Sample records for viral mrna transcripts

  1. Extreme heterogeneity of influenza virus infection in single cells

    PubMed Central

    Russell, Alistair B; Trapnell, Cole

    2018-01-01

    Viral infection can dramatically alter a cell’s transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription – viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells. PMID:29451492

  2. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA

    PubMed Central

    LeBlanc, Jason; Weil, Jason; Beemon, Karen

    2013-01-01

    After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689

  3. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Saveliev, Alexei; Zhu, Fan; Yuan, Yan

    2002-08-01

    Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.

  4. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  5. Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins.

    PubMed Central

    Leatham, M P; Witte, P R; Stinski, M F

    1991-01-01

    The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716

  6. A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.

    PubMed

    Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting

    2016-11-09

    Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.

  7. Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription.

    PubMed

    Bauer, David L V; Tellier, Michael; Martínez-Alonso, Mónica; Nojima, Takayuki; Proudfoot, Nick J; Murphy, Shona; Fodor, Ervin

    2018-05-15

    Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Evidence for the packaging of multiple copies of Tf1 mRNA into particles and the trans priming of reverse transcription.

    PubMed

    Haag, A L; Lin, J H; Levin, H L

    2000-08-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.

  9. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  10. Evidence for the Packaging of Multiple Copies of Tf1 mRNA into Particles and the trans Priming of Reverse Transcription

    PubMed Central

    Haag, Amanda Leigh; Lin, Jia-Hwei; Levin, Henry L.

    2000-01-01

    Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA. PMID:10888658

  11. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    NASA Astrophysics Data System (ADS)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  12. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    PubMed Central

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  13. Development of strand-specific real-time RT-PCR to distinguish viral RNAs during Newcastle disease virus infection.

    PubMed

    Qiu, Xusheng; Yu, Yang; Yu, Shengqing; Zhan, Yuan; Wei, Nana; Song, Cuiping; Sun, Yingjie; Tan, Lei; Ding, Chan

    2014-01-01

    Newcastle disease virus (NDV) causes large losses in the global fowl industry. To better understand NDV replication and transcription cycle, quantitative detection methods for distinguishing NDV genomic RNA (gRNA), antigenomic RNA (cRNA), and messenger RNA (mRNA) in NDV-infected cells are indispensible. Three reverse transcription primers were designed to specifically target the nucleoprotein (NP) region of gRNA, cRNA, and NP mRNA, and a corresponding real-time RT-PCR assay was developed to simultaneously quantify the three types of RNAs in NDV-infected cells. This method showed very good specificity, sensitivity, and reproducibility. The detection range of the assay was between 5.5 × 10(2) and 1.1 × 10(9) copies/μL of the target gene. These methods were applied to investigate the dynamics of the gRNA, cRNA, and mRNA synthesis in NDV La Sota infected DF-1 cells. The results showed that the copy numbers of viral gRNA, cRNA, and NP mRNA all exponentially increased in the beginning. The viral RNA copy number then plateaued at 10'h postinfection and gradually decreased from 16 h postinfection. No synthesis priority was observed between replication (gRNA and cRNA amounts) and transcription (mRNA amounts) during NDV infection. However, the cRNA accumulated more rapidly than gRNA, as the cRNA copy number was three- to tenfold higher than gRNA starting from 2 h postinfection. Conclusion. A real-time RT-PCR for absolute quantitation of specific viral RNA fragments in NDV-infected cells was developed for the first time. The development of this assay will be helpful for further studies on the pathogenesis and control strategies of NDV.

  14. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation

    PubMed Central

    Vincent, Heather A.; Ziehr, Benjamin; Moorman, Nathaniel J.

    2016-01-01

    mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells. PMID:27089357

  15. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus.

    PubMed

    Rincheval, Vincent; Lelek, Mickael; Gault, Elyanne; Bouillier, Camille; Sitterlin, Delphine; Blouquit-Laye, Sabine; Galloux, Marie; Zimmer, Christophe; Eleouet, Jean-François; Rameix-Welti, Marie-Anne

    2017-09-15

    Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term "IB-associated granules" (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1.Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.

  16. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    PubMed

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery. Copyright © 2017 Pereira et al.

  17. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

    PubMed

    Dauber, Bianca; Saffran, Holly A; Smiley, James R

    2014-09-01

    We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells

    PubMed Central

    Nakagawa, K.; Lokugamage, K.G.; Makino, S.

    2017-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623

  19. Can the HIV-1 splicing machinery be targeted for drug discovery?

    PubMed Central

    Dlamini, Zodwa; Hull, Rodney

    2017-01-01

    HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed. PMID:28331370

  20. Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA.

    PubMed

    Vallery, Tenaya K; Withers, Johanna B; Andoh, Joana A; Steitz, Joan A

    2018-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments. IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus. Copyright © 2018 American Society for Microbiology.

  1. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Wen; Mukerjee, Ruma; Gartner, Jared J.

    2006-12-20

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cellsmore » (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells.« less

  2. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    PubMed

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  3. Dual Functions of Rift Valley Fever Virus NSs Protein: Inhibition of Host mRNA Transcription and Post-transcriptional Downregulation of Protein Kinase PKR

    PubMed Central

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C. J.; Makino, Shinji

    2011-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-β mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase, PKR, to prevent phosphorylation of eIF2α and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts. PMID:19751406

  4. Mutational Inactivation of Herpes Simplex Virus 1 MicroRNAs Identifies Viral mRNA Targets and Reveals Phenotypic Effects in Culture

    PubMed Central

    Flores, Omar; Nakayama, Sanae; Whisnant, Adam W.; Javanbakht, Hassan; Cullen, Bryan R.

    2013-01-01

    Herpes simplex virus 1 (HSV-1), a ubiquitous human pathogen, expresses several viral microRNAs (miRNAs). These, along with the latency-associated transcript, represent the only viral RNAs detectable in latently infected neuronal cells. Here, for the first time, we analyze which HSV-1 miRNAs are loaded into the RNA-induced silencing complex (RISC), the key effector of miRNA function. Only 9 of the 17 reported HSV-1 miRNAs, i.e., miR-H1 to miR-H8 plus miR-H11, were found to actually load into the RISC. Surprisingly, this analysis also revealed that HSV-1 miRNAs loaded into the RISC with efficiencies that differed widely; <1% of the miR-H1-3p miRNA detectable in HSV-1-infected cells was loaded into the RISC. Analysis of HSV-1 mutants individually lacking the viral miR-H2, miR-H3, or miR-H4 miRNA revealed that loss of these miRNAs affected the rate of replication of HSV-1 in neuronal cells but not in fibroblasts. Analysis of mRNA and protein expression, as well as assays mapping viral miRNA binding sites in infected cells, showed that endogenous HSV-1 miR-H2 binds to viral ICP0 mRNA and inhibits its expression, while endogenous miR-H4 inhibits the expression of the viral ICP34.5 gene. In contrast, no viral mRNA target for miR-H3 could be detected, even though miR-H3, like miR-H4, is perfectly complementary to ICP34.5 mRNA. Together, these data demonstrate that endogenous HSV-1 miRNA expression can significantly alter viral replication in culture, and they also identify two viral mRNA targets for miR-H2 and miR-H4 that can partially explain this phenotype. PMID:23536669

  5. The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5' termini.

    PubMed

    Huiet, L; Feldstein, P A; Tsai, J H; Falk, B W

    1993-12-01

    Primer extension analyses and a PCR-based cloning strategy were used to identify and characterize 5' nucleotide sequences on the maize stripe virus (MStV) RNA4 mRNA transcripts encoding the major noncapsid protein (NCP). Direct RNA sequence analysis by primer extension showed that the NCP mRNA transcripts had 10-15 nucleotides beyond the 5' terminus of the MStV RNA4 nucleotide sequence. MStV genomic RNAs isolated from ribonucleoprotein particles (RNPs) lacked the additional 5' nucleotides. cDNA clones representing the 5' region of the mRNA transcripts were constructed, and the nucleotide sequences of the 5' regions were determined for 16 clones. Each was found to have a distinct 10-15 nucleotide sequence immediately 5' of the MStV RNA4 sequence. Eleven of 16 clones had the correct MStV RNA4 5' nucleotide sequence, while five showed minor variations at or near the 5' most MStV RNA4 nucleotide. These characteristics show strong similarities to other viral mRNA transcripts which are synthesized by cap snatching.

  6. Characterization of an in vitro system for the synthesis of mRNA from human parainfluenza virus type 3.

    PubMed

    De, B P; Galinski, M S; Banerjee, A K

    1990-03-01

    A cell extract derived from human parainfluenza virus type 3-infected human lung carcinoma (HLC) cells synthesized mRNA in vitro. Under optimal conditions, the extract was able to support transcription of all virus-encoded genes as determined by hybridization analyses. The RNA products contained full-length poly(A)-containing mRNA species similar to those observed in acutely infected cells. Further purification of the viral nucleocapsids from the infected HLC cell extract resulted in total loss of the capacity of the extract to synthesize mRNA in vitro. However, the addition of cytoplasmic extracts from uninfected HLC cells to the nucleocapsid preparations restored transcription to levels observed in the infected cell lysates, indicating requirement of a host factor(s) in the human parainfluenza virus type 3 transcription process. In distinction to the abundant transcription observed in the cell extract from HLC cells, cell extract prepared from CV-1 cells failed to support transcription in vitro. High levels of RNase activity in the cell extract from CV-1 cells appears to be the principal reason for this difference.

  7. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    PubMed

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  8. The Structure and Function of the Rous Sarcoma virus RNA Stability Element

    PubMed Central

    Withers, Johanna B.; Beemon, Karen L.

    2013-01-01

    For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors. PMID:21769913

  9. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation

    PubMed Central

    Koppstein, David; Ashour, Joseph; Bartel, David P.

    2015-01-01

    The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs. PMID:25901029

  10. Elongin B-mediated epigenetic alteration of viral chromatin correlates with efficient human cytomegalovirus gene expression and replication.

    PubMed

    Hwang, Jiwon; Saffert, Ryan T; Kalejta, Robert F

    2011-01-01

    Elongins B and C are members of complexes that increase the efficiency of transcriptional elongation by RNA polymerase II (RNAPII) and enhance the monoubiquitination of histone H2B, an epigenetic mark of actively transcribed genes. Here we show that, in addition to its role in facilitating transcription of the cellular genome, elongin B also enhances gene expression from the double-stranded DNA genome of human cytomegalovirus (HCMV), a pathogenic herpesvirus. Reducing the level of elongin B by small interfering RNA- or short hairpin RNA-mediated knockdown decreased viral mRNA expression, viral protein accumulation, viral DNA replication, and infectious virion production. Chromatin immunoprecipitation analysis indicated viral genome occupancy of the elongating form of RNAPII, and monoubiquitinated histone H2B was reduced in elongin B-deficient cells. These data suggest that, in addition to the previously documented epigenetic regulation of transcriptional initiation, HCMV also subverts cellular elongin B-mediated epigenetic mechanisms for enhancing transcriptional elongation to enhance viral gene expression and virus replication. The genetic and epigenetic control of transcription initiation at both cellular and viral promoters is well documented. Recently, the epigenetic modification of histone H2B monoubiquitination throughout the bodies of cellular genes has been shown to enhance the elongation of RNA polymerase II-initiated transcripts. Mechanisms that might control the elongation of viral transcripts are less well studied. Here we show that, as with cellular genes, elongin B-mediated monoubiquitination of histone H2B also facilitates the transcriptional elongation of human cytomegalovirus genes. This and perhaps other epigenetic markings of actively transcribed regions may help in identifying viral genes expressed during in vitro latency or during natural infections of humans. Furthermore, this work identifies a novel, tractable model system to further study the regulation of transcriptional elongation in living cells.

  11. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection

    PubMed Central

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G.; Nogal, Maria L.; Hentze, Matthias W.; Castelló, Alfredo

    2017-01-01

    ABSTRACT African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro. Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. PMID:29021398

  12. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection.

    PubMed

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G; Nogal, Maria L; Hentze, Matthias W; Castelló, Alfredo; Revilla, Yolanda

    2017-12-15

    African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. Copyright © 2017 Quintas et al.

  13. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  14. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  15. Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis

    PubMed Central

    Komarova, Anastassia V.; Real, Eléonore; Borman, Andrew M.; Brocard, Michèle; England, Patrick; Tordo, Noël; Hershey, John W.B.; Jacob, Yves

    2007-01-01

    Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5′-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein–protein interaction with the cellular translation machinery. PMID:17287294

  16. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    PubMed

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  17. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro.

    PubMed

    Gao, Zhangzhao; Dong, Qinfang; Jiang, Yonghou; Opriessnig, Tanja; Wang, Jingxiu; Quan, Yanping; Yang, Zongqi

    2014-04-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1).

    PubMed

    Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu

    2002-01-01

    Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.

  19. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication.

    PubMed

    Sakai, Yusuke; Kawachi, Kengo; Terada, Yutaka; Omori, Hiroko; Matsuura, Yoshiharu; Kamitani, Wataru

    2017-10-01

    Infection with coronavirus rearranges the host cell membrane to assemble a replication/transcription complex in which replication of the viral genome and transcription of viral mRNA occur. Although coexistence of nsp3 and nsp4 is known to cause membrane rearrangement, the mechanisms underlying the interaction of these two proteins remain unclear. We demonstrated that binding of nsp4 with nsp3 is essential for membrane rearrangement and identified amino acid residues in nsp4 responsible for the interaction with nsp3. In addition, we revealed that the nsp3-nsp4 interaction is not sufficient to induce membrane rearrangement, suggesting the participation of other factors such as host proteins. Finally, we showed that loss of the nsp3-nsp4 interaction eliminated viral replication by using an infectious cDNA clone and replicon system of SARS-CoV. These findings provide clues to the mechanism of the replication/transcription complex assembly of SARS-CoV and could reveal an antiviral target for the treatment of betacoronavirus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences.

    PubMed

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-06-09

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.

  1. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences

    PubMed Central

    Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong

    2016-01-01

    An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics. PMID:27279482

  2. Analysis of BZLF1 mRNA detection in saliva as a marker for active replication of Epstein-Barr virus.

    PubMed

    Fagin, Ursula; Nerbas, Linda; Vogl, Bastian; Jabs, Wolfram J

    2017-06-01

    Monitoring replicative Epstein-Barr virus (EBV) infection still remains a challenge in modern laboratory routine. The immediate-early protein BZLF1 mediates the switch between latent and replicate forms of EBV infection. The aim of this study was to analyze the feasibility of BZLF1 mRNA detection in saliva as a marker for active replication of the virus. Various specimens (saliva, plasma, PBMC) from 17 patients with EBV-induced infectious mononucleosis (IM) and 4 control patients were examined for expression of viral BZLF1 mRNA by means of real-time PCR. BZLF1 expression was correlated to the amount of viral DNA in either compartment. Digestion of plasma and saliva samples with DNase I allowed distinguishing between encapsidated and naked viral DNA. BZLF1 transcripts were found in all different types of specimens in varying frequencies. BZLF1 expression in saliva, PBMC, and plasma correlated with viral load in each compartment. Interestingly, those patients with detectable BZLF1 expression in saliva had a more severe course of infection with longer duration of hospitalization. In conclusion, this study demonstrates the feasibility of BZLF1 mRNA detection in saliva specimens during replicative EBV infection. Its significance for the diagnosis of reactivated EBV infection, particularly under immunosuppression, has to be elucidated in further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Goto, Hideo; Nishio, Machiko

    2016-07-01

    Gene expression of paramyxoviruses is regulated by genome-encoded cis-acting elements; however, whether all the required elements for viral growth have been identified is not clear. Using a mini-replicon system, it has been shown that human parainfluenza virus type 2 (hPIV2) polymerase can recognize the promoter elements of parainfluenza virus type 5 (PIV5), but reporter activity is lower in this case. We constructed a series of luciferase-encoding chimeric PIV2/5 mini-genomes that are basically hPIV2, but whose leader (le), mRNA start signal and trailer sequence are partially replaced with those of PIV5. Studies of the chimeric PIV2/5 mini-replicons demonstrated that replacement of hPIV2 le with PIV5 le results in remarkably weak luciferase expression. Further mutagenesis identified the responsible region as positions 25-30 of the PIV5 le. Using recombinant hPIV2, the impact of this region on viral life cycles was assessed. Insertion of the mutation at this region facilitated viral growth, genomic replication and mRNA transcription at the early stage of infection, which elicited severe cell damage. In contrast, at the late infection stage it caused a reduction in viral transcription. Here, we identify a novel cis-acting element in the internal region of an le sequence that is involved in the regulation of polymerase, and which contributes to maintaining a balance between viral growth and cytotoxicity.

  4. Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes

    PubMed Central

    Kostopoulou, Ourania N.; Wilhelmi, Vanessa; Raiss, Sina; Ananthaseshan, Sharan; Lindström, Mikael S.; Bartek, Jiri; Söderberg-Naucler, Cecilia

    2017-01-01

    Human cytomegalovirus (HCMV) utilizes RNA polymerase II to transcribe viral genes and produce viral mRNAs. It can specifically target the nucleolus to facilitate viral transcription and translation. As RNA polymerase I (Pol I)-mediated transcription is active in the nucleolus, we investigated the role of Pol I, along with relative contributions of the human Pol II and Pol III, to early phases of viral transcription in HCMV infected cells, compared with Herpes Simplex Virus-1 (HSV-1) and Murine cytomegalovirus (MCMV). Inhibition of Pol I with siRNA or the Pol I inhibitors CX-5461 or Actinomycin D (5nM) resulted in significantly decreased IE and pp65 mRNA and protein levels in human fibroblasts at early times post infection. This initially delayed replication was compensated for later during the replication process, at which stage it didn’t significantly affect virus production. Pol I inhibition also reduced HSV-1 ICP0 and gB transcripts, suggesting that some herpesviruses engage Pol I for their early transcription. In contrast, inhibition of Pol I failed to affect MCMV transcription. Collectively, our results contribute to better understanding of the functional interplay between RNA Pol I-mediated nucleolar events and the Herpes viruses, particularly HCMV whose pathogenic impact ranges from congenital malformations and potentially deadly infections among immunosuppressed patients, up to HCMV’s emerging oncomodulatory role in human tumors. PMID:29228551

  5. Chemical Approaches to Control Gene Expression

    PubMed Central

    Gottesfeld, Joel M.; Turner, James M.; Dervan, Peter B.

    2000-01-01

    A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.). PMID:11097426

  6. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    PubMed

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  7. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR

    PubMed Central

    2013-01-01

    Background Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. Findings We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. Conclusions These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects. PMID:23693071

  8. Characterization of the influence of mediator complex in HIV-1 transcription.

    PubMed

    Ruiz, Alba; Pauls, Eduardo; Badia, Roger; Riveira-Muñoz, Eva; Clotet, Bonaventura; Ballana, Ester; Esté, José A

    2014-10-03

    HIV-1 exploits multiple host proteins during infection. siRNA-based screenings have identified new proteins implicated in different pathways of the viral cycle that participate in a broad range of cellular functions. The human Mediator complex (MED) is composed of 28 elements and represents a fundamental component of the transcription machinery, interacting with the RNA polymerase II enzyme and regulating its ability to express genes. Here, we provide an evaluation of the MED activity on HIV replication. Knockdown of 9 out of 28 human MED proteins significantly impaired viral replication without affecting cell viability, including MED6, MED7, MED11, MED14, MED21, MED26, MED27, MED28, and MED30. Impairment of viral replication by MED subunits was at a post-integration step. Inhibition of early HIV transcripts was observed by siRNA-mediated knockdown of MED6, MED7, MED11, MED14, and MED28, specifically affecting the transcription of the nascent viral mRNA transactivation-responsive element. In addition, MED14 and MED30 were shown to have special relevance during the formation of unspliced viral transcripts (p < 0.0005). Knockdown of the selected MED factors compromised HIV transcription induced by Tat, with the strongest inhibitory effect shown by siMED6 and siMED14 cells. Co-immunoprecipitation experiments suggested physical interaction between MED14 and HIV-1 Tat protein. A better understanding of the mechanisms and factors controlling HIV-1 transcription is key to addressing the development of new strategies required to inhibit HIV replication or reactivate HIV-1 from the latent reservoirs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. African swine fever virus controls the host transcription and cellular machinery of protein synthesis.

    PubMed

    Sánchez, Elena G; Quintas, Ana; Nogal, Marisa; Castelló, Alfredo; Revilla, Yolanda

    2013-04-01

    Throughout a viral infection, the infected cell reprograms the gene expression pattern in order to establish a satisfactory antiviral response. African swine fever virus (ASFV), like other complex DNA viruses, sets up a number of strategies to evade the host's defense systems, such as apoptosis, inflammation and immune responses. The capability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, suggests that the virus displays effective mechanisms to escape host defense systems. ASFV has been described to regulate the activation of several transcription factors, thus regulating the activation of specific target genes during ASFV infection. Whereas some reports have concerned about anti-apoptotic ASFV genes and the molecular mechanisms by which ASFV interferes with inducible gene transcription and immune evasion, less is yet known regarding how ASFV regulates the translational machinery in infected cells, although a recent report has shown a mechanism for favored expression of viral genes based on compartmentalization of viral mRNA and ribosomes with cellular translation factors within the virus factory. The viral mechanisms involved both in the regulation of host genes transcription and in the control of cellular protein synthesis are summarized in this review. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. HTLV-1 subgroups associated with the risk of HAM/TSP are related to viral and host gene expression in peripheral blood mononuclear cells, independent of the transactivation functions of the viral factors.

    PubMed

    Yasuma, Keiko; Matsuzaki, Toshio; Yamano, Yoshihisa; Takashima, Hiroshi; Matsuoka, Masao; Saito, Mineki

    2016-08-01

    Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, the risk of developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) across lifetime differs between ethnic groups. There is an association between HTLV-1 tax gene subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. In this study, we investigated the full-length proviral genome sequences of various HTLV-1-infected cell lines and patient samples. The functional differences in the viral transcriptional regulators Tax and HTLV-1 bZIP factor (HBZ) between each subgroup and the relationships between subgroups and the clinical and laboratory characteristics of HAM/TSP patients were evaluated. The results of these analyses indicated the following: (1) distinct nucleotide substitutions corresponding to each subgroup were associated with nucleotide substitutions in viral structural, regulatory, and accessory genes; (2) the HBZ messenger RNA (mRNA) expression in HTLV-1-infected cells was significantly higher in HAM/TSP patients with subgroup-B than in those with subgroup-A; (3) a positive correlation was observed between the expression of HBZ mRNA and its target Foxp3 mRNA in HAM/TSP patients with subgroup-B, but not in patients with subgroup-A; (4) no clear differences were noted in clinical and laboratory characteristics between HAM/TSP patients with subgroup-A and subgroup-B; and (5) no functional differences were observed in Tax and HBZ between each subgroup based on reporter gene assays. Our results indicate that although different HTLV-1 subgroups are characterized by different patterns of viral and host gene expression in HAM/TSP patients via independent mechanisms of direct transcriptional regulation, these differences do not significantly affect the clinical and laboratory characteristics of HAM/TSP patients.

  11. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues.

    PubMed

    Valenzuela-Miranda, Diego; Boltaña, Sebastian; Cabrejos, Maria E; Yáñez, José M; Gallardo-Escárate, Cristian

    2015-08-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Visualization of Arenavirus RNA Species in Individual Cells by Single-Molecule Fluorescence In Situ Hybridization Suggests a Model of Cyclical Infection and Clearance during Persistence.

    PubMed

    King, Benjamin R; Samacoits, Aubin; Eisenhauer, Philip L; Ziegler, Christopher M; Bruce, Emily A; Zenklusen, Daniel; Zimmer, Christophe; Mueller, Florian; Botten, Jason

    2018-06-15

    Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population. IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses. Copyright © 2018 American Society for Microbiology.

  13. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells.

    PubMed

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-10-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.

  14. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    PubMed

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.

  15. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehr, Ben; Lenarcic, Erik; Cecil, Chad

    Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compoundmore » that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.« less

  16. Viral Epitranscriptomics

    PubMed Central

    Kennedy, Edward M.; Courtney, David G.; Tsai, Kevin

    2017-01-01

    ABSTRACT Although it has been known for over 40 years that eukaryotic mRNAs bear internal base modifications, it is only in the last 5 years that the importance of these modifications has begun to come into focus. The most common mRNA modification, the addition of a methyl group to the N6 position of adenosine (m6A), has been shown to affect splicing, translation, and stability, and m6A is also essential for embryonic development in organisms ranging from plants to mice. While all viral transcripts examined so far have been found to be extensively m6A modified, the role, if any, of m6A in regulating viral gene expression and replication was previously unknown. However, recent data generated using HIV-1 as a model system strongly suggest that sites of m6A addition not only are evolutionarily conserved but also enhance virus replication. It is therefore likely that the field of viral epitranscriptomics, which can be defined as the study of functionally relevant posttranscriptional modifications of viral RNA transcripts that do not change the nucleotide sequence of that RNA, is poised for a major expansion in scientific interest and may well fundamentally change our understanding of how viral replication is regulated. PMID:28250115

  17. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    PubMed

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.

  18. Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells

    PubMed Central

    Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas

    2016-01-01

    ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle. PMID:26764008

  19. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    PubMed

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  20. Studies with infections fragments of phage DNA. Final report, January 1, 1970--June 30, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schachtele, C. F.

    The minute, virulent and structurally intricate Bacillus subtilis bacteriophage phi 29 was utilized to study in vivo viral development. Purified strands of phi 29 DNA were used to analyze transcription of the viral genome. Early mRNA hybridizes to the light DNA strand which controls DNA replication and other early functions. Late mRNA hybridizes to the heavy DNA strand which codes for phage structural proteins. The temporal sequence of specific viral protein synthesis was analyzed by gel electrophoresis and was shown to directly correlate with the RNA transcription pattern. The genes carried by phi 29 have been marked with ts andmore » sus mutations and mapped by appropriate crosses yielding a linear map of 17 cistrons. Fragments of the phi 29 DNA were shown to retain their biological activity and marker rescue studies indicated that gene transfer could be performed with pieces having a molecular weight of less than 1 million daltons. Mutant infection under nonpermissive conditions and the analysis of precursor structures has allowed the formation of a tentative morphogenetic pathway leading to the formation of infectious particles. Work with phi 29 has established this virus as an advantageous model system for studying a variety of problems in molecular biology and approximately a dozen laboratories in the country and abroad are working with this phage.« less

  1. The Human T-Lymphotropic Virus Type 1 Tax Protein Inhibits Nonsense-Mediated mRNA Decay by Interacting with INT6/EIF3E and UPF1

    PubMed Central

    Mocquet, Vincent; Neusiedler, Julia; Rende, Francesca; Cluet, David; Robin, Jean-Philippe; Terme, Jean-Michel; Duc Dodon, Madeleine; Wittmann, Jürgen; Morris, Christelle; Le Hir, Hervé; Ciminale, Vincenzo

    2012-01-01

    In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation. PMID:22553336

  2. Expression of Herpes Simplex Virus 1-Encoded MicroRNAs in Human Trigeminal Ganglia and Their Relation to Local T-Cell Infiltrates ▿

    PubMed Central

    Held, Kathrin; Junker, Andreas; Dornmair, Klaus; Meinl, Edgar; Sinicina, Inga; Brandt, Thomas; Theil, Diethilde; Derfuss, Tobias

    2011-01-01

    Herpes simplex type 1 (HSV-1) is a neurotropic virus which establishes lifelong latency in human trigeminal ganglia (TG). Currently, two nonexclusive control mechanisms of HSV-1 latency are discussed: antiviral CD8+ T cells and viral microRNAs (miRNAs) encoded by the latency associated transcript (LAT). We investigate here to what extent these mechanisms may contribute to the maintenance of HSV-1 latency. We show that only a small proportion of LAT+ neurons is surrounded by T cells in human TG. This indicates that viral latency in human TG might be controlled by other mechanisms such as viral miRNAs. Therefore, we assessed TG sections for the presence of HSV-1 miRNA, DNA, and mRNA by combining LAT in situ hybridization, T-cell immunohistochemistry, and single cell analysis of laser-microdissected sensory neurons. Quantitative reverse transcription-PCR (RT-PCR) revealed that LAT+ neurons with or without surrounding T cells were always positive for HSV-1 miRNAs and DNA. Furthermore, ICP0 mRNA could rarely be detected only in LAT+ neurons, as analyzed by single-cell RT-PCR. In contrast, in LAT− neurons that were surrounded by T cells, neither miRNAs nor the DNA of HSV-1, HSV-2, or varicella-zoster virus could be detected. These data indicate that the majority of LAT+ neurons is not directly controlled by T cells. However, miRNA expression in every latently infected neuron would provide an additional checkpoint before viral replication is initiated. PMID:21795359

  3. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

    PubMed Central

    Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne

    2013-01-01

    Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132

  4. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

    PubMed

    Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K

    2014-09-01

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tzyy-Choou.

    1989-01-01

    The structure and function of the transcriptional regulatory region of human papillomavirus type 6 (HPV-6) has been investigated. To investigate tissue specific gene expression, a sensitive method to detect and localize HPV-6 viral DNA, mRNA and protein in plastic-embedded tissue sections of genital and respiratory tract papillomata by using in situ hybridization and immunoperoxidase assays has been developed. This method, using ultrathin sections and strand-specific {sup 3}H labeled riboprobes, offers the advantages of superior morphological preservation and detection of viral genomes at low copy number with good resolution, and the modified immunocytochemistry provides better sensitivity. The results suggest that genitalmore » tract epithelium is more permissive for HPV-6 replication than respiratory tract epithelium. To study the tissue tropism of HPV-6 at the level of regulation of viral gene expression, the polymerase chain reaction was used to isolate the noncoding region (NCR) of HPV-6 in independent isolates. Nucleotide sequence analysis of molecularly cloned DNA identified base substitutions, deletions/insertions and tandem duplications. Transcriptional regulatory elements in the NCR were assayed in recombinant plasmids containing the bacterial gene for chloramphenicol acetyl transferase.« less

  6. Signaling via the CD2 receptor enhances HTLV-1 replication in T lymphocytes.

    PubMed

    Guyot, D J; Newbound, G C; Lairmore, M D

    1997-07-21

    Human T lymphotropic virus type 1 (HTLV-1) is considered the etiologic agent of adult T cell leukemia/lymphoma and several chronic progressive immune-mediated diseases. Approximately 1-4% of infected individuals develop disease, generally decades following infection. Increased proviral transcription, mediated by the viral 40-kDa trans-activating protein, Tax, has been implicated in the pathogenesis of HTLV-1-associated diseases. Since the HTLV-1 promoter contains sequences responsive to cyclic AMP and protein kinase C, we hypothesized that lymphocyte activation signals initiated through the TCR/CD3 complex or CD2 receptor promote viral replication in HTLV-1-infected lymphocytes. We demonstrate that mAbs directed against the CD2, but not the CD3 receptor increase viral p24 capsid protein 1.5- to 5.7-fold in CD2/CD3+ HTLV-1-infected cell culture supernatants. Northern blot analysis demonstrated a 2.5- to 4-fold increase in all species of viral mRNA following CD2 cross-linking of OSP2/4 cells, an immortalized HTLV-1 cell line. Consistent with transcriptional regulation, reporter gene activity increased approximately 11-fold in CD2-stimulated Jurkat T cells cotransfected with a Tax-expressing plasmid and a CAT reporter gene construct under control of the HTLV-1 promoter. These data suggest a possible physiologic mechanism, whereby CD2-mediated cell adhesion and lymphocyte activation may promote viral transcription in infected lymphocytes.

  7. RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection

    PubMed Central

    Coulombe, François; Meunier, Isabelle; Martin, James G.; Divangahi, Maziar

    2017-01-01

    The type I interferon pathway plays a critical role in both host defense and tolerance against viral infection and thus requires refined regulatory mechanisms. RIPK3-mediated necroptosis has been shown to be involved in anti-viral immunity. However, the exact role of RIPK3 in immunity to Influenza A Virus (IAV) is poorly understood. In line with others, we, herein, show that Ripk3-/- mice are highly susceptible to IAV infection, exhibiting elevated pulmonary viral load and heightened morbidity and mortality. Unexpectedly, this susceptibility was linked to an inability of RIKP3-deficient macrophages (Mφ) to produce type I IFN in the lungs of infected mice. In Mφ infected with IAV in vitro, we found that RIPK3 regulates type I IFN both transcriptionally, by interacting with MAVS and limiting RIPK1 interaction with MAVS, and post-transcriptionally, by activating protein kinase R (PKR)—a critical regulator of IFN-β mRNA stability. Collectively, our findings indicate a novel role for RIPK3 in regulating Mφ-mediated type I IFN anti-viral immunity, independent of its conventional role in necroptosis. PMID:28410401

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main generalmore » mechanism for coronaviruses to prevent IFN induction.« less

  9. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Melanie C., E-mail: melanie.mann@viro.med.uni-erlangen.de; Strobel, Sarah, E-mail: sarah.strobel@viro.med.uni-erlangen.de; Fleckenstein, Bernhard, E-mail: bernhard.fleckenstein@viro.med.uni-erlangen.de

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Taxmore » and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.« less

  10. Mobile Transcripts and Intercellular Communication in Plants.

    PubMed

    Saplaoura, E; Kragler, F

    2016-01-01

    Phloem serves as a highway for mobile signals in plants. Apart from sugars and hormones, proteins and RNAs are transported via the phloem and contribute to the intercellular communication coordinating growth and development. Different classes of RNAs have been found mobile and in the phloem exudate such as viral RNAs, small interfering RNAs (siRNAs), microRNAs, transfer RNAs, and messenger RNAs (mRNAs). Their transport is considered to be mediated via ribonucleoprotein complexes formed between phloem RNA-binding proteins and mobile RNA molecules. Recent advances in the analysis of the mobile transcriptome indicate that thousands of transcripts move along the plant axis. Although potential RNA mobility motifs were identified, research is still in progress on the factors triggering siRNA and mRNA mobility. In this review, we discuss the approaches used to identify putative mobile mRNAs, the transport mechanism, and the significance of mRNA trafficking. © 2016 Elsevier Inc. All rights reserved.

