Sample records for viral pathogens including

  1. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy.

    PubMed

    To, Eunice E; Vlahos, Ross; Luong, Raymond; Halls, Michelle L; Reading, Patrick C; King, Paul T; Chan, Christopher; Drummond, Grant R; Sobey, Christopher G; Broughton, Brad R S; Starkey, Malcolm R; van der Sluis, Renee; Lewin, Sharon R; Bozinovski, Steven; O'Neill, Luke A J; Quach, Tim; Porter, Christopher J H; Brooks, Doug A; O'Leary, John J; Selemidis, Stavros

    2017-07-12

    The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.

  2. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    PubMed

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  3. Correlations between Microbial Indicators, Pathogens, and Environmental Factors in a Subtropical Estuary

    PubMed Central

    Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.

    2009-01-01

    The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704

  4. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    PubMed

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  5. Viral pathogen discovery

    PubMed Central

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  6. Hepatitis C virus and antiviral innate immunity: who wins at tug-of-war?

    PubMed

    Yang, Da-Rong; Zhu, Hai-Zhen

    2015-04-07

    Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.

  7. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  8. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  9. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  10. Paramyxovirus fusion and entry: multiple paths to a common end.

    PubMed

    Chang, Andres; Dutch, Rebecca E

    2012-04-01

    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens.

  11. Viral evasion of intracellular DNA and RNA sensing

    PubMed Central

    Chan, Ying Kai; Gack, Michaela U.

    2016-01-01

    The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP–AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals. PMID:27174148

  12. Marine Viral Pathogens.

    DTIC Science & Technology

    1998-05-13

    coccolithophorid Emiliania huxleyi. Experiments are continuing to determine whether the pathogens are viral. We have continued the development of PCR primers... Emiliania huxleyi; further work will be required to determine if the pathogen is viral. We have also continued methodological work to improve our ability

  13. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent

    PubMed Central

    Li, Linlin; Deng, Xutao; Mee, Edward T.; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D.; Delwart, Eric

    2014-01-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries on the efficiency of viral detection and virus genome coverage were compared. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces. PMID:25497414

  14. DISINFECTION

    EPA Science Inventory

    The primary goal of the disinfection process in drinking water treatment is the inactivation of microbial pathogens. These pathogens comprise a diverse group of organisms which serve as the etiological agents of waterborne disease. Included in this group are bacterial, viral and ...

  15. Adenovirus type 4 respiratory infections with a concurrent outbreak of coxsackievirus A21 among United States Army Basic Trainees, a retrospective viral etiology study using next-generation sequencing.

    PubMed

    Hang, Jun; Vento, Todd J; Norby, Erica A; Jarman, Richard G; Keiser, Paul B; Kuschner, Robert A; Binn, Leonard N

    2017-08-01

    Human adenoviruses (HAdV), in particular types 4 and 7, frequently cause acute respiratory disease (ARD) during basic military training. HAdV4 and HAdV7 vaccines reduced the ARD risk in U.S. military. It is important to identify other respiratory pathogens and assess their potential impact on military readiness. In 2002, during a period when the HAdV vaccines were not available, throat swabs were taken from trainees (n = 184) with respiratory infections at Fort Jackson, South Carolina. Viral etiology was investigated initially with viral culture and neutralization assay and recently in this study by sequencing the viral isolates. Viral culture and neutralization assays identified 90 HAdV4 isolates and 27 additional cultures that showed viral cytopathic effects (CPE), including some with picornavirus-like CPE. Next-generation sequencing confirmed these results and determined viral genotypes, including 77 HAdV4, 4 HAdV3, 1 HAdV2, 17 coxsackievirus A21 (CAV21), and 1 enterovirus D68. Two samples were positive for both HAdV4 and CAV21. The identified genotypes are phylogenetically close to but distinct from those found during other years or in other military/non-military sites. HAdV4 is the predominant respiratory pathogen in unvaccinated military trainee. HAdV4 has temporal and demographic variability. CAV21 is a significant respiratory pathogen and needs to be evaluated for its current significance in military basic trainees. © 2017 Wiley Periodicals, Inc.

  16. ADEQUACY OF DISINFECTION FOR CONTROL OF NEWLY RECOGNIZED WATERBORNE PATHOGENS

    EPA Science Inventory

    Agents recently recognized as causes or potential causes of waterborne outbreaks include pathogenic bacteria (Campylobacter jejuni, Yersinia enterocoliticia), viruses (rotavirus, Norwalk virus and other poorly defined viral agents) and Giardia lamblia, a protozoan agent. Although...

  17. Dual role of commensal bacteria in viral infections

    PubMed Central

    Wilks, Jessica; Beilinson, Helen; Golovkina, Tatyana V.

    2013-01-01

    Summary With our capabilities to culture and sequence the commensal bacteria that dwell on and within a host, we can now study the host in its entirety, as a supraorganism that must be navigated by the pathogen invader. At present, the majority of studies have focused on the interaction between the host’s microbiota and bacterial pathogens. This is not unwarranted, given that bacterial pathogens must compete with commensal organisms for the limited territory afforded by the host. However, viral pathogens also enter the host through surfaces coated with microbial life and encounter an immune system shaped by this symbiotic community. Therefore, we believe the microbiota cannot be ignored when examining the interplay between the host and viral pathogens. Here we review work that details mechanisms by which the microbiota either promotes or inhibits viral replication and virally-induced pathogenesis. The impact of the microbitota on viral infection promises to be a new and exciting avenue of investigation, which will ultimately lead to better treatments and preventions of virally-induced diseases. PMID:23947358

  18. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  19. Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development

    PubMed Central

    Delwart, Eric

    2012-01-01

    The characterization of viral genomes has accelerated due to improvement in DNA sequencing technology. Sources of animal samples and molecular methods for the identification of novel viral pathogens and steps to determine their pathogenicity are listed. The difficulties for predicting future cross-species transmissions are highlighted by the wide diversity of known viral zoonoses. Recent surveys of viruses in wild and domesticated animals have characterized numerous viruses including some closely related to those infecting humans. The detection of multiple genetic lineages within viral families infecting a single host species, phylogenetically interspersed with viruses found in other host species, reflects frequent past cross-species transmissions. Numerous opportunities for the generation of novel vaccines will arise from a better understanding of animal viromes. PMID:22463981

  20. Molecular approaches to detecting and discriminating among prions, a class of pathogenic molecules(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...

  1. Paramyxovirus Fusion and Entry: Multiple Paths to a Common End

    PubMed Central

    Chang, Andres; Dutch, Rebecca E.

    2012-01-01

    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens. PMID:22590688

  2. Molecular basis of viral and microbial pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, R.; Goebel, W.

    1988-01-01

    The contents of this book are: Correlation Between Viroid Structure and Pathogenicty; Antigenicity of the Influenza Haemagglutinia Membrane Glycoprotein; Viral Glycoproteins as Determinants of Pathogenicity; Virus Genes Involved in Host Range and Pathogenicity; Molecular Heterogenetiy of Pathogenic Herpus Viruses; Recombination of Foreign (Viral) DNA with Host Genome: Studies in Vivo and in a Cell-Free system; Disorders of Cellular Neuro-Functions by Persistent Viral Infection; Pathogenic Aspects of Measles Virus-Persistent Infections in Man; Analysis of the Dual Lineage Specificity of E26 Avian Leukemia Virus; Mx Gene Control of Influenza Virus Susceptibility; Shiga and Shika-Like Toxins: A Family of Related Cytokinons; and Molecularmore » Mechanisms of Pathogenicity in Shigella Flexneri.« less

  3. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    PubMed

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N1 strain currently circulating in naturally infected poultry in Egypt, which may provide unique insights into the viral pathogenesis in HPAIV-infected chickens and ducks.

  5. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  6. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3.

    PubMed

    Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2017-06-01

    The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. Copyright © 2017 Yoshikawa et al.

  7. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3

    PubMed Central

    Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio

    2017-01-01

    ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. PMID:28331087

  8. Characterizing Virus Decay in Environmental Freshwater Habitats

    EPA Science Inventory

    Recreational water quality is typically assessed using fecal indicator bacteria (FIB), however, FIB are inadequate surrogates for the viral pathogens. Bacteriophage share similar morphologies to viral pathogens allowing closer representation of viral behavior, making their inclu...

  9. Spectrum of Viral Pathogens in Blood of Malaria-Free Ill Travelers Returning to Canada.

    PubMed

    Kariyawasam, Ruwandi; Lau, Rachel; Eshaghi, Alireza; Patel, Samir N; Sider, Doug; Gubbay, Jonathan B; Boggild, Andrea K

    2016-05-01

    Malaria is the most common specific cause of fever in returning travelers, but many other vectorborne infections and viral infections are emerging and increasingly encountered by travelers. We documented common and emerging viral pathogens in malaria-negative specimens from ill travelers returning to Canada. Anonymized, malaria-negative specimens were examined for various viral pathogens by real-time PCR. Samples were positive for herpes simplex viruses 1 or 2 (n = 21, 1.6%), cytomegalovirus (n = 4, 0.3%), Epstein-Barr virus (n = 194, 14.9%), dengue virus types 1-4 (n = 27, 2.1%), chikungunya virus (n = 5, 0.4%), and hepatitis A virus (n = 12, 0.9%). Travel-acquired viral pathogens were documented in >20% of malaria-negative specimens, of which 2.5% were infected with dengue and chikungunya viruses. Our findings support the anecdotal impression that these vectorborne pathogens are emerging among persons who travel from Canada to other countries.

  10. Etiological analysis and predictive diagnostic model building of community-acquired pneumonia in adult outpatients in Beijing, China.

    PubMed

    Liu, Ya-Fen; Gao, Yan; Chen, Mei-Fang; Cao, Bin; Yang, Xiao-Hua; Wei, Lai

    2013-07-09

    Etiological epidemiology and diagnosis are important issues in adult community-acquired pneumonia (CAP), and identifying pathogens based on patient clinical features is especially a challenge. CAP-associated main pathogens in adults include viruses as well as bacteria. However, large-scale epidemiological investigations of adult viral CAP in China are still lacking. In this study, we analyzed the etiology of adult CAP in Beijing, China and constructed diagnostic models based on combinations of patient clinical factors. A multicenter cohort was established with 500 adult CAP outpatients enrolled in Beijing between November 2010 to October 2011. Multiplex and quantitative real-time fluorescence PCR were used to detect 15 respiratory viruses and mycoplasma pneumoniae, respectively. Bacteria were detected with culture and enzyme immunoassay of the Streptococcus pneumoniae urinary antigen. Univariate analysis, multivariate analysis, discriminatory analysis and Receiver Operating Characteristic (ROC) curves were used to build predictive models for etiological diagnosis of adult CAP. Pathogens were detected in 54.2% (271/500) of study patients. Viruses accounted for 36.4% (182/500), mycoplasma pneumoniae for 18.0% (90/500) and bacteria for 14.4% (72/500) of the cases. In 182 of the patients with viruses, 219 virus strains were detected, including 166 single and 53 mixed viral infections. Influenza A virus represented the greatest proportion with 42.0% (92/219) and 9.1% (20/219) in single and mixed viral infections, respectively. Factors selected for the predictive etiological diagnostic model of viral CAP included cough, dyspnea, absence of chest pain and white blood cell count (4.0-10.0) × 10(9)/L, and those of mycoplasma pneumoniae CAP were being younger than 45 years old and the absence of a coexisting disease. However, these models showed low accuracy levels for etiological diagnosis (areas under ROC curve for virus and mycoplasma pneumoniae were both 0.61, P < 0.05). Greater consideration should be given to viral and mycoplasma pneumoniae infections in adult CAP outpatients. While predictive etiological diagnostic models of viral and mycoplasma pneumoniae based on combinations of demographic and clinical factors may provide indications of etiology, diagnostic confirmation of CAP remains dependent on laboratory pathogen test results.

