustained, as virus replicated in infected cells held at the G2/M border. Addition of the cyclin-dependent kinase (CDK) inhibitor roscovitine after S-phase entry reduced MVM replication, suggesting that CDK activity was critical for continued viral replication and virus-induced reduction of p21 may thus be necessary to prevent inhibition of CDK. PMID:22623787
Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat.
Segarra, Amélie; Baillon, Laury; Faury, Nicole; Tourbiez, Delphine; Renault, Tristan
2016-01-01
High mortality rates are reported in spat and larvae of Pacific oyster Crassostrea gigas and associated with ostreid herpesvirus 1 (OsHV-1) detection in France. Although the viral infection has been experimentally reproduced in oyster larvae and spat, little knowledge is currently available concerning the viral entry and its distribution in organs and tissues. This study compares OsHV-1 DNA and RNA detection and localization in experimentally infected oysters using two virus doses: a low dose that did not induce any mortality and a high dose inducing high mortality. Real time PCR demonstrated significant differences in terms of viral DNA amounts between the two virus doses. RNA transcripts were detected in oysters receiving the highest dose of viral suspension whereas no transcript was observed in oysters injected with the low dose. This study also allowed observing kinetics of viral DNA and RNA detection in different tissues of oyster spat. Finally, viral detection was significantly different in function of tissues (p<0.005), time (p<0.005) with an interaction between tissues and time (p<0.005) for each probe. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro
2011-04-25
Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less
Gnirss, Kerstin; Kühl, Annika; Karsten, Christina; Glowacka, Ilona; Bertram, Stephanie; Kaup, Franziska; Hofmann, Heike; Pöhlmann, Stefan
2012-03-01
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation. Copyright © 2011 Elsevier Inc. All rights reserved.
Sharthiya, Harsh; Seng, Chanmoly; Van Kuppevelt, T H; Tiwari, Vaibhav; Fornaro, Michele
2017-06-01
The molecular mechanism of herpes simplex virus (HSV) entry and the associated inflammatory response in the nervous system remain poorly understood. Using mouse-derived ex vivo dorsal root ganglia (DRG) explant model and single cell neurons (SCNs), in this study, we provided a visual evidence for the expression of heparan sulfate (HS) and 3-O-sulfated heparan sulfate (3-OS HS) followed by their interactions with HSV-1 glycoprotein B (gB) and glycoprotein D (gD) during cell entry. Upon heparanase treatment of DRG-derived SCN, a significant inhibition of HSV-1 entry was observed suggesting the involvement of HS role during viral entry. Finally, a cytokine array profile generated during HSV-1 infection in DRG explant indicated an enhanced expression of chemokines (LIX, TIMP-2, and M-CSF)-known regulators of HS. Taken together, these results highlight the significance of HS during HSV-1 entry in DRG explant. Further investigation is needed to understand which isoforms of 3-O-sulfotransferase (3-OST)-generated HS contributed during HSV-1 infection and associated cell damage.
Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.
Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan
2015-10-01
The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs
Lee, Hyunwook; Shingler, Kristin L.; Organtini, Lindsey J.; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.; Hafenstein, Susan
2016-01-01
Many nonenveloped viruses engage host receptors that initiate capsid conformational changes necessary for genome release. Structural studies on the mechanisms of picornavirus entry have relied on in vitro approaches of virus incubated at high temperatures or with excess receptor molecules to trigger the entry intermediate or A-particle. We have induced the coxsackievirus B3 entry intermediate by triggering the virus with full-length receptors embedded in lipid bilayer nanodiscs. These asymmetrically formed A-particles were reconstructed using cryo-electron microscopy and a direct electron detector. These first high-resolution structures of a picornavirus entry intermediate captured at a membrane with and without imposing icosahedral symmetry (3.9 and 7.8 Å, respectively) revealed a novel A-particle that is markedly different from the classical A-particles. The asymmetric receptor binding triggers minimal global capsid expansion but marked local conformational changes at the site of receptor interaction. In addition, viral proteins extrude from the capsid only at the site of extensive protein remodeling adjacent to the nanodisc. Thus, the binding of the receptor triggers formation of a unique site in preparation for genome release. PMID:27574701
Tal, Asaf; Arbel-Goren, Rinat; Costantino, Nina; Court, Donald L; Stavans, Joel
2014-05-20
The search for specific sequences on long genomes is a key process in many biological contexts. How can specific target sequences be located with high efficiency, within physiologically relevant times? We addressed this question for viral integration, a fundamental mechanism of horizontal gene transfer driving prokaryotic evolution, using the infection of Escherichia coli bacteria with bacteriophage λ and following the establishment of a lysogenic state. Following the targeting process in individual live E. coli cells in real time revealed that λ DNA remains confined near the entry point of a cell following infection. The encounter between the 15-bp-long target sequence on the chromosome and the recombination site on the viral genome is facilitated by the directed motion of bacterial DNA generated during chromosome replication, in conjunction with constrained diffusion of phage DNA. Moving the native bacterial integration site to different locations on the genome and measuring the integration frequency in these strains reveals that the frequencies of the native site and a site symmetric to it relative to the origin are similar, whereas both are significantly higher than when the integration site is moved near the terminus, consistent with the replication-driven mechanism we propose. This novel search mechanism is yet another example of the exquisite coevolution of λ with its host.
Cholesterol effectively blocks entry of flavivirus.
Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling
2008-07-01
Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.
Guillot, Clément; Martel, Nora; Berby, Françoise; Bordes, Isabelle; Hantz, Olivier; Blanchet, Matthieu; Sureau, Camille; Vaillant, Andrew; Chemin, Isabelle
2017-01-01
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with 240 million individuals chronically infected and at risk of developing cirrhosis and hepatocellular carcinoma. Current treatments rarely cure chronic hepatitis B infection, highlighting the need for new anti-HBV drugs. Nucleic acid polymers (NAPs) are phosphorothioated oligonucleotides that have demonstrated a great potential to inhibit infection with several viruses. In chronically infected human patients, NAPs administration lead to a decline of blood HBsAg and HBV DNA and to HBsAg seroconversion, the expected signs of functional cure. NAPs have also been shown to prevent infection of duck hepatocytes with the Avihepadnavirus duck hepatitis B virus (DHBV) and to exert an antiviral activity against established DHBV infection in vitro and in vivo. In this study, we investigated the specific anti-HBV antiviral activity of NAPs in the HepaRG human hepatoma cell line and primary cultures of human hepatocytes. NAPs with different chemical features (phosphorothioation, 2'O-methyl ribose, 5-methylcytidine) were assessed for antiviral activity when provided at the time of HBV inoculation or post-inoculation. NAPs dose-dependently inhibited HBV entry in a phosphorothioation-dependent, sequence-independent and size-dependent manner. This inhibition of HBV entry by NAPs was impaired by 2'O-methyl ribose modification. NAP treatment after viral inoculation did not elicit any antiviral activity.
Wargo, Andrew R.; Kurath, Gael
2011-01-01
The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.
Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian
2007-08-01
Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.
Kotha, Poornima L. N.; Sharma, Priyanka; Kolawole, Abimbola O.; Yan, Ran; Alghamri, Mahmoud S.; Brockman, Trisha L.; Gomez-Cambronero, Julian; Excoffon, Katherine J. D. A.
2015-01-01
Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection. PMID:25768646
Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E
2015-07-24
Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Au, Hilda H.; Cornilescu, Gabriel; Mouzakis, Kathryn D.; Ren, Qian; Burke, Jordan E.; Lee, Seonghoon; Butcher, Samuel E.; Jan, Eric
2015-01-01
The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame. PMID:26554019
A Method for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and Living Cells
Komatsu, Tetsuro; Dacheux, Denis; Kreppel, Florian; Nagata, Kyosuke; Wodrich, Harald
2015-01-01
Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes. PMID:26332038
Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus
Keener, William K.; Ward, Thomas E.