  11. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells

    PubMed Central

    Bua, Gloria; Manaresi, Elisabetta; Bonvicini, Francesca; Gallinella, Giorgio

    2016-01-01

    The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6–15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage. PMID:26845771

  12. Secondary RNA structure and its role in RNA interference to silence the respiratory syncytial virus fusion protein gene.

    PubMed

    Vig, Komal; Lewis, Nuruddeen; Moore, Eddie G; Pillai, Shreekumar; Dennis, Vida A; Singh, Shree R

    2009-11-01

    RNA interference (RNAi) is a post-transcriptional, gene silencing mechanism which uses small interfering RNA molecules (siRNA) for gene silencing. Respiratory Syncytial Virus (RSV) is an important respiratory pathogen of medical significance that causes high mortality in infants. The fusion (F) protein of RSV is a good target for therapeutic purposes as it is primarily responsible for penetration of the virus into host cells and subsequent syncytium formation during infection. In the present study, four siRNAs were designed and used individually as well as a mixture, to silence the RSV F gene. The relationship between siRNA design, target RNA structure, and their thermodynamics was also investigated. Silencing of F gene was observed using indirect immunofluorescence, western blot, reverse transcription PCR, and progeny viral titers. Our results show F gene silencing by all the four siRNAs individually and collectively. RT-PCR analysis revealed a decrease in mRNA level which corresponded to decreased F protein expression. siRNAs also inhibited RSV progeny as shown by viral titer estimation on infected HEp-2 cells. The present study demonstrates the silencing of the F gene using siRNA. Thermodynamic characteristics of the target RSV mRNA and siRNA seem to play an important role in siRNA gene silencing efficiency.

  13. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    PubMed

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    PubMed Central

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  15. Evidence for the role of double-helical structures in the maturation of simian virus-40 messenger RNA.

    PubMed Central

    Chiu, N H; Bruszewski, W B; Salzman, N P

    1980-01-01

    Simian Virus-40 infected BSC-1 cells were pretreated with glucosamine and briefly pulsed with [3H]-uridine. The labeling can be halted instantaneously by the addition of cold uridine and glucosamine. Under these pulse-chase conditions, the inhibitory effects of the intercalating agent proflavine on the processing of prelabeled nuclear RNA precursors were examined in vivo. Proflavine inhibits the cleavage of viral nuclear RNA precursors. However, turnover of the mature viral mRNAs in the cytoplasm is not inhibited. The effect of proflavine on processing is not a secondary consequence of its inhibition of protein synthesis. The data suggest that base-paired secondary structures in the primary transcripts are important processing signals in the generation of viral mRNA molecules. Images PMID:6243778

  16. Post-transcriptional m6A editing of HIV-1 mRNAs enhances viral gene expression

    PubMed Central

    Kennedy, Edward M.; Bogerd, Hal P.; Kornepati, Anand V. R.; Kang, Dong; Ghoshal, Delta; Marshall, Joy B.; Poling, Brigid C.; Tsai, Kevin; Gokhale, Nandan S.; Horner, Stacy M.; Cullen, Bryan R.

    2016-01-01

    Summary Covalent addition of a methyl group to the adenosine N6 (m6A) is an evolutionarily conserved and common RNA modification that is thought to modulate several aspects of RNA metabolism. While the presence of multiple m6A editing sites on diverse viral RNAs was reported starting almost 40 years ago, how m6A editing affects virus replication has remained unclear. Here, we used photo-crosslinking-assisted m6A sequencing techniques to precisely map several m6A editing sites on the HIV-1 genome and report that they cluster in the HIV-1 3’ untranslated region (3'UTR). Viral 3'UTR m6A sites or analogous cellular m6A sites strongly enhanced mRNA expression in cis by recruiting the cellular YTHDF m6A “reader” proteins. Reducing YTHDF expression inhibited, while YTHDF overexpression enhanced, HIV-1 protein and RNA expression, and virus replication in CD4+ T cells. These data identify m6A editing, and the resultant recruitment of YTHDF proteins, as major positive regulators of HIV-1 mRNA expression. PMID:27117054

  17. Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainio, Eeva-Marja; Turku Graduate School of Biomedical Sciences, 20520 Turku; Ahlfors, Helena

    Latent Epstein-Barr virus (EBV) infection is strongly associated with B-cell proliferative diseases such as Burkitt's lymphoma. Here we show that the oncogenic serine/threonine kinases Pim-1 and Pim-2 enhance the activity of the viral transcriptional activator EBNA2. During EBV infection of primary B-lymphocytes, the mRNA expression levels of pim genes, especially of pim-2, are upregulated and remain elevated in latently infected B-cell lines. Thus, EBV-induced upregulation of Pim kinases and Pim-stimulated EBNA2 transcriptional activity may contribute to the ability of EBV to immortalize B-cells and predispose them to malignant growth.

  18. Insights into the nuclear export of murine leukemia virus intron-containing RNA.

    PubMed

    Pessel-Vivares, Lucie; Houzet, Laurent; Lainé, Sébastien; Mougel, Marylène

    2015-01-01

    The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA.

  19. Requirement of Sur2 for Efficient Replication of Mouse Adenovirus Type 1

    PubMed Central

    Fang, Lei; Stevens, Jennitte L.; Berk, Arnold J.; Spindler, Katherine R.

    2004-01-01

    Mouse adenovirus type 1 (MAV-1) early region 1A (E1A) encodes a virulence gene in viral infection of mice. To broaden our understanding of the functions of E1A in MAV-1 pathogenesis, an unbiased experimental approach, glutathione S-transferase (GST) pulldown, was used to screen for cellular proteins that interact with E1A protein. We identified mouse Sur2, a subunit of Mediator complex, as a protein that binds to MAV-1 E1A. The interaction between Sur2 and MAV-1 E1A was confirmed in virus-infected cells. Conserved region 3 (CR3) of MAV-1 E1A was mapped as the region required for Sur2-E1A interaction, as is the case for human adenovirus E1A. Although it has been proposed that human adenovirus E1A recruits the Mediator complex to transactivate transcription of viral early genes, Sur2 function in adenovirus replication has not been directly tested previously. Studies on the functions of Sur2 with mouse embryonic fibroblasts (MEFs) showed that there was a multiplicity-dependent growth defect of MAV-1 in Sur2−/− MEFs compared to Sur2+/+ MEFs. Comparison of the viral DNA and viral mRNA levels in Sur2+/+ and Sur2−/− MEFs confirmed that Sur2 was important for efficient viral replication. The viral replication defects in Sur2−/− MEFs appeared to be due at least in part to a defect in viral early gene transcription. PMID:15542641

  20. Virus-Specific RNA Synthesis in Cells Infected by Infectious Pancreatic Necrosis Virus

    PubMed Central

    Somogyi, Paul; Dobos, Peter

    1980-01-01

    Pulse-labeling experiments with [3H]uridine revealed that the rate of infections pancreatic necrosis virus-specific RNA synthesis was maximal at 8 to 10 h after infection and was completely diminished by 12 to 14 h. Three forms of RNA intermediates were detected: (i) a putative transcription intermediate (TRI) which comigrated in acrylamide gels with virion double-stranded RNA (dsRNA) after RNase treatment; (ii) a 24S genome length mRNA which could be resolved into two bands by polyacrylamide gel electrophoresis; and (iii) a 14S dsRNA component indistinguishable from virion RNA by gradient centrifugation and gel electrophoresis. The TRI (i) was LiCl precipitable; (ii) sedimented slightly faster and broader (14 to 16S) than the 14S virion dsRNA; (iii) had a lower electrophoretic mobility in acrylamide gels than dsRNA, barely entering acrylamide gels as a heterogenous component; (iv) yielded genome-sized pieces of dsRNA after RNase digestion; and (v) was the most abundant RNA form early in the infectious cycle. The 24S single-stranded RNA was thought to be the viral mRNA since it: (i) became labeled during short pulses; (ii) was found in the polysomal fraction of infected cells; and (iii) hybridized to denatured viral RNA, forming two segments of RNase-resistant RNA that comigrated with virion dsRNA in gels. The 24S mRNA component was formed before the synthesis of dsRNA, and radioactivity could be chased from 24S single-stranded RNA to dsRNA, indicating that 24S RNA may serve as template for the synthesis of complementary strands to form dsRNA. Similar to reovirus, infectious pancreatic necrosis viral 24S mRNA contained no polyadenylic acid tracts. Images PMID:16789184

  1. Induction of interferon lambda in influenza a virus infected cells treated with shRNAs against M1 transcript.

    PubMed

    Švančarová, P; Svetlíková, D; Betáková, T

    2015-06-01

    RNA interference (RNAi) represents a form of post-transcriptional gene silencing mediated by small interfering RNAs (siRNA) and provides a powerful tool to specifically inhibit viral infection. To investigate therapeutic capacity of siRNAs targeting M gene, six vectors with U1-short hairpin RNA (shRNA) expression system were prepared and tested in infected cells and animals. In infected cells, three of six shRNAs targeting M1 gene significantly (P <0,01) reduced the virus titer to 66%, 45% or 21%, respectively. Replication of IAV and levels of M1 RNAs were significantly reduced in the cells transfected with shRNAs, which decreased the virus titer. IFN-α/β altered in shRNAs-treated cells. The level of IFN-λ (type III interferon) mRNA was significantly increased in the infected cells treated with shM22, shM349, shM522, and (type I interferon) as well as IP-10 (type II interferon) mRNAs were not significantly their mixtures. The increased level of IFN-λ mRNA corresponded to significantly increased level of RIG-1 mRNA. shRNAs inhibited influenza virus infection in a gene-specific manner in co-operation with IFN-λ. Some constructs targeting the M1 transcript prolonged the survival of infected mice.

  2. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    DTIC Science & Technology

    2016-05-26

    sequence and how it can be rapidly performed to minimize time spent in high containment. We have adapted existing protocols for mRNA detection with...We and others have been expanded this technique to use in virus-infected tissue sections, high -throughput imaging, and for flow-cytometry based...free water. Add 1 gram of dextran sulfate and mix for 10 minutes at room temperature . Aliquot and store the hybridization buffer at 4ºC. Wash

  3. HPV Virus Transcriptional Status Assessment in a Case of Sinonasal Carcinoma.

    PubMed

    Ilardi, Gennaro; Russo, Daniela; Varricchio, Silvia; Salzano, Giovanni; Dell'Aversana Orabona, Giovanni; Napolitano, Virginia; Di Crescenzo, Rosa Maria; Borzillo, Alessandra; Martino, Francesco; Merolla, Francesco; Mascolo, Massimo; Staibano, Stefania

    2018-03-16

    Human Papilloma Virus (HPV) can play a causative role in the development of sinonasal tract malignancies. In fact, HPV may be the most significant causative agent implicated in sinonasal tumorigenesis and is implicated in as many as 21% of sinonasal carcinomas. To date, there are no definitive, reliable and cost-effective, diagnostic tests approved by the FDA for the unequivocal determination of HPV status in head and neck cancers. We followed an exhaustive algorithm to correctly test HPV infection, including a sequential approach with p16INK4a IHC, viral DNA genotyping and in situ hybridization for E6/E7 mRNA. Here, we report a case of sinonasal carcinoma with discordant results using HPV test assays. The tumor we describe showed an irregular immunoreactivity for p16INK4a, and it tested positive for HPV DNA; nevertheless, it was negative for HR-HPV mRNA. We discuss the possible meaning of this discrepancy. It would be advisable to test HPV transcriptional status of sinonasal carcinoma on a diagnostic routine basis, not only by p16INK4a IHC assay, but also by HPV DNA genotyping and HR-HPV mRNA assessment.

  4. Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape

    PubMed Central

    Clyde, Karen; Glaunsinger, Britt A.

    2011-01-01

    One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023

  5. Quantitative analysis of fluorouracil-related genes in chronic viral hepatitis using microdissection.

    PubMed

    Kakinuma, Daisuke; Yoshida, Hiroshi; Mamada, Yasuhiro; Taniai, Nobuhiko; Mizuguchi, Yoshiaki; Takahashi, Tsubasa; Shimizu, Tetsuya; Ishikawa, Yoshinori; Akimaru, Koho; Naito, Zenya; Tajiri, Takashi

    2008-01-01

    Dihydropyrimidine dehydrogenase is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil. The aim of this study was to determine the levels of messenger RNA for 5-fluorouracil-related metabolic enzymes in cirrhotic liver and to assess the correlation between these mRNA levels and clinicopathological features. The study material consisted of 33 liver samples. The levels of mRNA for the 5- fluorouracil-related metabolic enzymes were quantified by real-time reverse transcription polymerase chain reaction combined with laser-captured microdissection. The Dihydropyrimidine dehydrogenase mRNA level in patients with grade B liver damage was significantly lower than that in patients with grade A liver damage (p=0.009). The Dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase mRNA level in al samples was higher than that in a2 and a3 samples (p= 0.01 and 0.013, respectively). Statistically significant correlations were found between the hyaluronic acid and the thymidylate phosphorylase mRNA level (p= 0.0001), and the T-BIL and the dihydropyrimidine dehydrogenase mRNA level (p=0.01). The level of Dihydropyrimidine dehydrogenase mRNA may be affected by the clinicopathological status of patients with cirrhosis.

  6. The Papillomavirus Episteme: a major update to the papillomavirus sequence database.

    PubMed

    Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A

    2017-01-04

    The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Development and validation of quantitative PCR assays to measure cytokine transcript levels in the Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Ferrante, Jason; Hunter, Margaret; Wellehan, James F.X.

    2018-01-01

    Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees (Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α, and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher (P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.

  8. DEVELOPMENT AND VALIDATION OF QUANTITATIVE PCR ASSAYS TO MEASURE CYTOKINE TRANSCRIPT LEVELS IN THE FLORIDA MANATEE ( TRICHECHUS MANATUS LATIROSTRIS).

    PubMed

    Ferrante, Jason A; Hunter, Margaret E; Wellehan, James F X

    2018-04-01

    Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees ( Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α; and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida, US. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher ( P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.

  9. Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA.

    PubMed

    Hagiwara, Kyoji; Sato, Hiroki; Inoue, Yoshihisa; Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Fujita, Kentaro; Fukuda, Hiroyuki; Takamura, Chizuko; Kozuka-Hata, Hiroko; Oyama, Masaaki; Sugano, Sumio; Ohmi, Shinobu; Kai, Chieko

    2008-05-01

    We report the first identification of phosphorylation sites of the nucleoprotein (N) of the family Paramyxoviridae. The N protein is known to be the most abundant protein in infected cells; it constructs the N-RNA complex (nucleocapsid) and supports transcription and replication of viral genomic RNA. To determine the role of phosphorylation of the N protein, we expressed the N protein of the HL strain of measles virus (MV) in mammalian cells and purified the nucleocapsid. After separation of the C-terminal region from the core region, phosphorylated amino acids were assayed using MALDI-TOF/TOF and ESI-Q-TOF MS analyses. Two amino acids, S479 and S510, were shown to be phosphorylated by both methods of analysis. Metabolic labeling of the N protein with (32)P demonstrated that these two sites are the major phosphorylated sites within the MV-N protein. In transcriptional analysis using negative-strand minigenomic RNA containing the ORF of the luciferase gene, mutants of each phosphorylation site showed approximately 80% reduction in luciferase activity compared with the wild-type N, suggesting that the phosphorylation of N protein is important in the activation of the transcription of viral mRNA and/or replication of the genome in vivo.

  10. Feeder-free reprogramming of human fibroblasts with messenger RNA.

    PubMed

    Warren, Luigi; Wang, Jiwu

    2013-11-13

    This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols. Copyright © 2013 John Wiley & Sons, Inc.

  11. High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay.

    PubMed

    Yucha, Robert W; Hobbs, Kristen S; Hanhauser, Emily; Hogan, Louise E; Nieves, Wildaliz; Ozen, Mehmet O; Inci, Fatih; York, Vanessa; Gibson, Erica A; Thanh, Cassandra; Shafiee, Hadi; El Assal, Rami; Kiselinova, Maja; Robles, Yvonne P; Bae, Helen; Leadabrand, Kaitlyn S; Wang, ShuQi; Deeks, Steven G; Kuritzkes, Daniel R; Demirci, Utkan; Henrich, Timothy J

    2017-06-01

    Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4 + T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4+ T-cells in a single experiment. The scdPCR method was then applied to CD4 + T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous-increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2014-01-01

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662

  14. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors.

    PubMed

    Brostoff, Terza; Dela Cruz, Florante N; Church, Molly E; Woolard, Kevin D; Pesavento, Patricia A

    2014-11-01

    Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in unaffected raccoons. Unlike other oncogenic polyomaviruses, RacPyV was episomal, not integrated, in these tumors. To determine the stability of the viral genome and sustained transcription of the oncogenic tumor antigen genes, we cultured primary raccoon tumor cells and passaged them in mice, confirming the nonintegrated state of the virus and the maintenance of viral gene transcription throughout. RacPyV provides a naturally occurring and tractable model for a novel mechanism of polyomavirus-mediated oncogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. The Raccoon Polyomavirus Genome and Tumor Antigen Transcription Are Stable and Abundant in Neuroglial Tumors

    PubMed Central

    Brostoff, Terza; Dela Cruz, Florante N.; Church, Molly E.; Woolard, Kevin D.

    2014-01-01

    ABSTRACT Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. IMPORTANCE The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in unaffected raccoons. Unlike other oncogenic polyomaviruses, RacPyV was episomal, not integrated, in these tumors. To determine the stability of the viral genome and sustained transcription of the oncogenic tumor antigen genes, we cultured primary raccoon tumor cells and passaged them in mice, confirming the nonintegrated state of the virus and the maintenance of viral gene transcription throughout. RacPyV provides a naturally occurring and tractable model for a novel mechanism of polyomavirus-mediated oncogenesis. PMID:25165109

  16. DNA sequence analysis of simian virus 40 mutants with deletions mapping in the leader region of the late viral mRNA's: mutants with deletions similar in size and position exhibit varied phenotypes.

    PubMed

    Barkan, A; Mertz, J E

    1981-02-01

    The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.

  17. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    PubMed

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  18. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    PubMed Central

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  19. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  20. Analysis of the Highly Diverse Gene Borders in Ebola Virus Reveals a Distinct Mechanism of Transcriptional Regulation

    PubMed Central

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki

    2014-01-01

    ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600

  1. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    PubMed

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Bax Inhibitor-1 down-regulation in the progression of chronic liver diseases

    PubMed Central

    2010-01-01

    Background Bax inhibitor-1 (BI-1) is an evolutionary conserved endoplasmic reticulum protein that, when overexpressed in mammalian cells, suppresses the apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. The aims of this study were: (1) to clarify the role of intrinsic anti- and pro-apoptotic mediators, evaluating Bax and BI-1 mRNA and protein expressions in liver tissues from patients with different degrees of liver damage; (2) to determine whether HCV and HBV infections modulate said expression. Methods We examined 62 patients: 39 with chronic hepatitis (CH) (31 HCV-related and 8 HBV-related); 7 with cirrhosis (6 HCV-related and 1 HBV-related); 13 with hepatocellular carcinoma (HCC) [7 in viral cirrhosis (6 HCV- and 1 HBV-related), 6 in non-viral cirrhosis]; and 3 controls. Bax and BI-1 mRNAs were quantified by real-time PCR, and BI-1 protein expression by Western blot. Results CH tissues expressed significantly higher BI-1 mRNA levels than cirrhotic tissues surrounding HCC (P < 0.0001) or HCC (P < 0.0001). Significantly higher Bax transcripts were observed in HCV-genotype-1-related than in HCV-genotype-3-related CH (P = 0.033). A positive correlation emerged between BI-1 and Bax transcripts in CH tissues, even when HCV-related CH and HCV-genotype-1-related CH were considered alone (P = 0.0007, P = 0.0005 and P = 0.0017, respectively). Conclusions BI-1 expression is down-regulated as liver damage progresses. The high BI-1 mRNAs levels observed in early liver disease may protect virus-infected cells against apoptosis, while their progressive downregulation may facilitate hepatocellular carcinogenesis. HCV genotype seems to have a relevant role in Bax transcript expression. PMID:20359348

  3. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient.

    PubMed

    Cox, Robert M; Krumm, Stefanie A; Thakkar, Vidhi D; Sohn, Maximilian; Plemper, Richard K

    2017-02-01

    The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.

  4. Efficient activation of transcription in yeast by the BPV1 E2 protein.

    PubMed Central

    Stanway, C A; Sowden, M P; Wilson, L E; Kingsman, A J; Kingsman, S M

    1989-01-01

    The full-length gene product encoded by the E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV1) is a transcriptional transactivator. It is believed to mediate its effect on the BPV1 long control region (LCR) by binding to motifs with the consensus sequence ACCN6GGT. The minimal functional cis active site, called the E2 response element (E2RE), in mammalian cells comprises two copies of this motif. Here we have shown that E2 can function in Saccharomyces cerevisiae by placing an E2RE upstream of a synthetic yeast assay promoter which consists of a TATA motif and an mRNA initiation site, spaced correctly. This E2RE-minimal promoter is only transcriptionally active in the presence of E2 protein and the resulting mRNA is initiated at the authentic start site. This is the first report of a mammalian viral transactivator functioning in yeast. The level of activation by E2 via the E2RE was the same as observed with the highly efficient authentic PGK promoter where the upstream activation sequence is composed of three distinct elements. Furthermore a single E2 motif which is insufficient in mammalian cells as an activation site was as efficiently utilized in yeast as the E2RE (2 motifs). Previous studies have shown that mammalian cellular activators can function in yeast and our data now extend this to viral-specific activators. Our data indicate however that while the mechanism of transactivation is broadly conserved there may be significant differences at the detailed level. Images PMID:2539584

  5. Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication.

    PubMed

    Courtney, David G; Kennedy, Edward M; Dumm, Rebekah E; Bogerd, Hal P; Tsai, Kevin; Heaton, Nicholas S; Cullen, Bryan R

    2017-09-13

    Many viral RNAs are modified by methylation of the N 6 position of adenosine (m 6 A). m 6 A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m 6 A-modified RNAs, but the effects of m 6 A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m 6 A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m 6 A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m 6 A residues modulate IAV RNA function in cis, we mapped m 6 A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m 6 A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m 6 A residues in IAV transcripts enhance viral gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1.

    PubMed

    Lin, Min-Hsuan; Sivakumaran, Haran; Jones, Alun; Li, Dongsheng; Harper, Callista; Wei, Ting; Jin, Hongping; Rustanti, Lina; Meunier, Frederic A; Spann, Kirsten; Harrich, David

    2014-12-14

    Previously we described a transdominant negative mutant of the HIV-1 Tat protein, termed Nullbasic, that downregulated the steady state levels of unspliced and singly spliced viral mRNA, an activity caused by inhibition of HIV-1 Rev activity. Nullbasic also altered the subcellular localizations of Rev and other cellular proteins, including CRM1, B23 and C23 in a Rev-dependent manner, suggesting that Nullbasic may disrupt Rev function and trafficking by intervening with an unidentified component of the Rev nucleocytoplasmic transport complex. To seek a possible mechanism that could explain how Nullbasic inhibits Rev activity, we used a proteomics approach to identify host cellular proteins that interact with Nullbasic. Forty-six Nullbasic-binding proteins were identified by mass spectrometry including the DEAD-box RNA helicase, DDX1. To determine the effect of DDX1 on Nullbasic-mediated Rev activity, we performed cell-based immunoprecipitation assays, Rev reporter assays and bio-layer interferometry (BLI) assays. Interaction between DDX1 and Nullbasic was observed by co-immunoprecipitation of Nullbasic with endogenous DDX1 from cell lysates. BLI assays showed a direct interaction between Nullbasic and DDX1. Nullbasic affected DDX1 subcellular distribution in a Rev-independent manner. Interestingly overexpression of DDX1 in cells not only restored Rev-dependent mRNA export and gene expression in a Rev reporter assay but also partly reversed Nullbasic-induced Rev subcellular mislocalization. Moreover, HIV-1 wild type Tat co-immunoprecipitated with DDX1 and overexpression of Tat could rescue the unspliced viral mRNA levels inhibited by Nullbasic in HIV-1 expressing cells. Nullbasic was used to further define the complex mechanisms involved in the Rev-dependent nuclear export of the 9 kb and 4 kb viral RNAs. All together, these data indicate that DDX1 can be sequestered by Nullbasic leading to destabilization of the Rev nucleocytoplasmic transport complex and decreased levels of Rev-dependent viral transcripts. The outcomes support a role for DDX1 in maintenance of a Rev nuclear complex that transports viral RRE-containing mRNA to the cytoplasm. To our knowledge Nullbasic is the first anti-HIV protein that specifically targets the cellular protein DDX1 to block Rev's activity. Furthermore, our research raises the possibility that wild type Tat may play a previously unrecognized but very important role in Rev function.

  7. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    PubMed Central

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  8. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology.

    PubMed

    Xu, Man; Arku, Benedict; Jartti, Tuomas; Koskinen, Janne; Peltola, Ville; Hedman, Klaus; Söderlund-Venermo, Maria

    2017-05-15

    Human bocavirus (HBoV) 1 can cause life-threatening respiratory tract infection in children. Diagnosing acute HBoV1 infection is challenging owing to long-term airway persistence. We assessed whether messenger RNA (mRNA) detection would correlate better than DNA detection with acute HBoV1 infection. Paired serum samples from 121 children with acute wheezing were analyzed by means of serology. Quantitative polymerase chain reaction (PCR) and reverse-transcription (RT) PCR were applied to nasopharyngeal swab (NPS) samples from all acutely HBoV1-infected children and from controls with nonacute infection. By serology, 16 of 121 children (13.2%) had acute HBoV1 infection, all of whom had HBoV1 DNA in NPS samples, and 12 of 16 (75%) had HBoV1 mRNA. Among 25 children with nondiagnostic results, 6 had HBoV1 DNA in NPS samples, and 1 had mRNA. All 13 mRNA-positive samples exhibited high DNA loads (≥106 copies/mL). No mRNA persisted for 2 weeks, whereas HBoV1 DNA persisted for 2 months in 4 children; 1 year later all 15 samples were DNA negative. Compared with serology, DNA PCR had high clinical sensitivity (100%) but, because of viral persistence, low specificity (76%). In contrast, mRNA RT-PCR had low clinical sensitivity (75%) but high specificity (96%). A combination of HBoV1 serology and nasopharyngeal DNA quantitative PCR and mRNA RT-PCR should be used for accurate diagnosis of HBoV1 infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. A piggyBac-based reporter system for scalable in vitro and in vivo analysis of 3′ untranslated region-mediated gene regulation

    PubMed Central

    Chaudhury, Arindam; Kongchan, Natee; Gengler, Jon P.; Mohanty, Vakul; Christiansen, Audrey E.; Fachini, Joseph M.; Martin, James F.; Neilson, Joel R.

    2014-01-01

    Regulation of messenger ribonucleic acid (mRNA) subcellular localization, stability and translation is a central aspect of gene expression. Much of this control is mediated via recognition of mRNA 3′ untranslated regions (UTRs) by microRNAs (miRNAs) and RNA-binding proteins. The gold standard approach to assess the regulation imparted by a transcript's 3′ UTR is to fuse the UTR to a reporter coding sequence and assess the relative expression of this reporter as compared to a control. Yet, transient transfection approaches or the use of highly active viral promoter elements may overwhelm a cell's post-transcriptional regulatory machinery in this context. To circumvent this issue, we have developed and validated a novel, scalable piggyBac-based vector for analysis of 3′ UTR-mediated regulation in vitro and in vivo. The vector delivers three independent transcription units to the target genome—a selection cassette, a turboGFP control reporter and an experimental reporter expressed under the control of a 3′ UTR of interest. The pBUTR (piggyBac-based 3′ UnTranslated Region reporter) vector performs robustly as a siRNA/miRNA sensor, in established in vitro models of post-transcriptional regulation, and in both arrayed and pooled screening approaches. The vector is robustly expressed as a transgene during murine embryogenesis, highlighting its potential usefulness for revealing post-transcriptional regulation in an in vivo setting. PMID:24753411

  10. Some novel insights on HPV16 related cervical cancer pathogenesis based on analyses of LCR methylation, viral load, E7 and E2/E4 expressions.

    PubMed

    Das Ghosh, Damayanti; Bhattacharjee, Bornali; Sen, Shrinka; Premi, Laikangbam; Mukhopadhyay, Indranil; Chowdhury, Rahul Roy; Roy, Sudipta; Sengupta, Sharmila

    2012-01-01

    This study was undertaken to decipher the interdependent roles of (i) methylation within E2 binding site I and II (E2BS-I/II) and replication origin (nt 7862) in the long control region (LCR), (ii) expression of viral oncogene E7, (iii) expression of the transcript (E7-E1/E4) that encodes E2 repressor protein and (iv) viral load, in human papillomavirus 16 (HPV16) related cervical cancer (CaCx) pathogenesis. The results revealed over-representation (p<0.001) of methylation at nucleotide 58 of E2BS-I among E2-intact CaCx cases compared to E2-disrupted cases. Bisulphite sequencing of LCR revealed overrepresentation of methylation at nucleotide 58 or other CpGs in E2BS-I/II, among E2-intact cases than E2-disrupted cases and lack of methylation at replication origin in case of both. The viral transcript (E7-E1/E4) that produces the repressor E2 was analyzed by APOT (amplification of papillomavirus oncogenic transcript)-coupled-quantitative-RT-PCR (of E7 and E4 genes) to distinguish episomal (pure or concomitant with integrated) from purely integrated viral genomes based on the ratio, E7 C(T)/E4 C(T). Relative quantification based on comparative C(T) (threshold cycle) method revealed 75.087 folds higher E7 mRNA expression in episomal cases over purely integrated cases. Viral load and E2 gene copy numbers were negatively correlated with E7 C(T) (p = 0.007) and E2 C(T) (p<0.0001), respectively, each normalized with ACTB C(T), among episomal cases only. The k-means clustering analysis considering E7 C(T) from APOT-coupled-quantitative-RT-PCR assay, in conjunction with viral load, revealed immense heterogeneity among the HPV16 positive CaCx cases portraying integrated viral genomes. The findings provide novel insights into HPV16 related CaCx pathogenesis and highlight that CaCx cases that harbour episomal HPV16 genomes with intact E2 are likely to be distinct biologically, from the purely integrated viral genomes in terms of host genes and/or pathways involved in cervical carcinogenesis.

  11. c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection.

    PubMed

    Price, Alexander M; Messinger, Joshua E; Luftig, Micah A

    2018-01-15

    Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription. IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival. Copyright © 2018 American Society for Microbiology.

  12. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    PubMed

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Rhesus Monkey Rhadinovirus ORF57 Induces gH and gL Glycoprotein Expression through Posttranscriptional Accumulation of Target mRNAs ▿

    PubMed Central

    Shin, Young C.; Desrosiers, Ronald C.

    2011-01-01

    Open reading frame 57 (ORF57) of gamma-2 herpesviruses is a key regulator of viral gene expression. It has been reported to enhance the expression of viral genes by transcriptional, posttranscriptional, or translational activation mechanisms. Previously we have shown that the expression of gH and gL of rhesus monkey rhadinovirus (RRV), a close relative of the human Kaposi's sarcoma-associated herpesvirus (KSHV), could be dramatically rescued by codon optimization as well as by ORF57 coexpression (J. P. Bilello, J. S. Morgan, and R. C. Desrosiers, J. Virol. 82:7231–7237, 2008). We show here that ORF57 coexpression and codon optimization had similar effects, except that the rescue of expression by codon optimization was temporally delayed relative to that of ORF57 coexpression. The transfection of gL mRNA directly into cells with or without ORF57 coexpression and with or without codon optimization recapitulated the effects of these modes of induction on transfected DNA. These findings suggested an important role for the enhancement of mRNA stability and/or the translation of mRNA for these very different modes of induced expression. This conclusion was confirmed by several different measures of gH and gL mRNA stability and accumulation with or without ORF57 coexpression and with or without codon optimization. Our results indicate that RRV gH and gL expression is severely limited by the stability of the mRNA and that ORF57 coexpression and codon optimization independently induce gH and gL expression principally by allowing accumulation and translation of these mRNAs. PMID:21613403

  14. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the design of new therapeutics against negative-strand RNA viruses. PMID:26512087

  15. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  16. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N6 -methyladenosine (m6 A).