  11. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.

    PubMed

    Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan

    2018-06-22

    Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.

  12. Lactoferrin for prevention of common viral infections.

    PubMed

    Wakabayashi, Hiroyuki; Oda, Hirotsugu; Yamauchi, Koji; Abe, Fumiaki

    2014-11-01

    Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  14. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs.

    PubMed

    Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya

    2018-05-31

    Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.

  15. Bovine viral diarrhea viruses (BVDV) and their cousins the HoBi-like viruses: Multi symptom, multi host, multi tasking pathogens

    USDA-ARS?s Scientific Manuscript database

    The term bovine viral diarrhea (BVD) has come to refer to a diverse collection of clinical presentations that include respiratory, enteric and reproductive symptoms accompanied by immunosuppression. While the majority of cases are subclinical in nature two forms exist, mucosal disease and hemorrhag...

  16. DEVELOPMENT OF A BIOMARKER SYSTEM FOR DETECTING EXPOSURE TO WATERBORNE VIRAL PATHOGENS

    EPA Science Inventory

    EPA has published a drinking water contaminant candidate list (CCL) that includes waterborne pathogens and chemicals that may be considered for regulation at a future date. For each contaminant on the CCL, the Agency will need sufficient data to conduct analyses on the extent of...

  17. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  18. Membrane rafts in host-pathogen interactions.

    PubMed

    Riethmüller, Joachim; Riehle, Andrea; Grassmé, Heike; Gulbins, Erich

    2006-12-01

    Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.

  19. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    PubMed Central

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  20. Viral entry mechanisms: the increasing diversity of paramyxovirus entry

    PubMed Central

    Smith, Everett Clinton; Popa, Andreea; Chang, Andres; Masante, Cyril; Dutch, Rebecca Ellis

    2009-01-01

    The paramyxovirus family contains established human pathogens such as measles virus and human respiratory syncytial virus, and emerging pathogens including the Hendra and Nipah viruses and the recently identified human metapneumovirus. Two major envelope glycoproteins, the attachment protein and the fusion protein, promote the processes of viral attachment and virus-cell membrane fusion required for entry. While common mechanisms of fusion protein proteolytic activation and the mechanism of membrane fusion promotion have been shown in recent years, considerable diversity exists in the family related to receptor binding and the potential mechanisms of fusion triggering. PMID:19878307

  1. From orphan virus to pathogen: the path to the clinical lab.

    PubMed

    Li, Linlin; Delwart, Eric

    2011-10-01

    Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.

  2. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  3. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE PAGES

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.; ...

    2014-01-01

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  4. The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway

    PubMed Central

    Arnold, Michelle M.; Sen, Adrish; Greenberg, Harry B.; Patton, John T.

    2013-01-01

    Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses. PMID:23359266

  5. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    PubMed

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  6. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    PubMed Central

    2011-01-01

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus. PMID:21314907

  7. Identification of conserved amino acid substitutions during serial infection of pregnant cattle and sheep with bovine viral diarrhea virus

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that can also infect a wide range of domestic and wild species including sheep, goats, deer, camelids, and pigs. BVDV isolates are genetically highly diverse and previous work demonstrated that greater numbers of gene...

  8. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  9. Viruses and kidney disease: beyond HIV.

    PubMed

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B

    2008-11-01

    Human immunodeficiency virus (HIV)-infected patients may acquire new viral co-infections; they also may experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections owing to immunodeficiency or risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA.

  10. Viruses & kidney disease: beyond HIV

    PubMed Central

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA. PMID:19013331

  11. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    PubMed

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  12. Birds Shed RNA-Viruses According to the Pareto Principle

    PubMed Central

    Jankowski, Mark D.; Williams, Christopher J.; Fair, Jeanne M.; Owen, Jennifer C.

    2013-01-01

    A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) – pathogen (RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0% (0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics. PMID:23991129

  13. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses

    PubMed Central

    Lee, Jinhwa; Yu, Hai; Li, Yonghai; Ma, Jingjiao; Lang, Yuekun; Duff, Michael; Henningson, Jamie; Liu, Qinfang; Li, Yuhao; Nagy, Abdou; Bawa, Bhupinder; Li, Zejun; Tong, Guangzhi; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses. PMID:28142079

  14. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    PubMed

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    USDA-ARS?s Scientific Manuscript database

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  16. Metagenomic Survey for Viruses in Western Arctic Caribou, Alaska, through Iterative Assembly of Taxonomic Units

    PubMed Central

    Schürch, Anita C.; Schipper, Debby; Bijl, Maarten A.; Dau, Jim; Beckmen, Kimberlee B.; Schapendonk, Claudia M. E.; Raj, V. Stalin; Osterhaus, Albert D. M. E.; Haagmans, Bart L.; Tryland, Morten; Smits, Saskia L.

    2014-01-01

    Pathogen surveillance in animals does not provide a sufficient level of vigilance because it is generally confined to surveillance of pathogens with known economic impact in domestic animals and practically nonexistent in wildlife species. As most (re-)emerging viral infections originate from animal sources, it is important to obtain insight into viral pathogens present in the wildlife reservoir from a public health perspective. When monitoring living, free-ranging wildlife for viruses, sample collection can be challenging and availability of nucleic acids isolated from samples is often limited. The development of viral metagenomics platforms allows a more comprehensive inventory of viruses present in wildlife. We report a metagenomic viral survey of the Western Arctic herd of barren ground caribou (Rangifer tarandus granti) in Alaska, USA. The presence of mammalian viruses in eye and nose swabs of 39 free-ranging caribou was investigated by random amplification combined with a metagenomic analysis approach that applied exhaustive iterative assembly of sequencing results to define taxonomic units of each metagenome. Through homology search methods we identified the presence of several mammalian viruses, including different papillomaviruses, a novel parvovirus, polyomavirus, and a virus that potentially represents a member of a novel genus in the family Coronaviridae. PMID:25140520

  17. Acute bacterial and viral meningitis.

    PubMed

    Bartt, Russell

    2012-12-01

    Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.

  18. A unified method to process biosolids samples for the recovery of bacterial, viral, and helminths pathogens.

    PubMed

    Alum, Absar; Rock, Channah; Abbaszadegan, Morteza

    2014-01-01

    For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.

  19. Pathogen Presence in European Starlings Inhabiting Commercial Piggeries in South Australia.

    PubMed

    Pearson, Hayley E; Lapidge, Steven J; Hernández-Jover, Marta; Toribio, Jenny-Ann L M L

    2016-06-01

    The majority of bacterial diarrhea-causing illnesses in domestic pigs result from infection with Escherichia coli, Salmonella spp., or Campylobacter spp. These bacterial enteropathogens also correspond with the most-common bacteria isolated from wild birds. Additionally, viral pathogens such as avian influenza virus (AIV), West Nile virus (WNV, including Kunjin disease), and Newcastle disease virus (NDV) may also be carried and transmitted by birds in Australia. Introduced European starlings (Sturnus vulgarus) are one of the most-frequently reported birds on piggeries in Australia. The presence of the three bacterial pathogens, Salmonella spp., Campylobacter spp., and Escherichia coli , as well as the three viral pathogens AIV, WNV, and NDV, were evaluated in starlings captured on four commercial piggeries in South Australia. A total of 473 starlings were captured on the four piggeries in 2008 and 2009. A cloacal swab was taken from each bird and cultured for bacterial identification, with follow-up serotyping of any positives, whilst fifty samples were analyzed by PCR for the three target viral pathogens. There was no AIV, WNV, or NDV detected in the 50 starlings sampled. Escherichia coli was found to be present in the starling populations on all four piggeries whilst Salmonella spp. and Campylobacter jejuni were found to be present only in the starling population sampled on one piggery. Serotyping identified pig-pathogenic strains of the bacteria. The prevalence of these production-limiting bacterial pathogens in starlings, coupled with the large starling populations often found inside piggeries during daylight hours in the summer months, presents a disease transmission risk and jeopardizes piggery disease management. Removal of starlings from agricultural enterprises (as shown by international studies), or prevention of starling access to animal feed and water, could substantially reduce the risk of transmission of enterobacterial pathogens from starlings to livestock.

  20. Respiratory syncytial virus and influenza are the key viral pathogens in children <2 years hospitalized with bronchiolitis and pneumonia in Islamabad Pakistan.

    PubMed

    Bashir, Uzma; Nisar, Nadia; Arshad, Yasir; Alam, Muhammad Masroor; Ashraf, Asiya; Sadia, Hajra; Kazi, Birjees Mazher; Zaidi, Syed Sohail Zahoor

    2017-03-01

    Pneumonia remains a leading cause of morbidity and mortality in developing countries. Comprehensive surveillance data are needed to review the prevention and control strategies. We conducted active surveillance of acute lower respiratory infections among children aged <2 years hospitalized at two hospitals of Islamabad, Pakistan. Viral etiology was determined using real-time PCR on respiratory specimens collected during March 2011-April 2012. The overall mean age was 7.83 ± 5.25 months while no statistical difference between age or sex distribution of patients with positive and negative viral etiology (p > 0.05). The average weight of the study group was 6.1 ± 2.25 kg. ≥1 viral pathogens were detected in 75% cases. Major respiratory viruses included RSV-A: 44%, RSV-B: 23%, Influenza-A: 24.5%, Influenza-B: 7%, Adenovirus: 8.4% and HmPV: 5.2%. A single, dual or multiple viral pathogens were detected in 43%, 27% and 5.2% patients respectively. Common symptoms were cough (95%), apnoea (84%), fever (78%), wheeze (64.5%), nasal congestion (55%) and rhinorrhea (48%). Among the RSV positive cases, 2-6 months age group had highest detection rate for RSV-A (30%, n = 21/69) and RSV-B (20%, n = 14/69) while patients infected with Influenza-A were in 2.1-6 months age group (61%, 23/38). Statistically significant difference was observed between RSV-positive and negative cases for nutrition status (p = 0.001), cigarette/wood smoke exposure (p = 0.001) and concomitant clinical findings. Most patients had successful outcome on combination therapy with bronchodilators, inhaled steroids and antibiotics. Our findings underscore high burden of ALRI in Pakistan. Interventions targeting viral pathogens coupled with improved diagnostic approaches are critical for better prevention and control.