2006-03-28
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Selective destruction of cells infected with human immunodeficiency virus
Keener, William K.; Ward, Thomas E.
2003-09-30
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao
2016-01-01
Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826
Huang, Zhihong; Pan, Mengjia; Zhu, Silei; Zhang, Hao; Wu, Wenbi; Yuan, Meijin; Yang, Kai
2017-03-01
Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83 -encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis -acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis -acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis -acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process. IMPORTANCE Virus nucleocapsid assembly usually requires specific cis -acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis -acting elements in the viral genome. Copyright © 2017 American Society for Microbiology.
Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard
2017-08-01
The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. Copyright © 2017 American Society for Microbiology.
Requirement of cholesterol in the viral envelope for dengue virus infection.
Carro, Ana C; Damonte, Elsa B
2013-06-01
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry. Copyright © 2013 Elsevier B.V. All rights reserved.
Pharmacological inhibition of feline immunodeficiency virus (FIV).
Mohammadi, Hakimeh; Bienzle, Dorothee
2012-05-01
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wenfei; Wang, Ying; Wang, Nianshuang
Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay,more » we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.« less
Analysis of Ebola Virus Entry Into Macrophages
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B.; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A.; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-01-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. PMID:25877552
Rose, Patrick P; Hanna, Sheri L; Spiridigliozzi, Anna; Wannissorn, Nattha; Beiting, Daniel P; Ross, Susan R; Hardy, Richard W; Bambina, Shelly A; Heise, Mark T; Cherry, Sara
2011-08-18
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing
2017-10-06
Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Xie, Junfeng; Li, Kunpeng; Gao, Yuanzhu; Huang, Runqing; Lai, Yuxiong; Shi, Yan; Yang, Shaowei; Zhu, Guohua; Zhang, Qinfen; He, Jianguo
2016-01-11
Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development.
Hughes, Michael G; Tucker, William W; Reddy, Sreelatha; Brier, Michael E; Koch, David; McClain, Craig J; Jonsson, Colleen B; Matoba, Nobuyuki; Chung, Donghoon
2017-01-01
To better understand the dynamics of early hepatitis C virus (HCV) infection, we determined how rapidly non-cirrhotic HCV-uninfected liver allografts clear HCV from the circulation of cirrhotic HCV-infected patients at the time of transplantation but before administration of immunosuppression. Specifically, we characterized serum HCV kinetics during the first 90 min of reperfusion for 19 chronically HCV-infected patients transplanted with an HCV-uninfected liver by measuring serum viral load immediately prior to reperfusion (t = 0) and then every 15 min for a total of 90 min (t = 90). Immunosuppression was withheld until all samples were taken to better model primary infection. During this period, rates of viral clearance varied more than 20-fold with a median rate constant of 0.0357 1/min, range 0.0089-0.2169; half-life (minutes) median 19.4, range 3.2-77.8. The majority of viral clearance occurred within the first 60 min. The amount of blood transfused during this 90-min period (a potential confounding variable of this human liver transplant model of primary infection) accounted for 53% and 59% of k (r = 0.53, p = 0.05) and half-life (r = 0.59, p = 0.03) variability, respectively. No other clinical variables tested (age, allograft weight, and degree of reperfusion injury as assessed by peak postoperative ALT or AST) accounted for the remaining variability (p>0.05). In a human liver transplant model of primary infection, HCV rapidly clears the bloodstream. With approximately 90% of clearance occurring in the first 90 minutes of reperfusion, studies of HCV entry inhibition could utilize rate of clearance during this early period as an outcome measure.
Lin, Liang-Tzung; Chen, Ting-Ying; Chung, Chueh-Yao; Noyce, Ryan S; Grindley, T Bruce; McCormick, Craig; Lin, Ta-Chen; Wang, Guey-Horng; Lin, Chun-Ching; Richardson, Christopher D
2011-05-01
Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.
Lin, Liang-Tzung; Chen, Ting-Ying; Chung, Chueh-Yao; Noyce, Ryan S.; Grindley, T. Bruce; McCormick, Craig; Lin, Ta-Chen; Wang, Guey-Horng; Lin, Chun-Ching; Richardson, Christopher D.
2011-01-01
Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues. PMID:21307190
Ye, Xu; Pan, Ting; Wang, Dang; Fang, Liurong; Ma, Jun; Zhu, Xinyu; Shi, Yanling; Zhang, Keshan; Zheng, Haixue; Chen, Huanchun; Li, Kui; Xiao, Shaobo
2018-01-01
Foot-and-mouth disease (FMD) is a highly contagious, severe viral illness notifiable to the World Organization for Animal Health. The causative agent, FMD virus (FMDV), replicates rapidly and efficiently inhibits host translation and the innate immune response for it has developed multiple tactics to evade host defenses and takes over gene expression machinery in the host cell. Here, we report a systemic analysis of the proteome and phosphoproteome of FMDV-infected cells. Bioinformatics analysis suggested that FMDV infection shuts off host cap-dependent translation, but leaves intact internal ribosome entry site (IRES)-mediated translation for viral proteins. Interestingly, several FMDV IRES-transacting factors, including G3BP stress granule assembly factor 1 (G3BP1), were dephosphorylated during FMDV infection. Ectopic expression of G3BP1 inhibited FMDV IRES activity, promoted assembly of stress granules, and activated innate immune responses, collectively suppressing FMDV replication. To counteract these host protective responses, FMDV-induced dephosphorylation of G3BP1, compromising its inhibitory effect on viral IRES. In addition, FMDV also proteolytically cleaved G3BP1 by its 3C protease (3Cpro). G3BP1 was cleaved at glutamic acid-284 (E284) by FMDV 3Cpro, and this cleavage completely lost the abilities of G3BP1 to activate innate immunity and to inhibit FMDV replication. Together, these data provide new insights into the post-translational mechanisms by which FMDV limits host stress and antiviral responses and indicate that G3BP1 dephosphorylation and its proteolysis by viral protease are important factors in the failure of host defense against FMDV infection.
Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.
2017-01-01
The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene. PMID:9641677
Pritchett, Joshua C; Green, Jaime S; Thomm, Angela M; Knox, Konstance K; Verneris, Michael R; Lund, Troy C
2016-12-15
Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4 + CD134 + / neg-lo and CD8 + CD134 + / neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4 + CD134 + cells as compared to CD4 + CD134 neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8 + CD134 +/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4 + CD134 + cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Lim, Pei Jin; Chu, Justin Jang Hann
2014-01-01
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lanying; Kao, Richard Y.; Zhou, Yusen
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, wasmore » able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.« less
NASA Astrophysics Data System (ADS)
Sears, Amy E.; McGwire, Bradford S.; Roizman, Bernard
1991-06-01
Herpes simplex virus 1 attaches to at least two cell surface receptors. In polarized epithelial (Madin-Darby canine kidney; MDCK) cells one receptor is located in the apical surface and attachment to the cells requires the presence of glycoprotein C in the virus. The second receptor is located in the basal surface and does not require the presence of glycoprotein C. Exposure of MDCK cells at either the apical or basal surface to wild-type virus yields plaques and viral products whereas infection by a glycoprotein C-negative mutant yields identical results only after exposure of MDCK cells to virus at the basal surface. Multiple receptors for viral entry into cells expand the host range of the virus. The observation that glycoprotein C-negative mutants are infectious in many nonpolarized cell lines suggests that cells in culture may express more than one receptor and explains why genes that specify the viral proteins that recognize redundant receptors, like glycoprotein C, are expendable.
Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J
2018-03-01
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV. Copyright © 2018 Newman et al.
Nucleic Acid Polymers Are Active against Hepatitis Delta Virus Infection In Vitro.