    PubMed

    Tan, Brandon; Gao, Shou-Jiang

    2018-04-26

    N 6 -methyladenosine (m 6 A) was discovered 4 decades ago. However, the functions of m 6 A and the cellular machinery that regulates its changes have just been revealed in the last few years. m 6 A is an abundant internal mRNA modification on cellular RNA and is implicated in diverse cellular functions. Recent works have demonstrated the presence of m 6 A in the genomes of RNA viruses and transcripts of a DNA virus with either a proviral or antiviral role. Here, we first summarize what is known about the m 6 A "writers," "erasers," "readers," and "antireaders" as well as the role of m 6 A in mRNA metabolism. We then review how the replications of numerous viruses are enhanced and restricted by m 6 A with emphasis on the oncogenic DNA virus, Kaposi sarcoma-associated herpesvirus (KSHV), whose m 6 A epitranscriptome was recently mapped. In the context of KSHV, m 6 A and the reader protein YTHDF2 acts as an antiviral mechanism during viral lytic replication. During viral latency, KSHV alters m 6 A on genes that are implicated in cellular transformation and viral latency. Lastly, we discuss future studies that are important to further delineate the functions of m 6 A in KSHV latent and lytic replication and KSHV-induced oncogenesis. Copyright © 2018 John Wiley & Sons, Ltd.

  17. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection.

    PubMed

    Gokhale, Nandan S; McIntyre, Alexa B R; McFadden, Michael J; Roder, Allison E; Kennedy, Edward M; Gandara, Jorge A; Hopcraft, Sharon E; Quicke, Kendra M; Vazquez, Christine; Willer, Jason; Ilkayeva, Olga R; Law, Brittany A; Holley, Christopher L; Garcia-Blanco, Mariano A; Evans, Matthew J; Suthar, Mehul S; Bradrick, Shelton S; Mason, Christopher E; Horner, Stacy M

    2016-11-09

    The RNA modification N6-methyladenosine (m 6 A) post-transcriptionally regulates RNA function. The cellular machinery that controls m 6 A includes methyltransferases and demethylases that add or remove this modification, as well as m 6 A-binding YTHDF proteins that promote the translation or degradation of m 6 A-modified mRNA. We demonstrate that m 6 A modulates infection by hepatitis C virus (HCV). Depletion of m 6 A methyltransferases or an m 6 A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m 6 A sites across the HCV genome and determined that inactivating m 6 A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m 6 A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m 6 A. Altogether, this work identifies m 6 A as a conserved regulatory mark across Flaviviridae genomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  19. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription.

    PubMed

    Ilinykh, Philipp A; Tigabu, Bersabeh; Ivanov, Andrey; Ammosova, Tatiana; Obukhov, Yuri; Garron, Tania; Kumari, Namita; Kovalskyy, Dmytro; Platonov, Maxim O; Naumchik, Vasiliy S; Freiberg, Alexander N; Nekhai, Sergei; Bukreyev, Alexander

    2014-08-15

    The filovirus Ebola (EBOV) causes the most severe hemorrhagic fever known. The EBOV RNA-dependent polymerase complex includes a filovirus-specific VP30, which is critical for the transcriptional but not replication activity of EBOV polymerase; to support transcription, VP30 must be in a dephosphorylated form. Here we show that EBOV VP30 is phosphorylated not only at the N-terminal serine clusters identified previously but also at the threonine residues at positions 143 and 146. We also show that host cell protein phosphatase 1 (PP1) controls VP30 dephosphorylation because expression of a PP1-binding peptide cdNIPP1 increased VP30 phosphorylation. Moreover, targeting PP1 mRNA by shRNA resulted in the overexpression of SIPP1, a cytoplasm-shuttling regulatory subunit of PP1, and increased EBOV transcription, suggesting that cytoplasmic accumulation of PP1 induces EBOV transcription. Furthermore, we developed a small molecule compound, 1E7-03, that targeted a non-catalytic site of PP1 and increased VP30 dephosphorylation. The compound inhibited the transcription but increased replication of the viral genome and completely suppressed replication of EBOV in cultured cells. Finally, mutations of Thr(143) and Thr(146) of VP30 significantly inhibited EBOV transcription and strongly induced VP30 phosphorylation in the N-terminal Ser residues 29-46, suggesting a novel mechanism of regulation of VP30 phosphorylation. Our findings suggest that targeting PP1 with small molecules is a feasible approach to achieve dysregulation of the EBOV polymerase activity. This novel approach may be used for the development of antivirals against EBOV and other filovirus species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    PubMed

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  1. Widespread promoter-mediated coordination of transcription and mRNA degradation

    PubMed Central

    2012-01-01

    Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624

  2. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  3. MicroRNAs and non-coding RNAs in virus-infected cells

    PubMed Central

    Ouellet, Dominique L.; Provost, Patrick

    2010-01-01

    Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543

  4. Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells.

    PubMed

    Yonekura, Satoru; Itoh, Mai; Okuhashi, Yuki; Takahashi, Yusuke; Ono, Aya; Nara, Nobuo; Tohda, Shuji

    2013-08-01

    To examine the effects of echinomycin, a compound that inhibits DNA-binding activity of hypoxia-inducible factor-1 (HIF1), on leukaemia cell growth. Three acute myeloid leukaemia cell lines and three T-lymphoblastic leukaemia cell lines were cultured with echinomycin. Cell growth, mRNA and protein expression levels were examined by WST-1 assay, reverse-transcription polymerase chain reaction and immunoblotting, respectively. HIF1α protein was expressed in all cell lines under normoxia. Treatment with echinomycin suppressed cell growth and induced apoptosis in association with decreased mRNA expression of HIF1 targets, glucose transporter-1 (GLUT1) and B-cell CLL/lymphoma-2 (BCL2). Echinomycin also suppressed the protein expression of NOTCH1, cleaved NOTCH1, v-myc myelocytomatosis viral oncogene homolog (MYC), v-akt murine thymoma viral oncogene homolog-1 (AKT), phosphorylated AKT, mechanistic target of rapamycin (mTOR), and phosphorylated mTOR and increased that of cleaved caspase-3 in some cell lines. Echinomycin suppresses leukaemia cell growth in association with reduced NOTCH1 expression. This is the first report to show that HIF inhibitor treatment suppresses NOTCH1 signalling. HIF inhibitors could be novel candidates for a molecular-targeted therapy against leukaemia.

  5. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    PubMed

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The role of TREX in gene expression and disease

    PubMed Central

    Heath, Catherine G.; Viphakone, Nicolas; Wilson, Stuart A.

    2016-01-01

    TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems. PMID:27679854

  7. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  8. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo

    2015-10-01

    Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.

  9. Coupling mRNA processing with transcription in time and space

    PubMed Central

    Bentley, David L.

    2015-01-01

    Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444

  10. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-05

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    PubMed

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription. Copyright © 2017 Fox et al.

  12. Proteolysis of MDA5 and IPS-1 is not required for inhibition of the type I IFN response by poliovirus.

    PubMed

    Kotla, Swathi; Gustin, Kurt E

    2015-10-06

    The type I interferon (IFN) response is a critical component of the innate immune response to infection by RNA viruses and is initiated via recognition of viral nucleic acids by RIG-like receptors (RLR). Engagement of these receptors in the cytoplasm initiates a signal transduction pathway leading to activation of the transcription factors NF-κB, ATF-2 and IRF-3 that coordinately upregulate transcription of type I IFN genes, such as that encoding IFN-β. In this study the impact of poliovirus infection on the type I interferon response has been examined. The type I IFN response was assessed by measuring IFN-β mRNA levels using qRT-PCR and normalizing to levels of β-actin mRNA. The status of host factors involved in activation of the type I IFN response was examined by immunoblot, immunofluorescence microcopy and qRT-PCR. The results show that poliovirus infection results in induction of very low levels of IFN-β mRNA despite clear activation of NF-κB and ATF-2. In contrast, analysis of IRF-3 revealed no transcriptional induction of an IRF-3-responsive promoter or homodimerization of IRF-3 indicating it is not activated in poliovirus-infected cells. Exposure of poliovirus-infected cells to poly(I:C) results in lower levels of IFN-β mRNA synthesis and IRF-3 activation compared to mock-infected cells. Analysis of MDA-5 and IPS-1 revealed that these components of the RLR pathway were largely intact at times when the type I IFN response was suppressed. Collectively, these results demonstrate that poliovirus infection actively suppresses the host type I interferon response by blocking activation of IRF-3 and suggests that this is not mediated by cleavage of MDA-5 or IPS-1.

  13. In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: potential treatment for genital warts.

    PubMed Central

    Cowsert, L M; Fox, M C; Zon, G; Mirabelli, C K

    1993-01-01

    Papillomaviruses induce benign proliferative lesions, such as genital warts, in humans. The E2 gene product is thought to play a major role in the regulation of viral transcription and DNA replication and may represent a rational target for an antisense oligonucleotide drug action. Phosphorothioate oligonucleotides complementary to E2 mRNAs were synthesized and tested in a series of in vitro bovine papillomavirus (BPV) and human papillomavirus (HPV) models for the ability to inhibit E2 transactivation and virus-induced focus formation. The most active BPV-specific compounds were complementary to the mRNA cap region (ISIS 1751), the translation initiation region for the full-length E2 transactivator (ISIS 1753), and the translation initiation region for the E2 transrepressor mRNA (ISIS 1755). ISIS 1751 and ISIS 1753 were found to reduce E2-dependent transactivation and viral focus formation in a sequence-specific and concentration-dependent manner. ISIS 1755 increased E2 transactivation in a dose-dependent manner but had no effect on focus formation. Oligonucleotides with a chain length of 20 residues had optimal activity in the E2 transactivation assay. On the basis of the above observations, ISIS 2105, a 20-residue phosphorothioate oligonucleotide targeted to the translation initiation of both HPV type 6 (HPV-6) and HPV-11 E2 mRNA, was designed and shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. These observations support the rationale of E2 as a target for antiviral therapy against papillomavirus infections and specifically identify ISIS 2105 as a candidate antisense oligonucleotide for the treatment of genital warts induced by HPV-6 and HPV-11. Images PMID:8383937

  14. Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer-selective Anti-influenza A Virus Activity Involving Nrf2 Activation*

    PubMed Central

    Shoji, Masaki; Arakaki, Yumie; Esumi, Tomoyuki; Kohnomi, Shuntaro; Yamamoto, Chihiro; Suzuki, Yutaka; Takahashi, Etsuhisa; Konishi, Shiro; Kido, Hiroshi; Kuzuhara, Takashi

    2015-01-01

    Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (−)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (−)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response. PMID:26446794

  15. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation.

    PubMed

    Rondón, Ana G; Jimeno, Sonia; García-Rubio, María; Aguilera, Andrés

    2003-10-03

    THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.

  16. Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression.

    PubMed

    Bernhoff, E; Gutteberg, T J; Sandvik, K; Hirsch, H H; Rinaldo, C H

    2008-07-01

    The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by >90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development.

  17. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging

    PubMed Central

    Pocock, Ginger M.; Zimdars, Laraine L.; Yuan, Ming; Eliceiri, Kevin W.; Ahlquist, Paul; Sherer, Nathan M.

    2017-01-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include “burst” RNA nuclear export dynamics regulated by HIV-1’s Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element–specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. PMID:27903772

  18. Type III interferons are critical host factors that determine susceptibility to Influenza A viral infection in allergic nasal mucosa.

    PubMed

    Jeon, Y J; Lim, J H; An, S; Jo, A; Han, D H; Won, T-B; Kim, D-Y; Rhee, C-S; Kim, H J

    2018-03-01

    Allergic respiratory conditions have been associated with increased susceptibility to viral infection due to impaired interferon (IFN)-related immune responses, but the mechanisms for reinforcement of mucosal immunity against viral infection in allergic diseases are largely unknown. To determine whether IFN induction would be impaired in allergic nasal mucosa and to identify whether higher loads of influenza A virus (IAV) in allergic nasal mucosa could be controlled with IFN treatment. Influenza A virus mRNA, viral titres and IFN expression were compared in IAV-infected normal human nasal epithelial (NHNE, N = 10) and allergic rhinitis nasal epithelial (ARNE, N = 10) cells. We used in vivo model of allergic rhinitis (BALB/c mice, N = 10) and human nasal mucosa from healthy volunteers (N = 72) and allergic rhinitis patients (N = 29) to assess the induction of IFNs after IAV infection. Influenza A virus mRNA levels and viral titres were significantly higher in ARNE compared with NHNE cells. IFN-β and IFN-λs were induced in NHNE and ARNE cells up to 3 days after IAV infection. Interestingly, induction of IFN-λs mRNA levels and the amount of secreted proteins were considerably lower in ARNE cells. The mean IFN-λs mRNA level was also significantly lower in the nasal mucosa of AR patients, and we found that recombinant IFN-λ treatment attenuated viral mRNA levels and viral titres in IAV-infected ARNE cells. In vivoAR mouse exhibited higher viral load after IAV infection, but intranasal inoculation of IFN-λ completely decreased IAV protein expression and viral titre in nasal mucosa of IAV-infected AR mouse. Higher susceptibility of the allergic nasal mucosa to IAV may depend on impairment of type III IFN induction, and type III IFN is a key mechanistic link between higher viral loads and control of IAV infection in allergic nasal mucosa. © 2017 John Wiley & Sons Ltd.

  19. Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum.

    PubMed

    Biesold, Susanne E; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M; Kalko, Elisabeth K V; Oppong, Samuel; Drosten, Christian; Müller, Marcel A

    2011-01-01

    Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs.

  20. The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features.

    PubMed

    Fan, Shengtao; Cai, Hongzhi; Xu, Xingli; Feng, Min; Wang, Lichun; Liao, Yun; Zhang, Ying; He, Zhanlong; Yang, Fengmei; Yu, Wenhai; Wang, Jingjing; Zhou, Jumin; Li, Qihan

    2017-01-30

    As one of the major pathogens for human herpetic diseases, herpes simplex virus type 1 (HSV1) causes herpes labialis, genital herpes and herpetic encephalitis. Our aim here was to investigate the infectious process of HSV1 in rhesus macaques and the pathological features induced during this infection. Clinical symptoms that manifested in the rhesus macaque during HSV1 infection included vesicular lesions and their pathological features. Viral distribution in the nervous tissues and associated pathologic changes indicated the typical systematic pathological processes associated with viral distribution of HSV1.Interestingly, vesicular lesions recurred in oral skin or in mucosa associated with virus shedding in macaques within four to five months post-infection,and viral latency-associated transcript (LAT) mRNA was found in the trigeminal ganglia (TG)on day 365 post-infection. Neutralization testing and enzyme-linked immunospot (ELISpot) detection of specific T cell responses confirmed the specific immunity induced by HSV1 infection. Thus, rhesus macaques could serve as an infectious model for HSV1 due to their typical clinical symptoms and the pathological recurrence associated with viral latency in nervous tissues.

  1. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry.

    PubMed

    Jornot, L; Morris, M A; Petersen, H; Moix, I; Rochat, T

    2002-01-01

    It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases. Copyright 2001 John Wiley & Sons, Ltd.

  2. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection

    PubMed Central

    Dominissini, Dan; He, Chuan

    2018-01-01

    Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types. PMID:29659627

  3. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period

    PubMed Central

    2012-01-01

    Background Recent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection. Results Characterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4–3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4–3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3′ LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication. Conclusions The results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4–3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle. PMID:22569184

  4. Differentially-Expressed Pseudogenes in HIV-1 Infection

    PubMed Central

    Gupta, Aditi; Brown, C. Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-01-01

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit. PMID:26426037

  5. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3.

    PubMed

    Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen

    2007-11-01

    Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.

  6. Multiple Transcript Properties Related to Translation Affect mRNA Degradation Rates in Saccharomyces cerevisiae

    PubMed Central

    Neymotin, Benjamin; Ettorre, Victoria; Gresham, David

    2016-01-01

    Degradation of mRNA contributes to variation in transcript abundance. Studies of individual mRNAs have shown that both cis and trans factors affect mRNA degradation rates. However, the factors underlying transcriptome-wide variation in mRNA degradation rates are poorly understood. We investigated the contribution of different transcript properties to transcriptome-wide degradation rate variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression analysis. We find that multiple transcript properties are significantly associated with variation in mRNA degradation rates, and that a model incorporating these properties explains ∼50% of the genome-wide variance. Predictors of mRNA degradation rates include transcript length, ribosome density, biased codon usage, and GC content of the third position in codons. To experimentally validate these factors, we studied individual transcripts expressed from identical promoters. We find that decreasing ribosome density by mutating the first translational start site of a transcript increases its degradation rate. Using coding sequence variants of green fluorescent protein (GFP) that differ only at synonymous sites, we show that increased GC content of the third position of codons results in decreased rates of mRNA degradation. Thus, in steady-state conditions, a large fraction of genome-wide variation in mRNA degradation rates is determined by inherent properties of transcripts, many of which are related to translation, rather than specific regulatory mechanisms. PMID:27633789

  7. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro

    PubMed Central

    Ye, Jianxin; Silverman, Lee; Lairmore, Michael D.; Green, Patrick L.

    2010-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex−) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex− proviral clone produced low detectable levels of p19 Gag. 729HTLVRex− stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex− cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)–dependent growth of primary T lymphocytes. These cells carried the HTLVRex− genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex− cells or 729HTLVRex− cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo. PMID:12907436

  8. Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    PubMed Central

    Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.

    2011-01-01

    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882

  9. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  10. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent Protein Kinase PKR

    PubMed Central

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V.; Lokugamage, Nandadeva; Head, Jennifer A.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV) encodes one major virulence factor, the NSs protein. NSs suppresses host general transcription, including interferon (IFN)-β mRNA synthesis, and promotes degradation of the dsRNA-dependent protein kinase (PKR). We generated a novel RVFV mutant (rMP12-NSsR173A) specifically lacking the function to promote PKR degradation. rMP12-NSsR173A infection induces early phosphorylation of eIF2α through PKR activation, while retaining the function to inhibit host general transcription including IFN-β gene inhibition. MP-12 NSs but not R173A NSs binds to wt PKR. R173A NSs formed filamentous structure in nucleus in a mosaic pattern, which was distinct from MP-12 NSs filament pattern. Due to early phosphorylation of eIF2α, rMP12-NSsR173A could not efficiently accumulate viral proteins. Our results suggest that NSs-mediated host general transcription suppression occurs independently of PKR degradation, while the PKR degradation is important to inhibit the phosphorylation of eIF2α in infected cells undergoing host general transcription suppression. PMID:23063407

  11. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Lokugamage, Nandadeva; Head, Jennifer A; Ikegami, Tetsuro

    2013-01-20

    Rift Valley fever virus (RVFV) encodes one major virulence factor, the NSs protein. NSs suppresses host general transcription, including interferon (IFN)-β mRNA synthesis, and promotes degradation of the dsRNA-dependent protein kinase (PKR). We generated a novel RVFV mutant (rMP12-NSsR173A) specifically lacking the function to promote PKR degradation. rMP12-NSsR173A infection induces early phosphorylation of eIF2α through PKR activation, while retaining the function to inhibit host general transcription including IFN-β gene inhibition. MP-12 NSs but not R173A NSs binds to wt PKR. R173A NSs formed filamentous structure in nucleus in a mosaic pattern, which was distinct from MP-12 NSs filament pattern. Due to early phosphorylation of eIF2α, rMP12-NSsR173A could not efficiently accumulate viral proteins. Our results suggest that NSs-mediated host general transcription suppression occurs independently of PKR degradation, while the PKR degradation is important to inhibit the phosphorylation of eIF2α in infected cells undergoing host general transcription suppression. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  13. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research

    PubMed Central

    Churchill, Melissa J.; Cowley, Daniel J.; Wesselingh, Steve L.; Gorry, Paul R.; Gray, Lachlan R.

    2014-01-01

    Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders (HAND) in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4+ T-cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbor persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence, and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognized and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS. PMID:25060300

  14. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway.

    PubMed

    Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui

    2017-01-01

    Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.

  15. Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.

    PubMed

    Yu, Bin; Dai, Cong-qi; Jiang, Zhen-you; Li, En-qing; Chen, Chen; Wu, Xian-lin; Chen, Jia; Liu, Qian; Zhao, Chang-lin; He, Jin-xiong; Ju, Da-hong; Chen, Xiao-yin

    2014-07-01

    To observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1. Leukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR). The optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05). The RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.

  16. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    PubMed

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    PubMed Central

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression. PMID:28331082

  18. The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Kim, Chang-Hoon; Kang, Ju Wan; Shin, Ha Kyung; Kim, Dong-Young; Won, Tae-Bin; Han, Doo Hee; Rhee, Chae Seo; Yoon, Joo-Heon; Kim, Hyun Jik

    2017-02-01

    Here, we studied the IFN-regulated innate immune response against influenza A virus (IAV) infection in the mouse lung and the therapeutic effect of IFN-λ2/3 in acute IAV lung infection. For viral infections, IAV (WS/33, H1N1, PR8 H1N1, H5N1) were inoculated into wild-type mice by intranasal delivery, and IAV mRNA level and viral titer were measured. To compare the antiviral effect of IFNs in vivo in the lung, neutralizing antibodies and recombinant IFNs were used. After intranasal inoculation of IAV into mice, viral infection peaked at 7 days postinfection, and the IAV titer also reached its peak at this time. We found that IFN-β and IFN-λ2/3 were preferentially induced after IAV infection and the IFN-λ2/3-mediated innate immune response was specifically required for the induction of IFN-stimulated genes (ISGs) transcription in the mouse respiratory tract. Neutralization of secreted IFN-λ2/3 aggravated acute IAV lung infection in mice with intact IFN-β induction; consistent with this finding, the transcription of ISGs was significantly reduced. Intranasal administration of IFN-λ2/3 significantly suppressed various strains of IAV infection, including WS/33 (H1N1), PR (H1N1), and H5N1 in the mouse lung, and was accompanied by greater up-regulation of ISGs. Taken together, our data indicate that the IFN-λ2/3-mediated innate immune response is necessary to protect the lungs from IAV infection, and intranasally delivered IFN-λ2/3 has the potential to be a useful therapeutic strategy for treating acute IAV lung infection.

  19. DDB1 Stimulates Viral Transcription of Hepatitis B Virus via HBx-Independent Mechanisms.

    PubMed

    Kim, Woohyun; Lee, Sooyoung; Son, Yeongnam; Ko, Chunkyu; Ryu, Wang-Shick

    2016-11-01

    HBx, a small regulatory protein of hepatitis B virus (HBV), augments viral DNA replication by stimulating viral transcription. Among numerous reported HBx-binding proteins, DDB1 has drawn attention, because DDB1 acts as a substrate receptor of the Cul4-DDB1 ubiquitin E3 ligase. Previous work reported that the DDB1-HBx interaction is indispensable for HBx-stimulated viral DNA replication, suggesting that the Cul4-DDB1 ubiquitin E3 ligase might target cellular restriction factors for ubiquitination and proteasomal degradation. To gain further insight into the DDB1-HBx interaction, we generated HBx mutants deficient for DDB1 binding (i.e., R96A, L98A, and G99A) and examined whether they support HBx-stimulated viral DNA replication. In contrast to data from previous reports, our results showed that the HBx mutants deficient for DDB1 binding supported viral DNA replication to nearly wild-type levels, revealing that the DDB1-HBx interaction is largely dispensable for HBx-stimulated viral DNA replication. Instead, we found that DDB1 directly stimulates viral transcription regardless of HBx expression. Through an HBV infection study, importantly, we demonstrated that DDB1 stimulates viral transcription from covalently closed circular DNA, a physiological template for viral transcription. Overall, we concluded that DDB1 stimulates viral transcription via a mechanism that does not involve an interaction with HBx. DDB1 constitutes a cullin-based ubiquitin E3 ligase, where DDB1 serves as an adaptor linking the cullin scaffold to the substrate receptor. Previous findings that the DDB1-binding ability of HBx is essential for HBx-stimulated viral DNA replication led to the hypothesis that HBx could downregulate host restriction factors that limit HBV replication through the cullin ubiquitin E3 ligase that requires the DDB1-HBx interaction. Consistent with this hypothesis, recent work identified Smc5/6 as a host restriction factor that is regulated by the viral cullin ubiquitin E3 ligase. In contrast, here we found that the DDB1-HBx interaction is largely dispensable for HBx-stimulated viral DNA replication. Instead, our results clearly showed that DDB1, regardless of HBx expression, enhances viral transcription. Overall, besides its role in the viral cullin ubiquitin E3 ligase, DDB1 itself stimulates viral transcription via HBx-independent mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.

    PubMed

    Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H

    2018-05-01

    mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses

    PubMed Central

    Rezelj, Veronica V.; Elliott, Richard M.

    2017-01-01

    ABSTRACT SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3′ rapid amplification of cDNA ends (RACE), we mapped the 3′ end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3′ end of the N mRNA terminates upstream of a 5′-GCCAGCC-3′ motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5′-GCCAGCC-3′ motif present in the virus genomic S RNA. PMID:28592543

  2. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses.

    PubMed

    Brennan, Benjamin; Rezelj, Veronica V; Elliott, Richard M

    2017-08-15

    SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA. Copyright © 2017 Brennan et al.

  3. Non-Lethal Heat Shock Increased Hsp70 and Immune Protein Transcripts but Not Vibrio Tolerance in the White-Leg Shrimp

    PubMed Central

    Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik

    2013-01-01

    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

  4. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  5. [Preinvasive vulvar and cervical cancer in a 32-year-old woman, DNA HPV 16 positive with mtDNA mutation--case study].

    PubMed

    Kedzia, Witold; Malkowska-Walczak, Blanka; Józefiak, Agata; Wadowicka, Alicja; Guglas, Bogna; Pruski, Dominik; Kedzia, Helena; Spaczyński, Marek

    2009-07-01

    Coincidence of preinvasive vulvar and cervical cancer in young women is very rare. Lesions like VIN 3/preinvasive vulvar cancer and CIN 3/preinvasive cervical cancer are strictly connected with viral infection and are multilocular. In the presented case the following tests have been performed: HPV DNA test for the presence of 13 oncogenic HPV types, mRNA HPV test for the presence of transcripts for HPV 16, 18, 31, 33, 45 and the analysis of mtDNA D-Loop region. In the examined patient HPV 16 infection, as well as the presence of transcripts for HPV 16 E6/7 were diagnosed. The analysis of mtDNA D-Loop region showed nucleotide lesions like: T>C 16.192, T>C 16.223, T>C 16.292, C>T 16.325, C>T 16.579.

  6. The Human Transcriptome During Nontyphoid Salmonella and HIV Coinfection Reveals Attenuated NFκB-Mediated Inflammation and Persistent Cell Cycle Disruption

    PubMed Central

    Schreiber, Fernanda; Lynn, David J.; Houston, Angela; Peters, Joanna; Mwafulirwa, Gershom; Finlay, Brett B.; Brinkman, Fiona S. L.; Hancock, Robert E. W.; Heyderman, Robert S.; Dougan, Gordon

    2011-01-01

    Background. Invasive nontyphoid Salmonella (iNTS) disease is common and severe in adults with human immunodeficiency virus (HIV) infection in Africa. We previously observed that ex vivo macrophages from HIV-infected subjects challenged with Salmonella Typhimurium exhibit dysregulated proinflammatory cytokine responses. Methods. We studied the transcriptional response in whole blood from HIV-positive patients during acute and convalescent iNTS disease compared to other invasive bacterial diseases, and to HIV-positive and -negative controls. Results. During iNTS disease, there was a remarkable lack of a coordinated inflammatory or innate immune signaling response. Few interferon γ (IFNγ)--induced genes or Toll-like receptor/transcription factor nuclear factor κB (TLR/NFκB) gene pathways were upregulated in expression. Ex vivo lipopolysacharide (LPS) or flagellin stimulation of whole blood, however, showed that convalescent iNTS subjects and controls were competent to mount prominent TLR/NFκB-associated patterns of mRNA expression. In contrast, HIV-positive patients with other invasive bacterial infections (Escherichia coli and Streptococcus pneumoniae) displayed a pronounced proinflammatory innate immune transcriptional response. There was also upregulated mRNA expression in cell cycle, DNA replication, translation and repair, and viral replication pathways during iNTS. These patterns persisted for up to 2 months into convalescence. Conclusions. Attenuation of NFκB-mediated inflammation and dysregulation of cell cycle and DNA-function gene pathway expression are key features of the interplay between iNTS and HIV. PMID:21917897

  7. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-catenin Signaling Transcripts by Recruiting CDK7 and RNA Methyltransferase

    PubMed Central

    Posternak, Valeriya; Ung, Matthew H.; Cheng, Chao; Cole, Michael D.

    2016-01-01

    MYC is a pleiotropic transcription factor that activates and represses a wide range of target genes and is frequently deregulated in human tumors. While much is known about the role of MYC in transcriptional activation and repression, MYC can also regulate mRNA cap methylation through a mechanism that has remained poorly understood. Here it is reported that MYC enhances mRNA cap methylation of transcripts globally, specifically increasing mRNA cap methylation of genes involved in Wnt/β-catenin signaling. Elevated mRNA cap methylation of Wnt signaling transcripts in response to MYC leads to augmented translational capacity, elevated protein levels, and enhanced Wnt signaling activity. Mechanistic evidence indicates that MYC promotes recruitment of RNA methyltransferase (RNMT) to Wnt signaling gene promoters by enhancing phosphorylation of serine 5 on the RNA Polymerase II Carboxy-Terminal Domain, mediated in part through an interaction between the TIP60 acetyltransferase complex and TFIIH. Implications MYC enhances mRNA cap methylation above and beyond transcriptional induction. PMID:27899423

  8. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    PubMed

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  9. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  10. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se

    2012-11-25

    The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less

  11. Type I Interferon Reaction to Viral Infection in Interferon-Competent, Immortalized Cell Lines from the African Fruit Bat Eidolon helvum

    PubMed Central

    Biesold, Susanne E.; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M.; Kalko, Elisabeth K. V.; Oppong, Samuel; Drosten, Christian; Müller, Marcel A.

    2011-01-01

    Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs. PMID:22140523

  12. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use

    PubMed Central

    Atkins, John F.; Loughran, Gary; Bhatt, Pramod R.; Firth, Andrew E.; Baranov, Pavel V.

    2016-01-01

    Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. PMID:27436286

  13. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    PubMed

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation

    PubMed Central

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A.; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J.

    2015-01-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host:pathogen interface. In this study we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine (m7G) mRNA cap, increased the total level of protein synthesis, and co-localized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a non-viral reporter gene and increased the translation of a reporter containing an HCMV 5’ untranslated region (5’UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5’UTR required the pTRS1 RNA and PKR binding domains, and was likely the result of PKR inhibition. However pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5’UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. PMID:25894605

  15. A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression

    NASA Astrophysics Data System (ADS)

    Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.

    1986-10-01

    Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.

  16. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis.

    PubMed Central

    Widmer, G; Keenan, M C; Patterson, J L

    1990-01-01

    Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680

  17. The use of in vitro transcription to probe regulatory functions of viral protein domains.

    PubMed

    Loewenstein, Paul M; Song, Chao-Zhong; Green, Maurice

    2007-01-01

    Adenoviruses (Ads), like other DNA tumor viruses, have evolved specific regulatory genes that facilitate virus replication by controlling the transcription of other viral genes as well as that of key cellular genes. In this regard, the E1A transcription unit contains multiple protein domains that can transcriptionally activate or repress cellular genes involved in the regulation of cell proliferation and cell differentiation. Studies using in vitro transcription have provided a basis for a molecular understanding of the interaction of viral regulatory proteins with the transcriptional machinery of the cell and continue to inform our understanding of transcription regulation. This chapter provides examples of the use of in vitro transcription to analyze transcriptional activation and transcriptional repression by purified, recombinant Ad E1A protein domains and single amino acid substitution mutants as well as the use of protein-affinity chromatography to identify host cell transcription factors involved in viral transcriptional regulation. A detailed description is provided of the methodology to prepare nuclear transcription extract, to prepare biologically active protein domains, to prepare affinity depleted transcription extracts, and to analyze transcription by primer extension and by run-off assay using naked DNA templates.

  18. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  19. Transcriptome analysis of the Spodoptera frugiperda ascovirus in vivo provides insights into how its apoptosis inhibitors and caspase promote increased synthesis of viral vesicles and virion progeny.

    PubMed

    Zaghloul, Heba; Hice, Robert; Arensburger, Peter; Federici, Brian A

    2017-09-27

    Ascoviruses are ds DNA viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode apoptosis inhibitors and caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific RNA-Seq to study transcription in vivo in third instars of Spodoptera frugiperda infected with the Spodoptera frugiperda ascovirus, a member of the type species, Spodoptera frugiperda ascovirus (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes; early, late and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025 and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large ds DNA viruses. IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage yielding numerous large anucleate viral vesicles that continue to produce virions. Our transcriptome analysis of genome expression in vivo by the Spodoptera frugiperda ascovirus shows that inhibitors of apoptosis are expressed first enabling viral replication to proceed, after which the SfAV-1a caspase is synthesized, leading to viral vesicle synthesis and subsequent extensive production of progeny virions. Moreover, we detected numerous bicistronic and tricistronic mRNA messages in the ascovirus transcriptome, implying ascoviruses use other non-canonical translational mechanisms such as Internal Ribosome Entry Site (IRES). These results provide the first insights into the molecular biology of a unique coordinated gene expression pattern in which cell architecture is markedly modified, more than in any other known eukaryotic virus, to promote viral reproduction and transmission. Copyright © 2017 American Society for Microbiology.

  20. Forced Complementation between Subgenomic RNAs: Does Human Immunodeficiency Type 1 Virus Reverse Transcription Occur in Viral Core, Cytoplasm, or Early Endosome?