  1. Passive immunization against highly pathogenic Avian Influenza Virus (AIV) strain H7N3 with antiserum generated from viral polypeptides protect poultry birds from lethal viral infection

    PubMed Central

    Shahzad, Mirza Imran; Naeem, Khalid; Mukhtar, Muhammad; Khanum, Azra

    2008-01-01

    Our studies were aimed at developing a vaccination strategy that could provide protection against highly pathogenic avian influenza virus (AIV), H7N3 or its variants outbreaks. A purified viral stock of highly pathogenic H7N3 isolate was lysed to isolate viral proteins by electrophresing on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by their elution from gel through trituration in phosphate buffered saline (PBS). Overall, five isolated viral polypeptides/proteins upon characterization were used to prepare hyperimmune monovalent serum against respective polypeptides independently and a mixture of all five in poultry birds, and specificity confirmation of each antiserum through dot blot and Western blotting. Antiserum generated from various group birds was pooled and evaluated in 2-week old broiler chicken, for its protection against viral challenge. To evaluate in-vivo protection of each antiserum against viral challenges, six groups of 2-week old broiler chicken were injected with antiserum and a seventh control group received normal saline. Each group was exposed to purified highly pathogenic AIV H7N3 strain at a dose 105 embryo lethal dose (ELD50). We observed that nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity, mortality and lowered viral shedding compared with antiserum from individual viral proteins or mixed polypeptides/proteins inclusive of NP component. The capability of individual viral polypeptide specific antisera to protect against viral challenges in decreasing order was nucleoprotein (NP) > hemagglutinin (HA) > neuraminidase (NA) > viral proteins mix > viral polymerase (PM) > non-structural proteins (NS). Our data provide proof of concept for potential utilization of passive immunization in protecting poultry industry during infection outbreaks. Furthermore conserved nature of avian NP makes it an ideal candidate to produce antiserum protective against viral infection. PMID:19040734

  2. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012-2013.

    PubMed

    Grytdal, Scott P; DeBess, Emilio; Lee, Lore E; Blythe, David; Ryan, Patricia; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D; Hall, Aron J

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children <5 years of age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person-years). Outpatient incidence rates of rotavirus, sapovirus, and astrovirus were 2.0, 1.6, 0.6 per 1,000 person-years, respectively; community incidence rates for these viruses were 23.4, 22.5, and 8.5 per 1,000 person-years, respectively. This study provides the first age-group specific laboratory-based community and outpatient incidence rates for norovirus AGE in the U.S. Norovirus was the most frequently detected viral enteropathogen across the age spectrum with the highest rates of norovirus disease observed among young children and, to a lesser extent, the elderly. These data provide a better understanding of the norovirus disease burden in the United States, including variations within different age groups, which can help inform the development, targeting, and future impacts of interventions, including vaccines.

  3. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012–2013

    PubMed Central

    Grytdal, Scott P.; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D.; Hall, Aron J.

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0–98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children <5 years of age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person-years). Outpatient incidence rates of rotavirus, sapovirus, and astrovirus were 2.0, 1.6, 0.6 per 1,000 person-years, respectively; community incidence rates for these viruses were 23.4, 22.5, and 8.5 per 1,000 person-years, respectively. This study provides the first age-group specific laboratory-based community and outpatient incidence rates for norovirus AGE in the U.S. Norovirus was the most frequently detected viral enteropathogen across the age spectrum with the highest rates of norovirus disease observed among young children and, to a lesser extent, the elderly. These data provide a better understanding of the norovirus disease burden in the United States, including variations within different age groups, which can help inform the development, targeting, and future impacts of interventions, including vaccines. PMID:27115485

  4. Leafhopper viral pathogens

    USDA-ARS?s Scientific Manuscript database

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  5. Mechanisms of pathogenesis of emerging adenoviruses.

    PubMed

    Cook, James; Radke, Jay

    2017-01-01

    Periodic outbreaks of human adenovirus infections can cause severe illness in people with no known predisposing conditions. The reasons for this increased viral pathogenicity are uncertain. Adenoviruses are constantly undergoing mutation during circulation in the human population, but related phenotypic changes of the viruses are rarely detected because of the infrequency of such outbreaks and the limited biological studies of the emergent strains. Mutations and genetic recombinations have been identified in these new strains. However, the linkage between these genetic changes and increased pathogenicity is poorly understood. It has been observed recently that differences in virus-induced immunopathogenesis can be associated with altered expression of non-mutant viral genes associated with changes in viral modulation of the host innate immune response. Initial small animal studies indicate that these changes in viral gene expression can be associated with enhanced immunopathogenesis in vivo . Available evidence suggests the hypothesis that there is a critical threshold of expression of certain viral genes that determines both the sustainability of viral transmission in the human population and the enhancement of immunopathogenesis. Studies of this possibility will require extension of the analysis of outbreak viral strains from a sequencing-based focus to biological studies of relationships between viral gene expression and pathogenic responses. Advances in this area will require increased coordination among public health organizations, diagnostic microbiology laboratories, and research laboratories to identify, catalog, and systematically study differences between prototype and emergent viral strains that explain the increased pathogenicity that can occur during clinical outbreaks.

  6. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity

    PubMed Central

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Abstract Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. PMID:29029206

  7. Strategies to induce broadly protective antibody responses to viral glycoproteins.

    PubMed

    Krammer, F

    2017-05-01

    Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.

  8. BIOMARKERS OF VIRAL EXPOSURE

    EPA Science Inventory

    Viral and protozoan pathogens associated with raw sludge can cause encephalitis, gastroenteritis, hepatitis, myocarditis, and a number of other diseases. Raw sludge that has been treated to reduce these pathogens can be used for land application according to the regulations spec...

  9. Myocarditis.

    PubMed

    Fung, Gabriel; Luo, Honglin; Qiu, Ye; Yang, Decheng; McManus, Bruce

    2016-02-05

    Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention. © 2016 American Heart Association, Inc.

  10. Dengue Virus Genome Uncoating Requires Ubiquitination

    PubMed Central

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  11. Norovirus

    PubMed Central

    Robilotti, Elizabeth; Deresinski, Stan

    2015-01-01

    SUMMARY Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management. PMID:25567225

  12. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries.

    PubMed

    Drew, Victor J; Barro, Lassina; Seghatchian, Jerard; Burnouf, Thierry

    2017-10-01

    Over 110 million units of blood are collected yearly. The need for blood products is greater in developing countries, but so is the risk of contracting a transfusion-transmitted infection. Without efficient donor screening/viral testing and validated pathogen inactivation technology, the risk of transfusion-transmitted infections correlates with the infection rate of the donor population. The World Health Organization has published guidelines on good manufacturing practices in an effort to ensure a strong global standard of transfusion and blood product safety. Sub-Saharan Africa is a high-risk region for malaria, human immunodeficiency virus (HIV), hepatitis B virus and syphilis. Southeast Asia experiences high rates of hepatitis C virus. Areas with a tropical climate have an increased risk of Zika virus, Dengue virus, West Nile virus and Chikungunya, and impoverished countries face economical limitations which hinder efforts to acquire the most modern pathogen inactivation technology. These systems include Mirasol ® Pathogen Reduction Technology, INTERCEPT ® , and THERAFLEX ® . Their procedures use a chemical and ultraviolet or visible light for pathogen inactivation and significantly decrease the threat of pathogen transmission in plasma and platelets. They are licensed for use in Europe and are used in several other countries. The current interest in the blood industry is the development of pathogen inactivation technologies that can treat whole blood (WB) and red blood cell (RBC). The Mirasol system has recently undergone phase III clinical trials for treating WB in Ghana and has demonstrated some efficacy toward malaria inactivation and low risk of adverse effects. A 2 nd -generation of the INTERCEPT ® S-303 system for WB is currently undergoing a phase III clinical trial. Both methodologies are applicable for WB and components derived from virally reduced WB or RBC.

  13. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries

    PubMed Central

    Drew, Victor J.; Barro, Lassina; Seghatchian, Jerard; Burnouf, Thierry

    2017-01-01

    Over 110 million units of blood are collected yearly. The need for blood products is greater in developing countries, but so is the risk of contracting a transfusion-transmitted infection. Without efficient donor screening/viral testing and validated pathogen inactivation technology, the risk of transfusion-transmitted infections correlates with the infection rate of the donor population. The World Health Organization has published guidelines on good manufacturing practices in an effort to ensure a strong global standard of transfusion and blood product safety. Sub-Saharan Africa is a high-risk region for malaria, human immunodeficiency virus (HIV), hepatitis B virus and syphilis. Southeast Asia experiences high rates of hepatitis C virus. Areas with a tropical climate have an increased risk of Zika virus, Dengue virus, West Nile virus and Chikungunya, and impoverished countries face economical limitations which hinder efforts to acquire the most modern pathogen inactivation technology. These systems include Mirasol® Pathogen Reduction Technology, INTERCEPT®, and THERAFLEX®. Their procedures use a chemical and ultraviolet or visible light for pathogen inactivation and significantly decrease the threat of pathogen transmission in plasma and platelets. They are licensed for use in Europe and are used in several other countries. The current interest in the blood industry is the development of pathogen inactivation technologies that can treat whole blood (WB) and red blood cell (RBC). The Mirasol system has recently undergone phase III clinical trials for treating WB in Ghana and has demonstrated some efficacy toward malaria inactivation and low risk of adverse effects. A 2nd-generation of the INTERCEPT® S-303 system for WB is currently undergoing a phase III clinical trial. Both methodologies are applicable for WB and components derived from virally reduced WB or RBC. PMID:28488960

  14. Neutral Theory and Rapidly Evolving Viral Pathogens.

    PubMed

    Frost, Simon D W; Magalis, Brittany Rife; Kosakovsky Pond, Sergei L

    2018-06-01

    The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.

  15. Immune evasion by pathogens of bovine respiratory disease complex.

    PubMed

    Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna

    2007-12-01

    Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.

  16. Regulation of cell survival and death during Flavivirus infections

    PubMed Central

    Ghosh Roy, Sounak; Sadigh, Beata; Datan, Emmanuel; Lockshin, Richard A; Zakeri, Zahra

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic (Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause. PMID:24921001

  17. Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    PubMed Central

    2013-01-01

    Viral infections are important causes of morbidity and mortality after allogeneic stem cell hematopoietic transplantation (allo-HSCT). Although most viral infections present with asymptomatic or subclinical manifestations, viruses may result in fatal complications in severe immunocompromised recipients. Reactivation of latent viruses, such as herpesviruses, is frequent during the immunosuppression that occurs with allo-HSCT. Viruses acquired from community, such as the respiratory and gastrointestinal viruses, are also important pathogens of post-transplant viral diseases. Currently, molecular diagnostic methods have replaced or supplemented traditional methods, such as viral culture and antigen detection, in diagnosis of viral infections. The utilization of polymerase chain reaction facilitates the early diagnosis. In view of lacking efficacious agents for treatment of viral diseases, prevention of viral infections is extremely valuable. Application of prophylactic strategies including preemptive therapy reduces viral infections and diseases. Adoptive cellular therapy for restoring virus-specific immunity is a promising method in the treatment of viral diseases. PMID:24341630

  18. [Immunotherapy for refractory viral infections].