Beilstein, Frauke; Blanchet, Matthieu; Vaillant, Andrew; Sureau, Camille
2018-02-15
In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 μM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation. IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 μM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated with HBV immune escape. Copyright © 2018 American Society for Microbiology.
Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko
2016-03-31
Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.
Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...
2012-12-13
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less
Honda, M; Brown, E A; Lemon, S M
1996-01-01
The initiation of translation on the positive-sense RNA genome of hepatitis C virus (HCV) is directed by an internal ribosomal entry site (IRES) that occupies most of the 341-nt 5' nontranslated RNA (5'NTR). Previous studies indicate that this IRES differs from picornaviral IRESs in that its activity is dependent upon RNA sequence downstream of the initiator AUG. Here, we demonstrate that the initiator AUG of HCV is located within a stem-loop (stem-loop IV) involving nt -12 to +12 (with reference to the AUG). This structure is conserved among HCV strains, and is present in the 5'NTR of the phylogenetically distant GB virus B. Mutant, nearly genome-length RNAs containing nucleotide substitutions predicted to enhance the stability of stem-loop IV were generally deficient in cap-independent translation both in vitro and in vivo. Additional mutations that destabilize the stem-loop restored translation to normal. Thus, the stability of the stem-loop is strongly but inversely correlated with the efficiency of internal initiation of translation. In contrast, mutations that stabilize this stem-loop had comparatively little effect on translation of 5' truncated RNAs by scanning ribosomes, suggesting that internal initiation of translation follows binding of the 40S ribosome directly at the site of stem-loop IV. Because stem-loop IV is not required for internal entry of ribosomes but is able to regulate this process, we speculate that it may be stabilized by interactions with a viral protein, providing a mechanism for feedback regulation of translation, which may be important for viral persistence. PMID:8849773
76 FR 37136 - Post-Entry Amendment (PEA) Processing Test: Modification, Clarification, and Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
.... Customs and Border Protection's (CBP's) Post-Entry Amendment (PEA) Processing test, which allows the...: The Post-Entry Amendment (PEA) Processing test modification set forth in this document is effective...: Background I. Post-Entry Amendment Processing Test Program The Post-Entry Amendment (PEA) Processing test...
Chen, Zeming; Kolokoltsov, Andrey A.; Wang, Jia; Adhikary, Shramika; Lorinczi, Marta; Elferink, Lisa A.
2012-01-01
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2–mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2–mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking. PMID:22090132
Chen, Zeming; Kolokoltsov, Andrey A; Wang, Jia; Adhikary, Shramika; Lorinczi, Marta; Elferink, Lisa A; Davey, Robert A
2012-02-01
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2-mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2-mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking.
Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei
2006-01-01
Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.
Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W
2018-05-01
Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate signaling pathways, leading to the activation of interferon regulatory factor 3 (IRF3) and NF-κB, key transcription factors required for IFN-I induction. Serotype 3 (T3) reoviruses induce significantly more IFN-I than serotype 1 (T1) strains. In this work, we found that differences in IFN-I production by T1 and T3 reoviruses correlate with differential IRF3 activation. Differences in IRF3 activation are not caused by a blockade of the IRF3 activation by a T1 strain. Rather, differences in events during the late stages of viral entry determine the capacity of reovirus to activate host IFN-I responses. Together, our work provides insight into mechanisms of IFN-I induction by nonenveloped viruses. Copyright © 2018 American Society for Microbiology.
Han, Yang; Wang, Lvyin; Cui, Jin; Song, Yu; Luo, Zhen; Chen, Junbo; Xiong, Ying; Zhang, Qi; Liu, Fang; Ho, Wenzhe; Liu, Yingle; Wu, Jianguo
2016-01-01
ABSTRACT Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5′ untranslated region (5′UTR) and a polyadenylated 3′UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5′UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5′UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. PMID:27875274
VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.
Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj
2014-01-01
Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.
Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system
USDA-ARS?s Scientific Manuscript database
E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...
Qiu, Min; Chen, Yu; Song, Siwei; Song, Hongyong; Chu, Ying; Yuan, Zhongping; Cheng, Lin; Zheng, Datong; Chen, Zhiwei; Wu, Zhiwei
2012-11-01
Genital herpes is one of the most prevalent sexually transmitted diseases (STD) caused by herpes simplex viruses type 1 and 2 (HSV-1 and -2). HSV is considered as a major risk factor in human immunodeficiency virus type-1 (HIV-1) infection and rapid progression to acquired immunodeficiency syndrome (AIDS). Here, we reported the finding of a polymer of styrenesulfonic acid and maleic acid (PSM) which exhibited antiviral activity with low cytotoxicity. PSM exhibited in vitro inhibitory activity against HIV-1 pseudovirus and HSV-1 and -2. In vivo efficacy of PSM against HSV-2 (G) was also investigated. We found that both 1% and 5% PSM gels protected mice from HSV-2 vaginal infection and disease progression significantly. Mechanistic analysis demonstrated that PSM was likely an entry inhibitor that disrupted viral attachment to the target cells. In particular, PSM disrupted gp120 binding to CD4 by interacting with the gp120 V3-loop and the CD4-binding site. The in vitro cytotoxicity studies showed that PSM did not stimulate NF-κB activation and up-regulation of proinflammatory cytokine IL-1β and IL-8 in vaginal epithelial cells. In addition, PSM also showed low adverse effect on the growth of vaginal Lactobacillus strains. PSM is, therefore, a novel viral entry inhibitor and a potential microbicide candidate against both HIV-1 and HSV. Copyright © 2012 Elsevier B.V. All rights reserved.
Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.
Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu
2015-12-02
Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. Copyright © 2015 Elsevier B.V. All rights reserved.
Bour, S; Geleziunas, R; Wainberg, M A
1995-01-01
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established. PMID:7708013
Surface vimentin is critical for the cell entry of SARS-CoV.
Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu
2016-01-22
Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.
Gardner, Thomas J.
2016-01-01
SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580
Anti-dengue virus serotype 2 activity and mode of action of a novel peptide.
Chew, M-F; Tham, H-W; Rajik, M; Sharifah, S H
2015-10-01
To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action. A phage display peptide library was biopanned against purified DENV-2 and resulted in the identification and selection of a peptide (peptide gg-ww) for further investigation. ELISA was performed, and peptide gg-ww was shown to possess the highest binding affinity against DENV-2. Thus, peptide gg-ww was synthesized for cytotoxicity and antiviral assays. Virus plaque reduction assay, real-time PCR and immunofluorescence assay were used to investigate the inhibitory effect of peptide gg-ww on DENV-2 infection in Vero cells. Three different assays (pre-, simultaneous and post-treatments assays) were performed to investigate the peptide's mode of action. Results indicated that peptide gg-ww possessed strong antiviral activity with a ~96% inhibition rate, which was achieved at 250 μmol l(-1) . Viral replication was inhibited during a simultaneous treatment assay, indicating that the entry of the virus was impeded by this peptide. Peptide gg-ww displayed antiviral action against DENV-2 by targeting an early stage of viral replication (i.e. during viral entry). Peptide gg-ww may represent a new therapeutic candidate for the treatment of DENV infections and is a potential candidate to be developed as a peptide drug. © 2015 The Society for Applied Microbiology.
Sato, Yuichiro; Morimoto, Kinjiro; Kubo, Takanori; Sakaguchi, Takemasa; Nishizono, Akira; Hirayama, Makoto; Hori, Kanji
2015-01-01
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells. PMID:26035023
Previsani, N; Fontana, S; Hirt, B; Beard, P
1997-10-01
Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth
2017-01-01
ABSTRACT Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. PMID:28978704
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis
2017-12-15
Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.
González, Silvia A; Affranchino, José L
2016-07-01
The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.
Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu
2018-02-01
Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.
Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus
Lagenaur, Laurel A; Sanders-Beer, Brigitte E; Brichacek, Beda; Pal, Ranajit; Liu, Xiaowen; Liu, Yang; Yu, Rosa; Venzon, David; Lee, Peter P; Hamer, Dean H
2012-01-01
Most HIV transmission in women occurs through the cervicovaginal mucosa, which is coated by a bacterial biofilm including Lactobacillus. This commensal bacterium plays a role in maintaining healthy mucosa and can be genetically engineered to produce anti-viral peptides. Here, we report a 63% reduction in transmission of a chimeric simian/human immunodeficiency virus (SHIVSF162P3) after repeated vaginal challenges of macaques treated with Lactobacillus jensenii expressing the HIV-1 entry inhibitor cyanovirin-N. Furthermore, peak viral loads in colonized macaques with breakthrough infection were reduced 6-fold. Colonization and prolonged anti-viral protein secretion by the genetically engineered lactobacilli did not cause any increase in proinflammatory markers. These findings lay the foundation for an accessible and durable approach to reduce heterosexual transmission of HIV in women that is coitally independent, inexpensive, and enhances the natural protective effects of the vaginal microflora. PMID:21734653
Neuroinvasion and Inflammation in Viral Central Nervous System Infections
Schroten, Horst
2016-01-01
Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J
2016-11-28
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
The Large Marseillevirus Explores Different Entry Pathways by Forming Giant Infectious Vesicles.
Arantes, Thalita Souza; Rodrigues, Rodrigo Araújo Lima; Dos Santos Silva, Ludmila Karen; Oliveira, Graziele Pereira; de Souza, Helton Luís; Khalil, Jacques Y B; de Oliveira, Danilo Bretas; Torres, Alice Abreu; da Silva, Luis Lamberti; Colson, Philippe; Kroon, Erna Geessien; da Fonseca, Flávio Guimarães; Bonjardim, Cláudio Antônio; La Scola, Bernard; Abrahão, Jônatas Santos
2016-06-01
Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Pharmacological Inhibition of Feline Immunodeficiency Virus (FIV)
Mohammadi, Hakimeh; Bienzle, Dorothee
2012-01-01
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats. PMID:22754645
Analysis of Ebola Virus Entry Into Macrophages.
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-10-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian
2017-09-15
The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40. Copyright © 2017 American Society for Microbiology.
Anacker, Daniel C.; Aloor, Heather L.; Shepard, Caitlin N.; Lenzi, Gina M.; Johnson, Bryan A.; Kim, Baek; Moody, Cary A.
2016-01-01
Productive replication of human papillomaviruses (HPV) is restricted to the uppermost layers of the differentiating epithelia. How HPV ensures an adequate supply of cellular substrates for viral DNA synthesis in a differentiating environment is unclear. Here, we demonstrate that HPV31 positive cells exhibit increased dNTP pools and levels of RRM2, a component of the ribonucleotide reductase (RNR) complex, which is required for de novo synthesis of dNTPs. RRM2 depletion blocks productive replication, suggesting RRM2 provides dNTPs for viral DNA synthesis in differentiating cells. We demonstrate that HPV31 regulates RRM2 levels through expression of E7 and activation of the ATR-Chk1-E2F1 DNA damage response, which is essential to combat replication stress upon entry into S-phase, as well as for productive replication. Our findings suggest a novel way in which viral DNA synthesis is regulated through activation of ATR and Chk1 and highlight an intriguing new virus/host interaction utilized for viral replication. PMID:27764728
Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob
2005-10-06
US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.
Plasma membrane signaling in HIV-1 infection.
Abbas, Wasim; Herbein, Georges
2014-04-01
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.
Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells.
Lehmann, Maik J; Sherer, Nathan M; Marks, Carolyn B; Pypaert, Marc; Mothes, Walther
2005-07-18
Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, "surfing" toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth, E-mail: elizabeth.rieder@ars.usda.gov
2012-03-30
Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C{sup pro} induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within themore » 5 Prime non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C{sup pro}.« less
Ren, Qian; Au, Hilda H.T.; Wang, Qing S.; Lee, Seonghoon; Jan, Eric
2014-01-01
The dicistrovirus intergenic internal ribosome entry site (IGR IRES) directly recruits the ribosome and initiates translation using a non-AUG codon. A subset of IGR IRESs initiates translation in either of two overlapping open reading frames (ORFs), resulting in expression of the 0 frame viral structural polyprotein and an overlapping +1 frame ORFx. A U–G base pair adjacent to the anticodon-like pseudoknot of the IRES directs +1 frame translation. Here, we show that the U-G base pair is not absolutely required for +1 frame translation. Extensive mutagenesis demonstrates that 0 and +1 frame translation can be uncoupled. Ribonucleic acid (RNA) structural probing analyses reveal that the mutant IRESs adopt distinct conformations. Toeprinting analysis suggests that the reading frame is selected at a step downstream of ribosome assembly. We propose a model whereby the IRES adopts conformations to occlude the 0 frame aminoacyl-tRNA thereby allowing delivery of the +1 frame aminoacyl-tRNA to the A site to initiate translation of ORFx. This study provides a new paradigm for programmed recoding mechanisms that increase the coding capacity of a viral genome. PMID:25038250
Elliott, Sarah T C; Wetzel, Katherine S; Francella, Nicholas; Bryan, Steven; Romero, Dino C; Riddick, Nadeene E; Shaheen, Farida; Vanderford, Thomas; Derdeyn, Cynthia A; Silvestri, Guido; Paiardini, Mirko; Collman, Ronald G
2015-09-01
Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Elliott, Sarah T. C.; Wetzel, Katherine S.; Francella, Nicholas; Bryan, Steven; Romero, Dino C.; Riddick, Nadeene E.; Shaheen, Farida; Vanderford, Thomas; Derdeyn, Cynthia A.; Silvestri, Guido; Paiardini, Mirko
2015-01-01
ABSTRACT Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4+ T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4+ T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4+ T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4+ T cell loss. IMPORTANCE Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection. PMID:26109719
Faverjon, C; Leblond, A; Lecollinet, S; Bødker, R; de Koeijer, A A; Fischer, E A J
2017-12-01
African horse sickness (AHS) and equine encephalosis (EE) are Culicoides-borne viral diseases that could have the potential to spread across Europe if introduced, thus being potential threats for the European equine industry. Both share similar epidemiology, transmission patterns and geographical distribution. Using stochastic spatiotemporal models of virus entry, we assessed and compared the probabilities of both viruses entering France via two pathways: importation of live-infected animals or importation of infected vectors. Analyses were performed for three consecutive years (2010-2012). Seasonal and regional differences in virus entry probabilities were the same for both diseases. However, the probability of EE entry was much higher than the probability of AHS entry. Interestingly, the most likely entry route differed between AHS and EE: AHS has a higher probability to enter through an infected vector and EE has a higher probability to enter through an infectious host. Consequently, different effective protective measures were identified by 'what-if' scenarios for the two diseases. The implementation of vector protection on all animals (equine and bovine) coming from low-risk regions before their importation was the most effective in reducing the probability of AHS entry. On the other hand, the most significant reduction in the probability of EE entry was obtained by the implementation of quarantine before import for horses coming from both EU and non-EU countries. The developed models can be useful to implement risk-based surveillance. © 2016 Blackwell Verlag GmbH.
Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M
2016-06-01
Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Novel Small Molecule Entry Inhibitors of Ebola Virus
Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.
2015-01-01
Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510
Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages
Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.