    PubMed Central

    Han, Weining; Li, Yuejin; Bagaya, Bernard S.; Tian, Meijuan; Chamanian, Mastooreh; Zhu, Chuanwu; Shen, Jie; Gao, Yong

    2016-01-01

    Although the process of reverse transcription is well elucidated, it remains unclear if viral core disruption provides a more cellular or viral milieu for HIV-1 reverse transcription. We have devised a method to require mixing of viral cores or core constituents to produce infectious progeny virus by a bipartite subgenomic RNA (sgRNA) system, in which HIV-1 cplt_R/U5/gag/Δpol and nfl sgRNAs are complementary to each other and when together can complete viral reverse transcription. Only the heterodiploid virus containing both the nfl and cplt_R/U5/gag/Δpol sgRNAs can complete reverse transcription and propagate infectious virus upon de novo infection. Dual exposure of U87.CD4.CXCR4 cells with high titers of the homodimeric nfl and cplt_R/U5/gag/Δpol virus particles did not result in productive virus infection. On the other hand, in early endosomes, the HIV-1 sgRNAs released from viral cores can retain function and complete the reverse transcription and result in productive infection. These findings confirm the assumptions that, in natural infection, HIV-1 cores, and likely other retrovirus cores, remain largely intact and do not mix/fuse in the cytoplasm during the reverse transcription process, and circulating cytoplasmic HIV-1 sgRNA (produced through transfection) could not help the complementary sgRNA in the viral core to complement the reverse transcription process. PMID:27239643

  1. P‐TEFb goes viral

    PubMed Central

    Zaborowska, Justyna; Isa, Nur F.

    2015-01-01

    Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents. PMID:27398404

  2. Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery.

    PubMed

    Kneidinger, Doris; Ibrišimović, Mirza; Lion, Thomas; Klein, Reinhard

    2012-06-01

    Human adenoviruses are a common threat to immunocompromised patients, e.g., HIV-positive individuals or solid-organ and, in particular, allogeneic stem cell transplant recipients. Antiviral drugs have a limited effect on adenoviruses, and existing treatment modalities often fail to prevent fatal outcome. Silencing of viral genes by short interfering RNAs (siRNAs) holds a great promise in the treatment of viral infections. The aim of the present study was to identify adenoviral candidate targets for RNA interference-mediated inhibition of adenoviral replication. We investigated the impact of silencing of a set of early, middle, and late viral genes on the replication of adenovirus 5 in vitro. Adenovirus replication was inhibited by siRNAs directed against the adenoviral E1A, DNA polymerase, preterminal protein (pTP), IVa2, hexon, and protease genes. Silencing of early and middle genes was more effective in inhibiting adenovirus multiplication than was silencing of late genes. A siRNA directed against the viral DNA polymerase mRNA decreased viral genome copy numbers and infectious virus progeny by several orders of magnitude. Since silencing of any of the early genes directly or indirectly affected viral DNA synthesis, our data suggest that reducing viral genome copy numbers is a more promising strategy for the treatment of adenoviral infections than is reducing the numbers of proteins necessary for capsid generation. Thus, adenoviral DNA replication was identified as a key target for RNAi-mediated inhibition of adenovirus multiplication. In addition, the E1A transcripts emerged as a second important target, because its knockdown markedly improved the viability of cells at late stages of infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Viral Evasion and Manipulation of Host RNA Quality Control Pathways

    PubMed Central

    2016-01-01

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. PMID:27226372

  4. Viral Evasion and Manipulation of Host RNA Quality Control Pathways.

    PubMed

    Hogg, J Robert

    2016-08-15

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. APOBEC4 Enhances the Replication of HIV-1

    PubMed Central

    Hofmann, Henning; Hanschmann, Kay-Martin; Mühlebach, Michael D.; Schumann, Gerald G.; König, Renate; Cichutek, Klaus; Häussinger, Dieter; Münk, Carsten

    2016-01-01

    APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters. PMID:27249646

  6. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected atmore » the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.« less

  7. The Role of CYP3A4 mRNA Transcript with Shortened 3′-Untranslated Region in Hepatocyte Differentiation, Liver Development, and Response to Drug InductionS⃞

    PubMed Central

    Li, Dan; Gaedigk, Roger; Hart, Steven N.; Leeder, J. Steven

    2012-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes more than 50% of prescribed drugs. The expression of CYP3A4 changes during liver development and may be affected by the administration of some drugs. Alternative mRNA transcripts occur in more than 90% of human genes and are frequently observed in cells responding to developmental and environmental signals. Different mRNA transcripts may encode functionally distinct proteins or contribute to variability of mRNA stability or protein translation efficiency. The purpose of this study was to examine expression of alternative CYP3A4 mRNA transcripts in hepatocytes in response to developmental signals and drugs. cDNA cloning and RNA sequencing (RNA-Seq) were used to identify CYP3A4 mRNA transcripts. Three transcripts were found in HepaRG cells and liver tissues: one represented a canonical mRNA with full-length 3′-untranslated region (UTR), one had a shorter 3′-UTR, and one contained partial intron-6 retention. The alternative mRNA transcripts were validated by either rapid amplification of cDNA 3′-end or endpoint polymerase chain reaction (PCR). Quantification of the transcripts by RNA-Seq and real time quantitative PCR revealed that the CYP3A4 transcript with shorter 3′-UTR was preferentially expressed in developed livers, differentiated hepatocytes, and in rifampicin- and phenobarbital-induced hepatocytes. The CYP3A4 transcript with shorter 3′-UTR was more stable and produced more protein compared with the CYP3A4 transcript with canonical 3′-UTR. We conclude that the 3′-end processing of CYP3A4 contributes to the quantitative regulation of CYP3A4 gene expression through alternative polyadenylation, which may serve as a regulatory mechanism explaining changes of CYP3A4 expression and activity during hepatocyte differentiation and liver development and in response to drug induction. PMID:21998292

  8. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.

    PubMed

    Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi

    2018-04-17

    Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.

  9. Identification and Characterization of the Spodoptera Su(var) 3-9 Histone H3K9 trimethyltransferase and Its Effect in AcMNPV Infection

    PubMed Central

    Li, Binbin; Li, Sisi; Yin, Juan; Zhong, Jiang

    2013-01-01

    Histone H3-lysine9 (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodoptera frugiperda ( S . frugiperda ), S . exigua and S . litura . Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus–host interaction mechanism. PMID:23894480

  10. An Inhibitory Motif on the 5’UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies

    PubMed Central

    Papa, Guido; Eichwald, Catherine; Burrone, Oscar R.

    2016-01-01

    Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5’UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5’UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3’UTR sequences. Analysis of several mutants of the 21-nucleotide long 5’UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5’ terminal 6-nucleotide long pyrimidine-rich tract 5’-GGY(U/A)UY-3’. The 5’ terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5’UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies. PMID:27846320

  11. NF90 isoforms, a new family of cellular proteins involved in viral replication?

    PubMed

    Patiño, Claudia; Haenni, Anne-Lise; Urcuqui-Inchima, Silvio

    2015-01-01

    The Nuclear Factor 90 (NF90) and its isoforms constitute a family of proteins that can interact with double-stranded (ds) RNA, through its dsRNA binding motifs. Due to various potential translational events such as alternative splicing, the human Interleukin enhancer binding factor 3 (ilf3) gene codes for multifunctional proteins that are NF90 and its isoforms, involved in transcription, translation, mRNA export and microRNA biogenesis. These proteins can act as cellular partners affecting viral replication and they are also implicated in host defense. As a result of these numerous functions, these protein isoforms have been given various names over the years, leading to confusion in determining their specific functions. In this review we focus on the role of the human NF90 protein isoforms in DNA and RNA virus replication. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  12. HIV-1 Vpr Enhances PPARβ/δ-Mediated Transcription, Increases PDK4 Expression, and Reduces PDC Activity

    PubMed Central

    Shrivastav, Shashi; Zhang, Liyan; Okamoto, Koji; Lee, Hewang; Lagranha, Claudia; Abe, Yoshifusa; Balasubramanyam, Ashok; Lopaschuk, Gary D.; Kino, Tomoshige

    2013-01-01

    HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1–infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARβ/δ and influence its transcriptional activity. In the presence of PPARβ/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARβ/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARβ/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of β-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARβ/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is β-oxidation–dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and β-oxidation were reversed by specific PPARβ/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients. PMID:23842279

  13. Growth hormone and Pit-1 expression in bovine fetal lymphoid cells.

    PubMed

    Chen, H T; Schuler, L A; Schultz, R D

    1997-11-01

    Bovine fetal lymphoid cells were examined for growth hormone (GH) and the transcription factor Pit-1/GHF-1 mRNA. GH and Pit-1/GHF-1 transcripts were detected in thymocytes and splenocytes from fetuses at 60, 90, 120, and 270 d of gestation using reverse transcription-polymerase chain reaction (RT-PCR). Northern analysis indicated that the lymphoid GH mRNA was approximately 350 nucleotides larger than in the pituitary. RT-PCR analysis demonstrated that the coding regions as well as 3' untranslated region of the lymphocyte GH and pituitary transcripts were the same. Analysis of the 5'-untranslated region of the lymphocyte GH mRNA showed that transcription began upstream from the start site in the pituitary gland, suggesting differences in regulation in these tissues. Fetal thymocytes and splenocytes expressed Pit-1/GHF-1 mRNA; however, they contained only the 2.5-kb transcript. The GH and Pit-1/GHF-1 mRNA in fetal lymphoid cells supports the hypothesis that lymphocyte-derived GH may function as an autocrine and/or paracrine factor during the development and maturation of the bovine fetal immune system.

  14. Transcriptional and Posttranscriptional Control of Phaseolin and Phytohemagglutinin Gene Expression in Developing Cotyledons of Phaseolus vulgaris.

    PubMed

    Chappell, J; Chrispeels, M J

    1986-05-01

    The expression of phaseolin and phytohemagglutinin (PHA) in the developing cotyledons of a normal (Greensleeves) and a PHA-deficient (Pinto 111) cultivar of Phaseolus vulgaris was investigated. Phaseolin mRNA translational activity and abundance were present at similar levels in both cultivars. In contrast, PHA mRNA translational activity and abundance in Pinto 111 were less than 1% of the levels measured in Greensleeves. Using nuclear runoff assays, the transcription rate of phaseolin gene sequences was similar in both cultivars. The transcription rate of PHA gene sequences in Pinto 111 was only 20% of that measured in Greensleeves. Comparison of the transcription rates with the relative mRNA amounts measured in RNA blot hybridizations indicated that the normally expressed storage protein gene mRNAs were very stable with half-lives greater than several days. Because a low level of PHA gene transcription in Pinto 111 was measurable but no PHA mRNA accumulated, these results suggest that the PHA deficiency in Pinto 111 is due to a reduced transcription rate and possibly an instability of the mRNA.

  15. Shift from posttranscriptional to predominant transcriptional control of the expression of the GM-CSF gene during activation of human Jurkat cells.

    PubMed

    Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J

    1992-05-01

    The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.

  16. Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication.

    PubMed

    Meier, Jeffery L; Keller, Michael J; McCoy, James J

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer's orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at -300 or -345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.

  17. Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis.

    PubMed

    Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen

    2009-11-01

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.

  18. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral receptors and coreceptors on the cell surface but also on the intracellular host factors that support B19V replication. Our present study shows that B19V uses a host factor, RNA binding motif protein 38 (RBM38), for the processing of its pre-mRNA during virus replication. Specifically, RBM38 interacts with the intronic splicing enhancer 2 (ISE2) element of B19V pre-mRNA and promotes 11-kDa protein expression, thereby regulating the 11-kDa protein-mediated augmentation of B19V replication. The identification of this novel host-pathogen interaction will provide mechanistic insights into B19V replication and aid in finding new targets for anti-B19V therapeutics. Copyright © 2018 American Society for Microbiology.

  19. Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum

    PubMed Central

    Painter, Heather J.; Carrasquilla, Manuela; Llinás, Manuel

    2017-01-01

    To capture the transcriptional dynamics within proliferating cells, methods to differentiate nascent transcription from preexisting mRNAs are desired. One approach is to label newly synthesized mRNA transcripts in vivo through the incorporation of modified pyrimidines. However, the human malaria parasite, Plasmodium falciparum, is incapable of pyrimidine salvage for mRNA biogenesis. To capture cellular mRNA dynamics during Plasmodium development, we engineered parasites that can salvage pyrimidines through the expression of a single bifunctional yeast fusion gene, cytosine deaminase/uracil phosphoribosyltransferase (FCU). We show that expression of FCU allows for the direct incorporation of thiol-modified pyrimidines into nascent mRNAs. Using developmental stage-specific promoters to express FCU-GFP enables the biosynthetic capture and in-depth analysis of mRNA dynamics from subpopulations of cells undergoing differentiation. We demonstrate the utility of this method by examining the transcriptional dynamics of the sexual gametocyte stage transition, a process that is essential to malaria transmission between hosts. Using the pfs16 gametocyte-specific promoter to express FCU-GFP in 3D7 parasites, we found that sexual stage commitment is governed by transcriptional reprogramming and stabilization of a subset of essential gametocyte transcripts. We also measured mRNA dynamics in F12 gametocyte-deficient parasites and demonstrate that the transcriptional program required for sexual commitment and maturation is initiated but likely aborted due to the absence of the PfAP2-G transcriptional regulator and a lack of gametocyte-specific mRNA stabilization. Biosynthetic labeling of Plasmodium mRNAs is incredibly versatile, can be used to measure transcriptional dynamics at any stage of parasite development, and will allow for future applications to comprehensively measure RNA-protein interactions in the malaria parasite. PMID:28416533

  20. Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk).

    PubMed

    Umaña, Angie C; Iwahori, Satoko; Kalejta, Robert F

    2018-01-19

    Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.

  1. Emerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication

    PubMed Central

    Riquelme-Barrios, Sebastián; Pereira-Montecinos, Camila; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2018-01-01

    N6-methyladenosine (m6A) is the most abundant internal modification present in Eukaryotic mRNA. The functions of this chemical modification are mediated by m6A-binding proteins (m6A readers) and regulated by methyltransferases (m6A writers) and demethylases (m6A erasers), which together are proposed to be responsible of a new layer of post-transcriptional control of gene expression. Despite the presence of m6A in a retroviral genome was reported more than 40 years ago, the recent development of sequencing-based technologies allowing the mapping of m6A in a transcriptome-wide manner made it possible to identify the topology and dynamics of m6A during replication of HIV-1 as well as other viruses. As such, three independent groups recently reported the presence of m6A along the HIV-1 genomic RNA (gRNA) and described the impact of cellular m6A writers, erasers and readers on different steps of viral RNA metabolism and replication. Interestingly, while two groups reported a positive role of m6A at different steps of viral gene expression it was also proposed that the presence of m6A within the gRNA reduces viral infectivity by inducing the early degradation of the incoming viral genome. This review summarizes the recent advances in this emerging field and discusses the relevance of m6A during HIV-1 replication. PMID:29643844

  2. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

    PubMed Central

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin

    2017-01-01

    Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065

  3. Detection of active human papilloma virus-16 in head and neck cancers of Asian North Indian patients.

    PubMed

    Sannigrahi, M K; Singh, V; Sharma, R; Panda, N K; Radotra, B D; Khullar, M

    2016-01-01

    Head and neck cancers (HNC) are one of the most common cancers in India. Human papillomavirus (HPV) has been identified as an emerging risk factor for HNC. The present study was carried out to determine the active form of HPV-16 using a combination of PCR, viral load determination, HPV-16 E7 mRNA expression, p16, p53, and pRB immuno-histochemistry (IHC). A total of 226 HNC patients were enrolled in the present study. Sixty-seven (29.7%) of HNC cases were found to be HPV DNA positive. Thirty-two (14%) cases were HPV-16 DNA positive and 20 (9%) cases expressed HPV-16 E7 mRNA. HPV-16 mRNA/p16 positive cases had significantly increased viral load and integrated HPV-16 DNA. In summary, of total HNC patients, 6% cases were positive for both HPV-16 DNA and p16, and 5% were positive for both E7 mRNA and p16 IHC. We observed similar HPV-16 DNA/E7mRNA prevalence in oropharynx and oral cavity sites, however, oropharynx SCC had significantly higher viral load. Our results show low prevalence of active HPV-16 in North Indian HNC patients. HPV-16 E7 mRNA expression correlated with p16 nuclear positivity and increased viral load. Therefore, E7 mRNA expression may be used as a good surrogate indicator for active form of HPV-16 infection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  5. PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig

    PubMed Central

    Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane

    2017-01-01

    The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy. PMID:28278192

  6. Aiding and Abetting Cancer: mRNA export and the nuclear pore

    PubMed Central

    Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B

    2013-01-01

    mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887

  7. Transcriptional Downregulation of ORF50/Rta by Methotrexate Inhibits the Switch of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 from Latency to Lytic Replication

    PubMed Central

    Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335

  8. Characterization of HPV and host genome interactions in primary head and neck cancers.

    PubMed

    Parfenov, Michael; Pedamallu, Chandra Sekhar; Gehlenborg, Nils; Freeman, Samuel S; Danilova, Ludmila; Bristow, Christopher A; Lee, Semin; Hadjipanayis, Angela G; Ivanova, Elena V; Wilkerson, Matthew D; Protopopov, Alexei; Yang, Lixing; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Ren, Xiaojia; Zhang, Jianhua; Pantazi, Angeliki; Santoso, Netty; Xu, Andrew W; Mahadeshwar, Harshad; Wheeler, David A; Haddad, Robert I; Jung, Joonil; Ojesina, Akinyemi I; Issaeva, Natalia; Yarbrough, Wendell G; Hayes, D Neil; Grandis, Jennifer R; El-Naggar, Adel K; Meyerson, Matthew; Park, Peter J; Chin, Lynda; Seidman, J G; Hammerman, Peter S; Kucherlapati, Raju

    2014-10-28

    Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.

  9. Noncanonical expression of a murine cytomegalovirus early protein CD8 T-cell epitope as an immediate early epitope based on transcription from an upstream gene.

    PubMed

    Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W

    2014-02-14

    Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.

  10. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    PubMed

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  11. Requirement of Multiple cis-Acting Elements in the Human Cytomegalovirus Major Immediate-Early Distal Enhancer for Viral Gene Expression and Replication

    PubMed Central

    Meier, Jeffery L.; Keller, Michael J.; McCoy, James J.

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication. PMID:11739696

  12. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.

    PubMed

    Atkins, John F; Loughran, Gary; Bhatt, Pramod R; Firth, Andrew E; Baranov, Pavel V

    2016-09-06

    Genetic decoding is not 'frozen' as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational 'correction' of problem or 'savior' indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5' or 3' of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3' from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency

    PubMed Central

    Mousseau, Guillaume; Kessing, Cari F.; Fromentin, Rémi; Trautmann, Lydie; Chomont, Nicolas

    2015-01-01

    ABSTRACT Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. PMID:26152583

  14. Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5' and the 3' noncoding regions.

    PubMed Central

    Gutiérrez, A; Martínez-Salas, E; Pintado, B; Sobrino, F

    1994-01-01

    RNA molecules containing the 3' terminal region of foot-and-mouth disease virus (FMDV) RNA in both antisense and sense orientations were able to inhibit viral FMDV translation and infective particle formation in BHK-21 cells following comicroinjection or cotransfection with infectious viral RNA. Antisense, but not sense, transcripts from the 5' noncoding region including the proximal element of the internal ribosome entry site and the two functional initiation AUGs were also inhibitory, both in in vitro translation and in vivo in comicroinjected or cotransfected BHK-21 cells. This effect was not observed with nonrelated RNA transcripts from lambda phage. The inhibitions found were permanent, sequence specific, and dose dependent; an inverse correlation between the length of the transcript and the extent of the antiviral effect was seen. In all cases, the extent of inhibition increased when viral RNAs and transcripts were allowed to reanneal before transfection, concomitant with a decrease in the doses required. The antiviral effect was specific for FMDV, since transcripts failed to inhibit infective particle formation by other picornavirus, such as encephalomyocarditis virus. These results indicate that the ability of RNA transcripts to inhibit viral multiplication depends on their efficient hybridization with target regions on the viral genome. Furthermore, cells transfected with the 5'1as transcript, which is complementary to the 5' noncoding region, showed a significant reduction of plaque-forming ability during the course of a natural infection. RNA 5'1as was able to inhibit FMDV RNA translation in vitro, suggesting that the inhibitions observed are mediated by a blockage of the viral translation initiation. Conversely, hybridization of short sequences of both sense and antisense transcripts from the 3' end induces distortion of predicted highly ordered structural motifs, which could be required for the synthesis of negative-stranded viral RNA, and correlates with inhibition of viral propagation. Images PMID:7933126

  15. Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5' and the 3' noncoding regions.

    PubMed

    Gutiérrez, A; Martínez-Salas, E; Pintado, B; Sobrino, F

    1994-11-01

    RNA molecules containing the 3' terminal region of foot-and-mouth disease virus (FMDV) RNA in both antisense and sense orientations were able to inhibit viral FMDV translation and infective particle formation in BHK-21 cells following comicroinjection or cotransfection with infectious viral RNA. Antisense, but not sense, transcripts from the 5' noncoding region including the proximal element of the internal ribosome entry site and the two functional initiation AUGs were also inhibitory, both in in vitro translation and in vivo in comicroinjected or cotransfected BHK-21 cells. This effect was not observed with nonrelated RNA transcripts from lambda phage. The inhibitions found were permanent, sequence specific, and dose dependent; an inverse correlation between the length of the transcript and the extent of the antiviral effect was seen. In all cases, the extent of inhibition increased when viral RNAs and transcripts were allowed to reanneal before transfection, concomitant with a decrease in the doses required. The antiviral effect was specific for FMDV, since transcripts failed to inhibit infective particle formation by other picornavirus, such as encephalomyocarditis virus. These results indicate that the ability of RNA transcripts to inhibit viral multiplication depends on their efficient hybridization with target regions on the viral genome. Furthermore, cells transfected with the 5'1as transcript, which is complementary to the 5' noncoding region, showed a significant reduction of plaque-forming ability during the course of a natural infection. RNA 5'1as was able to inhibit FMDV RNA translation in vitro, suggesting that the inhibitions observed are mediated by a blockage of the viral translation initiation. Conversely, hybridization of short sequences of both sense and antisense transcripts from the 3' end induces distortion of predicted highly ordered structural motifs, which could be required for the synthesis of negative-stranded viral RNA, and correlates with inhibition of viral propagation.

  16. Post-transcriptional inducible gene regulation by natural antisense RNA.

    PubMed

    Nishizawa, Mikio; Ikeya, Yukinobu; Okumura, Tadayoshi; Kimura, Tominori

    2015-01-01

    Accumulating data indicate the existence of natural antisense transcripts (asRNAs), frequently transcribed from eukaryotic genes and do not encode proteins in many cases. However, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various stimuli are transcriptionally regulated by the activation of a gene promoter and post-transcriptionally regulated by controlling mRNA stability and translatability. A low-copy-number asRNA may post-transcriptionally regulate gene expression with cis-controlling elements on the mRNA. The asRNA itself may act as regulatory RNA in concert with trans-acting factors, including various RNA-binding proteins that bind to cis-controlling elements, microRNAs, and drugs. A novel mechanism that regulates mRNA stability includes the interaction of asRNA with mRNA by hybridization to loops in secondary structures. Furthermore, recent studies have shown that the functional network of mRNAs, asRNAs, and microRNAs finely tunes the levels of mRNA expression. The post-transcriptional mechanisms via these RNA-RNA interactions may play pivotal roles to regulate inducible gene expression and present the possibility of the involvement of asRNAs in various diseases.

  17. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    PubMed Central

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977

  18. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    PubMed

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  19. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    PubMed

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Human cytomegalovirus TRS1 protein associates with the 7-methylguanosine mRNA cap and facilitates translation.

    PubMed

    Ziehr, Benjamin; Lenarcic, Erik; Vincent, Heather A; Cecil, Chad; Garcia, Benjamin; Shenk, Thomas; Moorman, Nathaniel J

    2015-06-01

    Viruses rely on the host translation machinery for the synthesis of viral proteins. Human cells have evolved sensors that recognize viral RNAs and inhibit mRNA translation in order to limit virus replication. Understanding how viruses manipulate the host translation machinery to gain access to ribosomes and disable the antiviral response is therefore a critical aspect of the host/pathogen interface. In this study, we used a proteomics approach to identify human cytomegalovirus (HCMV) proteins that might contribute to viral mRNA translation. The HCMV TRS1 protein (pTRS1) associated with the 7-methylguanosine mRNA cap, increased the total level of protein synthesis, and colocalized with mRNAs undergoing translation initiation during infection. pTRS1 stimulated translation of a nonviral reporter gene and increased the translation of a reporter containing an HCMV 5' untranslated region (5'UTR) to a greater extent. The preferential effect of pTRS1 on translation of an mRNA containing a viral 5'UTR required the pTRS1 RNA and double-stranded RNA-dependent protein kinase (PKR)-binding domains, and was likely the result of PKR inhibition. However, pTRS1 also stimulated the total level of protein synthesis and translation directed by an HCMV 5'UTR in cells lacking PKR. Thus our results demonstrate that pTRS1 stimulates translation through both PKR-dependent and PKR-independent mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells.

    PubMed Central

    Jornot, L; Junod, A F

    1995-01-01

    We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:7887914

  2. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b.

    PubMed

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin; Peng, Xu

    2017-02-28

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. KLF5 regulates infection- and inflammation-induced pro-labour mediators in human myometrium.

    PubMed

    Lappas, Martha

    2015-05-01

    The transcription factor Kruppel-like factor 5 (KLF5) has been shown to associate with nuclear factor kappa B (NFκB) to regulate genes involved in inflammation. However, there are no studies on the expression and regulation of KLF5 in the processes of human labour and delivery. Thus, the aims of this study were to determine the effect of i) human labour on KLF5 expression in both foetal membranes and myometrium; ii) the pro-inflammatory cytokine interleukin 1 beta (IL1β), bacterial product flagellin and the viral dsRNA analogue poly(I:C) on KLF5 expression and iii) KLF5 knockdown by siRNA in human myometrial primary cells on pro-inflammatory and pro-labour mediators. In foetal membranes, there was no effect of term or preterm labour on KLF5 expression. In myometrium, the term labour was associated with an increase in nuclear KLF5 protein expression. Moreover, KLF5 expression was also increased in myometrial cells treated with IL1β, flagellin or poly(IC), likely factors contributing to preterm birth. KLF5 silencing in myometrial cells significantly decreased IL1β-induced cytokine expression (IL6 and IL8 mRNA expression and release), COX2 mRNA expression, and subsequent release of prostaglandins PGE2 and PGF2 α. KLF5 silencing also significantly reduced flagellin- and poly(I:C)-induced IL6 and IL8 mRNA expression. Lastly, IL1β-, flagellin- and poly(I:C)-stimulated NFκB transcriptional activity was significantly suppressed in KLF5-knockout myometrial cells. In conclusion, this study describes novel data in which KLF5 is increased in labouring myometrium, and KLF5 silencing decreased inflammation- and infection-induced pro-labour mediators. © 2015 Society for Reproduction and Fertility.

  5. Identification and expression analysis of the sting gene, a sensor of viral DNA, in common carp Cyprinus carpio.

    PubMed

    Cao, X L; Chen, J J; Cao, Y; Nie, G X; Su, J G

    2016-05-01

    Stimulator of interferon gene (sting) was identified and characterized from common carp Cyprinus carpio. The sting messenger (m)RNA encoded a polypeptide of 402 amino acids with a calculated molecular mass of 46·184 kDa and an isoelectronic point of 6·08. The deduced protein of sting contained a signal peptide, three transmembrane motifs in the N-terminal region and four putative motifs (RXR) found in resident endoplasmic reticulum proteins. mRNA expression of sting was present in twelve investigated tissues, and was up-regulated by koi herpesvirus (KHV) in vivo and in vitro. The transcription of sting was altered by poly(I:C) and poly(dT:dA) stimulation in vitro. The findings suggested that sting is an inducible gene involved in innate immunity against DNA- and RNA-derived pathogens. To investigate defence mechanisms in C. carpio development, sting level in embryos, larvae and juvenile fish was monitored following KHV challenge. The sting message was negligible in embryos prior to hatching, but observed at higher transcriptional levels throughout larval and juvenile stages. Investigation showed the mRNA expression profiles of genes encoding for proteins promoting various functions in the interferon pathway, from pattern recognition receptors to antiviral genes, to be significantly induced in all examined organs by in vivo infection with KHV. Following KHV infection, the ifn message was significantly downregulated in spleen, head kidney, brain and hepatopancreas but notably up-regulated in gill, intestine and skin, suggesting that ifn induction might be related to the mucosal immune system and virus anti-ifn mechanisms. These results provided the basis for further research into the role and mechanisms of sting in fishes. © 2016 The Fisheries Society of the British Isles.

  6. Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability.

    PubMed

    Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.

  7. Actinobacillus pleuropneumoniae culture supernatant antiviral effect against porcine reproductive and respiratory syndrome virus occurs prior to the viral genome replication and transcription through actin depolymerization.

    PubMed

    Hernandez Reyes, Yenney; Provost, Chantale; Traesel, Carolina Kist; Jacques, Mario; Gagnon, Carl A

    2018-02-01

    Recently, the strong antiviral activity of an Actinobacillus pleuropneumoniae (App) culture supernatant against porcine reproductive and respiratory syndrome virus (PRRSV) was discovered. Following this finding, the objective of the present study was to understand how the App culture supernatant inhibits PRRSV replication in its natural targeted host cells, i.e. porcine alveolar macrophages (PAMs). Several assays were conducted with App culture supernatant-treated PRRSV-infected cell lines, such as PAM, St-Jude porcine lung and MARC-145 cells. RT-qPCR assays were used to determine the expression levels of type I and II IFN mRNAs, viral genomic (gRNA) and sub-genomic RNAs (sgRNAs). Proteomic, Western blot and immunofluorescence assays were conducted to determine the involvement of actin filaments in the App culture supernatant antiviral effect.Results/Key findings. Type I and II IFN mRNA expressions were not upregulated by the App culture supernatant. Time courses of gRNA and sgRNA expression levels demonstrated that the App culture supernatant inhibits PRRSV infection before the first viral transcription cycle. Western blot experiments confirmed an increase in the expression of cofilin (actin cytoskeleton dynamics regulator) and immunofluorescence also demonstrated a significant decrease of actin filaments in App culture supernatant-treated PRRSV-infected PAM cells. App culture supernatant antiviral activity was also demonstrated against other PRRSV strains of genotypes I and II. App culture supernatant antiviral effect against PRRSV takes place early during PRRSV infection. Results suggest that App culture supernatant antiviral effect may take place via the activation of cofilin, which induces actin depolymerization and subsequently, probably affects PRRSV endocytosis. Other experiments are needed to fully validate this latest hypothesis.

  8. Nuclear Export and Expression of Human T-Cell Leukemia Virus Type 1 tax/rex mRNA Are RxRE/Rex Dependent

    PubMed Central

    Bai, X. T.; Sinha-Datta, U.; Ko, N. L.; Bellon, M.

    2012-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus associated with the lymphoproliferative disease adult T-cell leukemia/lymphoma (ATL) and the neurodegenerative disorder tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). Replication of HTLV-1 is under the control of two major trans-acting proteins, Tax and Rex. Previous studies suggested that Tax activates transcription from the viral long terminal repeat (LTR) through recruitment of cellular CREB and transcriptional coactivators. Other studies reported that Rex acts posttranscriptionally and allows the cytoplasmic export of unspliced or incompletely spliced viral mRNAs carrying gag/pol and env only. As opposed to HIV's Rev-responsive element (RRE), the Rex-responsive element (RxRE) is present in all viral mRNAs in HTLV-1. However, based on indirect observations, it is believed that nuclear export and expression of the doubly spliced tax/rex RNA are Rex independent. In this study, we demonstrate that Rex does stimulate Tax expression, through nuclear-cytoplasmic export of the tax/rex RNA, even though a Rex-independent basal export mechanism exists. This effect was dependent upon the RxRE element and the RNA-binding activity of Rex. In addition, Rex-mediated export of tax/rex RNA was CRM1 dependent and inhibited by leptomycin B treatment. RNA immunoprecipitation (RNA-IP) experiments confirmed Rex binding to the tax/rex RNA in both transfected cells with HTLV-1 molecular clones and HTLV-1-infected T cells. Since both Rex and p30 interact with the tax/rex RNA and with one another, this may offer a temporal and dynamic regulation of HTLV-1 replication. Our results shed light on HTLV-1 replication and reveal a more complex regulatory network than previously anticipated. PMID:22318152

  9. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella.

    PubMed

    Burden, J P; Griffiths, C M; Cory, J S; Smith, P; Sait, S M

    2002-03-01

    Knowledge of the mechanisms of pathogen persistence in relation to fluctuations in host density is crucial to our understanding of disease dynamics. In the case of insect baculoviruses, which are typically transmitted horizontally via a lifestage that can persist outside the host, a key issue that remains to be elucidated is whether the virus can also be transmitted vertically as a sublethal infection. We show that RNA transcripts for the Plodia interpunctella GV granulin gene are present in a high proportion of P. interpunctella insects that survive virus challenge. Granulin is a late-expressed gene that is only transcribed after viral genome replication, its presence thus strongly indicates that viral genome replication has occurred. Almost all insects surviving the virus challenge tested positive for viral RNA in the larval and pupal stage. However, this proportion declined in the emerging adults. Granulin mRNA was also detected in both the ovaries and testes, which may represent a putative mechanism by which reduced fecundity in sublethally affected hosts might be manifested. RNA transcripts were also detected in 60-80% of second-generation larvae that were derived from mating surviving adults, but there was no difference between the sexes, with both males and females capable of transmitting a sublethal infection to their offspring. The data indicate that low-level persistent infection, with at least limited gene expression, can occur in P. interpunctella following survival of a granulovirus challenge. We believe that this is the first demonstration of a persistent, sublethal infection by a baculovirus to be initiated by a sublethal virus dose. We hypothesize that the 'latent' baculovirus infections frequently referred to in the literature may also be low level persistent, sublethal infections resulting from survival from initial baculovirus exposure.