    PubMed

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  19. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  20. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  1. Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam

    PubMed Central

    Thi Ty Hang, Vu; Thi Han Ny, Nguyen; My Phuc, Tran; Thi Thanh Tam, Pham; Thao Huong, Dang; Dang Trung Nghia, Ho; Tran Anh Vu, Nguyen; Thi Hong Phuong, Pham; Van Xang, Nguyen; Dong, Nguyen; Nhu Hiep, Pham; Van Hung, Nguyen; Tinh Hien, Tran; Rabaa, Maia; Thwaites, Guy E.; Baker, Stephen; Van Tan, Le; van Doorn, H.Rogier

    2018-01-01

    Background: Acute respiratory infections (ARI) are among the leading causes of hospitalization in children ≤5 years old. Rapid diagnostics of viral pathogens is essential to avoid unnecessary antibiotic treatment, thereby slowing down antibiotic-resistance. We evaluated the diagnostic performance of the Luminex xTAG Respiratory Viral Panel FAST v2 against viral specific PCR as reference assays for ARI in Vietnam. Methods: Four hundred and forty two nose and throat swabs were collected in viral transport medium, and were tested with Luminex xTAG Respiratory Viral Panel FAST v2. Multiplex RT-PCR and single RT-PCR were used as references.    Results: Overall, sensitivity of the Luminex against reference assays was 91.8%, 95% CI 88.1-94.7 (270/294), whilst 112/6336 (1.8%, 95% CI, 1.4-2.1) of pathogens were detected by the Luminex, but not by reference assays. Frequency of pathogens detected by Luminex and reference assays was 379 and 292, respectively. The diagnostic yield was 66.7% (295/442, 95%CI 62.1-71.1%) for the Luminex assay and 54.1% (239/442, 95% CI, 49.3-58.8%) for reference assays. The Luminex kit had higher yields for all viruses except influenza B virus, respiratory syncytial virus, and human bocavirus. High agreements between both methods [mean (range): 0.91 (0.83-1.00)] were found for 10/15 viral agents. Conclusions: The Luminex assay is a high throughput multiplex platform for rapid detection of common viral pathogens causing ARI. Although the current high cost may prevent Luminex assays from being widely used, especially in limited resource settings where ARI are felt most, its introduction in clinical diagnostics may help reduce unnecessary use of antibiotic prescription. PMID:29503874

  2. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. The Naval Health Research Center Respiratory Disease Laboratory.

    PubMed

    Ryan, M; Gray, G; Hawksworth, A; Malasig, M; Hudspeth, M; Poddar, S

    2000-07-01

    Concern about emerging and reemerging respiratory pathogens prompted the development of a respiratory disease reference laboratory at the Naval Health Research Center. Professionals working in this laboratory have instituted population-based surveillance for pathogens that affect military trainees and responded to threats of increased respiratory disease among high-risk military groups. Capabilities of this laboratory that are unique within the Department of Defense include adenovirus testing by viral shell culture and microneutralization serotyping, influenza culture and hemagglutination inhibition serotyping, and other special testing for Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumonia, and Chlamydia pneumoniae. Projected capabilities of this laboratory include more advanced testing for these pathogens and testing for other emerging pathogens, including Bordetella pertussis, Legionella pneumoniae, and Haemophilus influenzae type B. Such capabilities make the laboratory a valuable resource for military public health.

  4. Rapid Multiplex PCR Assay To Identify Respiratory Viral Pathogens: Moving Forward Diagnosing The Common Cold

    PubMed Central

    Gordon, Sarah M; Elegino-Steffens, Diane U; Agee, Willie; Barnhill, Jason; Hsue, Gunther

    2013-01-01

    Upper respiratory tract infections (URIs) can be a serious burden to the healthcare system. The majority of URIs are viral in etiology, but definitive diagnosis can prove difficult due to frequently overlapping clinical presentations of viral and bacterial infections, and the variable sensitivity, and lengthy turn-around time of viral culture. We tested new automated nested multiplex PCR technology, the FilmArray® system, in the TAMC department of clinical investigations, to determine the feasibility of replacing the standard viral culture with a rapid turn-around system. We conducted a feasibility study using a single-blinded comparison study, comparing PCR results with archived viral culture results from a convenience sample of cryopreserved archived nasopharyngeal swabs from acutely ill ED patients who presented with complaints of URI symptoms. A total of 61 archived samples were processed. Viral culture had previously identified 31 positive specimens from these samples. The automated nested multiplex PCR detected 38 positive samples. In total, PCR was 94.5% concordant with the previously positive viral culture results. However, PCR was only 63.4% concordant with the negative viral culture results, owing to PCR detection of 11 additional viral pathogens not recovered on viral culture. The average time to process a sample was 75 minutes. We determined that an automated nested multiplex PCR is a feasible alternative to viral culture in an acute clinical setting. We were able to detect at least 94.5% as many viral pathogens as viral culture is able to identify, with a faster turn-around time. PMID:24052914

  5. Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007-2014.

    PubMed

    Horton, Katherine C; Dueger, Erica L; Kandeel, Amr; Abdallat, Mohamed; El-Kholy, Amani; Al-Awaidy, Salah; Kohlani, Abdul Hakim; Amer, Hanaa; El-Khal, Abel Latif; Said, Mayar; House, Brent; Pimentel, Guillermo; Talaat, Maha

    2017-01-01

    Little is known about the role of viral respiratory pathogens in the etiology, seasonality or severity of severe acute respiratory infections (SARI) in the Eastern Mediterranean Region. Sentinel surveillance for SARI was conducted from December 2007 through February 2014 at 20 hospitals in Egypt, Jordan, Oman, Qatar and Yemen. Nasopharyngeal and oropharyngeal swabs were collected from hospitalized patients meeting SARI case definitions and were analyzed for infection with influenza, respiratory syncytial virus (RSV), adenovirus (AdV), human metapneumovirus (hMPV) and human parainfluenza virus types 1-3 (hPIV1-3). We analyzed surveillance data to calculate positivity rates for viral respiratory pathogens, describe the seasonality of those pathogens and determine which pathogens were responsible for more severe outcomes requiring ventilation and/or intensive care and/or resulting in death. At least one viral respiratory pathogen was detected in 8,753/28,508 (30.7%) samples tested for at least one pathogen and 3,497/9,315 (37.5%) of samples tested for all pathogens-influenza in 3,345/28,438 (11.8%), RSV in 3,942/24,503 (16.1%), AdV in 923/9,402 (9.8%), hMPV in 617/9,384 (6.6%), hPIV1 in 159/9,402 (1.7%), hPIV2 in 85/9,402 (0.9%) and hPIV3 in 365/9,402 (3.9%). Multiple pathogens were identified in 501/9,316 (5.4%) participants tested for all pathogens. Monthly variation, indicating seasonal differences in levels of infection, was observed for all pathogens. Participants with hMPV infections and participants less than five years of age were significantly less likely than participants not infected with hMPV and those older than five years of age, respectively, to experience a severe outcome, while participants with a pre-existing chronic disease were at increased risk of a severe outcome, compared to those with no reported pre-existing chronic disease. Viral respiratory pathogens are common among SARI patients in the Eastern Mediterranean Region. Ongoing surveillance is important to monitor changes in the etiology, seasonality and severity of pathogens of interest.

  6. Silencing and innate immunity in plant defense against viral and non-viral pathogens.

    PubMed

    Zvereva, Anna S; Pooggin, Mikhail M

    2012-10-29

    The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.

  7. MARINE MAMMAL DISEASES: PATHOGENS AND PROCESSES

    EPA Science Inventory

    The purpose of this chapter is to provide a concise overview of the pathogens and processes that alter the health of marine mammals. Viral disease is the most common etiology of significant mortality events in marine mammals. Discussion of viral disease focuses on effects in the ...

  8. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  9. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family.

    PubMed

    Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C

    2016-02-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.

  10. Diagnostic Accuracy of FebriDx: A Rapid Test to Detect Immune Responses to Viral and Bacterial Upper Respiratory Infections.

    PubMed

    Self, Wesley H; Rosen, Jeffrey; Sharp, Stephan C; Filbin, Michael R; Hou, Peter C; Parekh, Amisha D; Kurz, Michael C; Shapiro, Nathan I

    2017-10-07

    C-reactive protein (CRP) and myxovirus resistance protein A (MxA) are associated with bacterial and viral infections, respectively. We conducted a prospective, multicenter, cross-sectional study of adults and children with febrile upper respiratory tract infections (URIs) to evaluate the diagnostic accuracy of a rapid CRP/MxA immunoassay to identify clinically significant bacterial infection with host response and acute pathogenic viral infection. The reference standard for classifying URI etiology was an algorithm that included throat bacterial culture, upper respiratory PCR for viral and atypical pathogens, procalcitonin, white blood cell count, and bandemia. The algorithm also allowed for physician override. Among 205 patients, 25 (12.2%) were classified as bacterial, 53 (25.9%) as viral, and 127 (62.0%) negative by the reference standard. For bacterial detection, agreement between FebriDx and the reference standard was 91.7%, with FebriDx having a sensitivity of 80% (95% CI: 59-93%), specificity of 93% (89-97%), positive predictive value (PPV) of 63% (45-79%), and a negative predictive value (NPV) of 97% (94-99%). For viral detection, agreement was 84%, with a sensitivity of 87% (75-95%), specificity of 83% (76-89%), PPV of 64% (63-75%), and NPV of 95% (90-98%). FebriDx may help to identify clinically significant immune responses associated with bacterial and viral URIs that are more likely to require clinical management or therapeutic intervention, and has potential to assist with antibiotic stewardship.

  11. Cross talk between animal and human influenza viruses.

    PubMed

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  12. Crosstalk between animal and human influenza viruses

    PubMed Central

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2017-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the last decade, the first pandemic of the 21st century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assessed the pandemic potential of H5N1 highly pathogenic avian influenza viruses. PMID:25387011

  13. Development of a chick bioassay for determination of infectivity of viral pathogens in poultry litter.

    PubMed

    Islam, A F M F; Walkden-Brown, S W; Groves, P J; Wells, B

    2013-01-01

    To develop a chicken bioassay to detect infective viral pathogens in poultry litter and to determine the effects of type of chicken and age of exposure, as well as the effect of simulated litter transportation, on the level of viral infectivity detected. A 5 × 2 × 2 factorial design, plus negative controls. Five chicken litters, including two with deliberate contamination (one transported and one not), two chicken types (specific-pathogen-free (SPF) Leghorns and Cobb broilers) and two ages at initial exposure (days 1 and 8). Two replicates of each treatment combination. The 10 chickens in each of 22 isolators were either exposed (20 isolators) or not (2 isolators) to 8 L of previously used or deliberately contaminated poultry litter in two deep scratch trays. At day 35 post-exposure, sera were assayed for antibodies against chicken anaemia virus (CAV), infectious bronchitis virus (IBV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV) and fowl adenovirus (FAV). Spleen samples were tested for Marek's disease virus (MDV) using real-time polymerase chain reaction. The bioassay detected CAV, IBDV and FAV, but not NDV, IBV or MDV, in chickens exposed to infected litters. Infection in SPF chickens was detected with greater sensitivity than in the broiler chickens. Sensitivity increased with age at exposure in broiler but not SPF chickens. Simulated transportation for 24 h had little effect on pathogen detection. A bioassay based on the exposure of day-old SPF chickens to poultry litter and measurement of seroconversion at day 35 post-exposure is a useful semi-quantitative assay for viral infectivity in poultry litter, with overnight transportation of litter having little effect on the level of viral infectivity detected. This bioassay has applications in research on litter treatment protocols. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  14. [Etiological analysis and establishment of a discriminant model for lower respiratory tract infections in hospitalized patients].