2014-01-01
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann
2017-01-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950
York, Joanne; Nunberg, Jack H
2016-09-15
Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that nonmyristoylated GPC mutants of the Candid #1 strain of Junín virus display a commensurate deficiency in their infectivity, albeit without additional defects in virion assembly and budding. These results suggest that SSP myristoylation may function late in the fusion process to facilitate merging of the viral and cellular membranes. Antiviral agents that target this novel aspect of GPC membrane fusion may be useful in the treatment of arenavirus hemorrhagic fevers. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Pei, Yameng; Wang, Chunting; Yan, S Frank; Liu, Gang
2017-08-10
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Welch, Brett D; Paduch, Marcin; Leser, George P; Bergman, Zachary; Kors, Christopher A; Paterson, Reay G; Jardetzky, Theodore S; Kossiakoff, Anthony A; Lamb, Robert A
2014-10-01
Paramyxoviruses are enveloped negative-strand RNA viruses that are significant human and animal pathogens. Most paramyxoviruses infect host cells via the concerted action of a tetrameric attachment protein (variously called HN, H, or G) that binds either sialic acid or protein receptors on target cells and a trimeric fusion protein (F) that merges the viral envelope with the plasma membrane at neutral pH. F initially folds to a metastable prefusion conformation that becomes activated via a cleavage event during cellular trafficking. Upon receptor binding, the attachment protein, which consists of a globular head anchored to the membrane via a helical tetrameric stalk, triggers a major conformation change in F which results in fusion of virus and host cell membranes. We recently proposed a model for F activation in which the attachment protein head domains move following receptor binding to expose HN stalk residues critical for triggering F. To test the model in the context of wild-type viral glycoproteins, we used a restricted-diversity combinatorial Fab library and phage display to rapidly generate synthetic antibodies (sAbs) against multiple domains of the paramyxovirus parainfluenza 5 (PIV5) pre- and postfusion F and HN. As predicted by the model, sAbs that bind to the critical F-triggering region of the HN stalk do not disrupt receptor binding or neuraminidase (NA) activity but are potent inhibitors of fusion. An inhibitory prefusion F-specific sAb recognized a quaternary antigenic site and may inhibit fusion by preventing F refolding or by blocking the F-HN interaction. Importance: The paramyxovirus family of negative-strand RNA viruses cause significant disease in humans and animals. The viruses bind to cells via their receptor binding protein and then enter cells by fusion of their envelope with the host cell plasma membrane, a process mediated by a metastable viral fusion (F) protein. To understand the steps in viral membrane fusion, a library of synthetic antibodies to F protein and the receptor binding protein was generated in bacteriophage. These antibodies bound to different regions of the F protein and the receptor binding protein, and the location of antibody binding affected different processes in viral entry into cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Donkers, Joanne M; Zehnder, Benno; van Westen, Gerard J P; Kwakkenbos, Mark J; IJzerman, Adriaan P; Oude Elferink, Ronald P J; Beuers, Ulrich; Urban, Stephan; van de Graaf, Stan F J
2017-11-10
The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC 50 5.1 µM), zafirlukast (IC 50 6.5 µM), TRIAC (IC 50 6.9 µM), and sulfasalazine (IC 50 9.6 µM). Chicago sky blue 6B (IC 50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.
Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin.
Lin, Dongguo; Luo, Yinzhu; Yang, Guang; Li, Fangfang; Xie, Xiangkun; Chen, Daiwei; He, Lifang; Wang, Jingyu; Ye, Chunfeng; Lu, Shengsheng; Lv, Lin; Liu, Shuwen; He, Jian
2017-11-15
Influenza A viruses (IAVs) induce acute respiratory disease and cause significant morbidity and mortality throughout the world. With the emergence of drug-resistant viral strains, new and effective anti-IAV drugs with different modes of action are urgently needed. In this study, by conjugating cholesterol to the N-terminus of the short peptide KKWK, a lipopeptide named S-KKWK was created. The anti-IAV test indicated that S-KKWK and its derivatives displayed potent antiviral activities against a broad variety of influenza A viral strains including oseltamivir-resistant strains and clinically relevant isolates with IC 50 values ranging from 0.7 to 3.0µM. An extensive mechanistic study showed that these peptides functioned as viral "entry blockers" by inhibiting the conformational rearrangements of HA2 subunit, thereby interrupting the fusion of virus-host cell membranes. Significantly, a computer-aided docking simulation and protein sequence alignment identified conserved residues in the stem region of HA2 as the possible binding site of S-KKWK, which may be employed as a potential drug target for designing anti-IAVs with a broad-spectrum of activity. By targeting this region, a potent anti-IAV agent was subsequently created. In addition, the anti-IAV activity of S-KKWK was assessed by experiments with influenza A virus-infected mice, in which S-KKWK reduced the mortality of infected animals and extended survival time significantly. Overall, in addition to providing a strategy for designing broad-spectrum anti-IAV agents, these results indicate that S-KKWK and its derivatives are prospective candidates for potent antivirals. Copyright © 2017 Elsevier Inc. All rights reserved.
Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.
Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash
2018-01-01
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genital Herpes: Insights into Sexually Transmitted Infectious Disease
Jaishankar, Dinesh; Shukla, Deepak
2016-01-01
Etiology, transmission and protection: Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections with recurring manifestations throughout the lifetime of infected hosts. Currently no effective vaccines or prophylactics exist that provide complete protection or immunity from the virus, which is endemic throughout the world. Pathology/Symptomatology: Primary and recurrent infections result in lesions and inflammation around the genital area and the latter accounts for majority of genital herpes instances. Immunocompromised patients including neonates are susceptible to additional systemic infections including debilitating consequences of nervous system inflammation. Epidemiology, incidence and prevalence: More than 500 million people are infected worldwide and most reported cases involve the age groups between 16-40 years, which coincides with an increase in sexual activity among this age group. While these numbers are an estimate, the actual numbers may be underestimated as many people are asymptomatic or do not report the symptoms. Treatment and curability: Currently prescribed medications, mostly nucleoside analogs, only reduce the symptoms caused by an active infection, but do not eliminate the virus or reduce latency. Therefore, no cure exists against genital herpes and infected patients suffer from periodic recurrences of disease symptoms for their entire lives. Molecular mechanisms of infection: The last few decades have generated many new advances in our understanding of the mechanisms that drive HSV infection. The viral entry receptors such as nectin-1 and HVEM have been identified, cytoskeletal signaling and membrane structures such as filopodia have been directly implicated in viral entry, host motor proteins and their viral ligands have been shown to facilitate capsid transport and many host and HSV proteins have been identified that help with viral replication and pathogenesis. New understanding has emerged on the role of autophagy and other innate immune mechanisms that are subverted to enhance HSV pathogenesis. This review summarizes our current understanding of HSV-2 and associated diseases and available or upcoming new treatments. PMID:28357380
Genital Herpes: Insights into Sexually Transmitted Infectious Disease.
Jaishankar, Dinesh; Shukla, Deepak
2016-06-27
Etiology, transmission and protection: Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections with recurring manifestations throughout the lifetime of infected hosts. Currently no effective vaccines or prophylactics exist that provide complete protection or immunity from the virus, which is endemic throughout the world. Pathology/Symptomatology: Primary and recurrent infections result in lesions and inflammation around the genital area and the latter accounts for majority of genital herpes instances. Immunocompromised patients including neonates are susceptible to additional systemic infections including debilitating consequences of nervous system inflammation. Epidemiology, incidence and prevalence: More than 500 million people are infected worldwide and most reported cases involve the age groups between 16-40 years, which coincides with an increase in sexual activity among this age group. While these numbers are an estimate, the actual numbers may be underestimated as many people are asymptomatic or do not report the symptoms. Treatment and curability: Currently prescribed medications, mostly nucleoside analogs, only reduce the symptoms caused by an active infection, but do not eliminate the virus or reduce latency. Therefore, no cure exists against genital herpes and infected patients suffer from periodic recurrences of disease symptoms for their entire lives. Molecular mechanisms of infection: The last few decades have generated many new advances in our understanding of the mechanisms that drive HSV infection. The viral entry receptors such as nectin-1 and HVEM have been identified, cytoskeletal signaling and membrane structures such as filopodia have been directly implicated in viral entry, host motor proteins and their viral ligands have been shown to facilitate capsid transport and many host and HSV proteins have been identified that help with viral replication and pathogenesis. New understanding has emerged on the role of autophagy and other innate immune mechanisms that are subverted to enhance HSV pathogenesis. This review summarizes our current understanding of HSV-2 and associated diseases and available or upcoming new treatments.