  10. Functional role of the N-terminal domain of ΔFosB in response to stress and drugs of abuse.

    PubMed

    Ohnishi, Y N; Ohnishi, Y H; Vialou, V; Mouzon, E; LaPlant, Q; Nishi, A; Nestler, E J

    2015-01-22

    Previous work has implicated the transcription factor, ΔFosB, acting in the nucleus accumbens, in mediating the pro-rewarding effects of drugs of abuse such as cocaine as well as in mediating resilience to chronic social stress. However, the transgenic and viral gene transfer models used to establish these ΔFosB phenotypes express, in addition to ΔFosB, an alternative translation product of ΔFosB mRNA, termed Δ2ΔFosB, which lacks the N-terminal 78 aa present in ΔFosB. To study the possible contribution of Δ2ΔFosB to these drug and stress phenotypes, we prepared a viral vector that overexpresses a point mutant form of ΔFosB mRNA which cannot undergo alternative translation as well as a vector that overexpresses Δ2ΔFosB alone. Our results show that the mutant form of ΔFosB, when overexpressed in the nucleus accumbens, reproduces the enhancement of reward and of resilience seen with our earlier models, with no effects seen for Δ2ΔFosB. Overexpression of full length FosB, the other major product of the FosB gene, also has no effect. These findings confirm the unique role of ΔFosB in the nucleus accumbens in controlling responses to drugs of abuse and stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.

    PubMed

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-06-06

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.

  12. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    PubMed Central

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  13. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    PubMed

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (P<0.01). To our knowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  14. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability.

    PubMed

    Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés

    2005-06-10

    The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.

  15. SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes

    PubMed Central

    Mix, Heiko; Lobanov, Alexey V.; Gladyshev, Vadim N.

    2007-01-01

    Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3′-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins. PMID:17169995

  16. Quantification of silkworm coactivator of MBF1 mRNA by SYBR Green I real-time RT-PCR reveals tissue- and stage-specific transcription levels.

    PubMed

    Li, Guang-li; Roy, Bhaskar; Li, Xing-hua; Yue, Wan-fu; Wu, Xiao-feng; Liu, Jian-mei; Zhang, Chuan-xi; Miao, Yun-gen

    2009-05-01

    Transcriptional coactivators play a crucial role in gene transcription and expression. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator necessary for transcriptional activation caused by DNA-binding activators, such as FTZ-F1 and GCN4. Until now, very few studies have been reported in the silkworm. We selected the Bombyx mori because it is a model insect and acts as an economic animal for silk industry. In this study, we conducted the quantitative analysis of MBF1 mRNA in silkworm B. mori L. with actin (A3) as internal standard by means of SYBR Green I real-time RT-PCR method. The total RNA was extracted from the silk gland, epidermis, fat body, and midguts of the fifth instar B. mori larvae. The mRNA was reverse transcripted, and the cDNA fragments of MBF1 mRNA and actin gene were amplified by RT-PCR using specific primers. MBF1 mRNA expression in different tissues of silkworm B. mori L. was quantified using standardized SYBR Green I RT-PCR. The results suggested MBF1 gene was expressed in all investigated organs but highly expressed in the silk gland, showing its relation to biosynthesis of silk proteins.

  17. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  18. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  19. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

    PubMed Central

    Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix

    2018-01-01

    The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155

  20. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    PubMed

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  2. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    PubMed Central

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  3. Viral-mediated overexpression of the Myelin Transcription Factor 1 (MyT1) in the dentate gyrus attenuates anxiety- and ethanol-related behaviors in rats.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2017-06-01

    Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.

  4. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism.

    PubMed

    Wang, Chao; Wang, Huan; Zhang, Yaqian; Guo, Wei; Long, Cong; Wang, Jingchao; Liu, Limei; Sun, Xiaoping

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx cavity, and is closely associated with Epstein-Barr virus (EBV) infection. In addition to NPC, EBV causes various human malignancies, such as gastric cancer, hematological tumors and lymphoepithelioma-like carcinomas. Epstein-Barr nuclear antigen 1 (EBNA1) encoded by EBV is indispensable for replication, partition, transcription and maintenance of viral genomes. Berberine, a naturally occurring isoquinoline alkaloid, shows anti-inflammatory, anticholinergic, antioxidative, and anticancer activities. In the present study, the antitumor effect of berberine was studied. Cell Counting Kit-8 (CCK-8) assays were performed to demonstrate whether the proliferation of EBV-positive NPC cells was inhibited by berberine. Flow cytometric results revealed that berberine induced cell cycle arrest and apoptosis. Quantitative-PCR and western blotting results indicated that berberine decreased the expression of EBNA1 at both the mRNA and protein levels in the EBV-positive NPC cells. The function of EBNA1 promoter Qp which is to drive EBNA1 transcription in type Ⅱ latent infection was strongly suppressed by berberine. Overexpression of EBNA1 attenuated this inhibitory effect. Berberine also suppressed the activity of signal transducer and activator of transcription 3 which is a new therapeutic target in a series of malignancies, including NPC. Viral titer experiments demonstrated that berberine decreased the production of virions in HONE1 and HK1-EBV cells. In a mouse xenograft model of NPC induced by HONE1 cells, berberine significantly inhibited tumor formation. Altogether, these results indicate that berberine decreases the expression of EBNA1 and exhibits an antitumor effect against NPC both in vitro and in vivo.

  5. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases

    PubMed Central

    Reguera, Juan; Gerlach, Piotr; Rosenthal, Maria; Gaudon, Stephanie; Coscia, Francesca; Günther, Stephan; Cusack, Stephen

    2016-01-01

    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. PMID:27304209

  6. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels

    PubMed Central

    Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Kishikawa, Takahiro; Yamagami, Mari; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko

    2018-01-01

    Hepatitis B virus (HBV) infection, which is a major health concern worldwide, can lead to liver cirrhosis and hepatocellular carcinoma. Although current nucleos(t)ide analogs efficiently inhibit viral reverse transcription and viral DNA load clinically, episomal viral covalently closed circular DNA (cccDNA) minichromosomes and transcripts from cccDNA continue to be expressed over the long term. We hypothesized that, under these conditions, viral transcripts may have biological functions involved in pathogenesis. Here, we show that the host protein DExH-box helicase 9 (DXH9) is associated with viral RNAs. We also show that viral-derived circular RNA is produced during HBV replication, and the amount is increased by knockdown of the DHX9 protein, which, in turn, results in decreased viral protein levels but does not affect the levels of HBV DNA. These phenomena were observed in the HBV-producing cell culture model and HBV mini-circle model mimicking HBV cccDNA, as well as in human primary hepatocytes infected with HBV. Based on these results, we conclude that, in HBV infection, the RNA binding factor DHX9 is a novel regulator of viral circular RNA and viral protein levels. PMID:29765512

  7. SMN blood levels in a Porcine Model of Spinal Muscular Atrophy

    PubMed Central

    Iyer, Chitra; Wang, Xueqian; Renusch, Samantha R.; Duque, Sandra I.; Wehr, Allison M.; Mo, Xiaokui-Molly; McGovern, Vicki L.; Arnold, W. David; Burghes, Arthur H.M.; Kolb, Stephen J.

    2017-01-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease that results in loss of spinal motor neurons, muscular weakness and, in severe cases, respiratory failure and death. SMA is caused by a deletion or mutation of the SMN1 gene and retention of the SMN2 gene that leads to low SMN expression levels. The measurement of SMN mRNA levels in peripheral blood samples has been used in SMA clinical studies as a pharmacodynamic biomarker for response to therapies designed to increase SMN levels. We recently developed a postnatal porcine model of SMA by the viral delivery of a short-hairpin RNA (shRNA) targeting porcine pSMN. scAAV9-mediated knockdown of pSMN mRNA at postnatal day 5 reliably resulted in denervation, weakness and motor neuron and ventral root axon loss that began 3–4 weeks after viral delivery, and this phenotype could be ameliorated by subsequent viral delivery of human SMN (hSMN). To determine if the effect of modulating SMN levels using gene therapy can be measured in blood, we measured expression of pSMN mRNA and hSMN mRNA by quantitative droplet digital PCR (ddPCR). We found that the endogenous expression of pSMN mRNA in blood increases in the first month of life. However, there were no significant differences in blood levels of pSMN mRNA after knock-down or of human SMN mRNA after gene therapy. Our results, obtained in a large animal model of SMA that is similar in size and anatomy to human infants, suggest that measurement of SMN mRNA levels in blood may not be informative in SMA clinical trials involving intrathecal delivery of SMN-modulating therapies. PMID:28269795

  8. Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells.

    PubMed

    Dron, M; Hameau, L; Benboudjema, L; Guymarho, J; Cajean-Feroldi, C; Rizza, P; Godard, C; Jasmin, C; Tovey, M G; Lang, M C

    1999-01-01

    To identify the pathways involved in HIV-1 modification of cellular gene expression, chronically infected U937 cells were screened by mRNA differential display. A chimeric transcript consisting of the 3' end of the LTR of a HIV-1 provirus, followed by 3.7 kb of cellular RNA was identified suggesting that long readthrough transcription might be one of the mechanisms by which gene expression could be modified in individual infected cells. Such a phenomenon may also be the first step towards the potential transduction of cellular sequences. Furthermore, the mRNA encoding for the transcription factor Egr-1 was detected as an over-represented transcript in infected cells. Northern blot analysis confirmed the increase of Egr-1 mRNA content in both HIV-1 infected promonocytic U937 cells and T cell lines such as Jurkat and CEM. Interestingly a similar increase of Egr-1 mRNA has previously been reported to occur in HTLV-1 and HTLV-2 infected T cell lines. Despite the consistent increase in the level of Egr-1 mRNA, the amount of the encoded protein did not appear to be modified in HIV-1 infected cells, suggesting an increased turn over of the protein in chronically infected cells.

  9. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta.

    PubMed

    David-Schwartz, Rakefet; Runo, Steven; Townsley, Brad; Machuka, Jesse; Sinha, Neelima

    2008-01-01

    It has been shown that the parasitic plant dodder (Cuscuta pentagona) establishes a continuous vascular system through which water and nutrients are drawn. Along with solutes, viruses and proteins, mRNA transcripts are transported from the host to the parasite. The path of the transcripts and their stability in the parasite have yet to be revealed. To discover the route of mRNA transportation, the in situ reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to locally amplify host transcript within parasitic tissue. The stability of host mRNA molecules was also checked by monitoring specific transcripts along the growing dodder thread. Four mRNAs, alpha and beta subunits of PYROPHOSPHATE (PPi)-DEPENDENT PHOSPHOFRUCTOKINASE (LePFP), the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and GIBBERELLIC ACID INSENSITIVE (LeGAI), were found to move from host (tomato (Solanum lycopersicum)) to dodder. LePFP mRNA was localized to the dodder parenchyma cells and to the phloem. LePFP transcripts were found in the growing dodder stem up to 30 cm from the tomato-dodder connection. These results suggest that mRNA molecules are transferred from host to parasite via symplastic connections between parenchyma cells, move towards the phloem, and are stable for a long distance in the parasite. This may allow developmental coordination between the parasite and its host.

  10. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription.

    PubMed

    Lin, J H; Levin, H L

    1997-01-15

    All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.

  11. Direct inhibition of RNAse T2 expression by the HTLV-1 viral protein Tax.

    PubMed

    Polakowski, Nicholas; Han, Hongjin; Lemasson, Isabelle

    2011-08-01

    Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development.

  12. Direct Inhibition of RNAse T2 Expression by the HTLV-1 Viral Protein Tax

    PubMed Central

    Polakowski, Nicholas; Han, Hongjin; Lemasson, Isabelle

    2011-01-01

    Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development. PMID:21994792

  13. Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression.

    PubMed

    Shao, Junjie; Liang, Yuying; Ly, Hinh

    2018-01-01

    The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-β promoter-mediated luciferase reporter assay.

  14. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. Copyright © 2017 American Society for Microbiology.

  15. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs

    PubMed Central

    Chen, Shu-Chuan; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. PMID:28768860

  16. Virtual Northern analysis of the human genome.

    PubMed

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  17. Interplay Among Constitutes of Ebola Virus: Nucleoprotein, Polymerase L, Viral Proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Minchuan; He, Peiming; Su, Jing; Singh, Dadabhai T.; Su, Hailei; Su, Haibin

    Ebola virus is a highly lethal filovirus, claimed thousands of people in its recent outbreak. Seven viral proteins constitute ebola viral structure, and four of them (nucleoprotein (NP), polymerase L, VP35 and VP30) participate majorly in viral replication and transcription. We have elucidated a conformation change of NP cleft by VP35 NP-binding protein domains through superimposing two experimental NP structure images and discussed the function of this conformation change in the replication and transcription with polymerase complex (L, VP35 and VP30). The important roles of VP30 in viral RNA synthesis have also been discussed. A “tapping” model has been proposed in this paper for a better understanding of the interplay among the four viral proteins (NP, polymerase L, VP35 and VP30). Moreover, we have pinpointed some key residue changes on NP (both NP N- and C-terminal) and L between Reston and Zaire by computational studies. Together, this paper provides a description of interactions among ebola viral proteins (NP, L, VP35, VP30 and VP40) in viral replication and transcription, and sheds light on the complex system of viral reproduction.

  18. BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells.

    PubMed

    Church, Molly E; Estrada, Marko; Leutenegger, Christian M; Dela Cruz, Florante N; Pesavento, Patricia A; Woolard, Kevin D

    2016-11-01

    Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.

  19. Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.

    PubMed

    Spangler, Jacob B; Feltus, Frank Alex

    2013-01-01

    Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.

  20. Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis

    PubMed Central

    Spangler, Jacob B.; Feltus, Frank Alex

    2013-01-01

    Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377

  1. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the AU-rich element.

    PubMed

    Qiu, Ye; Ye, Xin; Hanson, Paul J; Zhang, Huifang Mary; Zong, Jeff; Cho, Brian; Yang, Decheng

    2016-03-01

    Coxsackievirus B3 (CVB3) is the primary pathogen of viral myocarditis. Upon infection, CVB3 exploits the host cellular machineries, such as chaperone proteins, to benefit its own infection cycles. Inducible heat shock 70-kDa proteins (Hsp70s) are chaperone proteins induced by various cellular stress conditions. The internal ribosomal entry site (IRES) within Hsp70 mRNA allows Hsp70 to be translated cap-independently during CVB3 infection when global cap-dependent translation is compromised. The Hsp70 protein family contains two major members, Hsp70-1 and Hsp70-2. This study showed that Hsp70-1, but not Hsp70-2, was upregulated during CVB3 infection both in vitro and in vivo. Then a novel mechanism of Hsp70-1 induction was revealed in which CaMKIIγ is activated by CVB3 replication and leads to phosphorylation of heat shock factor 1 (HSF1) specifically at Serine 230, which enhances Hsp70-1 transcription. Meanwhile, phosphorylation of Ser230 induces translocation of HSF1 from the cytoplasm to nucleus, thus blocking the ERK1/2-mediated phosphorylation of HSF1 at Ser307, a negative regulatory process of Hsp70 transcription, further contributing to Hsp70-1 upregulation. Finally, we demonstrated that Hsp70-1 upregulation, in turn, stabilizes CVB3 genome via the AU-rich element (ARE) harbored in the 3' untranslated region of CVB3 genomic RNA.

  3. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development

    PubMed Central

    Dahiya, Satinder; Nonnemacher, Michael R.

    2012-01-01

    Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte–macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein–protein and protein–DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population. PMID:22422068

  4. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    PubMed

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.

  5. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol.

    PubMed

    Lam, L T; Pickeral, O K; Peng, A C; Rosenwald, A; Hurt, E M; Giltnane, J M; Averett, L M; Zhao, H; Davis, R E; Sathyamoorthy, M; Wahl, L M; Harris, E D; Mikovits, J A; Monks, A P; Hollingshead, M G; Sausville, E A; Staudt, L M

    2001-01-01

    Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated. Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover. The present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.

  6. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.

    PubMed

    Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M

    2001-11-01

    Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.

  7. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression.

    PubMed

    Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W

    2013-09-01

    Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  9. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    PubMed

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.

  10. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    PubMed Central

    2012-01-01

    Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors. PMID:22559081

  11. Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFN-λ Regulation in Human Nasal Epithelial Cells

    PubMed Central

    Kim, Hyun Jik; Kim, Chang-Hoon; Ryu, Ji-Hwan; Kim, Min-Ji; Park, Chong Yoon; Lee, Jae Myun; Holtzman, Michael J.

    2013-01-01

    This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:23786562

  12. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation

    PubMed Central

    Yang, Xiaodan; Hu, Zhulong; Fan, Shanshan; Zhang, Qiang; Zhong, Yi; Guo, Dong; Qin, Yali

    2018-01-01

    Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation. PMID:29415027

  13. Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNβ

    PubMed Central

    Staples, Karl J.; Nicholas, Ben; McKendry, Richard T.; Spalluto, C. Mirella; Wallington, Joshua C.; Bragg, Craig W.; Robinson, Emily C.; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M. A.

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production. PMID:25775126

  14. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    PubMed

    Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  15. Three of the Four Nucleocapsid Proteins of Marburg Virus, NP, VP35, and L, Are Sufficient To Mediate Replication and Transcription of Marburg Virus-Specific Monocistronic Minigenomes

    PubMed Central

    Mühlberger, Elke; Lötfering, Beate; Klenk, Hans-Dieter; Becker, Stephan

    1998-01-01

    This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419

  16. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  17. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors.

    PubMed

    Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M; Ahlquist, Paul; Sherer, Nathan M

    2016-04-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.

  19. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors

    PubMed Central

    Pocock, Ginger M.; Becker, Jordan T.; Swanson, Chad M.; Ahlquist, Paul; Sherer, Nathan M.

    2016-01-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent “burst-like” transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm. PMID:27070420

  20. Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0

    PubMed Central

    Melchjorsen, Jesper; Pedersen, Finn S.; Mogensen, Søren C.; Paludan, Søren R.

    2002-01-01

    Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0. PMID:11861845

  1. Extending Immunological Profiling in the Gilthead Sea Bream, Sparus aurata, by Enriched cDNA Library Analysis, Microarray Design and Initial Studies upon the Inflammatory Response to PAMPs.

    PubMed

    Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon

    2017-02-03

    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.

  2. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.

    PubMed

    Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G

    2018-01-05

    The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ribonuclease from Bacillus Acts as an Antiviral Agent against Negative- and Positive-Sense Single Stranded Human Respiratory RNA Viruses

    PubMed Central

    Müller, Christin; Romanova, Yulia; Mostafa, Ahmed; Ulyanova, Vera; Pleschka, Stephan; Ilinskaya, Olga

    2017-01-01

    Bacillus pumilus ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses and are characterized by high contagious nature, mutation rate, and antigen variability. We have shown that binase exerts an antiviral effect on both viruses at the same concentration, which does not alter the spectrum of A549 cellular proteins and expression of housekeeping genes. The titers of influenza A (H1N1pdm) virus and human rhinovirus serotype 1A were reduced by 40% and 65%, respectively. A preincubation of influenza virus with binase before infection significantly reduced viral titer after single-cycle replication of the virus. Using influenza A virus mini genome system we showed that binase reduced GFP reporter signaling indicating a binase action on the expression of viral mRNA. Binase reduced the level of H1N1pdm viral NP mRNA accumulation in A549 cells by 20%. Since the viral mRNA is a possible target for binase this agent could be potentially applied in the antiviral therapy against both negative- and positive-sense RNA viruses. PMID:28546965

  4. Reduced transcript stabilization restricts TNF-alpha expression in RAW264.7 macrophages infected with pathogenic mycobacteria: evidence for an involvement of lipomannan.

    PubMed

    Basler, Tina; Holtmann, Helmut; Abel, Jens; Eckstein, Torsten; Baumer, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2010-01-01

    Despite the critical role that TNF-alpha plays in the containment of mycobacterial infection, the mechanisms involved in regulation of its expression by mycobacteria are poorly defined. We addressed this question by studying MAP, which causes a chronic enteritis in ruminants and is linked to human Crohn's disease. We found that in MAP infected macrophages, TNF-alpha gene expression was substantially lower than in macrophages infected with nonpathogenic MS or stimulated with LPS. TNF-alpha transcriptional one could not fully explain the differential TNF-alpha mRNA expression, suggesting that there must be a substantial contribution by post-transcriptional mechanisms.Accordingly, we found reduced TNF-alpha mRNA stability in MAP-infected macrophages. Further comparison of MAP- and MS-infected macrophages revealed that lower TNF-alpha mRNA stability combined with lower mRNA and protein expression in MAP-infected macrophages correlated with lower p38 MAPK phosphorylation. These findings were independent of viability of MAP and MS. We demonstrate that the major mycobacterial cell-wall lipoglycan LM of MAP and MS induced TNF-alpha mRNA transcription,but only the MS-LM induced p38 MAPK-dependent transcript stabilization. Overall, our data suggest that pathogenic mycobacteria cause weak p38 and TNF-alpha mRNA stabilization as a result of their structural cell-wall components such as LM and thereby, restrict TNF-alpha expression in macrophages.

  5. Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

    PubMed Central

    Gilardi, Federica; Liechti, Robin; Martin, Olivier; Harshman, Keith; Delorenzi, Mauro; Desvergne, Béatrice; Herr, Winship; Deplancke, Bart; Schibler, Ueli; Rougemont, Jacques; Guex, Nicolas; Hernandez, Nouria; Naef, Felix

    2012-01-01

    Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver. PMID:23209382

  6. The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity.

    PubMed

    Rialdi, Alexander; Hultquist, Judd; Jimenez-Morales, David; Peralta, Zuleyma; Campisi, Laura; Fenouil, Romain; Moshkina, Natasha; Wang, Zhen Zhen; Laffleur, Brice; Kaake, Robyn M; McGregor, Michael J; Haas, Kelsey; Pefanis, Evangelos; Albrecht, Randy A; Pache, Lars; Chanda, Sumit; Jen, Joanna; Ochando, Jordi; Byun, Minji; Basu, Uttiya; García-Sastre, Adolfo; Krogan, Nevan; van Bakel, Harm; Marazzi, Ivan

    2017-05-04

    The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.

    2006-09-15

    Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or withmore » NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.« less

  8. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    PubMed

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  9. Virtual Northern Analysis of the Human Genome

    PubMed Central

    Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.

    2007-01-01

    Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019

  10. Regulation of bone sialoprotein mRNA by steroid hormones

    PubMed Central

    1989-01-01

    In this report we demonstrate an increase in the steady-state level of bone sialoprotein (BSP) mRNA in rat calvaria and a rat osteosarcoma cell line (ROS 17/2.8) after treatment with the synthetic glucocorticoid, dexamethasone. In contrast, 1.25-dihydroxyvitamin D3 reduced the amount of BSP mRNA in calvaria and inhibited the dexamethasone induction in ROS 17/2.8 cells. The increase in BSP mRNA is most likely due to an increase in the transcriptional rate. The stability of mRNA was unchanged after dexamethasone treatment with a half-life of approximately 5 h. Nuclear transcription experiments with nuclei isolated from ROS 17/2.8 cells showed an increased BSP mRNA synthesis in cells treated with dexamethasone. PMID:2592421

  11. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication

    PubMed Central

    Courtney, David G.

    2018-01-01

    Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication. PMID:29447282

  12. Bovine foamy virus transactivator BTas interacts with cellular RelB to enhance viral transcription.

    PubMed

    Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao

    2010-11-01

    Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription.

  13. 5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1▿ †

    PubMed Central

    Dapp, Michael J.; Clouser, Christine L.; Patterson, Steven; Mansky, Louis M.

    2009-01-01

    Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription. PMID:19726509

  14. The fail-safe mechanism of post-transcriptional silencing of unspliced HAC1 mRNA.

    PubMed

    Di Santo, Rachael; Aboulhouda, Soufiane; Weinberg, David E

    2016-10-01

    HAC1 encodes a transcription factor that is the central effector of the unfolded protein response (UPR) in budding yeast. When the UPR is inactive, HAC1 mRNA is stored as an unspliced isoform in the cytoplasm and no Hac1 protein is detectable. Intron removal is both necessary and sufficient to relieve the post-transcriptional silencing of HAC1 mRNA, yet the precise mechanism by which the intron prevents Hac1 protein accumulation has remained elusive. Here, we show that a combination of inhibited translation initiation and accelerated protein degradation-both dependent on the intron-prevents the accumulation of Hac1 protein when the UPR is inactive. Functionally, both components of this fail-safe silencing mechanism are required to prevent ectopic production of Hac1 protein and concomitant activation of the UPR. Our results provide a mechanistic understanding of HAC1 regulation and reveal a novel strategy for complete post-transcriptional silencing of a cytoplasmic mRNA.

  15. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children

    PubMed Central

    Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-Lopez, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinon-Torres, Federico; Burns, Jane C; Coin, Lachlan JM; Levin, Michael

    2018-01-01

    Importance As clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment whilst bacterial infection is missed in others. Objective To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Design Febrile children presenting to participating hospitals in UK, Spain, Netherlands and USA between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation into definite bacterial, definite viral infection or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n=24) inflammatory diseases (n=48), and on published gene expression datasets. Exposures A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Main Outcomes Definite Bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group, and the indeterminate group. Results The discovery cohort of 240 children (median age 19 months, 62% males) included 52 with definite bacterial infection of whom 36 (69%) required intensive care; and 92 with definite viral infection of whom 32 (35%) required intensive care. 96 children had indeterminate infection. Bioinformatic analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a Disease Risk Score in the validation group (130 children, including 23 bacterial, 28 viral, 79 indeterminate; median age 17 months, 57% males), bacterial infection was identified in all 23 microbiologically-confirmed definite bacterial patients, with a sensitivity of 100% (95% confidence interval [CI], 100 - 100), and in 1 of 28 definite viral patients, with specificity of 96.4% (95% CI, 89.3 – 100). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (79.2-100) and 90.0% (70.0-100) respectively, and with specificity of 96.0% (88.0-100) and 95.8% (89.6-100). A minority of children in the indeterminate group were classified as having bacterial infection (63 of 136, 46.3%), although most received antibiotic treatment (129 of 136, 94.9%). Conclusions and Relevance This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings. PMID:27552617

  16. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    PubMed

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  17. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA.

    PubMed

    Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-07-01

    Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF 2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.

    PubMed

    Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A

    2000-02-01

    Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.

  19. HIV-1 Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated receptors.

    PubMed

    Otake, Kaori; Omoto, Shinya; Yamamoto, Takuya; Okuyama, Harumi; Okada, Hidechika; Okada, Noriko; Kawai, Masahiro; Saksena, Nitin K; Fujii, Yoichi R

    2004-01-23

    Although the HIV-1 Nef protein (27 kDa) localizes primarily in cytoplasm, there is considerable evidence suggesting its occasional localization in the nucleus. Nef is known to play an important role in transcriptional events and viral replication, but the actual target of Nef in the nucleus remains to be identified. To examine the functional roles of Nef in the nucleus and its possible interactions with other unknown factors in the nucleus. High-density microarray analysis was used to screen directly the unique functions of Nef on host gene transcription. The nuclear localization of Nef and its effects on the expression of peroxisome proliferator-activated receptors (PPAR) was examined using PPAR promoter/reporter assay and immunoblotting. A long terminal repeat/reporter assay was used to investigated the effects of Nef and PPAR on viral transcription. Nef in the nucleus suppressed PPAR gamma expression and reduced fatty acid levels in human T and macrophage cell lines. Expression of Nef or PPAR suppressed viral replication; the effect of PPAR gamma or retinoid X receptor-alpha on viral replication were reduced by coexpression of Nef in MT(-)4 T cells. Nef may be involved in both viral replication and the wasting syndrome associated with AIDS.

  20. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer's disease.

    PubMed

    Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S

    2017-10-13

    The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."

  1. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5' leader sequence.

    PubMed

    Obana, Nozomu; Shirahama, Yu; Abe, Kimihiro; Nakamura, Kouji

    2010-09-01

    The small RNA (sRNA), VR-RNA that is directly regulated by the VirR/VirS two-component system, regulates many genes including toxin genes such as collagenase (colA) and phospholipase C (plc) in Clostridium perfringens. Although the VR-RNA 3' region is sufficient to regulate the colA and plc genes, the molecular mechanism of toxin gene regulation by VR-RNA remains unclear. Here, we found that colA mRNA is cleaved at position -79 and -78 from the A of the first codon (ATG) in the presence of VR-RNA. The processed transcripts were stable compared with longer intact transcripts. On the other hand, colA mRNA was labile in a VR-RNA-deficient strain, and processed transcripts were undetectable. The stability and processing of colA mRNA were restored by transformation of the 3' region of VR-RNA-expression vector. The 3' region of VR-RNA and colA mRNA had significant complementation and interacted in vitro. These results show that VR-RNA base pairs with colA mRNA and induces cleavage in the 5' untranslated region (UTR) of colA mRNA, which leads to the stabilization of colA mRNA and the activation of colA expression. © 2010 Blackwell Publishing Ltd.

  2. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  3. Single-cell analysis of transcription kinetics across the cell cycle

    PubMed Central

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  4. Inventory of high-abundance mRNAs in skeletal muscle of normal men.

    PubMed

    Welle, S; Bhatt, K; Thornton, C A

    1999-05-01

    G42875rial analysis of gene expression (SAGE) method was used to generate a catalog of 53,875 short (14 base) expressed sequence tags from polyadenylated RNA obtained from vastus lateralis muscle of healthy young men. Over 12,000 unique tags were detected. The frequency of occurrence of each tag reflects the relative abundance of the corresponding mRNA. The mRNA species that were detected 10 or more times, each comprising >/=0.02% of the mRNA population, accounted for 64% of the mRNA mass but <10% of the total number of mRNA species detected. Almost all of the abundant tags matched mRNA or EST sequences cataloged in GenBank. Mitochondrial transcripts accounted for approximately 20% of the polyadenylated RNA. Transcripts encoding proteins of the myofibrils were the most abundant nuclear-encoded mRNAs. Transcripts encoding ribosomal proteins, and those encoding proteins involved in energy metabolism, also were very abundant. The database can be used as a reference for investigations of alterations in gene expression associated with conditions that influence muscle function, such as muscular dystrophies, aging, and exercise.

  5. Quality control of mRNP biogenesis: networking at the transcription site.

    PubMed

    Eberle, Andrea B; Visa, Neus

    2014-08-01

    Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Expression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    PubMed Central

    Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan

    2015-01-01

    Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847

  7. Kinetics of HIV-1 Latency Reversal Quantified on the Single-Cell Level Using a Novel Flow-Based Technique.

    PubMed

    Martrus, G; Niehrs, A; Cornelis, R; Rechtien, A; García-Beltran, W; Lütgehetmann, M; Hoffmann, C; Altfeld, M

    2016-10-15

    HIV-1 establishes a pool of latently infected cells early following infection. New therapeutic approaches aiming at diminishing this persisting reservoir by reactivation of latently infected cells are currently being developed and tested. However, the reactivation kinetics of viral mRNA and viral protein production, and their respective consequences for phenotypical changes in infected cells that might enable immune recognition, remain poorly understood. We adapted a novel approach to assess the dynamics of HIV-1 mRNA and protein expression in latently and newly infected cells on the single-cell level by flow cytometry. This technique allowed the simultaneous detection of gagpol mRNA, intracellular p24 Gag protein, and cell surface markers. Following stimulation of latently HIV-1-infected J89 cells with human tumor necrosis factor alpha (hTNF-α)/romidepsin (RMD) or HIV-1 infection of primary CD4(+) T cells, four cell populations were detected according to their expression levels of viral mRNA and protein. gagpol mRNA in J89 cells was quantifiable for the first time 3 h after stimulation with hTNF-α and 12 h after stimulation with RMD, while p24 Gag protein was detected for the first time after 18 h poststimulation. HIV-1-infected primary CD4(+) T cells downregulated CD4, BST-2, and HLA class I expression at early stages of infection, proceeding Gag protein detection. In conclusion, here we describe a novel approach allowing quantification of the kinetics of HIV-1 mRNA and protein synthesis on the single-cell level and phenotypic characterization of HIV-1-infected cells at different stages of the viral life cycle. Early after infection, HIV-1 establishes a pool of latently infected cells, which hide from the immune system. Latency reversal and immune-mediated elimination of these latently infected cells are some of the goals of current HIV-1 cure approaches; however, little is known about the HIV-1 reactivation kinetics following stimulation with latency-reversing agents. Here we describe a novel approach allowing for the first time quantification of the kinetics of HIV-1 mRNA and protein synthesis after latency reactivation or de novo infection on the single-cell level using flow cytometry. This new technique furthermore enabled the phenotypic characterization of latently infected and de novo-infected cells dependent on the presence of viral RNA or protein. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Transcriptional regulation of ceruloplasmin gene expression during inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitlin, J.D.