    PubMed

    Chen, Y S; Lin, X H; Li, H R; Hua, Z D; Lin, M Q; Huang, W S; Yu, T; Lyu, H Y; Mao, W P; Liang, Y Q; Peng, X R; Chen, S J; Zheng, H; Lian, S Q; Hu, X L; Yao, X Q

    2017-12-12

    Objective: To analyze the pathogens of lower respiratory tract infection(LRTI) including bacterial, viral and mixed infection, and to establish a discriminant model based on clinical features in order to predict the pathogens. Methods: A total of 243 hospitalized patients with lower respiratory tract infections were enrolled in Fujian Provincial Hospital from April 2012 to September 2015. The clinical data and airway (sputum and/or bronchoalveolar lavage) samples were collected. Microbes were identified by traditional culture (for bacteria), loop-mediated isothermal amplification(LAMP) and gene sequencing (for bacteria and atypical pathogen), or Real-time quantitative polymerase chain reaction (Real-time PCR)for viruses. Finally, a discriminant model was established by using the discriminant analysis methods to help to predict bacterial, viral and mixed infections. Results: Pathogens were detected in 53.9% (131/243) of the 243 cases.Bacteria accounted for 23.5%(57/243, of which 17 cases with the virus, 1 case with Mycoplasma pneumoniae and virus), mainly Pseudomonas Aeruginosa and Klebsiella Pneumonia. Atypical pathogens for 4.9% (12/243, of which 3 cases with the virus, 1 case of bacteria and viruses), all were mycoplasma pneumonia. Viruses for 34.6% (84/243, of which 17 cases of bacteria, 3 cases with Mycoplasma pneumoniae, 1 case with Mycoplasma pneumoniae and bacteria) of the cases, mainly Influenza A virus and Human Cytomegalovirus, and other virus like adenovirus, human parainfluenza virus, respiratory syncytial virus, human metapneumovirus, human boca virus were also detected fewly. Seven parameters including mental status, using antibiotics prior to admission, complications, abnormal breath sounds, neutrophil alkaline phosphatase (NAP) score, pneumonia severity index (PSI) score and CRUB-65 score were enrolled after univariate analysis, and discriminant analysis was used to establish the discriminant model by applying the identified pathogens as the dependent variable. The total positive predictive value was 64.7%(77/119), with 66.7% for bacterial infection, 78.0% for viral infection and 33.3% for the mixed infection. Conclusions: The mostly detected pathogens were Pseudomonas aeruginosa, atypitcal pathogens, Klebsiella pneumoniae, influenza A virus and human cytomegalovirus in hospitalized patients with LRTI in this hospital. The discriminant diagnostic model established by clinical features may contribute to predict the pathogens of LRTI.

  15. The contribution of molecular epidemiology to the understanding and control of viral diseases of salmonid aquaculture

    PubMed Central

    2011-01-01

    Molecular epidemiology is a science which utilizes molecular biology to define the distribution of disease in a population (descriptive epidemiology) and relies heavily on integration of traditional (or analytical) epidemiological approaches to identify the etiological determinants of this distribution. The study of viral pathogens of aquaculture has provided many exciting opportunities to apply such tools. This review considers the extent to which molecular epidemiological studies have contributed to better understanding and control of disease in aquaculture, drawing on examples of viral diseases of salmonid fish of commercial significance including viral haemorrhagic septicaemia virus (VHSV), salmonid alphavirus (SAV) and infectious salmon anaemia virus (ISAV). Significant outcomes of molecular epidemiological studies include: Improved taxonomic classification of viruses A better understanding of the natural distribution of viruses An improved understanding of the origins of viral pathogens in aquaculture An improved understanding of the risks of translocation of pathogens outwith their natural host range An increased ability to trace the source of new disease outbreaks Development of a basis for ensuring development of appropriate diagnostic tools An ability to classify isolates and thus target future research aimed at better understanding biological function While molecular epidemiological studies have no doubt already made a significant contribution in these areas, the advent of new technologies such as pyrosequencing heralds a quantum leap in the ability to generate descriptive molecular sequence data. The ability of molecular epidemiology to fulfil its potential to translate complex disease pathways into relevant fish health policy is thus unlikely to be limited by the generation of descriptive molecular markers. More likely, full realisation of the potential to better explain viral transmission pathways will be dependent on the ability to assimilate and analyse knowledge from a range of more traditional information sources. The development of methods to systematically record and share such epidemiologically important information thus represents a major challenge for fish health professionals in making the best future use of molecular data in supporting fish health policy and disease control. PMID:21466673

  16. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses

    PubMed Central

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.

    2017-01-01

    ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. PMID:28490593

  17. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    PubMed

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. Copyright © 2017 American Society for Microbiology.

  18. Surveillance of Severe Acute Respiratory Infection (SARI) for Hospitalized Patients in Northern Vietnam, 2011-2014.

    PubMed

    Nguyen, Hang Khanh Le; Nguyen, Son Vu; Nguyen, Anh Phuong; Hoang, Phuong Mai Vu; Le, Thanh Thi; Nguyen, Thach Co; Hoang, Huong Thu; Vuong, Cuong Duc; Tran, Loan Thi Thanh; Le, Mai Quynh

    2017-09-25

    Severe acute respiratory infections (SARI) are leading causes of hospitalization, morbidity, and mortality in children worldwide. The aim of this study was to identify viral pathogens responsible for SARI in northern Vietnam in the period from 2011 to 2014. Throat swabs and tracheal aspirates were collected from SARI patients according to WHO guidelines. The presence of 13 different viral pathogens (influenza A[H1N1]pdm09; A/H3N2; A/H5; A/H7 and B; para influenza 1,2,3; RSV; HMPV; adeno; severe acute respiratory syndrome-CoV and rhino) was tested by conventional/real-time reverse transcription-polymerase chain reaction. During the study period, 975 samples were collected and tested. More than 30% (32.1%, 313 samples) of the samples showed evidence of infection with influenza viruses, including A/H3N2 (48 samples), A (H1N1) pdm09 (221 samples), influenza B (42 samples), and co-infection of A (H1N1) pdm09 or A/H3N2 and influenza B (2 samples). Other respiratory pathogens were detected in 101 samples, including rhinovirus (73 samples), adenovirus (10 samples), hMPV (9 samples), parainfluenza 3 (5 samples), parainfluenza 2 (3 samples), and RSV (1 sample). Influenza A/H5, A/H7, or SARS-CoV were not detected. Respiratory viral infection, particularly infection of influenza and rhinoviruses, were associated with high rates of SARI hospitalization, and future studies correlating the clinical aspects are needed to design interventions, including targeted vaccination.

  19. New approaches to structure-based discovery of dengue protease inhibitors.

    PubMed

    Tomlinson, S M; Malmstrom, R D; Watowich, S J

    2009-06-01

    Dengue virus (DENV), a member of the family Flaviviridae, presents a tremendous threat to global health since an estimated 2.5 billion people worldwide are at risk for epidemic transmission. DENV infections are primarily restricted to sub-tropical and tropical regions; however, there is concern that the virus will spread into new regions including the United States. There are no approved antiviral drugs or vaccines to combat dengue infection, although DENV vaccines have entered Phase 3 clinical trials. Drug discovery and development efforts against DENV and other viral pathogens must overcome specificity, efficacy, safety, and resistance challenges before the shortage of licensed drugs to treat viral infections can be relieved. Current drug discovery methods are largely inefficient and thus relatively ineffective at tackling the growing threat to public health presented by emerging and remerging viral pathogens. This review discusses current and newly implemented structure-based computational efforts to discover antivirals that target the DENV NS3 protease, although it is clear that these computational tools can be applied to most disease targets.

  20. Diagnostic Approach to Viral Acute Encephalitis Syndrome (AES) in Paediatric Age Group: A Study from New Delhi.

    PubMed

    Goel, Shipra; Chakravarti, Anita; Mantan, Mukta; Kumar, Surinder; Ashraf, Md Anzar

    2017-09-01

    Acute Encephalitis Syndrome has heralded the emergence of multiple virulent pathogens, which may result in severe morbidity and mortality. In India, encephalitis is not notified and there has been a dearth of analysis for trends in encephalitis death rates and causation. A downward trend has been observed in encephalitis deaths, due to 'known' causes, which can be largely explained by improvement in diagnostic, treatment, and prevention methods. There is still a very high proportion of encephalitis deaths in developing countries, where the aetiological diagnosis of the pathogen is not established and thus, lies the importance of monitoring encephalitis morbidity and mortality with a view to improve pathogen diagnosis and identify emerging infectious diseases. To formulate a diagnostic approach to viral acute encephalitis syndrome in paediatric age group. A cross-sectional study including 50 paediatric patients, clinically diagnosed with acute encephalitis syndrome using WHO criteria was conducted. The CSF of all the patients was evaluated to diagnose the aetiology for viral pathogens. ELISA was used for diagnosing Japanese encephalitis and dengue encephalitis; and multiplex real time PCR was used for detecting HSV-1, HSV-2, Varicella zoster virus, Mumps virus, Enterovirus and Parechovirus. Confirmed diagnosis was established in 11 (22%) of 50 cases. A confirmed or probable viral agent of encephalitis was found in 7 (14%), bacterial agent was found in 2 (4%), non-infectious aetiology was found in 2 (4%). Fatal outcome was independently associated with patient age. Despite extensive testing, the aetiologies of more than three fourth of the cases remains elusive. Nevertheless the result from the present study may be useful for future design of early diagnosis and treatment of the disease. New strategies for pathogen identification and continued analysis of clinical features and case histories should help us improve our ability to diagnose, treat and prevent encephalitis.

  1. VIRAL PATHOGENS AND MICROBIOLOGICAL INDICATORS IN GROUND WATER FROM SMALL PUBLIC WATER SUPPLIES IN SOUTHEASTERN MICHIGAN

    EPA Science Inventory

    Thirty-eight public ground-water-supply wells serving less than 3,300 people were sampled from July 1999 through July 2001 in southeastern Michigan to determine (1) occurrence of viral pathogens and microbiological indicators, (2) whether indicators are adequate predictors of the...