Casciano, Jessica C.; Duchemin, Nicholas J.; Lamontagne, R. Jason; Steel, Laura F.; Bouchard, Michael J.
2017-01-01
Many viruses modulate calcium (Ca2+) signaling to create a cellular environment that is more permissive to viral replication, but for most viruses that regulate Ca2+ signaling, the mechanism underlying this regulation is not well understood. The hepatitis B virus (HBV) HBx protein modulates cytosolic Ca2+ levels to stimulate HBV replication in some liver cell lines. A chronic HBV infection is associated with life-threatening liver diseases, including hepatocellular carcinoma (HCC), and HBx modulation of cytosolic Ca2+ levels could have an important role in HBV pathogenesis. Whether HBx affects cytosolic Ca2+ in a normal hepatocyte, the natural site of an HBV infection, has not been addressed. Here, we report that HBx alters cytosolic Ca2+ signaling in cultured primary hepatocytes. We used single cell Ca2+ imaging of cultured primary rat hepatocytes to demonstrate that HBx elevates the cytosolic Ca2+ level in hepatocytes following an IP3-linked Ca2+ response; HBx effects were similar when expressed alone or in the context of replicating HBV. HBx elevation of the cytosolic Ca2+ level required extracellular Ca2+ influx and store-operated Ca2+ (SOC) entry and stimulated HBV replication in hepatocytes. We used both targeted RT-qPCR and transcriptome-wide RNAseq analyses to compare levels of SOC channel components and other Ca2+ signaling regulators in HBV-expressing and control hepatocytes and show that the transcript levels of these various proteins are not affected by HBV. We also show that HBx regulation of SOC-regulated Ca2+ accumulation is likely the consequence of HBV modulation of a SOC channel regulatory mechanism. In support of this, we link HBx enhancement of SOC-regulated Ca2+ accumulation to Ca2+ uptake by mitochondria and demonstrate that HBx stimulates mitochondrial Ca2+ uptake in primary hepatocytes. The results of our study may provide insights into viral mechanisms that affect Ca2+ signaling to regulate viral replication and virus-associated diseases. PMID:28151934
Ulitzky, Laura; Lafer, Manuel M; KuKuruga, Mark A; Silberstein, Erica; Cehan, Nicoleta; Taylor, Deborah R
2016-01-01
Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular carcinoma and cirrhosis, is more associated with men and postmenopausal women than with premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol plays an innate role in preventing viral infection and liver disease. Consequently, most research in the field has concluded that estrogen affects HCV replication through viral interactions with estrogen receptor-α. Previously, estrogen-like antagonists, including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry, although the authors did not identify host factors involved. Estrogen can act alternatively through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. While previous studies have demonstrated that estrogen down-regulated occludin in cervical cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein and HCV receptor and here we report that activation and cellular export of MMP-9 led to the cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleavage site in extracellular Domain D; the motif required for HCV entry and spread. This pathway gives new insight into a novel innate antiviral pathway and the suboptimal environment that estrogen provides for the proliferation of the virus. It may also explain the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral enhancement properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.
Martín-Acebes, Miguel A; Vázquez-Calvo, Ángela; Saiz, Juan-Carlos
2016-10-01
Flaviviruses are emerging arthropod-borne pathogens that cause life-threatening diseases such as yellow fever, dengue, West Nile encephalitis, tick-borne encephalitis, Kyasanur Forest disease, tick-borne encephalitis, or Zika disease. This viral genus groups >50 viral species of small enveloped plus strand RNA virus that are phylogenetically closely related to hepatitis C virus. Importantly, the flavivirus life cycle is intimately associated to host cell lipids. Along this line, flaviviruses rearrange intracellular membranes from the endoplasmic-reticulum of the infected cells to develop adequate platforms for viral replication and particle biogenesis. Moreover, flaviviruses dramatically orchestrate a profound reorganization of the host cell lipid metabolism to create a favorable environment for viral multiplication. Consistently, recent work has shown the importance of specific lipid classes in flavivirus infections. For instances, fatty acid synthesis is linked to viral replication, phosphatidylserine and phosphatidylethanolamine are involved on the entry of flaviviruses, sphingolipids (ceramide and sphingomyelin) play a key role on virus assembly and pathogenesis, and cholesterol is essential for innate immunity evasion in flavivirus-infected cells. Here, we revise the current knowledge on the interactions of the flaviviruses with the cellular lipid metabolism to identify potential targets for future antiviral development aimed to combat these relevant health-threatening pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Bernhoff, E; Gutteberg, T J; Sandvik, K; Hirsch, H H; Rinaldo, C H
2008-07-01
The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by >90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development.
Smith, S. Abigail; Wood, Charles; West, John T.
2013-01-01
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. ‘Winners’ and ‘losers’ were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a ‘survival of the fittest’ evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition. PMID:23638182
Wetzel, Katherine S.; Yi, Yanjie; Elliott, Sarah T. C.; Romero, Dino; Jacquelin, Beatrice; Hahn, Beatrice H.; Muller-Trutwin, Michaela; Apetrei, Cristian; Pandrea, Ivona
2016-01-01
ABSTRACT African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro. Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections. PMID:27903799
Wetzel, Katherine S; Yi, Yanjie; Elliott, Sarah T C; Romero, Dino; Jacquelin, Beatrice; Hahn, Beatrice H; Muller-Trutwin, Michaela; Apetrei, Cristian; Pandrea, Ivona; Collman, Ronald G
2017-02-15
African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4 + T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4 + cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4 + T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections. Copyright © 2017 American Society for Microbiology.
Alimentary Tract as Entry Route for Hantavirus Infection
Hantaviruses are zoonotic agents that cause hemorrhagic fever with renal and/or cardiopulmonary manifestations, reaching fatality rates of up to 50...predominant endemic hantavirus in Europe, is associated with mild forms of hemorrhagic fever with renal syndrome. PUUV is transmitted to humans by exposure to...viral association with endosomal antigen EEA-1, followed by virus replication and loss of epithelial barrier function with concomitant basolateral
Pascual, María José; Merwaiss, Fernando; Leal, Emilse; Quintana, María Eugenia; Capozzo, Alejandra V; Cavasotto, Claudio N; Bollini, Mariela; Alvarez, Diego E
2018-01-01
Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. Here, we took a computer-guided approach with the aim of identifying new antivirals against the envelope protein E2 of bovine viral diarrhea virus (BVDV). BVDV is an enveloped virus with an RNA genome responsible for major economic losses of the cattle industry worldwide. Based on the crystal structure of the envelope protein E2, we defined a binding site at the interface of the two most distal domains from the virus membrane and pursued a hierarchical docking-based virtual screening search to identify small-molecule ligands of E2. Phenyl thiophene carboxamide derivative 12 (PTC12) emerged as a specific inhibitor of BVDV replication from in vitro antiviral activity screening of candidate molecules, displaying an IC 50 of 0.30 μM against the reference NADL strain of the virus. Using reverse genetics we constructed a recombinant BVDV expressing GFP that served as a sensitive reporter for the study of the mechanism of action of antiviral compounds. Time of drug addition assays showed that PTC12 inhibited an early step of infection. The mechanism of action was further dissected to find that the compound specifically acted at the internalization step of virus entry. Interestingly, we demonstrated that similar to PTC12, the benzimidazole derivative 03 (BI03) selected in the virtual screen also inhibited internalization of BVDV. Furthermore, docking analysis of PTC12 and BI03 into the binding site revealed common interactions with amino acid residues in E2 suggesting that both compounds could share the same molecular target. In conclusion, starting from a targeted design strategy of antivirals against E2 we identified PTC12 as a potent inhibitor of BVDV entry. The compound can be valuable in the design of antiviral strategies in combination with already well-characterized polymerase inhibitors of BVDV. Copyright © 2017 Elsevier B.V. All rights reserved.
Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis
Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien
2017-01-01
ABSTRACT Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle. PMID:28878069
Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis.
Andrade, Ana Cláudia Dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Oliveira, Graziele Pereira; Andrade, Kétyllen Reis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos
2017-11-15
Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii , causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus. IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle. Copyright © 2017 American Society for Microbiology.
Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan
2016-01-01
ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. PMID:27847360
Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R
2017-01-15
Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. Copyright © 2017 American Society for Microbiology.
Wolbachia wStri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.
Schultz, M J; Tan, A L; Gray, C N; Isern, S; Michael, S F; Frydman, H M; Connor, J H
2018-05-22
Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia w Stri, isolated from Laodelphax striatellus , was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that w Stri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. w Stri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by w Stri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into w Stri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia -infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in w Stri-infected cells. This study's findings increase the potential for application of w Stri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. IMPORTANCE Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont, Wolbachia w Stri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use of Wolbachia w Stri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy. Copyright © 2018 Schultz et al.
Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells
Lehmann, Maik J.; Sherer, Nathan M.; Marks, Carolyn B.; Pypaert, Marc; Mothes, Walther
2005-01-01
Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, “surfing” toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body. PMID:16027225
Whitbeck, J. Charles; Ponce-de-León, Manuel; Saw, Wan Ting; Cohen, Gary H.; Eisenberg, Roselyn J.
2012-01-01
Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368–382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions. PMID:22398293
An emerging role for p21-activated kinases (Paks) in viral infections.
Van den Broeke, Celine; Radu, Maria; Chernoff, Jonathan; Favoreel, Herman W
2010-03-01
p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival and motility, and abnormal Pak function is associated with a number of human diseases. Here, we discuss emerging evidence that these enzymes also play a major role in the entry, replication and spread of many important pathogenic human viruses, including HIV. Careful assessment of the potential role of Paks in antiviral immunity will be pivotal to evaluate thoroughly the potential of agents that inhibit Pak as a new class of anti-viral therapeutics.
Romero-Brey, Inés; Bartenschlager, Ralf
2015-01-01
As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications. PMID:26633469
Romero-Brey, Inés; Bartenschlager, Ralf
2015-12-03
As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.
Carrascosa, Angel L; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; Revilla, Yolanda
2002-03-15
Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.
Early cytoplasmic uncoating is associated with infectivity of HIV-1
Cianci, Gianguido C.; Anderson, Meegan R.; Hope, Thomas J.
2017-01-01
After fusion, HIV delivers its conical capsid into the cytoplasm. To release the contained reverse-transcribing viral genome, the capsid must disassemble in a process termed uncoating. Defining the kinetics, dynamics, and cellular location of uncoating of virions leading to infection has been confounded by defective, noninfectious particles and the stochastic minefield blocking access to host DNA. We used live-cell fluorescent imaging of intravirion fluid phase markers to monitor HIV-1 uncoating at the individual particle level. We find that HIV-1 uncoating of particles leading to infection is a cytoplasmic process that occurs ∼30 min postfusion. Most, but not all, of the capsid protein is rapidly shed in tissue culture and primary target cells, independent of entry pathway. Extended time-lapse imaging with less than one virion per cell allows identification of infected cells by Gag-GFP expression and directly links individual particle behavior to infectivity, providing unprecedented insights into the biology of HIV infection. PMID:28784755
Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.
2015-01-01
Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn
Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified amore » novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.« less
Torres, Lilith; Ortiz, Tatiana; Tang, Qiyi
2015-01-01
Human herpesviruses cause different infectious diseases, resulting in world-wide health problems. Sexual transmission is a major route for the spread of both herpes simplex virus-1 (HSV-1) and -2. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa and, thereby, initiates viral replication. Previously, we demonstrated that the amyloid fibrils semenogelin (SEM) and semen-derived enhancer of viral infection (SEVI), and seminal plasma (SP) augment cytomegalovirus infection (Tang et al., J. Virol 2013). Whether SEM or SEVI amyloids or SP could also enhance other herpesvirus infections has not been examined. In this study, we found that the two amyloids as well as SP strongly enhance both HSV-1 and -2 infections in cell culture. Along with SP, SEM and SEVI amyloids enhanced viral entry and increased infection rates by more than 10-fold, as assessed by flow cytometry assay and fluorescence microscopy. Viral replication was increased by about 50- to 100-fold. Moreover, viral growth curve assays showed that SEM and SEVI amyloids, as well as SP, sped up the kinetics of HSV replication such that the virus reached its replicative peak more quickly. The interactions of SEM, SEVI, and SP with HSVs are direct. Furthermore, we discovered that the enhancing effects of SP, SEM, and SEVI can be significantly reduced by heparin, a sulfated polysaccharide with an anionic charge. It is probable that heparin abrogates said enhancing effects by interfering with the interaction of the viral particle and the amyloids, which interaction results in the binding of the viral particles and both SEM and SEVI. PMID:25903833
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul
2017-04-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sialic acid-dependent cell entry of human enterovirus D68
Liu, Yue; Sheng, Ju; Baggen, Jim; ...
2015-11-13
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes inmore » the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.« less
Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Rui; Xu, Kai; Zhou, Tongqing
The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. In this paper, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showedmore » that the N-terminal portion of the fusion peptide can be solvent-exposed. Finally, these results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.« less
Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2.
Harrison, I P; McKnight, A
2011-06-20
Lv2 is a human factor that restricts infection of some HIV-2 viruses after entry into particular target cells. HIV-2 MCR is highly susceptible to Lv2 whereas HIV-2 MCN is not. The block is after reverse transcription but prior to nuclear entry. The viral determinants for this restriction have been mapped to the HIV-2 envelope and the capsid genes. Our model of Lv2 restriction suggests that the route taken into a cell is important in determining whether a productive infection occurs. Here we characterised the infectious routes used by MCN and MCR using chemical compounds and molecular techniques to distinguish between potential pathways. Our results suggest that susceptible MCR can enter restrictive HeLa(CD4) cells via two pathways; a clathrin/AP2 mediated endocytic route that is sensitive to Lv2 restriction and an alternative, non-clathrin mediated route, which results in more efficient infection. Copyright © 2011 Elsevier Inc. All rights reserved.
Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.
Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C
2018-01-01
Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Gao, Bo; Zhang, Jianming; Wang, Yuping; Chen, Fan; Zheng, Chaohui; Xie, Lianhui
2017-09-25
Over the past decade, indigenous dengue outbreaks have occurred occasionally in Fujian province in southeastern China because of sporadic imported dengue viruses (DENV). In this study, 3 DENV-2 and 2 DENV-4 strains were isolated from suspected febrile travelers at 2 ports of entry in Fujian between 2013-2015. Complete viral genome sequences of these new isolates were obtained with Sanger chemistry. Genomic sequence analyses revealed that these strains belonged to genotypes of 2-Cosmopolitan and 4-II. Consistent with the patients' travel information, phylogenetic analyses of the complete coding regions also indicated that most of the new isolates were genetically similar to the circulating strains in Southeast Asia rather than previous Chinese strains that were available. Therefore, phylogenetic analyses of the imported DENV demonstrated that multiple introductions of DENV emerged continuously in Fujian, and highlighted the importance of dengue surveillance at entry-exit ports in the subtropical regions of southern China.
Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody
Kong, Rui; Xu, Kai; Zhou, Tongqing; ...
2016-05-13
The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. In this paper, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showedmore » that the N-terminal portion of the fusion peptide can be solvent-exposed. Finally, these results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.« less
Sialic acid-dependent cell entry of human enterovirus D68
Liu, Yue; Sheng, Ju; Baggen, Jim; Meng, Geng; Xiao, Chuan; Thibaut, Hendrik J.; van Kuppeveld, Frank J. M.; Rossmann, Michael G.
2015-01-01
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. PMID:26563423
Nocchi, Samara Requena; de Moura-Costa, Gislaine Franco; Novello, Claudio Roberto; Rodrigues, Juliana; Longhini, Renata; de Mello, João Carlos Palazzo; Filho, Benedito Prado Dias; Nakamura, Celso Vataru; Ueda-Nakamura, Tânia
2016-01-01
Herpes simplex virus type 1 (HSV-1) is associated with orofacial infections and is transmitted by direct contact with infected secretions. Several efforts have been expended in the search for drugs to the treatment for herpes. Schinus terebinthifolius is used in several illnesses and among them, for the topical treatment of skin wounds, especially wounds of mucous membranes, whether infected or not. To evaluate the cytotoxicity and anti-HSV-1 activity of the crude hydroethanolic extract (CHE) from the stem bark of S. terebinthifolius, as well as its fractions and isolated compounds. The CHE was subjected to bioguided fractionation. The anti-HSV-1 activity and the cytotoxicity of the CHE, its fractions, and isolated compounds were evaluated in vitro by SRB method. A preliminar investigation of the action of CHE in the virus-host interaction was conducted by the same assay. CHE presented flavan-3-ols and showed anti-HSV-1 activity, better than its fractions and isolated compounds. The class of substances found in CHE can bind to proteins to form unstable complexes and enveloped viruses, as HSV-1 may be vulnerable to this action. Our results suggest that the CHE interfered with virion envelope structures, masking viral receptors that are necessary for adsorption or entry into host cells. The plant investigated exhibited potential for future development treatment against HSV-1, but further tests are necessary, especially to elucidate the mechanism of action of CHE, as well as preclinical and clinical studies to confirm its safety and efficacy. Crude hydroethanolic extract (CHE) presents promising activity against herpes simplex virus type 1 (HSV 1), with selectivity index (SI) = 22.50CHE has flavan-3-ols in its composition, such as catechin and gallocatechinThe fractions and isolated compounds obtained from CHE by bioguided fractionation are less active than the CHE against HSV-1CHE interferes with viral entry process in the host cell and acts directly on the viral particle. Abbreviations used: HSV: Herpes simplex virus, CHE: Crude hydroethanolic extract, WF: Water fraction, AF: Ethyl-acetate fraction, MPLC: Medium-performance liquid chromatography, TLC: Thin-layer chromatography, NMR: Nuclear magnetic resonance, ESI-MS: Electrospray ionization mass spectrometry, SRB: Sulforhodamine B, CPE: Cytopathic effect, CC50: 50% cytotoxic concentration, EC50: 50% effective concentration, PBS: Phosphate-buffered saline.
19 CFR 191.143 - Drawback entry.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) DRAWBACK Foreign-Built Jet Aircraft Engines Processed in the United States § 191.143 Drawback entry. (a) Filing of entry. Drawback entries covering these foreign-built jet aircraft engines shall be filed on Customs Form 7551, modified to show that the entry covers jet aircraft engines processed under...
19 CFR 191.143 - Drawback entry.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) DRAWBACK Foreign-Built Jet Aircraft Engines Processed in the United States § 191.143 Drawback entry. (a) Filing of entry. Drawback entries covering these foreign-built jet aircraft engines shall be filed on Customs Form 7551, modified to show that the entry covers jet aircraft engines processed under...
Membrane organization of virus and target cell plays a role in HIV entry.
Dumas, Fabrice; Preira, Pascal; Salomé, Laurence
2014-12-01
The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Study of RNA-A Initiation Translation of The Infectious Pancreatic Necrosis Virus.
Rivas-Aravena, Andrea; Muñoz, Patricio; Jorquera, Patricia; Diaz, Alvaro; Reinoso, Claudia; González-Catrilelbún, Sebastián; Sandino, Ana María
2017-08-15
The infectious pancreatic necrosis virus (IPNV) is a salmonid pathogen that causes significant economic losses to the aquaculture industry. IPNV is a non-enveloped virus containing two uncapped and non-polyadenylated double strand RNA genomic segments, RNA-A and RNA-B. The viral protein Vpg is covalently attached to the 5' end of both segments. There is little knowledge about its viral cycle, particularly about the translation of the RNAs. Through experiments using mono and bicistronic reporters, in this work we show that the 120-nucleotide-long 5'-UTR of RNA-A contains an internal ribosome entry site (IRES) that functions efficiently both in vitro and in salmon cells. IRES activity is strongly dependent on temperature. Also, the IRES structure is confined to the 5'UTR and is not affected by the viral coding sequence. This is the first report of IRES activity in a fish virus and can give us tools to generate antivirals to attack the virus without affecting fish directly. Copyright © 2017. Published by Elsevier B.V.
Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J
2009-04-07
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Emerging intracellular receptors for hemorrhagic fever viruses.
Jae, Lucas T; Brummelkamp, Thijn R
2015-07-01
Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith
2015-01-01
Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131
Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears.
Miner, Jonathan J; Sene, Abdoulaye; Richner, Justin M; Smith, Amber M; Santeford, Andrea; Ban, Norimitsu; Weger-Lucarelli, James; Manzella, Francesca; Rückert, Claudia; Govero, Jennifer; Noguchi, Kevin K; Ebel, Gregory D; Diamond, Michael S; Apte, Rajendra S
2016-09-20
Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Peptides as Therapeutic Agents for Dengue Virus
Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa
2017-01-01
Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients. PMID:29200948
Felid Herpesvirus Type 1 Infection in Cats: A Natural Host Model for Alphaherpesvirus Pathogenesis
Maes, Roger
2012-01-01
Feline herpesvirus 1 (FeHV-1) is an alphaherpesvirus that causes feline viral rhinotracheitis, an important viral disease of cats on a worldwide basis. Acute FeHV-1 infection is associated with both upper respiratory and ocular signs. Following the acute phase of the disease lifelong latency is established, primarily in sensory neuronal cells. As is the case with human herpes simplex viruses, latency reactivation can result in recrudescence, which can manifest itself in the form of serious ocular lesions. FeHV-1 infection in cats is a natural host model that is useful for the identification of viral virulence genes that play a role in replication at the mucosal portals of entry or are mediators of the establishment, maintenance, or reactivation of latency. It is also a model system for defining innate and adaptive immunity mechanisms and for immunization strategies that can lead to better protection against this and other alphaherpesvirus infections. PMID:23762586
Characterization of Reemerging Chikungunya Virus
Sourisseau, Marion; Schilte, Clémentine; Casartelli, Nicoletta; Trouillet, Céline; Guivel-Benhassine, Florence; Rudnicka, Dominika; Sol-Foulon, Nathalie; Roux, Karin Le; Prevost, Marie-Christine; Fsihi, Hafida; Frenkiel, Marie-Pascale; Blanchet, Fabien; Afonso, Philippe V; Ceccaldi, Pierre-Emmanuel; Ozden, Simona; Gessain, Antoine; Schuffenecker, Isabelle; Verhasselt, Bruno; Zamborlini, Alessia; Saïb, Ali; Rey, Felix A; Arenzana-Seisdedos, Fernando; Desprès, Philippe; Michault, Alain; Albert, Matthew L; Schwartz, Olivier
2007-01-01
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. PMID:17604450