    1988-05-05

    Mixed sequence oligonucleotides were used to isolate a series of acute-phase human liver cDNA clones corresponding to the serum ..cap alpha../sub 2/-globulin ceruloplasmin. These clones were characterized, sequenced, and used to analyze changes in hepatic ceruloplasmin mRNA content during inflammation. In all species examined, hepatic ceruloplasmin mRNA content increased approximately 6-10-fold over control values within 24 h following the induction of inflammation. The mechanisms leading to this increase in hepatic ceruloplasmin mRNA content were studied following turpentine-induced inflammation in Syrian hamsters. Nuclear run-on assays demonstrated an increase in the relative rate of transcription of the ceruloplasmin gene within 3 hmore » following induction, reaching maximum values by 18 h. Hepatic ceruloplasmin mRNA content increased 2-fold within 12 h following induction, reached maximum values by 24 h, and returned to control within 72 h. In contrast, serum ceruloplasmin concentration did not increase until 36 h, reached maximal levels by 120 h, and remained elevated for the course of the study. These data indicate that inflammation leads to a rapid increase in hepatic ceruloplasmin mRNA content. This increase is largely the result of increased ceruloplasmin gene transcription, but comparison of the relative rate of transcription and mRNA accumulation suggests that changes in ceruloplasmin mRNA turnover are also involved. In addition, translational and/or post-translational mechanisms must account for the observed changes in serum ceruloplasmin concentration seen during inflammation.« less

  9. Post-transcriptional Regulation of Tyrosine Hydroxylase Expression in Adrenal Medulla and Brain

    PubMed Central

    Tank, A. William; Xu, Lu; Chen, Xiqun; Radcliffe, Pheona; Sterling, Carol R.

    2009-01-01

    It is well-established that long-term stress leads to induction of tyrosine hydroxylase (TH) mRNA and TH protein in adrenal medulla and brain. This induction is usually associated with stimulation of TH gene transcription rate. However, a number of studies have reported major discrepancies between the stress-induced changes in TH gene transcription, TH mRNA and TH protein. These discrepancies suggest that post-transcriptional mechanisms also play an important role in regulating TH expression in response to stress and other stimuli. In this report we summarize some of our findings and literature reports that demonstrate these discrepancies in adrenal medulla, locus coeruleus and midbrain dopamine neurons. We then describe our recent work investigating the molecular mechanisms that mediate this post-transcriptional regulation in adrenal medulla and midbrain. Our results suggest that trans-acting factors binding to the polypyrimidine-rich region of the 3′UTR of TH mRNA play a role in these post-transcriptional mechanisms. A hypothetical cellular model describing this post-transcriptional regulation is proposed. PMID:19120116

  10. Transcriptional activity across the Epstein-Barr virus genome in Raji cells during latency and after induction of an abortive lytic cycle.

    PubMed

    Kirchner, E A; Bornkamm, G W; Polack, A

    1991-10-01

    We have studied the relative rate of transcription across the Epstein-Barr virus genome in the Burkitt's lymphoma cell line Raji by nuclear run-on analysis during latency and after induction of an abortive lytic cycle with 12-0-tetradecanoylphorbol 13-acetate (TPA) and 5-iodo-2'-deoxyuridine (IUdR). During latency the entire, or almost the entire, viral genome was found to be transcriptionally active to a low or intermediate extent, with some variation in activity along the genome. The fragment with the highest transcriptional activity was EcoRI J, which contains the genes encoding the small nuclear RNAs EBER1 and -2, transcribed predominantly by RNA polymerase III. An intermediate level of transcription was observed between positions 10 and 138 (kb), with areas of slightly higher activity on the large internal repeats and the left duplicated region (DL). The remaining part of the viral genome, between position 138 and the termini, and the termini and position 10 (kb) (with the exception of the EcoRI J fragment), showed very little transcriptional activity, except for the intermediately active regions carrying the righthand oriLyt (DR) and the terminal repeats. Upon induction of the viral genome with TPA and IUdR, the viral genome was transcriptionally active at a rate at least tenfold that seen during latency. Polymerases were not equally distributed along the genome after induction; the highest density was found in regions 48 to 58 kb, 82 to 84 kb, 102 to 104 kb, 118 to 122 kb and 142 to 145 kb of the viral genome. High transcriptional activity correlated with distinct transcription units in some cases, i.e. BamHI H1LF1 (DL), BamHI MLF1, BamHI ZLF1/BamHI RLF1 and BamHI X (thymidine kinase), but not in others (BamHI H2). Besides initiation of transcription, other regulatory processes such as stabilization and processing of primary transcripts may also contribute to regulation of virus gene expression. Addition of cycloheximide completely abolished the transcriptional activation of the genome mediated by TPA and IUdR.

  11. Gibberellic Acid Regulates Chalcone Synthase Gene Transcription in the Corolla of Petunia hybrida 1

    PubMed Central

    Weiss, David; van Blokland, Rik; Kooter, Jan M.; Mol, Joseph N. M.; van Tunen, Arjen J.

    1992-01-01

    The pigmentation of Petunia hybrida corollas is regulated by gibberellic acid (GA3). It controls the increase of flavonoid enzyme levels and their corresponding mRNAs. We have used an in vitro culture system for corollas to study the regulatory role of GA3 in the expression of flavonoid genes. By determining steady-state mRNA levels, we show that the accumulation of chalcone synthase (chs) mRNA in young corollas is dependent on the presence of both sucrose and GA3 in the culture medium. Whereas sucrose had a general metabolic effect on gene expression, the stimulatory role of GA3 was specific. Analysis of nascent transcripts in isolated corolla nuclei showed that changes in steady-state chs mRNA levels correlated very well with changes in the transcription rate. We therefore conclude that GA3 controls the expression of chs at the transcriptional level. Preculturing the corollas in sucrose medium without GA3 resulted in a lower chs mRNA level. The expression could be reinduced by the addition of GA3. The hormone is thus required for the induction but also for the maintenance of chs transcription. The delayed reinduction of chs expression, the lag time in the kinetics of chs mRNA accumulation, and the inhibitory effect of cycloheximide on the action of GA3 suggest that GA3 controls chs transcription in an indirect manner. Our data support a model in which GA3 induces the production of a regulatory protein such as a receptor or a trans-acting factor that is directly involved in chs transcription. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:16668613

  12. A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4+ T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients.

    PubMed

    Grau-Expósito, Judith; Serra-Peinado, Carla; Miguel, Lucia; Navarro, Jordi; Curran, Adrià; Burgos, Joaquin; Ocaña, Imma; Ribera, Esteban; Torrella, Ariadna; Planas, Bibiana; Badía, Rosa; Castellví, Josep; Falcó, Vicenç; Crespo, Manuel; Buzon, Maria J

    2017-07-11

    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. IMPORTANCE Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence. Copyright © 2017 Grau-Expósito et al.

  13. Technical variations in low-input RNA-seq methodologies.

    PubMed

    Bhargava, Vipul; Head, Steven R; Ordoukhanian, Phillip; Mercola, Mark; Subramaniam, Shankar

    2014-01-14

    Recent advances in RNA-seq methodologies from limiting amounts of mRNA have facilitated the characterization of rare cell-types in various biological systems. So far, however, technical variations in these methods have not been adequately characterized, vis-à-vis sensitivity, starting with reduced levels of mRNA. Here, we generated sequencing libraries from limiting amounts of mRNA using three amplification-based methods, viz. Smart-seq, DP-seq and CEL-seq, and demonstrated significant technical variations in these libraries. Reduction in mRNA levels led to inefficient amplification of the majority of low to moderately expressed transcripts. Furthermore, noise in primer hybridization and/or enzyme incorporation was magnified during the amplification step resulting in significant distortions in fold changes of the transcripts. Consequently, the majority of the differentially expressed transcripts identified were either high-expressed and/or exhibited high fold changes. High technical variations ultimately masked subtle biological differences mandating the development of improved amplification-based strategies for quantitative transcriptomics from limiting amounts of mRNA.

  14. Selective Regulation of Human Immunodeficiency Virus-Infected CD4+ Lymphocytes by a Synthetic Immunomodulator Leads to Potent Virus Suppression In Vitro and in hu-PBL-SCID Mice

    PubMed Central

    Bahr, George M.; Darcissac, Edith C. A.; Castéran, Nathalie; Amiel, Corinne; Cocude, Cécile; Truong, Marie-José; Dewulf, Joëlle; Capron, André; Mouton, Yves

    2001-01-01

    We have previously observed that the synthetic immunomodulator Murabutide inhibits human immunodeficiency virus type 1 (HIV-1) replication at multiple levels in macrophages and dendritic cells. The present study was designed to profile the activity of Murabutide on CD8-depleted phytohemagglutinin-activated lymphocytes from HIV-1-infected subjects and on the outcome of HIV-1 infection in severe combined immunodeficiency mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice). Maintaining cultures of CD8-depleted blasts from 36 patients in the presence of Murabutide produced dramatically reduced levels of viral p24 protein in the supernatants. This activity correlated with reduced viral transcripts and proviral DNA, was evident in cultures harboring R5, X4-R5, or X4 HIV-1 isolates, was not linked to inhibition of cellular DNA synthesis, and did not correlate with β-chemokine release. Moreover, c-myc mRNA expression was down-regulated in Murabutide-treated cells, suggesting potential interference of the immunomodulator with the nuclear transport of viral preintegration complexes. On the other hand, daily treatment of HIV-1-infected hu-PBL-SCID mice with Murabutide significantly reduced the viral loads in plasma and the proviral DNA content in human peritoneal cells. These results are the first to demonstrate that a clinically acceptable synthetic immunomodulator with an ability to enhance the host's nonspecific immune defense mechanisms against infections can directly regulate cellular factors in infected lymphocytes, leading to controlled HIV-1 replication. PMID:11435574

  15. Expression of microRNA-155 correlates positively with the expression of Toll-like receptor 7 and modulates hepatitis B virus via C/EBP-β in hepatocytes.

    PubMed

    Sarkar, N; Panigrahi, R; Pal, A; Biswas, A; Singh, S P; Kar, S K; Bandopadhyay, M; Das, D; Saha, D; Kanda, T; Sugiyama, M; Chakrabarti, S; Banerjee, A; Chakravarty, R

    2015-10-01

    Effective recognition of viral infection and successive activation of antiviral innate immune responses are vital for host antiviral defence, which largely depends on multiple regulators, including Toll-like receptors (TLRs) and microRNAs. Several early reports suggest that specific TLR-mediated immune responses can control hepatitis B virus (HBV) replication and express differentially with disease outcome. Considering the versatile function of miR-155 in the TLR-mediated innate immune response, we aimed to study the association between miR-155 and TLRs and their subsequent impact on HBV replication using both a HBV-replicating stable cell line (HepG2.2.15) and HBV-infected liver biopsy and serum samples. Our results showed that miR-155 was suppressed during HBV infection and a subsequent positive correlation of miR-155 with TLR7 activation was noted. Further, ectopic expression of miR-155 in vitro reduced HBV load as evidenced from reduced viral DNA, mRNA and subsequently reduced level of secreted viral antigens (HBsAg and HBeAg). Our results further suggested that CCAAT/enhancer-binding protein-β (C/EBP-β), a positive regulator of HBV transcription, was inhibited by miR-155. Taken together, our study established a correlation between miR-155 and TLR7 during HBV infection and also demonstrated in vitro that increased miR-155 level could help to reduce HBV viral load by targeting C/EBP-β. © 2015 John Wiley & Sons Ltd.

  16. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription.

    PubMed

    Walker, A K; Rothman, J H; Shi, Y; Blackwell, T K

    2001-09-17

    TAF(II)s are conserved components of the TFIID, TFTC and SAGA-related mRNA transcription complexes. In yeast (y), yTAF(II)17 is required broadly for transcription, but various other TAF(II)s appear to have more specialized functions. It is important to determine how TAF(II)s contribute to transcription in metazoans, which have larger and more diverse genomes. We have examined TAF(II) functions in early Caenorhabditis elegans embryos, which can survive without transcription for several cell generations. We show that taf-10 (yTAF(II)17) and taf-11 (yTAF(II)25) are required for a significant fraction of transcription, but apparently are not needed for expression of multiple developmental and other metazoan-specific genes. In contrast, taf-5 (yTAF(II)48; human TAF(II)130) seems to be required for essentially all early embryonic mRNA transcription. We conclude that TAF-10 and TAF-11 have modular functions in metazoans, and can be bypassed at many metazoan-specific genes. The broad involvement of TAF-5 in mRNA transcription in vivo suggests a requirement for either TFIID or a TFTC-like complex.

  17. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription

    PubMed Central

    Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth

    2017-01-01

    ABSTRACT Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. PMID:28978704

  18. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription.

    PubMed

    Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis

    2017-12-15

    Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.

  19. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle

    PubMed Central

    Khurana, Simran; Warburton, Alix

    2017-01-01

    We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection. PMID:28968443

  20. NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise

    PubMed Central

    Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn

    2018-01-01

    SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759

  1. Gene end-like sequences within the 3' non-coding region of the Nipah virus genome attenuate viral gene transcription.

    PubMed

    Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2017-08-01

    The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  3. Nuclear speckles: molecular organization, biological function and role in disease

    PubMed Central

    Galganski, Lukasz; Urbanek, Martyna O.

    2017-01-01

    Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640

  4. Expression of TNF-α, OPG, IL-1β and the presence of the measles virus RNA in the stapes of the patients with otosclerosis.

    PubMed

    Potocka-Bakłażec, Małgorzata; Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Pawełczyk, Tadeusz; Stankiewicz, Czesław; Sierszeń, Wojciech; Jankowski, Zbigniew; Buczny, Jacek

    2015-08-01

    Persistent measles virus infections play a crucial role in the pathomechanism of otosclerosis. The study was undertaken to investigate the role of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and osteoprotegerin (OPG) in otosclerotic bone remodeling and to assess the relation of TNF-α, OPG and IL-1β expression levels in otosclerotic stape footplates to the occurrence of measles virus infection. 61 patients with otosclerosis were treated surgically. Thirty-one stapes obtained from cadavers of people, who had died from a sudden cause were used as a control group. The presence of measles virus RNA and the expression levels of TNF-α, IL-1β and OPG in otosclerotic foci were assessed using one-step RT-PCR. The presence of measles virus RNA was noted in 80.3 % of otosclerotic stapes (49 out of 61) and 9.7 % of normal tissues (3 out of 31). Transcript of TNF-α, IL-1β and OPG was detected in 40, 46 and 18 virus-positive stapes, respectively. The transcript level of TNF-α and IL-1β was significantly higher in otosclerotic tissues comparing to normal tissue. The OPG expression level was significantly lower in otosclerotic tissues comparing to controls. The presence of measles virus RNA in the stapes may indicate its role in the pathogenesis of otosclerosis. The presence of TNF-α and IL-1β mRNA in the virus-positive stapes could be the result of viral antigen stimulation and may be a marker of inflammation the otosclerotic focus. The lack of OPG mRNA and the presence of TNF-α and IL-1β mRNA in the majority of otosclerotic tissues reflect the bone remodeling process occurring in the stapes.

  5. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors.

    PubMed

    Lee, Cleo Y F; Bu, Luke X X; DeBenedetti, Arrigo; Williams, B Jill; Rennie, Paul S; Jia, William W G

    2010-05-01

    The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.

  6. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer.

    PubMed

    Rennie, P S; Mawji, N R; Coldman, A J; Godolphin, W; Jones, E C; Vielkind, J R; Bruchovsky, N

    1993-12-15

    Although smaller variant forms of estrogen receptor (ER) messenger RNA (mRNA) have been detected in breast tumors, neither their prevalence nor their prognostic significance have been evaluated. Similarly, TRPM-2 mRNA, the product of a gene induced principally during the onset of apoptosis, is present in mouse and human breast cancer cell lines, but whether it also occurs in primary breast tumors and is related to disease outcome is unknown. The relative expression and transcript size of ER mRNA and TRPM-2 mRNA in 126 primary breast tumors were measured by Northern analysis and compared with tumor grade, hormone receptor status, extent of tumor necrosis, and survival. In ER-positive tumors, 64% of the tumors had only the normal 6.5 kb ER mRNA, an additional 9% had the normal plus smaller ER mRNA, and 2% had variant forms. Only 8% of ER-negative tumors had ER mRNA transcripts. There were significant relationships between the occurrence of ER mRNA and low tumor grade, ER-positive receptor status, and better survival. In contrast, TRPM-2 mRNA was found in only 17% of breast tumors, none of which could be grouped with respect to grade, hormone receptor status, or survival. The presence of smaller variant forms of ER mRNA either alone or in association with the normal ER transcript is not indicative of an unfavorable prognosis, whereas TRPM-2 mRNA occurs in many primary breast tumors, but has no apparent relationship to survival.

  7. Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection.

    PubMed

    El-Mayet, Fouad S; Sawant, Laximan; Thunuguntla, Prasanth; Jones, Clinton

    2017-11-01

    Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli. Copyright © 2017 American Society for Microbiology.

  8. Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection

    PubMed Central

    El-mayet, Fouad S.; Sawant, Laximan; Thunuguntla, Prasanth

    2017-01-01

    ABSTRACT Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli. PMID:28794031

  9. Therapeutic gene editing: delivery and regulatory perspectives.

    PubMed

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-06-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.

  10. MicroRNA delivery for regenerative medicine.

    PubMed

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Alternative options for DNA-based experimental therapy of β-thalassemia.

    PubMed

    Gambari, Roberto

    2012-04-01

    Beta-thalassemias are caused by more than 200 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been made with innovative therapeutic strategies for β-thalassemias, based on research conducted at the levels of gene structure, transcription, mRNA processing and protein synthesis. The objective of this review is to describe the development of therapeutic strategies employing viral and non-viral DNA-based approaches for treatment of β-thalassemia. Modification of β-globin gene expression in β-thalassemia cells has been achieved by gene therapy, correction of the mutated β-globin gene and RNA repair. In addition, cellular therapy has been proposed for β-thalassemia, including reprogramming of somatic cells to generate induced pluripotent stem cells to be genetically corrected. Based on the concept that increased production of fetal hemoglobin (HbF) is beneficial in β-thalassemia, DNA-based approaches to increase HbF production have been optimized, including treatment of target cells with lentiviral vectors carrying γ-globin genes. Finally, DNA-based targeting of α-globin gene expression has been applied to reduce the excess of α-globin production by β-thalassemia cells, one of the major causes of the clinical phenotype.

  12. Therapeutic gene editing: delivery and regulatory perspectives

    PubMed Central

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-01-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues. PMID:28392568

  13. Profilin Is Required for Optimal Actin-Dependent Transcription of Respiratory Syncytial Virus Genome RNA

    PubMed Central

    Burke, Emily; Mahoney, Nicole M.; Almo, Steven C.; Barik, Sailen

    2000-01-01

    Transcription of human respiratory syncytial virus (RSV) genome RNA exhibited an obligatory need for the host cytoskeletal protein actin. Optimal transcription, however, required the participation of another cellular protein that was characterized as profilin by a number of criteria. The amino acid sequence of the protein, purified on the basis of its transcription-optimizing activity in vitro, exactly matched that of profilin. RSV transcription was inhibited 60 to 80% by antiprofilin antibody or poly-l-proline, molecules that specifically bind profilin. Native profilin, purified from extracts of lung epithelial cells by affinity binding to a poly-l-proline matrix, stimulated the actin-saturated RSV transcription by 2.5- to 3-fold. Recombinant profilin, expressed in bacteria, stimulated viral transcription as effectively as the native protein and was also inhibited by poly-l-proline. Profilin alone, in the absence of actin, did not activate viral transcription. It is estimated that at optimal levels of transcription, every molecule of viral genomic RNA associates with approximately the following number of protein molecules: 30 molecules of L, 120 molecules of phosphoprotein P, and 60 molecules each of actin and profilin. Together, these results demonstrated for the first time a cardinal role for profilin, an actin-modulatory protein, in the transcription of a paramyxovirus RNA genome. PMID:10623728

  14. Bovine Foamy Virus Transactivator BTas Interacts with Cellular RelB To Enhance Viral Transcription▿

    PubMed Central

    Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao

    2010-01-01

    Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription. PMID:20844054

  15. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies.

    PubMed

    Patil, Basavaprabhu L; Fauquet, Claude M

    2015-06-01

    RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 μE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 μE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 μE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. RNA N6-adenosine methylation (m6A) steers epitranscriptomic control of herpesvirus replication

    PubMed Central

    Ye, Fengchun

    2017-01-01

    Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we recently demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N6-adenosine methylation (m6A). Blockade of this post-transcriptional event abolishes viral protein expression and halts virion production. We found that m6A modification controls RNA splicing, stability, and protein translation to regulate viral lytic gene expression and replication. Thus, our finding for the first time reveals a critical role of this epitranscriptomic mechanism in the control of herpesviral replication, which shall shed lights on development of novel strategies for the control of herpesviral infection. PMID:29082271

  17. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook.

    PubMed

    Yao, Jie

    2017-01-06

    Regulation of eukaryotic transcription in vivo occurs at distinct stages. Previous research has identified many active or repressive transcription factors (TFs) and core transcription components and studied their functions in vitro and in vivo. Nonetheless, how individual TFs act in concert to regulate mRNA gene expression in a single cell remains poorly understood. Direct observation of TF assembly and disassembly and various biochemical reactions during transcription of a single-copy gene in vivo is the ideal approach to study this problem. Research in this area requires developing novel techniques for single-cell transcription imaging and integrating imaging studies into understanding the molecular biology of transcription. In the past decade, advanced cell imaging has enabled unprecedented capabilities to visualize individual TF molecules, to track single transcription sites, and to detect individual mRNA in fixed and living cells. These studies have raised several novel insights on transcriptional regulation such as the "hit-and-run" model and transcription bursting that could not be obtained by in vitro biochemistry analysis. At this point, the key question is how to achieve deeper understandings or discover novel mechanisms of eukaryotic transcriptional regulation by imaging transcription in single cells. Meanwhile, further technical advancements are likely required for visualizing distinct kinetic steps of transcription on a single-copy gene in vivo. This review article summarizes recent progress in the field and describes the challenges and opportunities ahead. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. VARIATION IN THE ABUNDANCE OF SYNECHOCOCCUS SP. CC9311 NARB MRNA RELATIVE TO CHANGES IN LIGHT, NITROGEN GROWTH CONDITIONS AND NITRATE ASSIMILATION(1).

    PubMed

    Paerl, Ryan W; Tozzi, Sasha; Kolber, Zbigniew S; Zehr, Jonathan P

    2012-08-01

    Synechococcus- and Prochlorococcus-specific narB genes that encode for an assimilatory nitrate reductase are found in coastal to open-ocean waters. However, it remains uncertain if these picocyanobacteria assimilate nitrate in situ. This unknown can potentially be addressed by examining narB mRNA from the environment, but this requires a better understanding of the influence of environmental factors on narB gene transcription. In laboratory experiments with Synechococcus sp. CC9311 cultures exposed to diel light fluctuations and grown on nitrate or ammonium, there was periodic change in narB transcript abundance. This periodicity was broken in cultures subjected to a doubling of irradiance (40-80 μmol photons · m(-2)  · s(-1) ) during the mid-light period. Therefore, the irradiance level, not circadian rhythm, was the dominant factor controlling narB transcription. In nitrate-grown cultures, diel change in narB transcript abundance and nitrate assimilation rate did not correlate; suggesting narB mRNA levels better indicate nitrate assimilation activity than assimilation rate. Growth history also affected narB transcription, as changes in narB mRNA levels in nitrogen-deprived CC9311 cultures following nitrate amendment were distinct from cultures grown solely on nitrate. Environmental sampling for narB transcripts should consider time, irradiance, and the growth status of cells to ecologically interpret narB transcript abundances. © 2012 Phycological Society of America.

  19. Digital quantification of gene expression using emulsion PCR.

    PubMed

    Shi, Xiaolong; Tang, Chao; Wang, Wei; Zhou, Dequan; Lu, Zuhong

    2010-01-01

    Here we describe a single-molecule quantitative assay of mRNA levels based on mRNA mediate-ligation and BEAMing (beads, emulsion, amplification, and magnetics) technique, which allows accurate and parallel measurement of multiple genes from a small amount of cells. In this method, a pair of oligos complementary target mRNA was used to probe transcripts for each gene of interest. The ligated products of oligos pair were clonally amplified on beads in millions of parallel compartmentalized droplets in a water-in-oil emulsion. The levels of each transcript within a sample were measured by counting the number of the correspondingly amplified beads which were immobilized on a glass surface. To demonstrate its utility, this method has been applied to the quantitation of the mRNA levels for two transcription factors, Klf4 and Sox5, and a housekeeping gene, Gapdh, in human leukemia K562 cells before and after induction with phorbol 12-myristate 13-acetate. Interestingly, we found a significant downregulation of the mRNA level of Sox5 after phorbol 12-myristate 13-acetate treatment. The mRNA mediate-ligation and BEAMing technique provides an accurate and sensitive way to quantify the amount of multiple specific mRNA in a very small number of cells, which may be valuable in the studies requiring precise and parallel quantization of multiple mRNA in the defined cell populations.

  20. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone

    PubMed Central

    Radcliffe, Pheona M.; Sterling, Carol R.; Tank, A. William

    2009-01-01

    Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 hr, but less than 3 hr, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene. PMID:19476543

  1. Induction of the SHARP-2 mRNA level by insulin is mediated by multiple signaling pathways.

    PubMed

    Kanai, Yukiko; Asano, Kosuke; Komatsu, Yoshiko; Takagi, Katsuhiro; Ono, Moe; Tanaka, Takashi; Tomita, Koji; Haneishi, Ayumi; Tsukada, Akiko; Yamada, Kazuya

    2017-02-01

    The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor which represses transcription of the rat phosphoenolpyruvate carboxykinase gene. In this study, a regulatory mechanism of the SHARP-2 mRNA level by insulin was analyzed. Insulin rapidly induced the level of SHARP-2 mRNA. This induction was blocked by inhibitors for phosphoinositide 3-kinase (PI 3-K), protein kinase C (PKC), and mammalian target of rapamycin (mTOR), actinomycin D, and cycloheximide. Whereas an adenovirus infection expressing a dominant negative form of atypical PKC lambda (aPKCλ) blocked the insulin-induction of the SHARP-2 mRNA level, insulin rapidly activated the mTOR. Insulin did not enhance transcriptional activity from a 3.7 kb upstream region of the rat SHARP-2 gene. Thus, we conclude that insulin induces the expression of the rat SHARP-2 gene at the transcription level via both a PI 3-K/aPKCλ- and a PI 3-K/mTOR- pathways and that protein synthesis is required for this induction.

  2. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanz

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversionmore » of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.« less

  3. Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels.

    PubMed

    Yoshigai, Emi; Hara, Takafumi; Araki, Yoshiro; Tanaka, Yoshito; Oishi, Masaharu; Tokuhara, Katsuji; Kaibori, Masaki; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio

    2013-04-01

    Natural antisense transcripts (asRNAs) are frequently transcribed from mammalian genes. Recently, we found that non-coding asRNAs are transcribed from the 3' untranslated region (3'UTR) of the rat and mouse genes encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the inflammatory mediator nitric oxide. The iNOS asRNA stabilizes iNOS mRNA by interacting with the mRNA 3'UTR. Furthermore, single-stranded 'sense' oligonucleotides corresponding to the iNOS mRNA sequence were found to reduce iNOS mRNA levels by interfering with mRNA-asRNA interactions in rat hepatocytes. This method was named natural antisense transcript-targeted regulation (NATRE) technology. In this study, we detected human iNOS asRNA expressed in hepatocarcinoma and colon carcinoma tissues. The human iNOS asRNA harbored a sequence complementary to an evolutionarily conserved region of the iNOS mRNA 3'UTR. When introduced into hepatocytes, iNOS sense oligonucleotides that were modified by substitution with partial phosphorothioate bonds and locked nucleic acids or 2'-O-methyl nucleic acids greatly reduced levels of iNOS mRNA and iNOS protein. Moreover, sense oligonucleotides and short interfering RNAs decreased iNOS mRNA to comparable levels. These results suggest that NATRE technology using iNOS sense oligonucleotides could potentially be used to treat human inflammatory diseases and cancers by reducing iNOS mRNA levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes

    PubMed Central

    Kimura, Richard H.; Choudary, Prabhakara V.; Stone, Koni K.; Schmid, Carl W.

    2001-01-01

    This study surveys the induction of RNA polymerase III (Pol III)–directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III–directed transcription. PMID:11599568

  5. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    PubMed

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Expression of myosin heavy chain isoforms mRNA transcripts in the temporalis muscle of common chimpanzees (Pan troglodytes).

    PubMed

    Ciurana, Neus; Artells, Rosa; Muñoz, Carmen; Arias-Martorell, Júlia; Bello-Hellegouarch, Gaëlle; Casado, Aroa; Cuesta, Elisabeth; Pérez-Pérez, Alejandro; Pastor, Juan Francisco; Potau, Josep Maria

    2017-11-01

    The common chimpanzee (Pan troglodytes) is the primate that is phylogenetically most closely related to humans (Homo sapiens). In order to shed light on the anatomy and function of the temporalis muscle in the chimpanzee, we have analyzed the expression patterns of the mRNA transcripts of the myosin heavy chain (MyHC) isoforms in different parts of the muscle. We dissected the superficial, deep and sphenomandibularis portions of the temporalis muscle in five adult P. troglodytes and quantified the expression of the mRNA transcripts of the MyHC isoforms in each portion using real-time quantitative polymerase chain reaction. We observed significant differences in the patterns of expression of the mRNA transcripts of the MyHC-IIM isoform between the sphenomandibularis portion and the anterior superficial temporalis (33.6% vs 47.0%; P=0.032) and between the sphenomandibularis portion and the anterior deep temporalis (33.6% vs 43.0; P=0.016). We also observed non-significant differences between the patterns of expression in the anterior and posterior superficial temporalis. The differential expression patterns of the mRNA transcripts of the MyHC isoforms in the temporalis muscle in P. troglodytes may be related to the functional differences that have been observed in electromyographic studies in other species of primates. Our findings can be applicable to the fields of comparative anatomy, evolutionary anatomy, and anthropology. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Molecular genetic mechanisms of allelic specific regulation of murine Comt expression

    PubMed Central

    Segall, Samantha K.; Shabalina, Svetlana A.; Meloto, Carolina B.; Wen, Xia; Cunningham, Danielle; Tarantino, Lisa M.; Wiltshire, Tim; Gauthier, Josée; Tohyama, Sarasa; Martin, Loren J.; Mogil, Jeffrey S.; Diatchenko, Luda

    2015-01-01

    Abstract A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3′-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), ComtB2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3′ to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3′-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels. PMID:26067582

  9. Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins.

    PubMed

    Dunn, E F; Pritlove, D C; Jin, H; Elliott, R M

    1995-08-01

    We describe a convenient system for analyzing bunyavirus transcription using a recombinant RNA template derived from the plasmid pBUNSCAT, which comprises a negative-sense reporter gene (chloramphenicol acetyltransferase or CAT) flanked by the exact 5' and 3' untranslated regions of the Bunyamwera virus (BUN) S RNA segment. When cells which expressed bunyavirus proteins (either by recombinant vaccinia viruses or by the vaccinia virus-T7 system) were transfected with BUNSCAT RNA, CAT activity could be measured, indicating transcription of the negative-sense reporter RNA into mRNA. The system permits investigation of both the protein and RNA sequence requirements for transcription. Extensions of 2 bases at the 5' end or 11 or 35 bases at the 3' end of BUNSCAT RNA allowed transcription but a lower level than the wild-type template. Deletion of the 5 nucleotides at the 3' end of BUNSCAT RNA reduced CAT activity by > 99%. Investigation of the viral protein requirements of the system showed that only the bunyavirus L and N proteins were needed for CAT activity. The BUN L protein was also able to transcribe the reporter RNA in concert with the N proteins of closely related bunyaviruses such as Batai, Cache Valley, Maguari, Main Drain, and Northway, but only inefficiently with those of Kairi, Guaroa, or Lumbo viruses. When BUN L proteins containing specific mutations were expressed CAT activity was only observed using those mutated L proteins previously reported to be active in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, 1992, J. Gen. Virol. 73, 2235-2244). These results illustrate the utility of this system for a detailed genetic analysis of the factors involved in bunyavirus transcription.

  10. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    PubMed

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Detection of AR-V7 mRNA in whole blood may not predict the effectiveness of novel endocrine drugs for castration-resistant prostate cancer.

    PubMed

    Takeuchi, Takumi; Okuno, Yumiko; Hattori-Kato, Mami; Zaitsu, Masayoshi; Mikami, Koji

    2016-01-01

    A splice variant of androgen receptor (AR), AR-V7, lacks in androgen-binding portion and leads to aggressive cancer characteristics. Reverse transcription-polymerase chain reactions (PCRs) and subsequent nested PCRs for the amplification of AR-V7 and prostate-specific antigen (PSA) transcripts were done for whole blood of patients with prostate cancer and male controls. With primary reverse transcription PCRs, AR-V7 and PSA were detected in 4.5% and 4.7% of prostate cancer, respectively. With nested PCRs, AR-V7 messenger RNA (mRNA) was positive in 43.8% of castration-sensitive prostate cancer and 48.1% of castration-resistant prostate cancer (CRPC), while PSA mRNA was positive in 6.3% of castration-sensitive prostate cancer and 18.5% of CRPC. Whole-blood samples of controls showed AR-V7 mRNA expression by nested PCR. Based on multivariate analysis, expression of AR-V7 mRNA in whole blood was not significantly correlated with clinical parameters and PSA mRNA in blood, while univariate analysis showed a correlation between AR-V7 mRNA and metastasis at initial diagnosis. Detection of AR-V7 mRNA did not predict the reduction of serum PSA in patients with CRPC following abiraterone and enzalutamide administration. In conclusion, AR-V7 mRNA expression in normal hematopoietic cells may have annihilated the manifestation of aggressiveness of prostate cancer and the prediction of the effectiveness of abiraterone and enzalutamide by the assessment of AR-V7 mRNA in blood.