  2. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways

    PubMed Central

    Currer, Robert; Van Duyne, Rachel; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Das, Ravi; Narayanan, Aarthi; Kashanchi, Fatah

    2012-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis. PMID:23226145

  3. Reproductive losses caused by bovine viral diarrhea virus and leptospirosis.

    PubMed

    Grooms, Daniel L

    2006-08-01

    Bovine viral diarrhea virus and Leptospira spp. are two of the common pathogenic organisms responsible for reproductive losses in cattle worldwide. Both can be come endemic in herds resulting in chronic low-grade reproductive losses or they can be introduced into relatively naïve herds, resulting in substantial reproductive losses over a short period of time. Both organisms are a differential diagnoses for common reproductive losses that veterinarians investigate, including low conception rates and abortions.

  4. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  5. Metagenomic characterization of viral communities in Goseong Bay, Korea

    NASA Astrophysics Data System (ADS)

    Hwang, Jinik; Park, So Yun; Park, Mirye; Lee, Sukchan; Jo, Yeonhwa; Cho, Won Kyong; Lee, Taek-Kyun

    2016-12-01

    In this study, seawater samples were collected from Goseong Bay, Korea in March 2014 and viral populations were examined by metagenomics assembly. Enrichment of marine viral particles using FeCl3 followed by next-generation sequencing produced numerous sequences. De novo assembly and BLAST search showed that most of the obtained contigs were unknown sequences and only 0.74% of sequences were associated with known viruses. As a result, 138 viruses, including bacteriophages (87%), viruses infecting algae and others (13%) were identified. The identified 138 viruses were divided into 11 orders, 14 families, 34 genera, and 133 species. The dominant viruses were Pelagibacter phage HTVC010P and Roseobacter phage SIO1. The viruses infecting algae, including the Ostreococcus species, accounted for 9.4% of total identified viruses. In addition, we identified pathogenic herpes viruses infecting fishes and giant viruses infecting parasitic acanthamoeba species. This is a comprehensive study to reveal the viral populations in the Goseong Bay using metagenomics. The information associated with the marine viral community in Goseong Bay, Korea will be useful for comparative analysis in other marine viral communities.

  6. Host and viral ecology determine bat rabies seasonality and maintenance

    USGS Publications Warehouse

    George, D.B.; Webb, C.T.; Farnsworth, Matthew L.; O'Shea, T.J.; Bowen, R.A.; Smith, D.L.; Stanley, T.R.; Ellison, L.E.; Rupprecht, C.E.

    2011-01-01

    Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

  7. Host and viral ecology determine bat rabies seasonality and maintenance.

    PubMed

    George, Dylan B; Webb, Colleen T; Farnsworth, Matthew L; O'Shea, Thomas J; Bowen, Richard A; Smith, David L; Stanley, Thomas R; Ellison, Laura E; Rupprecht, Charles E

    2011-06-21

    Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

  8. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems.

    PubMed

    Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa

    2015-07-13

    The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  9. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    PubMed

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  10. Survival of viral pathogens in animal feed ingredients under transboundary shipping models

    PubMed Central

    Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.

    2018-01-01

    The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels. PMID:29558524

  11. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    PubMed

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  12. Narrowing of the Diagnostic Gap of Acute Gastroenteritis in Children 0-6 Years of Age Using a Combination of Classical and Molecular Techniques, Delivers Challenges in Syndromic Approach Diagnostics.

    PubMed

    Steyer, Andrej; Jevšnik, Monika; Petrovec, Miroslav; Pokorn, Marko; Grosek, Štefan; Fratnik Steyer, Adela; Šoba, Barbara; Uršič, Tina; Cerar Kišek, Tjaša; Kolenc, Marko; Trkov, Marija; Šparl, Petra; Duraisamy, Raja; Lipkin, W Ian; Terzić, Sara; Kolnik, Mojca; Mrvič, Tatjana; Kapoor, Amit; Strle, Franc

    2016-09-01

    Twenty-five percent to 50% of acute gastroenteritis (AGE) cases remain etiologically undiagnosed. Our main aim was to determine the most appropriate list of enteric pathogens to be included in the daily diagnostics scheme of AGE, ensuring the lowest possible diagnostic gap. Two hundred ninety seven children ≤6 years of age, admitted to hospital in Slovenia, October 2011 to October 2012, with AGE, and 88 ≤6 years old healthy children were included in the study. A broad spectrum of enteric pathogens was targeted with molecular methods, including 8 viruses, 6 bacteria and 2 parasites. At least one enteric pathogen was detected in 91.2% of cases with AGE and 27.3% of controls. Viruses were the most prevalent (82.5% and 15.9%), followed by bacteria (27.3% and 10.2%) and parasites (3.0% and 1.1%) in cases and controls, respectively. A high proportion (41.8%) of mixed infections was observed in the cases. For cases with undetermined etiology (8.8%), stool samples were analyzed with next generation sequencing, and a potential viral pathogen was detected in 17 additional samples (5.8%). Our study suggests that tests for rotaviruses, noroviruses genogroup II, adenoviruses 40/41, astroviruses, Campylobacter spp. and Salmonella sp. should be included in the initial diagnostic algorithm, which revealed the etiology in 83.5% of children tested. The use of molecular methods in diagnostics of gastroenteritis is preferable because of their high sensitivity, specificity, fast performance and the possibility of establishing the concentration of the target. The latter may be valuable for assessing the clinical significance of the detected enteric, particularly viral pathogens.

  13. Improving Protection against Viral Aerosols Through Development of Novel Decontamination Methods and Characterization of Viral Aerosol

    DTIC Science & Technology

    2012-04-01

    attack), the spread of waterborne pathogens (e.g. typhoid fever ) and airborne pathogens (e.g. avian flu, Severe Acute Respiratory Syndromes, and...hemorrhagic fever with fatality in humans ranging from 50-89% (Biosafety level 4) (Brion and Silverstein, 1999). If one aggregate of ebola viruses

  14. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    PubMed Central

    Gongora, Victor; Hartley, Dane; Oura, Christopher

    2018-01-01

    Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories. PMID:29373488

  15. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    PubMed

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  16. Etiological epidemiology of viral diarrhea on the basis of sentinel surveillance in children younger than 5 years in Gansu, northwest China, 2009-2013.

    PubMed

    Liu, Xiaoning; Meng, Lei; Li, Juansheng; Liu, Xinfeng; Bai, Yana; Yu, Deshan; Ren, Xiaowei; Liu, Haixia; Shen, Xiping; Wang, Peng; Hu, Xiaobin; Wei, Kongfu; Pei, Hongbo; Kang, Qian

    2015-12-01

    To explore the etiological spectrum of diarrhea and its epidemiological characteristics in diarrhea symptoms surveillance cases younger than 5 years from 2009 to 2013 in Gansu province, northwest China. Systematic diarrhea symptoms surveillance were conducted in 27 sentinel sites in Gansu province and outpatients with three or more loose, watery, or sticky pus stools per day were defined as surveillance cases. All stool specimens were tested for Rotavirus, Human calicivirus, Adenovirus, and Astrovirus. Totally, 1,119 cases (51.54%) were identified as any enteric virus. The average isolation rate of Rotavirus was 51.13%, Astrovirus was 10.84%, Adenovirus was 6.94%, and Human calicivirus was 6.60% (P < 0.01). Rotavirus was identified with the highest frequency among these enteric pathogens except in 2011, with a notable downward trend over time (P < 0.01). Rotavirus A was the most proportion in rotavirus, G3P[8] and G9P[8] were the most common combination. Rotavirus mixed Human calicivirus infections was the most common mixed infected patterns. Viral-positive rate was higher among children aged group of 0-12 and 13-24 months (P < 0.01, respectively). The isolation rates of four enteric viral pathogens showed a similar distinct seasonal variation with a higher rate in spring, autumn, and winter months. Rotavirus was the major epidemiological viral pathogen in diarrhea symptom surveillance cases in Gansu province, northwest China, during period 2009-2013. Seasonal and age-related variations were observed in enteric viral pathogen isolation rate. The comprehensive and continuous surveillance is needed to identify the prevalence of different enteric viral pathogens. © 2015 Wiley Periodicals, Inc.

  17. Innate Immune sensing of DNA viruses

    PubMed Central

    Rathinam, Vijay A. K.; Fitzgerald, Katherine A.

    2011-01-01

    DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037

  18. Torque teno virus: an improved indicator for viral pathogens in drinking waters.

    PubMed

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-10-03

    Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist. If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health.

  19. Torque teno virus: an improved indicator for viral pathogens in drinking waters

    PubMed Central

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-01-01

    Background Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Presentation of the hypothesis Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. Testing the hypothesis To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist. Implications of the hypothesis If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health. PMID:18834517

  20. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses.

    PubMed

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  1. Inactivation of Pathogenic Viruses by Plant-Derived Tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses

    PubMed Central

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses. PMID:23372851

  2. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms

    PubMed Central

    Munang'andu, Hetron M.; Mugimba, Kizito K.; Byarugaba, Denis K.; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture. PMID:28382024

  3. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    PubMed Central

    Metzgar, David; Myers, Christopher A.; Russell, Kevin L.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Vo, Scott; Swayne, David E.; Thomas, Colleen; Stenger, David A.; Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Schnur, Joel M.; Saad, Magdi D.; Borsuk, Lisa A.; Lichanska, Agnieszka M.; Lorence, Matthew C.; Weslowski, Brian; Schafer, Klaus O.; Tibbetts, Clark

    2010-01-01

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents. PMID:20140251

  4. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    PubMed

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents.

  5. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment

    PubMed Central

    Okoh, Anthony I.; Sibanda, Thulani; Gusha, Siyabulela S.