  12. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  13. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    PubMed

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization and expression analysis of Toll-like receptor 3 cDNA from Atlantic salmon (Salmo salar).

    PubMed

    Vidal, R; González, R; Gil, F

    2015-06-10

    Innate pathway activation is fundamental for early anti-viral defense in fish, but currently there is insufficient understanding of how salmonid fish identify viral molecules and activate these pathways. The Toll-like receptor (TLR) is believed to play a crucial role in host defense of pathogenic microbes in the innate immune system. In the present study, the full-length cDNA of Salmo salar TLR3 (ssTLR3) was cloned. The ssTLR3 cDNA sequence was 6071 bp long, containing an open reading frame of 2754 bp and encoding 971 amino acids. The TLR group motifs, such as leucine-rich repeat (LRR) domains and Toll-interleukin-1 receptor (TIR) domains, were maintained in ssTLR3, with sixteen LRR domains and one TIR domain. In contrast to descriptions of the TLR3 in rainbow trout and the murine (TATA-less), we found a putative TATA box in the proximal promoter region 29 bp upstream of the transcription start point of ssTLR3. Multiple-sequence alignment analysis of the ssTLR3 protein-coding sequence with other known TLR3 sequences showed the sequence to be conserved among all species analyzed, implying that the function of the TLR3 had been sustained throughout evolution. The ssTLR3 mRNA expression patterns were measured using real-time PCR. The results revealed that TLR3 is widely expressed in various healthy tissues. Individuals challenged with infectious pancreatic necrosis virus and immunostimulated with polyinosinic:polycytidylic acid exhibited increased expression of TLR3 at the mRNA level, indicating that ssTLR3 may be involved in pathogen recognition in the early innate immune system.

  15. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less

  16. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.

    PubMed

    Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun

    2018-06-01

    Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within itsmore » 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.« less

  18. Posttranscriptional Control of Photosynthetic mRNA Decay under Stress Conditions Requires 3′ and 5′ Untranslated Regions and Correlates with Differential Polysome Association in Rice1[W][OA

    PubMed Central

    Park, Su-Hyun; Chung, Pil Joong; Juntawong, Piyada; Bailey-Serres, Julia; Kim, Youn Shic; Jung, Harin; Bang, Seung Woon; Kim, Yeon-Ki; Do Choi, Yang; Kim, Ju-Kon

    2012-01-01

    Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3′ and 5′ untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3′ and 5′ untranslated regions and correlates with differential polysome association. PMID:22566494

  19. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1

    PubMed Central

    Song, Kyu Young; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5′-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). PMID:27292014

  20. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus. PMID:26919232

  1. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients.

    PubMed

    Das, Chandana Ray; Tiwari, Diptika; Dongre, Anita; Khan, Mohammad Aasif; Husain, Syed Akhtar; Sarma, Anirudha; Bose, Sujoy; Bose, Purabi Deka

    2018-05-01

    Multiple factors are associated with human papillomavirus (HPV) infection related cervical anomalies and its progression to cervical carcinoma (CaCx), but data vary with respect to the underlying HPV genotype and with population being studied. No data are available regarding the role of immunological imbalance in HPV infected CaCx pathogenesis from Northeast India, which has an ethnically distinct population, and was aimed to be addressed through this study. The study included 76 CaCx cases, 25 cervical intraepithelial neoplasia (CIN) cases, and 50 healthy female controls. HPV screening and genotyping were performed by PCR. Differential expression of tumor necrosis factor alpha (TNF-α) was studied at serum level by enzyme-linked immunosorbent assay and tissue level by immunohistochemistry and messenger RNA (mRNA) level by real-time PCR. The data were correlated with interferon gamma (IFN-γ) and NF-κβp65 levels at protein level, as well as HPV16 E6 and E7 expression at transcript level statistically. HPV infection and HPV16 genotype were predominant in the studied cohort. TNF-α was found to be downregulated at both mRNA and protein levels in CaCx cases compared to controls; and the gradient downregulation correlated with progression of the disease from normal→CIN→CaCx. TNF-α expression correlated with insufficient modulation of both IFN-γ and NF-κβp65. The HPV16 E6 and E7 transcripts were found to be sharply upregulated in CaCx cases strongly inversely correlated with the TNF-α expression. Significant role of TNF-α downregulation associated with insufficient IFN-γ and total NF-κβp65 modulation and the resulting significant upregulation of viral transcripts E6 and E7 are key to the HPV16 infection mediated CaCx pathogenesis in northeast Indian patients.

  2. Identification of the Transformational Properties and Transcriptional Targets of the Oncogenic SRY Transcription Factor SOX4

    DTIC Science & Technology

    2009-01-01

    has also been implicated in tumorigenesis of multiple tumor types and has been shown by our lab to be upregulated in prostate cancer. However, the...mobility group (HMG) DNA-binding domain (DBD) related to the TCF/LEF family of transcription factors. Our lab has previously shown SOX4 mRNA and...protein to be overexpressed in prostate cancer, and this expression is correlated with increasing Gleason score. Other labs have shown SOX4 mRNA to be

  3. microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury

    DTIC Science & Technology

    2016-08-01

    protein processing is a key feature of AD. MiRNAs are small non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein...non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein dysregulation. Our investigative team has generated

  4. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex

    PubMed Central

    Angulo, Jenniffer; Ulryck, Nathalie; Deforges, Jules; Chamond, Nathalie; Lopez-Lastra, Marcelo; Masquida, Benoît; Sargueil, Bruno

    2016-01-01

    As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a ‘kissing complex’ between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation. PMID:26626152

  5. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    PubMed

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Permissive Sense and Antisense Transcription from the 5′ and 3′ Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1

    PubMed Central

    Polakowski, Nicholas; Hoang, Kimson

    2016-01-01

    ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5′ and 3′ peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3′ LTR regulates expression of a single gene, hbz, while sense transcription from the 5′ LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3′ LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G0/G1 phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. IMPORTANCE The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5′ and 3′ ends. The LTRs modulate transcription in both forward (sense) and reverse (antisense) directions. We found that sense transcription from the 5′ LTR does not interfere with antisense transcription from the 3′ LTR, allowing viral genes encoded on opposite DNA strands to be simultaneously transcribed. Two such genes are tax and hbz, and while they are thought to function at different times during the course of infection to promote leukemogenesis of infected T cells, our results indicate that they can be simultaneously transcribed. We also found that the ability of Tax to induce cell cycle arrest inhibits its fundamental function of activating viral sense transcription but does not affect antisense transcription. This regulatory mechanism may be important for long-term HTLV-1 infection. PMID:26792732

  7. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance.

    PubMed

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-07-05

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.

  8. Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells.

    PubMed

    Summerhill, E M; Wood, K; Fishman, M C

    1987-07-01

    Differentiation of N1E-115 neuroblastoma cells into neuron-like cells, with extension of neurites and acquisition of excitable membranes, can be induced by dimethyl sulfoxide (DMSO). We have found this differentiation to be accompanied by an increase in tyrosine hydroxylase (TH) mRNA, an increase disproportionate to changes in mRNAs for other measured, non-neuron-specific genes. The mRNA increases slowly over several days and falls gradually after removal of DMSO. Nuclear run-on studies suggest that a change in the rate of transcription cannot explain the increase in steady-state mRNA levels. TH mRNA half-life does, however, increase. This suggests that regulation is exerted in this case not at the level of transcription but rather at that of mRNA stability.

  9. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Temporal and Spatial Post-Transcriptional Regulation of Zebrafish Tie1 mRNA by Long Noncoding RNA During Brain Vascular Assembly.

    PubMed

    Chowdhury, Tamjid A; Koceja, Chris; Eisa-Beygi, Shahram; Kleinstiver, Benjamin P; Kumar, Suresh N; Lin, Chien-Wei; Li, Keguo; Prabhudesai, Shubhangi; Joung, J Keith; Ramchandran, Ramani

    2018-05-03

    Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus- tie1 antisense ( tie1AS ), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation. Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS . Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1 mRNA levels rescued all 3 abnormal phenotypes. We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS ). © 2018 American Heart Association, Inc.

  11. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    PubMed Central

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  12. Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase

    PubMed Central

    Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.

    2013-01-01

    Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792

  13. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength.

    PubMed

    Bloyet, Louis-Marie; Brunel, Joanna; Dosnon, Marion; Hamon, Véronique; Erales, Jenny; Gruet, Antoine; Lazert, Carine; Bignon, Christophe; Roche, Philippe; Longhi, Sonia; Gerlier, Denis

    2016-12-01

    Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.

  14. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength

    PubMed Central

    Hamon, Véronique; Erales, Jenny; Bignon, Christophe; Roche, Philippe

    2016-01-01

    Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3’end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region. PMID:27936158

  15. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis

    PubMed Central

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia

    2017-01-01

    Abstract Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an ‘all-or-none’ pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. PMID:28520982

  16. Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland

    PubMed Central

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2012-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. PMID:22649398

  17. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    PubMed

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  18. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa.

    PubMed Central

    Lory, S

    1986-01-01

    A DNA probe from an internal fragment of the exotoxin A structural gene was used to study the effects of selected culture conditions on steady-state levels of exotoxin-specific mRNA in Pseudomonas aeruginosa. Cells grown under conditions of iron deprivation began to synthesize and excrete the exotoxin A polypeptide during the late exponential phase of growth and throughout the stationary phase of growth, concomitant with a sharp increase in exotoxin A mRNA pools in P. aeruginosa cells. The addition of iron to the medium resulted in the failure of these cells to synthesize exotoxin A mRNA, despite significantly enhanced growth. The inhibition of the production of exotoxin A and the accumulation of its mRNA by iron was dose dependent, with a half-maximal inhibitory concentration of FeSO4 of 5 to 10 microM. A blockade of the initiation of transcription by rifampin resulted in the decay of exotoxin A mRNA, with a half-life of approximately 8 to 10 min, depending on the media used for growth. The addition of iron to cells actively engaged in exotoxin A synthesis also resulted in a gradual decrease in the amount of this mRNA in bacteria. However, the rate of decline of mRNA induced by iron was relatively slow (half-life, 90 min), with a considerable lag time between the iron addition and the first detectable effect on mRNA. While iron clearly appears to influence the production of exotoxin A at the transcriptional level, the molecular basis of this effect may involve several interacting factors affecting the initiation of transcription and perhaps mRNA turnover. Images PMID:2430950

  19. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense

    PubMed Central

    2011-01-01

    Background Small RNA (sRNA) regulatory pathways (SRRPs) are important to anti-viral defence in mosquitoes. To identify critical features of the virus infection process in Dengue serotype 2 (DENV2)-infected Ae. aegypti, we deep-sequenced small non-coding RNAs. Triplicate biological replicates were used so that rigorous statistical metrics could be applied. Results In addition to virus-derived siRNAs (20-23 nts) previously reported for other arbovirus-infected mosquitoes, we show that PIWI pathway sRNAs (piRNAs) (24-30 nts) and unusually small RNAs (usRNAs) (13-19 nts) are produced in DENV-infected mosquitoes. We demonstrate that a major catalytic enzyme of the siRNA pathway, Argonaute 2 (Ago2), co-migrates with a ~1 megadalton complex in adults prior to bloodfeeding. sRNAs were cloned and sequenced from Ago2 immunoprecipitations. Viral sRNA patterns change over the course of infection. Host sRNAs were mapped to the published aedine transcriptome and subjected to analysis using edgeR (Bioconductor). We found that sRNA profiles are altered early in DENV2 infection, and mRNA targets from mitochondrial, transcription/translation, and transport functional categories are affected. Moreover, small non-coding RNAs (ncRNAs), such as tRNAs, spliceosomal U RNAs, and snoRNAs are highly enriched in DENV-infected samples at 2 and 4 dpi. Conclusions These data implicate the PIWI pathway in anti-viral defense. Changes to host sRNA profiles indicate that specific cellular processes are affected during DENV infection, such as mitochondrial function and ncRNA levels. Together, these data provide important progress in understanding the DENV2 infection process in Ae. aegypti. PMID:21356105

  20. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2.

    PubMed

    Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L

    2016-12-01

    The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.

  1. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    PubMed Central

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  2. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Cancer.gov

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to

  3. Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth

    PubMed Central

    Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael

    2015-01-01

    Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524

  4. Ddx19 links mRNA nuclear export with progression of transcription and replication and suppresses genomic instability upon DNA damage in proliferating cells.

    PubMed

    Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico

    2017-09-03

    The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.

  5. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  6. Exaptive origins of regulated mRNA decay in eukaryotes.

    PubMed

    Hamid, Fursham M; Makeyev, Eugene V

    2016-09-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense-mediated decay (NMD) and motif-specific transcript destabilization by CCCH-type zinc finger RNA-binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of "professional" innate and adaptive immunity systems allowed NMD and the motif-triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post-transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export.

    PubMed

    Karijolich, John; Zhao, Yang; Alla, Ravi; Glaunsinger, Britt

    2017-06-02

    Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA-RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  9. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export

    PubMed Central

    Zhao, Yang; Alla, Ravi

    2017-01-01

    Abstract Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. PMID:28334904

  10. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP) Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP) Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone

    PubMed Central

    Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas

    2016-01-01

    Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318

  11. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    PubMed Central

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  12. Picornavirus Modification of a Host mRNA Decay Protein

    PubMed Central

    Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.

    2012-01-01

    ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833

  13. Defining the Transcriptional Landscape during Cytomegalovirus Latency with Single-Cell RNA Sequencing

    PubMed Central

    2018-01-01

    ABSTRACT Primary infection with human cytomegalovirus (HCMV) results in a lifelong infection due to its ability to establish latent infection, with one characterized viral reservoir being hematopoietic cells. Although reactivation from latency causes serious disease in immunocompromised individuals, our molecular understanding of latency is limited. Here, we delineate viral gene expression during natural HCMV persistent infection by analyzing the massive transcriptome RNA sequencing (RNA-seq) atlas generated by the Genotype-Tissue Expression (GTEx) project. This systematic analysis reveals that HCMV persistence in vivo is prevalent in diverse tissues. Notably, we find only viral transcripts that resemble gene expression during various stages of lytic infection with no evidence of any highly restricted latency-associated viral gene expression program. To further define the transcriptional landscape during HCMV latent infection, we also used single-cell RNA-seq and a tractable experimental latency model. In contrast to some current views on latency, we also find no evidence for any highly restricted latency-associated viral gene expression program. Instead, we reveal that latency-associated gene expression largely mirrors a late lytic viral program, albeit at much lower levels of expression. Overall, our work has the potential to revolutionize our understanding of HCMV persistence and suggests that latency is governed mainly by quantitative changes, with a limited number of qualitative changes, in viral gene expression. PMID:29535194

  14. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leadsmore » to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.« less

  15. mRNA quality control is bypassed for immediate export of stress-responsive transcripts.

    PubMed

    Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike

    2016-12-12

    Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.

  16. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription. PMID:25972542

  17. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    PubMed

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  18. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential

    PubMed Central

    Wakeman, Brian S.; Izumiya, Yoshihiro

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50. RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. PMID:27795414

  19. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    PubMed

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  20. Expression of the ribulose-1,5-bisphosphate carboxylase large subunit gene and three small subunit genes in two cell types of maize leaves

    PubMed Central

    Sheen, Jenq-Yunn; Bogorad, Lawrence

    1986-01-01

    Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739

  1. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.

    PubMed

    Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif

    2018-07-01

    Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  3. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  4. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  5. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis

    PubMed Central

    Chattopadhyay, Saurabh; Kuzmanovic, Teodora; Zhang, Ying; Wetzel, Jaime L.; Sen, Ganes C.

    2016-01-01

    SUMMARY The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3’s transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes. PMID:27178468

  6. From the viral perspective: infectious salmon anemia virus (ISAV) transcriptome during the infective process in Atlantic salmon (Salmo salar).

    PubMed

    Valenzuela-Miranda, Diego; Cabrejos, María Eugenia; Yañez, José Manuel; Gallardo-Escárate, Cristian

    2015-04-01

    The infectious salmon anemia virus (ISAV) is a severe disease that mainly affects the Atlantic salmon (Salmo salar) aquaculture industry. Although several transcriptional studies have aimed to understand Salmon-ISAV interaction through the evaluation of host-gene transcription, none of them has focused their attention upon the viral transcriptional dynamics. For this purpose, RNA-Seq and RT-qPCR analyses were conducted in gills, liver and head-kidney of S. salar challenged by cohabitation with ISAV. Results evidence the time and tissue transcript patterns involved in the viral expression and how the transcription levels of ISAV segments are directly linked with the protein abundance found in other virus of the Orthomyxoviridae family. In addition, RT-qPCR result evidenced that quantification of ISAV through amplification of segment 3 would result in a more sensitive approach for detection and quantification of ISAV. This study offers a more comprehensive approach regarding the ISAV infective process and gives novel knowledge for its molecular detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs

    PubMed Central

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A.; Taira, Masanori

    2016-01-01

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin–insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs. PMID:27140624

  8. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    PubMed

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  9. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Heng; Guo, Wei; Long, Cong

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assaysmore » were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.« less

  11. Enhancer‐promoter Activity of Human Papillomavirus Type 16 Long Control Regions Isolated from Cell Lines SiHa and CaSki and Cervical Cancer Biopsies

    PubMed Central

    Kozuka, Takuyo; Aoki, Yukimasa; Nakagawa, Keiichi; Ohtomo, Kuni; Yoshikawa, Hiroyuki; Matsumoto, Koji; Yoshiike, Kunito

    2000-01-01

    Expression of human papillomavirus 16 (HPV‐16) oncogenes is markedly higher in cervical cancer cells than in precancerous cells, and the elevated expression is believed to be required for the malignant phenotypes. We compared cancer cell lines CaSki (with 200 to 400 copies of HPV‐16 DNA per cell) and SiHa (with one to two copies of HPV‐16 DNA per cell) for the E7 expression in cells and the enhancer‐promoter activity of the isolated viral long control region (LCR). Although these parameters per cell were 10‐fold higher in CaSki than in SiHa, the levels of the E7 mRNA and protein per HPV DNA copy were 10‐ to 20‐fold higher in SiHa than in CaSki. Characterization of the isolated LCRs showed that, whereas the LCR from CaSki resembled the prototype in structure and activity, the LCR from SiHa, with a deletion of 38 base pairs, enhanced transcription from P97 as assayed by using a plasmid capable of expressing luciferase. The upregulation appeared to be due to removal of one of the silencer YY1‐binding sites. Furthermore, we isolated and characterized LCRs from 51 cervical cancer patients’ biopsies. Among them, one with a deletion including YY1‐binding sites and the other with a substitution in a YY1‐motif were found to enhance the transcription. These findings suggest that mutation affecting YY1‐motifs in the LCR is one of the mechanisms enhancing the viral oncogene expression in the course of progression of cancer cells. PMID:10760685

  12. Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding.

    PubMed

    Bennett, Ryan P; Presnyak, Vladimir; Wedekind, Joseph E; Smith, Harold C

    2008-03-21

    Human APOBEC3G (hA3G) is a host factor that defends against HIV-1 as well as other exogenous retroviruses and endogenous retroelements. To this end, hA3G is restricted to the cytoplasm of T lymphocytes where it interacts with viral RNA and proteins to assemble with viral particles causing a post-entry block during reverse transcription. hA3G also exhibits a mechanism to inhibit the reverse transcription of retroelements by RNA binding and sequestration into mRNA processing centers in the cytoplasm. We have determined that the molecular basis for this specialized property of hA3G is a novel cytoplasmic retention signal (CRS) that is necessary and sufficient to restrict wild-type hA3G and chimeric constructs to the cytoplasm. The CRS resides within amino acids 113-128 and is embedded within a basic flanking sequence and does not require RNA binding to retain hA3G in the cytoplasm. Paralogs of hA3G that have nuclear or cytoplasmic distributions differ from hA3G within the region encompassing the CRS motif with respect to charge and amino acid composition. We propose that the CRS enables hA3G to interact with cytoplasmic factors, and thereby enables hA3G to serve in host cell defense by restricting an antiviral sentinel to the cytoplasm. The CRS lies in a region involved in both Gag and Vif interactions; therefore, identification of this motif has important implications for the design of therapeutics that target HIV-1 while maintaining antiviral and cellular functions.

  13. Human T cell lymphotropic virus type I genomic expression and impact on intracellular signaling pathways during neurodegenerative disease and leukemia.

    PubMed

    Yao, J; Wigdahl, B

    2000-01-01

    HTLV-I has been identified as the etiologic agent of neoplasia within the human peripheral blood T lymphocyte population, and a progressive neurologic disorder based primarily within the central nervous system. We have examined the role of HTLV-I in these two distinctly different clinical syndromes by examining the life cycle of the virus, with emphasis on the regulation of viral gene expression within relevant target cell populations. In particular, we have examined the impact of specific viral gene products, particularly Tax, on cellular metabolic function. Tax is a highly promiscuous and pleiotropic viral oncoprotein, and is the most important factor contributing to the initial stages of viral-mediated transformation of T cells after HTLV-I infection. Tax, which weakly binds to Tax response element 1 (TRE-1) in the viral long terminal repeat (LTR), can dramatically trans-activate viral gene expression by interacting with cellular transcription factors, such as activated transcription factors and cyclic AMP response element binding proteins (ATF/CREB), CREB binding protein (CBP/p300), and factors involved with the basic transcription apparatus. At the same time, Tax alters cellular gene expression by directly or indirectly interacting with a variety of cellular transcription factors, cell cycle control elements, and cellular signal transduction molecules ultimately resulting in dysregulated cell proliferation. The mechanisms associated with HTLV-I infection, leading to tropical spastic paraparesis (TSP) are not as clearly resolved. Possible explanations of viral-induced neurologic disease range from central nervous system (CNS) damage caused by direct viral invasion of the CNS to bystander CNS damage caused by the immune response to HTLV-I infection. It is interesting to note that it is very rare for an HTLV-I infected individual to develop both adult T cell leukemia (ATL) and TSP in his/her life time, suggesting that the mechanisms governing development of these two diseases are mutually exclusive.

  14. c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells.

    PubMed

    Biskobing, D M; Fan, D; Rubin, J

    1997-09-01

    Macrophage colony-stimulating factor (MCSF) is required for normal osteoclast and macrophage development. The receptor for MCSF (c-fms) is expressed on the pluripotent precursor and mature osteoclasts and macrophages. We have previously shown in myelomonocytic HL-60 cells that phorbol myristate acetate (PMA) upregulates c-fms mRNA expression. This induction of c-fms is inhibited by 1,25(OH)2D3. The major regulatory control of c-fms mRNA levels by PMA has been identified as posttranscriptional. However, a role of transcript elongation in controlling levels of c-fms mRNA has also been suggested. To better understand the 1,25(OH)2D3 regulation of c-fms mRNA expression we studied nuclear run on, mRNA stability, and transcript elongation in HL-60 cells treated with 10 ng/ml phorbol myristate acetate, 10 nM 1,25(OH)2D3 alone or combined. We demonstrated by nuclear run on that c-fms was constitutively transcribed in 1,25(OH)2D3 as well as control and PMA-treated cells. Transcript elongation was evaluated by RT-PCR for exon 2 or exon 3. Both exons were minimally expressed in control and 1,25(OH)2D3-treated cells, and increased in PMA-treated cells; this increased expression was inhibited by the addition of 1,25(OH)2D3. These results fail to show differential transcript elongation. Measurement of mRNA stability demonstrated decreased mRNA half-life to 5 hours in cells treated with PMA and 1,25(OH)2D3 compared with a half-life of 8 hours in cells treated with PMA alone. Our findings demonstrate that c-fms is regulated by 1,25(OH)2D3 at the posttranscriptional level by changes in mRNA stability. This gives the cell the ability to respond to local signals with rapid changes in c-fms levels altering the ability of the cell to respond to MCSF.

  15. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  16. Expression of a non-coding RNA in ectromelia virus is required for normal plaque formation.

    PubMed

    Esteban, David J; Upton, Chris; Bartow-McKenney, Casey; Buller, R Mark L; Chen, Nanhai G; Schriewer, Jill; Lefkowitz, Elliot J; Wang, Chunlin

    2014-02-01

    Poxviruses are dsDNA viruses with large genomes. Many genes in the genome remain uncharacterized, and recent studies have demonstrated that the poxvirus transcriptome includes numerous so-called anomalous transcripts not associated with open reading frames. Here, we characterize the expression and role of an apparently non-coding RNA in orthopoxviruses, which we call viral hairpin RNA (vhRNA). Using a bioinformatics approach, we predicted expression of a transcript not associated with an open reading frame that is likely to form a stem-loop structure due to the presence of a 21 nt palindromic sequence. Expression of the transcript as early as 2 h post-infection was confirmed by northern blot and analysis of publicly available vaccinia virus infected cell transcriptomes. The transcription start site was determined by RACE PCE and transcriptome analysis, and early and late promoter sequences were identified. Finally, to test the function of the transcript we generated an ectromelia virus knockout, which failed to form plaques in cell culture. The important role of the transcript in viral replication was further demonstrated using siRNA. Although the function of the transcript remains unknown, our work contributes to evidence of an increasingly complex poxvirus transcriptome, suggesting that transcripts such as vhRNA not associated with an annotated open reading frame can play an important role in viral replication.

  17. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  18. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture.

    PubMed

    Nandan, Devki; Thomas, Sneha A; Nguyen, Anne; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E

    2017-01-01

    Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.

  19. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway

    PubMed Central

    Bühlmann, Melanie; Walrad, Pegine; Rico, Eva; Ivens, Alasdair; Capewell, Paul; Naguleswaran, Arunasalam; Roditi, Isabel; Matthews, Keith R.

    2015-01-01

    Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5′UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export. PMID:25873624

  20. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  1. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    PubMed Central

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449

  2. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  3. Expression of Leukemia/Lymphoma-Related Factor (LRF/POKEMON) in Human Breast Carcinoma and Other Cancers

    PubMed Central

    Aggarwal, Anshu; Hunter, William J.; Aggarwal, Himanshu; Silva, Edibaldo D.; Davey, Mary S.; Murphy, Richard F.; Agrawal, Devendra K.

    2010-01-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  4. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    PubMed

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection*

    PubMed Central

    Wang, Li; Zhu, Shengli; Xu, Gang; Feng, Jian; Han, Tao; Zhao, Fanpeng; She, Ying-Long; Liu, Shi; Ye, Linbai; Zhu, Ying

    2016-01-01

    Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2′,5′-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity. PMID:27307042

  6. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    PubMed

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Detection of adenovirus type 2-induced early polypeptides using cycloheximide pretreatment to enhance viral protein synthesis.

    PubMed Central

    Harter, M L; Shanmugam, G; Wold, W S; Green, M

    1976-01-01

    (35S) methionine-labeled polypeptides synthesized by adenovirus type 2-infected cells have been analyzed by polyacrylamide gradient gel electrophoresis and autoradiography. Cycloheximide (CH) was added to infected cultures to accumulate early viral mRNA relative to host cell mRNA. This allowed viral proteins to be synthesized in increased amounts relative to host proteins after removal of CH and pulse-labeling with (35S)methionine. During the labeling period arabinosyl cytosine was added to prevent the synthesis of late viral proteins. This procedure facilitated the detection of six early viral-induced polypeptides, designated EP1 through EP6 (early protein), with apparent molecular weights of 75,000 (75K), 42K, 21K, 18K, 15K, and 11K. Supportive data were obtained by coelectrophoresis of (35S)- and (3H)methionine-labeled polypeptides from infected and uninfected cells, respectively. Three of these early polypeptides have not been previously reported. CH pretreatment enhanced the rates of synthesis of EP4 and EP6 20- to 30-fold and enhanced that of the others approximately twofold. The maximal rates of synthesis of the virus-induced proteins varied, in a different manner, with time postinfection and CH pretreatment. Since CH pretreatment appears to increase the levels of early viral proteins, it may be a useful procedure to assist their isolation and functional characterization. Images PMID:950686

  8. Molecular characterization of the rhesus rhadinovirus (RRV) ORF4 gene and the RRV complement control protein it encodes.

    PubMed

    Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J

    2007-04-01

    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.

  9. Molecular Characterization of the Rhesus Rhadinovirus (RRV) ORF4 Gene and the RRV Complement Control Protein It Encodes▿

    PubMed Central

    Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.

    2007-01-01

    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274

  10. The 5'-untranslated region of p23 mRNA from the Ehrlich ascites tumor is involved in translation control of the growth related protein p23.

    PubMed

    Böhm, H; Gross, B; Gaestel, M; Bommer, U A; Ryffel, G; Bielka, H

    1991-01-01

    The growth-related protein p23 of the Ehrlich ascites tumor (EAT) is preferentially expressed in the exponentially growing tumor; its synthesis is translationally controlled. p23 mRNA is efficiently translated in the wheat germ cell-free lysate. In contrast, p23 mRNA present in poly(A)+RNA isolated from EAT is not translated in cell-free systems of EAT and reticulocytes. Moreover, translation of a p23 transcript is inhibited in the presence of total poly(A)+RNA. This inhibition is abolished by the removal of the 5'-UTR of the p23 transcript. Solution hybridization/RNase protection experiments point to the presence of a nucleotide sequence complementary to the 5'-UTR of p23 mRNA which might be involved in p23 mRNA inhibition.

  11. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly

    PubMed Central

    Becker, Jordan T.

    2017-01-01

    ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. PMID:28053097

  12. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.

    PubMed

    Becker, Jordan T; Sherer, Nathan M

    2017-03-15

    Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis -acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins ( gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. Copyright © 2017 American Society for Microbiology.

  13. Drug-activated multiple pathways of defensin mRNA regulation in HL-60 cells are defined by reversed roles of participating protein kinases.

    PubMed

    Herwig, S; Su, Q; Tempst, P

    1998-10-01

    Defensin transcription in HL-60 promyelocytic leukemia cells is greatly enhanced during retinoic acid (RA)-induced differentiation. We have probed this regulatory pathway by selective modulation of various kinase activities. Induction was potentiated by elevated cAMP and attenuated by protein kinase C inhibition, entirely correlated to enhanced or blocked morphological differentiation, respectively. Yet, defensin mRNA was also induced in undifferentiated HL-60 cells, but not in others, by cAMP alone. By contrast, modulators that cooperated with RA had adverse effects on the normal capacity of dimethyl sulfoxide to up regulate these transcripts as well. Thus, defensin mRNA accumulation can be selectively uncoupled from maturation stage; and transcript levels may be regulated by multiple pathways, each independently acted upon by different chemical inducers.

  14. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    PubMed

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  15. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    PubMed

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  16. Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

    PubMed Central

    Fischer, Ralf-Jörg; Oehmcke, Sonja; Meyer, Uta; Mix, Maren; Schwarz, Katrin; Fiedler, Tomas; Bahl, Hubert

    2006-01-01

    The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5. PMID:16855236

  17. The Papillomavirus E2 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses.more » • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.« less

  18. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster.

  19. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    PubMed

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  20. Mitotic inheritance of mRNA facilitates translational activation of the osteogenic-lineage commitment factor Runx2 in progeny of osteoblastic cells

    PubMed Central

    Varela, Nelson; Aranguiz, Alejandra; Lizama, Carlos; Sepulveda, Hugo; Antonelli, Marcelo; Thaler, Roman; Moreno, Ricardo D.; Montecino, Martin; Stein, Gary S.; van Wijnen, Andre J.; Galindo, Mario

    2017-01-01

    Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that ‘bookmark’ the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis. PMID:26381402

  1. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.

    PubMed

    Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon

    2018-06-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  2. Viral tRNA Mimicry from a Biocommunicative Perspective

    PubMed Central

    Ariza-Mateos, Ascensión; Gómez, Jordi

    2017-01-01

    RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that they had in the distant past. PMID:29259593

  3. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less

  4. Biological relevance of human papillomaviruses in vulvar cancer.

    PubMed

    Halec, Gordana; Alemany, Laia; Quiros, Beatriz; Clavero, Omar; Höfler, Daniela; Alejo, Maria; Quint, Wim; Pawlita, Michael; Bosch, Francesc X; de Sanjose, Silvia

    2017-04-01

    The carcinogenic role of high-risk human papillomavirus (HR-HPV) types in the increasing subset of vulvar intraepithelial neoplasia and vulvar cancer in young women has been established. However, the actual number of vulvar cancer cases attributed to HPV is still imprecisely defined. In an attempt to provide a more precise definition of HPV-driven vulvar cancer, we performed HPV-type-specific E6*I mRNA analyses available for 20 HR-/possible HR (pHR)-HPV types, on tissue samples from 447 cases of vulvar cancer. HPV DNA genotyping was performed using SPF10-LiPA 25 assay due to its high sensitivity in formalin-fixed paraffin-embedded tissues. Data on p16 INK4a expression was available for comparative analysis via kappa statistics. The use of highly sensitive assays covering the detection of HPV mRNA in a broad spectrum of mucosal HPV types resulted in the detection of viral transcripts in 87% of HPV DNA+ vulvar cancers. Overall concordance between HPV mRNA+ and p16 INK4a upregulation (strong, diffuse immunostaining in >25% of tumor cells) was 92% (K=0.625, 95% confidence interval (CI)=0.531-0.719). Among these cases, 83% were concordant pairs of HPV mRNA+ and p16 INK4a + and 9% were concordant pairs of HPV mRNA- and p16 INK4a -. Our data confirm the biological role of HR-/pHR-HPV types in the great majority of HPV DNA+ vulvar cancers, resulting in an HPV-attributable fraction of at least 21% worldwide. Most HPV DNA+ vulvar cancers were associated with HPV16 (85%), but a causative role for other, less frequently occurring mucosal HPV types (HPV26, 66, 67, 68, 70 and 73) was also confirmed at the mRNA level for the first time. These findings should be taken into consideration for future screening options as HPV-associated vulvar preneoplastic lesions have increased in incidence in younger women and require different treatment than vulvar lesions that develop from rare autoimmune-related mechanisms in older women.