    2010-01-01

    Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission. PMID:20644692

  6. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity

    PubMed Central

    Chenon, Mélanie; Camborde, Laurent; Cheminant, Soizic; Jupin, Isabelle

    2012-01-01

    Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host–pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein—its binding partner within replication complexes—leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity. PMID:22117220

  7. Incidence and etiology of hospitalized acute respiratory infections in the Egyptian Delta.

    PubMed

    Rowlinson, Emily; Dueger, Erica; Mansour, Adel; Azzazy, Nahed; Mansour, Hoda; Peters, Lisa; Rosenstock, Summer; Hamid, Sarah; Said, Mayar M; Geneidy, Mohamed; Abd Allah, Monier; Kandeel, Amr

    2017-01-01

    Acute Respiratory Infections (ARI) are responsible for nearly two million childhood deaths worldwide. A limited number of studies have been published on the epidemiology of viral respiratory pathogens in Egypt. A total of 6113 hospitalized patients >1 month of age with suspected ARI were enrolled between June 23, 2009 and December 31, 2013. Naso- and oropharyngeal specimens were collected and tested for influenza A and B, respiratory syncytial virus, human metapneumovirus, adenovirus, and parainfluenza viruses 1-3. Blood specimens from children 1-11 months were cultured and bacterial growth was identified by polymerase chain reaction. Results from a healthcare utilization survey on the proportion of persons seeking care for ARI was used to calculate adjusted ARI incidence rates in the surveillance population. The proportion of patients with a viral pathogen detected decreased with age from 67% in patients age 1-11 months to 19% in patients ≥65 years of age. Influenza was the dominant viral pathogen detected in patients ≥1 year of age (13.9%). The highest incidence rates for hospitalized ARI were observed in children 1-11 months (1757.9-5537.5/100 000 population) and RSV was the most commonly detected pathogen in this age group. In this study population, influenza is the largest viral contributor to hospitalized ARIs and children 1-11 months of age experience a high rate of ARI hospitalizations. This study highlights a need for surveillance of additional viral pathogens and alternative detection methods for bacterial pathogens, which may reveal a substantial proportion of as yet unidentified etiologies in adults. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  8. Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007–2014

    PubMed Central

    Dueger, Erica L.; Kandeel, Amr; Abdallat, Mohamed; El-Kholy, Amani; Al-Awaidy, Salah; Kohlani, Abdul Hakim; Amer, Hanaa; El-Khal, Abel Latif; Said, Mayar; House, Brent; Pimentel, Guillermo; Talaat, Maha

    2017-01-01

    Introduction Little is known about the role of viral respiratory pathogens in the etiology, seasonality or severity of severe acute respiratory infections (SARI) in the Eastern Mediterranean Region. Methods Sentinel surveillance for SARI was conducted from December 2007 through February 2014 at 20 hospitals in Egypt, Jordan, Oman, Qatar and Yemen. Nasopharyngeal and oropharyngeal swabs were collected from hospitalized patients meeting SARI case definitions and were analyzed for infection with influenza, respiratory syncytial virus (RSV), adenovirus (AdV), human metapneumovirus (hMPV) and human parainfluenza virus types 1–3 (hPIV1-3). We analyzed surveillance data to calculate positivity rates for viral respiratory pathogens, describe the seasonality of those pathogens and determine which pathogens were responsible for more severe outcomes requiring ventilation and/or intensive care and/or resulting in death. Results At least one viral respiratory pathogen was detected in 8,753/28,508 (30.7%) samples tested for at least one pathogen and 3,497/9,315 (37.5%) of samples tested for all pathogens–influenza in 3,345/28,438 (11.8%), RSV in 3,942/24,503 (16.1%), AdV in 923/9,402 (9.8%), hMPV in 617/9,384 (6.6%), hPIV1 in 159/9,402 (1.7%), hPIV2 in 85/9,402 (0.9%) and hPIV3 in 365/9,402 (3.9%). Multiple pathogens were identified in 501/9,316 (5.4%) participants tested for all pathogens. Monthly variation, indicating seasonal differences in levels of infection, was observed for all pathogens. Participants with hMPV infections and participants less than five years of age were significantly less likely than participants not infected with hMPV and those older than five years of age, respectively, to experience a severe outcome, while participants with a pre-existing chronic disease were at increased risk of a severe outcome, compared to those with no reported pre-existing chronic disease. Conclusions Viral respiratory pathogens are common among SARI patients in the Eastern Mediterranean Region. Ongoing surveillance is important to monitor changes in the etiology, seasonality and severity of pathogens of interest. PMID:28704440

  9. Evaluation of the Universal Viral Transport system for long-term storage of virus specimens for microbial forensics.

    PubMed

    Hosokawa-Muto, Junji; Fujinami, Yoshihito; Mizuno, Natsuko

    2015-08-01

    Forensic microbial specimens, including bacteria and viruses, are collected at biocrime and bioterrorism scenes. Although it is preferable that the pathogens in these samples are alive and kept in a steady state, the samples may be stored for prolonged periods before analysis. Therefore, it is important to understand the effects of storage conditions on the pathogens contained within such samples. To evaluate the capacity to preserve viable virus and the viral genome, influenza virus was added to the transport medium of the Universal Viral Transport system and stored for over 3 months at various temperatures, after which virus titrations and quantitative analysis of the influenza hemagglutinin gene were performed. Although viable viruses became undetectable 29 days after the medium was stored at room temperature, viruses in the medium stored at 4°C were viable even after 99 days. A quantitative PCR analysis indicated that the hemagglutinin gene was maintained for 99 days at both 4°C and room temperature. Therefore, long-term storage at 4°C has little effect on viable virus and viral genes, so the Universal Viral Transport system can be useful for microbial forensics. This study provides important information for the handling of forensic virus specimens. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial.

    PubMed

    Leung, Jacqueline M; Hong, Chau Tran Thi; Trung, Nghia Ho Dang; Thi, Hoa Nhu; Minh, Chau Nguyen Ngoc; Thi, Thuy Vu; Hong, Dinh Thanh; Man, Dinh Nguyen Huy; Knowles, Sarah C L; Wolbers, Marcel; Hoang, Nhat Le Thanh; Thwaites, Guy; Graham, Andrea L; Baker, Stephen

    2016-06-06

    Anthelmintics are one of the more commonly available classes of drugs to treat infections by parasitic helminths (especially nematodes) in the human intestinal tract. As a result of their cost-effectiveness, mass school-based deworming programs are becoming routine practice in developing countries. However, experimental and clinical evidence suggests that anthelmintic treatments may increase susceptibility to other gastrointestinal infections caused by bacteria, viruses, or protozoa. Hypothesizing that anthelmintics may increase diarrheal infections in treated children, we aim to evaluate the impact of anthelmintics on the incidence of diarrheal disease caused by viral and bacterial pathogens in school children in southern Vietnam. This is a randomized, double-blinded, placebo-controlled trial to investigate the effects of albendazole treatment versus placebo on the incidence of viral- and bacterial-induced diarrhea in 350 helminth-infected and 350 helminth-uninfected Vietnamese school children aged 6-15 years. Four hundred milligrams of albendazole, or placebo treatment will be administered once every 3 months for 12 months. At the end of 12 months, all participants will receive albendazole treatment. The primary endpoint of this study is the incidence of diarrheal disease assessed by 12 months of weekly active and passive case surveillance. Secondary endpoints include the prevalence and intensities of helminth, viral, and bacterial infections, alterations in host immunity and the gut microbiota with helminth and pathogen clearance, changes in mean z scores of body weight indices over time, and the number and severity of adverse events. In order to reduce helminth burdens, anthelmintics are being routinely administered to children in developing countries. However, the effects of anthelmintic treatment on susceptibility to other diseases, including diarrheal pathogens, remain unknown. It is important to monitor for unintended consequences of drug treatments in co-infected populations. In this trial, we will examine how anthelmintic treatment impacts host susceptibility to diarrheal infections, with the aim of informing deworming programs of any indirect effects of mass anthelmintic administrations on co-infecting enteric pathogens. ClinicalTrials.gov: NCT02597556 . Registered on 3 November 2015.

  11. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  12. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    PubMed

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  13. Xenosurveillance: A Novel Mosquito-Based Approach for Examining the Human-Pathogen Landscape

    PubMed Central

    Grubaugh, Nathan D.; Sharma, Supriya; Krajacich, Benjamin J.; Fakoli III, Lawrence S.; Bolay, Fatorma K.; Diclaro II, Joe W.; Johnson, W. Evan; Ebel, Gregory D.; Foy, Brian D.; Brackney, Doug E.

    2015-01-01

    Background Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations. Methodology/Principal Findings To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host’s blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus. Conclusions/Significance Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts. PMID:25775236

  14. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    PubMed

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  15. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse.

    PubMed

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-Il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J; Choi, Young Ki; Song, Min-Suk

    2017-01-17

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD 50 , up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential.

  16. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse

    PubMed Central

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J.; Choi, Young Ki; Song, Min-Suk

    2017-01-01

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD50, up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential. PMID:28094780

  17. Molecular Basis of Latency in Pathogenic Human Viruses

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Mariano A.; Cullen, Bryan R.

    1991-11-01

    Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.

  18. Therapeutic approach to respiratory infections in lung transplantation.

    PubMed

    Clajus, Carolina; Blasi, Francesco; Welte, Tobias; Greer, Mark; Fuehner, Thomas; Mantero, Marco

    2015-06-01

    Lung transplant recipients (LTRs) are at life-long risk for infections and disseminated diseases owing to their immunocompromised state. Besides organ failure and sepsis, infection can trigger acute and chronic graft rejection which increases mortality. Medical prophylaxis and treatment are based on comprehensive diagnostic work-up including previous history of infection and airway colonisation to reduce long-term complications and mortality. Common bacterial pathogens include Pseudomonas and Staphylococcus, whilst Aspergillus and Cytomegalovirus (CMV) are respectively the commonest fungal and viral pathogens. Clinical symptoms can be various in lung transplant recipients presenting an asymptomatic to severe progress. Regular control of infection parameters, daily lung function testing and lifelong follow-up in a specialist transplant centre are mandatory for early detection of bacterial, viral and fungal infections. After transplantation each patient receives intensive training with rules of conduct concerning preventive behaviour and to recognize early signs of post transplant complications. Early detection of infection and complications are important goals to reduce major complications after lung transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster.

    PubMed

    Carpenter, Jennifer A; Obbard, Darren J; Maside, Xulio; Jiggins, Francis M

    2007-09-01

    The sigma virus is a vertically transmitted pathogen that commonly infects natural populations of Drosophila melanogaster. This virus is the only known host-specific pathogen of D. melanogaster, and so offers a unique opportunity to study the genetics of Drosophila-viral interactions in a natural system. To elucidate the population genetic processes that operate in sigma virus populations, we collected D. melanogaster from 10 populations across three continents. We found that the sigma virus had a prevalence of 0-15% in these populations. Compared to other RNA viruses, we found that levels of viral genetic diversity are very low across Europe and North America. Based on laboratory measurements of the viral substitution rate, we estimate that most European and North American viral isolates shared a common ancestor approximately 200 years ago. We suggest two explanations for this: the first is that D. melanogaster has recently acquired the sigma virus; the second is that a single viral type has recently swept through D. melanogaster populations. Furthermore, in contrast to Drosophila populations, we find that the sigma viral populations are highly structured. This is surprising for a vertically transmitted pathogen that has a similar migration rate to its host. We suggest that the low structure in the viral populations can be explained by the smaller effective population size of the virus.

  20. The threat of emerging infections.

    PubMed

    1996-11-01

    A variety of newly discovered pathogens and new forms of older infectious agents threaten to reemerge. Typical symptoms of acute infection are fever, headache, malaise, vomiting, and diarrhea. Some of the better-known emerging viral infections include dengue, filoviruses (Ebola, Marburg), hantaviruses, hepatitis B, hepatitis C, HIV, influenza, lassa fever, measles, rift valley fever, rotavirus, and yellow fever. Emerging bacterial infections include cholera, Escherichia coli 0157:H7, legionnaires disease (Legionella), lyme disease, streptococcus infections (group A), tuberculosis, and typhoid. Emerging parasitic infections include cryptosporidium and other waterborne pathogens and malaria. The causes of many diseases are still shrouded in mystery; thus, treatments and cures for them are as yet unknown.