  5. A transgenic approach to study argininosuccinate synthetase gene expression

    PubMed Central

    2014-01-01

    Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage. Thus, the time course of EGFP expression in the transgenic mice resembled that of the human ASS gene. Conclusions We demonstrate that the transgenic mouse system reported here has the merit of sensitivity and direct visualization advantage, and is ideal for annotating temporal and spatial expression profiles and the regulation mode of the ASS gene. PMID:24884799

  6. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  7. Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1.

    PubMed

    Prang, N; Wolf, H; Schwarzmann, F

    1999-12-01

    The ability of the Epstein-Barr virus (EBV) to avoid lytic replication and to establish a latent infection in B-lymphocytes is fundamental for its lifelong persistence and the pathogenesis of various EBV-associated diseases. The viral immediate-early gene BZLF-1 plays a key role for the induction of lytic replication and its activity is strictly regulated on different levels of gene expression. Recently, it was demonstrated that BZLF-1 is also controlled by a posttranscriptional mechanism. Transient synthesis of a mutated competitor RNA saturated this mechanism and caused both expression of the BZLF-1 protein and the induction of lytic viral replication. Using short overlapping fragments of the competitor, it is shown that this control acts on the unspliced primary transcript. RT-PCR demonstrated unspliced BZLF-1 RNA in latently infected B-lymphocytes in the absence of BZLF-1 protein. Due to the complementarity of the gene BZLF-1 and the latency-associated gene EBNA-1 on the opposite strand of the genome, we propose an antisense-mediated mechanism. RNase protection assays demonstrated transcripts in antisense orientation to the BZLF-1 transcript during latency, which comprise a comparable constellation to other herpesviruses. A combined RNAse protection/RT-PCR assay detected the double-stranded hybrid RNA, consisting of the unspliced BZLF-1 transcript and a noncoding intron of the EBNA-1 gene. Binding of BZLF-1 transcripts is suggested to be an important backup control mechanism in addition to transcriptional regulation, stabilizing latency and preventing inappropriate lytic viral replication in vivo. Copyright 1999 Wiley-Liss, Inc.

  8. Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G.

    PubMed

    Sun, D X; Cabrera-Martinez, R M; Setlow, P

    1991-05-01

    The Bacillus subtilis spoIIIG gene codes for a sigma factor termed sigma G which directs transcription of genes expressed only in the forespore compartment of the sporulating cell. Use of spoIIIG-lacZ transcriptional fusions showed that spoIIIG is cotranscribed with the spoIIG operon beginning at t0.5-1 of sporulation. However, this large mRNA produced little if any sigma G, and transferring the spoIIIG gene without the spoIIG promoter into the amyE locus resulted in a Spo+ phenotype. Significant translation of spoIIIG began at t2.5-3 with use of an mRNA whose 5' end is just upstream of the spoIIIG coding sequence. Synthesis of this spoIIIG-specific mRNA was not abolished by a deletion in spoIIIG itself. Similar results were obtained when a spoIIIG-lacZ translational fusion lacking the spoIIG promoter was integrated at the amyE locus. These data suggest that synthesis of sigma G is dependent neither on transcription from the spoIIG promoter nor on sigma G itself but can be due to another transcription factor. This transcription factor may be sigma F, the product of the spoIIAC locus, since a spoIIAC mutation blocked spoIIIG expression, and sequences upstream of the 5' end of the spoIIIG-specific mRNA agree well with the recognition sequence for sigma F. RNA polymerase containing sigma F (E sigma F) initiated transcription in vitro on a spoIIIG template at the 5' end found in vivo, as did E sigma G. However, E sigma F showed a greater than 20-fold preference for spoIIIG over a known sigma G-dependent gene compared with the activity of E sigma G.

  9. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines

    PubMed Central

    Kulkarni, Varun; Naqvi, Afsar Raza; Uttamani, Juhi Raju; Nares, Salvador

    2016-01-01

    MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. PMID:26761000

  10. Cup regulates oskar mRNA stability during oogenesis.

    PubMed

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  11. Sustained transcription of the immediate early gene Arc in the dentate gyrus after spatial exploration.

    PubMed

    Ramirez-Amaya, Victor; Angulo-Perkins, Arafat; Chawla, Monica K; Barnes, Carol A; Rosi, Susanna

    2013-01-23

    After spatial exploration in rats, Arc mRNA is expressed in ∼2% of dentate gyrus (DG) granule cells, and this proportion of Arc-positive neurons remains stable for ∼8 h. This long-term presence of Arc mRNA following behavior is not observed in hippocampal CA1 pyramidal cells. We report here that in rats ∼50% of granule cells with cytoplasmic Arc mRNA, induced some hours previously during exploration, also show Arc expression in the nucleus. This suggests that recent transcription can occur long after the exploration behavior that elicited it. To confirm that the delayed nuclear Arc expression was indeed recent transcription, Actinomycin D was administered immediately after exploration. This treatment resulted in inhibition of recent Arc expression both when evaluated shortly after exploratory behavior as well as after longer time intervals. Together, these data demonstrate a unique kinetic profile for Arc transcription in hippocampal granule neurons following behavior that is not observed in other cell types. Among a number of possibilities, this sustained transcription may provide a mechanism that ensures that the synaptic connection weights in the sparse population of granule cells recruited during a given behavioral event are able to be modified.

  12. The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1

    PubMed Central

    Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André

    1998-01-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716

  13. Molecular characterization of estrogen receptor genes in Gobiocypris rarus and their expression upon endocrine disrupting chemicals exposure in juveniles.

    PubMed

    Wang, Houpeng; Wang, Jingjing; Wu, Tingting; Qin, Fang; Hu, Xiaoqi; Wang, Lihong; Wang, Zaizhao

    2011-01-17

    Estrogens play an important role in many physiological processes of vertebrates, mediated by estrogen receptors (ERs). The full length of the cDNAs for ERα, ERβ1, and ERβ2 were isolated and characterized from Gobiocypris rarus. G. rarus ERs shared the highest amino acid identities with counterparts of three cyprinidae species (Pimephales promelas ERα: 91.1%, Rutilus rutilus ERβ1: 92.9%, Tanichthy albonubes ERβ2: 93.5%). The phylogenic tree of vertebrate ERs indicates G. rarus ER isoforms are more related to counterparts of cyprinidae species. The expression of ERα mRNA was high in gonad and liver. The ERβ1 transcript was the highest in the liver of female fish and was evenly high in the liver, testis and intestine in male. The ERβ2 transcript was high in liver, gonad, and intestine. G. rarus juvenile at 34 days post fertilization were exposed for 3 days to endocrine disrupting chemicals including 17α-ethynylestradiol (EE2), 4-nonylphenol (NP) and bisphenol A (BPA). ER mRNA expression following the xenoestrogens' exposure was analyzed by quantitative real-time PCR. EE2 exposure at 0.01, 0.1 and 1 nM significantly up-regulated ERα transcript. ERβ1 mRNA expression was suppressed by EE2 at all concentrations. However ERβ2 transcript had opposite response to EE2 at low and high concentrations (up-regulation at 0.1 nM, down-regulation at 1 nM). Except a weak increase of ERα at 10 nM EE2, varying decrease of three ER transcripts was resulted in by NP at 10, 100 and 1000 nM. ERα transcript was significantly up-regulated by BPA at 10 nM. A non-significant weak increase in ERβ1 mRNA expression was caused by 1 nM BPA. However 1 nM and 10 nM BPA exposures resulted in significant and non-significant decrease of ERβ2 transcript, respectively. The BPA exposures at other concentrations almost had no effect on the ER transcripts. Vitellogenin (Vtg) mRNA expression profiling following exposure to three xenoestrogens indicated that Vtg transcript is a sensitive biomarker of the juvenile G. rarus at 34 dpf to the EDCs, especially to EE2. These results combined suggest that the ER genes are not modulated in the same manner by EE2, NP, and BPA and that ERs may not contribute equally to the transcriptional regulation of genes involved in fish development and reproduction. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.

    PubMed

    Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko

    2018-06-07

    Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.

  15. Upregulation of miRNA-4776 in Influenza Virus Infected Bronchial Epithelial Cells Is Associated with Downregulation of NFKBIB and Increased Viral Survival.

    PubMed

    Othumpangat, Sreekumar; Bryan, Nicole B; Beezhold, Donald H; Noti, John D

    2017-04-27

    Influenza A virus (IAV) infection remains a significant cause of morbidity and mortality worldwide. One key transcription factor that is activated upon IAV infection is nuclear factor Kappa B (NF-κB). NF-κB regulation involves the inhibitor proteins NF-κB inhibitor beta (NFKBIB), (also known as IκB β), which form complexes with NF-κB to sequester it in the cytoplasm. In this study, microarray data showed differential expression of several microRNAs (miRNAs) on exposure to IAV. Target scan analysis revealed that miR-4776, miR-4514 and miR-4742 potentially target NFKBIB messenger RNA (mRNA). Time-course analysis of primary bronchial epithelial cells (HBEpCs) showed that miR-4776 expression is increased within 1 h of infection, followed by its downregulation 4 h post-exposure to IAV. NFKBIB upregulation of miR-4776 correlated with a decrease in NFKBIB expression within 1 h of infection and a subsequent increase in NFKBIB expression 4 h post-infection. In addition, miRNA ago-immunoprecipitation studies and the three prime untranslated region (3' UTR) luciferase assay confirmed that miR-4776 targets NFKBIB mRNA. Furthermore, uninfected HBEpCs transfected with miR-4776 mimic showed decreased expression of NFKBIB mRNA. Overexpression of NFKBIB protein in IAV infected cells led to lower levels of IAV. Taken together, our data suggest that miRNA-4776 modulates IAV production in infected cells through NFKBIB expression, possibly through the modulation of NF-κB.

  16. RNA Recombination In Vivo in the Absence of Viral Replication

    PubMed Central

    Gallei, Andreas; Pankraz, Alexander; Thiel, Heinz-Jürgen; Becher, Paul

    2004-01-01

    To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replication revealed that cotransfection of noninfected cells with various pairs of nonreplicatable RNA derivatives also led to the emergence of recombinant viral genomes. Remarkably, homologous and nonhomologous recombination occurred between two overlapping transcripts, each lacking different essential parts of the viral RNA-dependent RNA polymerase (RdRp) gene. Apart from the generally accepted viral replicative copy choice recombination, our results prove the existence of a viral RdRp-independent mechanism of RNA recombination that occurs in vivo. It appears likely that such a mechanism not only contributes to the evolution of RNA viruses but also leads to the generation of recombinant cellular RNAs. PMID:15163720

  17. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  18. Inhibition and Avoidance of mRNA Degradation by RNA Viruses

    PubMed Central

    Moon, Stephanie L.; Barnhart, Michael D.; Wilusz, Jeffrey

    2012-01-01

    The cellular mRNA decay machinery plays a major role in regulating the quality and quantity of gene expression in cells. This machinery involves multiple enzymes and pathways that converge to promote the exonucleolytic decay of mRNAs. The transcripts made by RNA viruses are susceptible to degradation by this machinery and, in fact, can be actively targeted. Thus, to maintain gene expression and replication, RNA viruses have evolved a number of strategies to avoid and/or inactivate aspects of the cellular mRNA decay machinery. Recent work uncovering the mechanisms used by RNA viruses to maintain the stability of their transcripts is described below. PMID:22626865

  19. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  20. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  1. Changes in the level of perforin and its transcript during effector and target cell interactions.

    PubMed

    Kim, K K; Blakely, A; Zhou, Z; Davis, J; Clark, W; Kwon, B S

    1993-05-01

    Perforin is a cytoplasmic granule protein expressed in cytotoxic lymphocytes, and is capable of lysing target cells. This protein is induced as cytotoxic T cells are activated, and the mRNA expression is modulated by various stimulators. These observations suggest possible changes in the level of perforin transcripts and protein when killer lymphocytes meet specific target cells leading to target cell death. To address this question, we examined three murine T-cell clones and primary human NK cells in perforin expression. When the cytotoxic lymphocytes were exposed to sensitive targets, perforin mRNA disappeared within 5 to 30 min and appeared within an hour thereafter. Among the murine T cell clones, L3 and OE4 showed two phases of mRNA decrease while human NK cells and the third murine T cell clone, AB.1, showed only one phase of mRNA loss during a 240 min period. The data indicate that when cytotoxic lymphocytes receive signals from a sensitive target, the cells rapidly degrade previously accumulated perforin mRNA and synthesize new transcripts. Interestingly, heat shock protein 70 mRNA was induced as the perforin mRNA levels recovered, while P55 Il-2 receptor mRNA was downregulated within 5 min after exposure to targets. The perforin protein level also rapidly decreased immediately after the interaction with the target, followed by a recovery, and then another decrease as seen in primary human NK cells, OE4 and L3 cells. However, in the AB.1 clone, no change in perforin content was detectable, despite the loss of perforin mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    PubMed

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  3. Transcription Mapping of the Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Genome in a Body Cavity-Based Lymphoma Cell Line (BC-1)

    PubMed Central

    Sarid, Ronit; Flore, Ornella; Bohenzky, Roy A.; Chang, Yuan; Moore, Patrick S.

    1998-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) gene transcription in the BC-1 cell line (KSHV and Epstein-Barr virus coinfected) was examined by using Northern analysis with DNA probes extending across the viral genome except for a 3-kb unclonable rightmost region. Three broad classes of viral gene transcription have been identified. Class I genes, such as those encoding the v-cyclin, latency-associated nuclear antigen, and v-FLIP, are constitutively transcribed under standard growth conditions, are unaffected by tetradecanoylphorbol acetate (TPA) induction, and presumably represent latent viral transcripts. Class II genes are primarily clustered in nonconserved regions of the genome and include small polyadenylated RNAs (T0.7 and T1.1) as well as most of the virus-encoded cytokines and signal transduction genes. Class II genes are transcribed without TPA treatment but are induced to higher transcription levels by TPA treatment. Class III genes are primarily structural and replication genes that are transcribed only following TPA treatment and are presumably responsible for lytic virion production. These results indicate that BC-1 cells have detectable transcription of a number of KSHV genes, particularly nonconserved genes involved in cellular signal transduction and regulation, during noninduced (latent) virus culture. PMID:9444993

  4. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  5. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  6. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  7. Promoter architecture dictates cell-to-cell variability in gene expression.

    PubMed

    Jones, Daniel L; Brewster, Robert C; Phillips, Rob

    2014-12-19

    Variability in gene expression among genetically identical cells has emerged as a central preoccupation in the study of gene regulation; however, a divide exists between the predictions of molecular models of prokaryotic transcriptional regulation and genome-wide experimental studies suggesting that this variability is indifferent to the underlying regulatory architecture. We constructed a set of promoters in Escherichia coli in which promoter strength, transcription factor binding strength, and transcription factor copy numbers are systematically varied, and used messenger RNA (mRNA) fluorescence in situ hybridization to observe how these changes affected variability in gene expression. Our parameter-free models predicted the observed variability; hence, the molecular details of transcription dictate variability in mRNA expression, and transcriptional noise is specifically tunable and thus represents an evolutionarily accessible phenotypic parameter. Copyright © 2014, American Association for the Advancement of Science.

  8. Tools for translation: non-viral materials for therapeutic mRNA delivery

    NASA Astrophysics Data System (ADS)

    Hajj, Khalid A.; Whitehead, Kathryn A.

    2017-10-01

    In recent years, messenger RNA (mRNA) has come into the spotlight as a versatile therapeutic with the potential to prevent and treat a staggering range of diseases. Billions of dollars have been invested in the commercial development of mRNA drugs, with ongoing clinical trials focused on vaccines (for example, influenza and Zika viruses) and cancer immunotherapy (for example, myeloma, leukaemia and glioblastoma). Although significant progress has been made in the design of in vitro-transcribed mRNA that retains potency while minimizing unwanted immune responses, the widespread use of mRNA drugs requires the development of safe and effective drug delivery vehicles. In this Review, we provide an overview of the field of mRNA therapeutics and describe recent advances in the development of synthetic materials that encapsulate and deliver mRNA payloads.

  9. Sp100 isoform-specific regulation of human adenovirus 5 gene expression.

    PubMed

    Berscheminski, Julia; Wimmer, Peter; Brun, Juliane; Ip, Wing Hang; Groitl, Peter; Horlacher, Tim; Jaffray, Ellis; Hay, Ron T; Dobner, Thomas; Schreiner, Sabrina

    2014-06-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.

  10. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription

    PubMed Central

    Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Souidi, Mouloud; Issad, Tarik

    2017-01-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5’LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex. PMID:28742148

  11. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription.

    PubMed

    Groussaud, Damien; Khair, Mostafa; Tollenaere, Armelle I; Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Fardini, Yann; Coste, Solène; Souidi, Mouloud; Benit, Laurence; Pique, Claudine; Issad, Tarik

    2017-07-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.

  12. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.

  13. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed Central

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-01-01

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron. Images PMID:1896472

  14. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts

    PubMed Central

    PETERS, NICK T.; ROHRBACH, JUSTIN A.; ZALEWSKI, BRIAN A.; BYRKETT, COLLEEN M.; VAUGHN, JACK C.

    2003-01-01

    We have previously described an example of extensively A-to-G edited cDNA derived from adult heads of the fruitfly Drosophila melanogaster. In that study, the source of the predicted antisense RNA pairing strand for template recognition by dADAR editase was not identified, and the biological significance of the observed hyperediting was not known. Here, we address each of these questions. 4f-rnp and sas-10 are closely adjacent X-linked genes located on opposite DNA strands that produce convergent transcripts. We show that developmentally regulated antisense sas-10 readthrough mRNA arises by activation of an upstream promoter P2 during the late embryo stage of fly development. The sas-10 readthrough transcripts pair with 4f-rnp mRNA to form double-stranded molecules, as indicated by A-to-G editing observed in both RNA strands. It would be predicted that perfect RNA duplexes would be targeted for modification/degradation by enzyme pathways that recognize double-stranded RNAs, leading to decline in 4f-rnp mRNA levels, and this is what we observe. The observation using quantitative RT-PCR that sas-10 readthrough and 4f-rnp transcript levels are inversely related suggests a role for the antisense RNA in posttranscriptional regulation of 4f-rnp gene expression during development. Potential molecular mechanisms that could lead to this result are discussed, one of which is targeted transcript degradation via the RNAi pathway. Insofar as the dADAR editase and RNAi pathways are known to be constitutive in this system, it is likely that control of antisense RNA transcription is the rate-limiting factor. The results provide insight into roles of naturally occurring antisense RNAs in regulation of eukaryotic gene expression. PMID:12756328

  15. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast

    PubMed Central

    2014-01-01

    Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription. PMID:24393166

  16. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo

    PubMed Central

    Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182

  17. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. Copyright © 2016 American Society for Microbiology.

  18. The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation

    PubMed Central

    Sala, Claudia; Forti, Francesca; Magnoni, Francesca; Ghisotti, Daniela

    2008-01-01

    Background In Mycobacterium tuberculosis and in Mycobacterium smegmatis the furA-katG loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In M. tuberculosis furA-katG constitute a single operon, whereas in M. smegmatis a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the furA gene, corresponds to transcription initiation from the furA promoter; the second one is the katG mRNA 5' end, located in the terminal part of furA. Results In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the M. smegmatis region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of M. tuberculosis and M. smegmatis were inserted in a plasmid between the sigA promoter and the lacZ reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the katG translation start codon, increased beta-galactosidase activity and stabilized the lacZ transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of M. smegmatis was followed by an increasing number of katG codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the katG transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing. Conclusion This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The furA-katG mRNA is transcribed from the furA promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA. PMID:18394163

  19. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  20. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  1. Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery.

    PubMed

    Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2018-05-01

    Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.

  2. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    PubMed

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. Copyright © 2016. Published by Elsevier Ltd.

  3. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    PubMed Central

    Cho, Jae Youl

    2018-01-01

    Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities. PMID:29751576

  4. Comparative in vitro toll-like receptor ligand induced cytokine profiles of Toda and Murrah buffaloes-Identification of tumour necrosis factor alpha promoter polymorphism.

    PubMed

    Vignesh, A R; Dhinakar Raj, G; Dhanasekaran, S; Tirumurugaan, K G; Raja, A

    2012-12-15

    The objective of this study was to assess cytokine production upon activation of pattern recognition receptors responsible for sensing bacterial and viral pathogen associated molecular patterns in two genetically diverse buffalo breeds, Toda and Murrah. A very limited molecular-epidemiological analysis showed a higher prevalence of Anaplasma and Theileria in Murrah than Toda buffaloes. Toda buffalo peripheral blood mononuclear cells (PBMC) produced significantly higher levels of IFN γ and/or TNF α mRNAs in response to peptidoglycan, poly I:C, lipopolysaccharide, imiquimod and CpG. Flagellin stimulation did not result in any significant differences in the expression levels of the cytokines tested between these breeds. The levels of ligand induced IFN γ and TNF α mRNA and proteins also correlated except when induced with CpG. The proximal promoter region of TNF α across these two breeds were also sequenced to detect SNPs and promoter assay performed to determine their role in altering the transcriptional activity. Two polymorphisms were identified at -737 (T/A) and -1092 (G/T) positions in Toda buffalo TNF α promoter and promoter assay revealed higher transcription activity in Toda buffalos than in Murrah. This suggests that disease tolerance of these buffalo breeds could be due to the differences in their cytokine transcription levels in response to the respective PAMPs that may be at least in part determined by polymorphisms in the cytokine promoter regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb.

    PubMed

    Kuzmina, Alona; Krasnopolsky, Simona; Taube, Ran

    2017-05-27

    Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb.

  6. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb

    PubMed Central

    Kuzmina, Alona; Krasnopolsky, Simona; Taube, Ran

    2017-01-01

    ABSTRACT Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb. PMID:28340332

  7. Discovery of DNA viruses in wild-caught mosquitoes using small RNA high throughput sequencing.

    PubMed

    Ma, Maijuan; Huang, Yong; Gong, Zhengda; Zhuang, Lu; Li, Cun; Yang, Hong; Tong, Yigang; Liu, Wei; Cao, Wuchun

    2011-01-01

    Mosquito-borne infectious diseases pose a severe threat to public health in many areas of the world. Current methods for pathogen detection and surveillance are usually dependent on prior knowledge of the etiologic agents involved. Hence, efficient approaches are required for screening wild mosquito populations to detect known and unknown pathogens. In this study, we explored the use of Next Generation Sequencing to identify viral agents in wild-caught mosquitoes. We extracted total RNA from different mosquito species from South China. Small 18-30 bp length RNA molecules were purified, reverse-transcribed into cDNA and sequenced using Illumina GAIIx instrumentation. Bioinformatic analyses to identify putative viral agents were conducted and the results confirmed by PCR. We identified a non-enveloped single-stranded DNA densovirus in the wild-caught Culex pipiens molestus mosquitoes. The majority of the viral transcripts (.>80% of the region) were covered by the small viral RNAs, with a few peaks of very high coverage obtained. The +/- strand sequence ratio of the small RNAs was approximately 7∶1, indicating that the molecules were mainly derived from the viral RNA transcripts. The small viral RNAs overlapped, enabling contig assembly of the viral genome sequence. We identified some small RNAs in the reverse repeat regions of the viral 5'- and 3' -untranslated regions where no transcripts were expected. Our results demonstrate for the first time that high throughput sequencing of small RNA is feasible for identifying viral agents in wild-caught mosquitoes. Our results show that it is possible to detect DNA viruses by sequencing the small RNAs obtained from insects, although the underlying mechanism of small viral RNA biogenesis is unclear. Our data and those of other researchers show that high throughput small RNA sequencing can be used for pathogen surveillance in wild mosquito vectors.

  8. Magnesium Induced Nucleophile Activation in the Guanylyltransferase mRNA Capping Enzyme

    PubMed Central

    Swift, Robert V.; Ong, Chau D.; Amaro, Rommie E.

    2012-01-01

    The messenger RNA guanylyltransferase, or mRNA capping enzyme, co-transcriptionally caps the 5′-end of nascent mRNA with GMP during the second in a set of three enzymatic reactions that result in the formation of an N7-methyl guanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the alpha-phosphorous atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation, but have provided little insight into the requirement’s molecular origins. Using empirical and thermodynamic integration pKa estimates, along with conventional MD simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members. PMID:23205906

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, R.E.; Schlagnhaufer, C.D.; Arteca, R.N.

    The relationships among O{sub 3}-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 {mu}L L{sup -1} O{sub 3} for 5 h d{sup -1}, steady-state levels of rbcS mRNA declined at least 5-fold in expanding leaves after 3 d of O{sub 3} exposure and ethylene levels increased 6- to 10-fold. The expression of OIP-1, a 1-aminocyclo-propane-1-carboxylate synthase cDNA from potato, correlated with increased production of ethylene and decreased levels of rbcS mRNA in foliage of plants treated with O{sub 3}.more » In plants exposed to 0.30 {mu}L L{sup -1} O{sub 3} for 4 h, rbcS transcript levels were reduced 4-fold, whereas nuclear run-on experiments revealed that rbcS mRNA may be due, in part, to posttranscriptional regulation. The levels of transcripts for other chloroplast proteins, glyceraldehyde-3-phosphate dehydrogenase, and a photosystem II chlorophyll a/b-binding protein decreased in O{sub 3}-treated plants, in parallel with the decrease in rbcS mRNA. The steady-state mRNA level of a cytosolic glyceraldehyde-3-phosphate dehydrogenase increased in O{sub 3}-treated plants. The induction of ethylene and changes in transcript levels preceded visible leaf damage and decreases in ribulose-1,5-biphosphate carboxylase/oxygenase protein levels. 40 refs., 6 figs.« less

  10. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  11. Persistence of an Oncogenic Papillomavirus Genome Requires cis Elements from the Viral Transcriptional Enhancer

    PubMed Central

    Van Doorslaer, Koenraad; Chen, Dan; Chapman, Sandra; Khan, Jameela

    2017-01-01

    ABSTRACT Human papillomavirus (HPV) genomes are replicated and maintained as extrachromosomal plasmids during persistent infection. The viral E2 proteins are thought to promote stable maintenance replication by tethering the viral DNA to host chromatin. However, this has been very difficult to prove genetically, as the E2 protein is involved in transcriptional regulation and initiation of replication, as well as its assumed role in genome maintenance. This makes mutational analysis of viral trans factors and cis elements in the background of the viral genome problematic and difficult to interpret. To circumvent this problem, we have developed a complementation assay in which the complete wild-type HPV18 genome is transfected into primary human keratinocytes along with subgenomic or mutated replicons that contain the minimal replication origin. The wild-type genome provides the E1 and E2 proteins in trans, allowing us to determine additional cis elements that are required for long-term replication and partitioning of the replicon. We found that, in addition to the core replication origin (and the three E2 binding sites located therein), additional sequences from the transcriptional enhancer portion of the URR (upstream regulatory region) are required in cis for long-term genome replication. PMID:29162712

  12. Extraribosomal L13a Is a Specific Innate Immune Factor for Antiviral Defense

    PubMed Central

    Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina

    2014-01-01

    ABSTRACT We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3′untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released from the large ribosomal subunit soon after infection and inhibits the translation of a specific viral mRNA, namely, that of the matrix protein M. Regarding its mechanism, we show that the recognition of a specific secondary structure in the 3′ untranslated region of the M mRNA leads to translational arrest of the mRNA. We also show that the level of M protein in the infected cell is rate limiting for viral morphogenesis, providing a rationale for L13a to target the M mRNA for suppression of RSV growth. Translational silencing of a viral mRNA by a deployed ribosomal protein is a new paradigm in innate immunity. PMID:24899178

  13. Extraribosomal l13a is a specific innate immune factor for antiviral defense.

    PubMed

    Mazumder, Barsanjit; Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina; Barik, Sailen

    2014-08-01

    We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released from the large ribosomal subunit soon after infection and inhibits the translation of a specific viral mRNA, namely, that of the matrix protein M. Regarding its mechanism, we show that the recognition of a specific secondary structure in the 3' untranslated region of the M mRNA leads to translational arrest of the mRNA. We also show that the level of M protein in the infected cell is rate limiting for viral morphogenesis, providing a rationale for L13a to target the M mRNA for suppression of RSV growth. Translational silencing of a viral mRNA by a deployed ribosomal protein is a new paradigm in innate immunity. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons

    PubMed Central

    2018-01-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  15. RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

    PubMed Central

    Bish, Rebecca; Vogel, Christine

    2014-01-01

    Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma. PMID:24608801

  16. Distant sequences determine 5′ end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24

    PubMed Central

    Forner, Joachim; Weber, Bärbel; Wiethölter, Caterina; Meyer, Rhonda C.; Binder, Stefan

    2005-01-01

    The genomic environments and the transcripts of the mitochondrial cox3 gene are investigated in three Arabidopsis thaliana ecotypes. While the proximate 5′ sequences up to nucleotide position −584, the coding regions and the 3′ flanking regions are identical in Columbia (Col), C24 and Landsberg erecta (Ler), genomic variation is detected in regions further upstream. In the mitochondrial DNA of Col, a 1790 bp fragment flanked by a nonanucleotide direct repeat is present beyond position −584 with respect to the ATG. While in Ler only part of this insertion is conserved, this sequence is completely absent in C24, except for a single copy of the nonanucleotide direct repeat. Northern hybridization reveals identical major transcripts in the three ecotypes, but identifies an additional abundant 60 nt larger mRNA species in C24. The extremities of the most abundant mRNA species are identical in the three ecotypes. In C24, an extra major 5′ end is abundant. This terminus and the other major 5′ ends are located in identical sequence regions. Inspection of Atcox3 transcripts in C24/Col hybrids revealed a female inheritance of the mRNA species with the extra 5′ terminus. Thus, a mitochondrially encoded factor determines the generation of an extra 5′ mRNA end. PMID:16107557

  17. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3' untranslated region

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Fox, P. L.

    1999-01-01

    Ceruloplasmin (Cp) is an acute-phase protein with ferroxidase, amine oxidase, and pro- and antioxidant activities. The primary site of Cp synthesis in human adults is the liver, but it is also synthesized by cells of monocytic origin. We have shown that gamma interferon (IFN-gamma) induces the synthesis of Cp mRNA and protein in monocytic cells. We now report that the induced synthesis of Cp is terminated by a mechanism involving transcript-specific translational repression. Cp protein synthesis in U937 cells ceased after 16 h even in the presence of abundant Cp mRNA. RNA isolated from cells treated with IFN-gamma for 24 h exhibited a high in vitro translation rate, suggesting that the transcript was not defective. Ribosomal association of Cp mRNA was examined by sucrose centrifugation. When Cp synthesis was high, i.e., after 8 h of IFN-gamma treatment, Cp mRNA was primarily associated with polyribosomes. However, after 24 h, when Cp synthesis was low, Cp mRNA was primarily in the nonpolyribosomal fraction. Cytosolic extracts from cells treated with IFN-gamma for 24 h, but not for 8 h, contained a factor which blocked in vitro Cp translation. Inhibitor expression was cell type specific and present in extracts of human cells of myeloid origin, but not in several nonmyeloid cells. The inhibitory factor bound to the 3' untranslated region (3'-UTR) of Cp mRNA, as shown by restoration of in vitro translation by synthetic 3'-UTR added as a "decoy" and detection of a binding complex by RNA gel shift analysis. Deletion mapping of the Cp 3'-UTR indicated an internal 100-nucleotide region of the Cp 3'-UTR that was required for complex formation as well as for silencing of translation. Although transcript-specific translational control is common during development and differentiation and global translational control occurs during responses to cytokines and stress, to our knowledge, this is the first report of translational silencing of a specific transcript following cytokine activation.

  18. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.

    PubMed

    Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric

    2015-10-01

    The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.

  19. UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii.

    PubMed

    Serpeloni, Mariana; Jiménez-Ruiz, Elena; Vidal, Newton Medeiros; Kroeber, Constanze; Andenmatten, Nicole; Lemgruber, Leandro; Mörking, Patricia; Pall, Gurman S; Meissner, Markus; Ávila, Andréa R

    2016-11-01

    Nucleo-cytoplasmic RNA export is an essential post-transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  20. UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii

    PubMed Central

    Serpeloni, Mariana; Jiménez‐Ruiz, Elena; Vidal, Newton Medeiros; Kroeber, Constanze; Andenmatten, Nicole; Lemgruber, Leandro; Mörking, Patricia; Pall, Gurman S.

    2016-01-01

    Summary Nucleo‐cytoplasmic RNA export is an essential post‐transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans. PMID:27542978

Top