  1. Characteristics of human infection with avian influenza viruses and development of new antiviral agents

    PubMed Central

    Liu, Qiang; Liu, Dong-ying; Yang, Zhan-qiu

    2013-01-01

    Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV. PMID:24096642

  2. Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections.

    PubMed

    Van Heirstraeten, Liesbet; Spang, Peter; Schwind, Carmen; Drese, Klaus S; Ritzi-Lehnert, Marion; Nieto, Benjamin; Camps, Marta; Landgraf, Bryan; Guasch, Francesc; Corbera, Antoni Homs; Samitier, Josep; Goossens, Herman; Malhotra-Kumar, Surbhi; Roeser, Tina

    2014-05-07

    In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI.

  3. Combined administration in a single injection of a feline multivalent modified live vaccine against FHV, FCV, and FPLV together with a recombinant FeLV vaccine is both safe and efficacious for all four major feline viral pathogens.

    PubMed

    Kanellos, Theo; Sutton, David J; Salisbury, Claire F; Chalmers, William Stuart K

    2008-08-01

    Nobivac Tricat, a lyophilised trivalent modified live attenuated vaccine is routinely used to protect cats against three commonly diagnosed feline viral pathogens namely herpesvirus, calicivirus and panleukopenia virus. The recognition of feline leukaemia virus (FeLV) as an important viral pathogen has prompted the development of an efficacious liquid recombinant subunit FeLV vaccine (p45 envelope protein). Lyophilised Tricat vaccine was dissolved in the liquid FeLV vaccine and no detectable deleterious effect on the titre of any of the live virus components was observed after 2h incubation. In vivo studies where the vaccines were mixed in the same syringe prior to inoculation showed no alteration to the safety profile assessed by repeat and overdose studies. Serological comparisons of the modified live viral antibody titres showed no evidence of reduced responses following administration of the mixed products. Challenge studies using pathogenic herpesvirus and FeLV revealed no difference in the degree of clinical protection. This paper shows that neither safety nor efficacy is adversely affected as a result of mixing the two vaccines.

  4. Viruses and miRNAs: More Friends than Foes.

    PubMed

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  5. Viruses and miRNAs: More Friends than Foes

    PubMed Central

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host–pathogen interaction. PMID:28555130

  6. An update on mechanism of entry of white spot syndrome virus into shrimps.

    PubMed

    Verma, Arunima Kumar; Gupta, Shipra; Singh, Shivesh Pratap; Nagpure, Naresh Sahebrao

    2017-08-01

    Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhibition of proanthocyanidin A2 on porcine reproductive and respiratory syndrome virus replication in vitro

    PubMed Central

    Chen, Yao; Duan, Mubing; Tian, Ge; Deng, Xianbo; Sun, Yankuo; Zhou, Tong; Zhang, Guihong; Chen, Weisan

    2018-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a widely prevalent and endemic swine pathogen that causes significant economic losses for the global pig industry annually. Currently, the most prevalent strategy for PRRSV control remains the prevention of virus transmission, with highly effective therapeutic agents and vaccines still lacking. Proanthocyanidin A2 (PA2) belongs to the family of tea polyphenols, which have been reported to exhibit a range of biological activities including anti-oxidative, cardio-protective, anti-tumoural, anti-bacterial, anti-viral, and anti-inflammatory effects in vitro as well as in vivo. Here, we demonstrate that PA2 exhibits potent anti-viral activity against PRRSV infection in Marc-145 cells. Similar inhibitory effects were also found in porcine alveolar macrophages, the primary target cell type of PRRSV infection in pigs in vivo. For traditional type II PRRSV CH-1a strain and high pathogenic GD-XH strain and GD-HD strain, PA2 exhibited broad-spectrum and comparable inhibitory activities in vitro with EC50 ranging from 2.2 to 3.2 μg/ml. Treatment of PRRSV-infected Marc-145 cells with PA2 significantly inhibited viral RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. In addition, PA2 treatment reduced gene expressions of cytokines (TNF-α, IFN-α, IL-1β and IL-6) induced by PRRSV infection in PAMs. Mechanistically, PA2 inhibited PRRSV replication by targeting multiple pathways including blockade of viral entry and progeny virus release. Altogether, our findings suggest that PA2 has the potential to serve as a novel prophylactic and therapeutic strategies against PRRSV infection. PMID:29489892

  8. Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala

    PubMed Central

    Wray, Amy K.; Olival, Kevin J.; Morán, David; Lopez, Maria Renee; Alvarez, Danilo; Navarrete-Macias, Isamara; Liang, Eliza; Simmons, Nancy B.; Lipkin, W. Ian; Daszak, Peter; Anthony, Simon J.

    2016-01-01

    Certain bat species serve as natural reservoirs for pathogens in several key viral families including henipa-, lyssa-, corona-, and filoviruses, which may pose serious threats to human health. The Common Vampire Bat (Desmodus rotundus), due to its abundance, sanguivorous feeding habit involving humans and domestic animals, and highly social behavioral ecology, may have an unusually high potential for interspecies disease transmission. Previous studies have investigated rabies dynamics in D. rotundus, yet the diversity of other viruses, bacteria, and other microbes that these bats may carry remains largely unknown. We screened 396 blood, urine, saliva, and fecal samples from D. rotundus captured in Guatemala for 13 viral families and genera. Positive results were found for rhabdovirus, adenovirus, and herpesvirus assays. We also screened these samples for Bartonella spp. and found that 38% of individuals tested positive. To characterize potential for interspecies transmission associated with feeding behavior, we also analyzed cytochrome B sequences from fecal samples to identify prey species and found that domestic cattle (Bos taurus) made up the majority of blood meals. Our findings suggest that the risk of pathogen spillover from Desmodus rotundus, including between domestic animal species, is possible and warrants further investigation to characterize this microbial diversity and expand our understanding of foraging ecology in their populations. PMID:27660213

  9. Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses.

    PubMed

    Chen, Hui-Wen; Cheng, Jenna Xiao; Liu, Ming-Tsan; King, Kevin; Peng, Ju-Yi; Zhang, Xin-Quan; Wang, Ching-Ho; Shresta, Sujan; Schooley, Robert T; Liu, Yu-Tsueng

    2013-09-01

    An influenza pandemic poses a serious threat to humans and animals. Conventional treatments against influenza include two classes of pathogen-targeting antivirals: M2 ion channel blockers (such as amantadine) and neuraminidase inhibitors (such as oseltamivir). Examination of the mechanism of influenza viral infection has shown that endosomal acidification plays a major role in facilitating the fusion between viral and endosomal membranes. This pathway has led to investigations on vacuolar ATPase (v-ATPase) activity, whose role as a regulating factor on influenza virus replication has been verified in extensive genome-wide screenings. Blocking v-ATPase activity thus presents the opportunity to interfere with influenza viral infection by preventing the pH-dependent membrane fusion between endosomes and virions. This study aims to apply diphyllin, a natural compound shown to be as a novel v-ATPase inhibitor, as a potential antiviral for various influenza virus strains using cell-based assays. The results show that diphyllin alters cellular susceptibility to influenza viruses through the inhibition of endosomal acidification, thus interfering with downstream virus replication, including that of known drug-resistant strains. In addition, combinatorial treatment of the host-targeting diphyllin with pathogen-targeting therapeutics (oseltamivir and amantadine) demonstrates enhanced antiviral effects and cell protection in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    PubMed

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Host response to bovine respiratory pathogens.

    PubMed

    Czuprynski, Charles J

    2009-12-01

    Bovine respiratory disease (BRD) involves complex interactions amongst viral and bacterial pathogens that can lead to intense pulmonary inflammation (fibrinous pleuropneumonia). Viral infection greatly increases the susceptibility of cattle to secondary infection of the lung with bacterial pathogens like Mannheimia haemolytica and Histophilus somni. The underlying reason for this viral/bacterial synergism, and the manner in which cattle respond to the virulence strategies of the bacterial pathogens, is incompletely understood. Bovine herpesvirus type 1 (BHV-1) infection of bronchial epithelial cells in vitro enhances the binding of M. haemolytica and triggers release of inflammatory mediators that attract and enhance binding of neutrophils. An exotoxin (leukotoxin) released from M. haemolytica further stimulates release of inflammatory mediators and causes leukocyte death. Cattle infected with H. somni frequently display vasculitis. Exposure of bovine endothelial cells to H. somnii or its lipooligosaccharide (LOS) increases endothelium permeability, and makes the surface of the endothelial cells pro-coagulant. These processes are amplified in the presence of platelets. The above findings demonstrate that bovine respiratory pathogens (BHV-1, M. haemolytica and H. somni) interact with leukocytes and other cells (epithelial and endothelial cells) leading to the inflammation that characterizes BRD.

  12. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of 0.0001, 0.009 and 0.0001, 0.0001 and 0.001 respectively. Further investigations are required to better understand the clinical roles of the isolated pathogens and their seasonality. PMID:28346512

  13. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control

    PubMed Central

    Munang’andu, Hetron M.

    2016-01-01

    Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies. PMID:28018317

  14. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  15. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  16. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    PubMed

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  17. Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge.

    PubMed

    Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D

    2013-09-01

    Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Evaluation of a mouse model for the West Nile virus group for the purpose of determining viral pathotypes.

    PubMed

    Bingham, John; Payne, Jean; Harper, Jennifer; Frazer, Leah; Eastwood, Sarah; Wilson, Susanne; Lowther, Sue; Lunt, Ross; Warner, Simone; Carr, Mary; Hall, Roy A; Durr, Peter A

    2014-06-01

    West Nile virus (WNV; family Flaviviridae; genus Flavivirus) group members are an important cause of viral meningoencephalitis in some areas of the world. They exhibit marked variation in pathogenicity, with some viral lineages (such as those from North America) causing high prevalence of severe neurological disease, whilst others (such as Australian Kunjin virus) rarely cause disease. The aim of this study was to characterize WNV disease in a mouse model and to elucidate the pathogenetic features that distinguish disease variation. Tenfold dilutions of five WNV strains (New York 1999, MRM16 and three horse isolates of WNV-Kunjin: Boort and two isolates from the 2011 Australian outbreak) were inoculated into mice by the intraperitoneal route. All isolates induced meningoencephalitis in different proportions of infected mice. WNVNY99 was the most pathogenic, the three horse isolates were of intermediate pathogenicity and WNVKUNV-MRM16 was the least, causing mostly asymptomatic disease with seroconversion. Infectivity, but not pathogenicity, was related to challenge dose. Using cluster analysis of the recorded clinical signs, histopathological lesions and antigen distribution scores, the cases could be classified into groups corresponding to disease severity. Metrics that were important in determining pathotype included neurological signs (paralysis and seizures), meningoencephalitis, brain antigen scores and replication in extra-neural tissues. Whereas all mice infected with WNVNY99 had extra-neural antigen, those infected with the WNV-Kunjin viruses only occasionally had antigen outside the nervous system. We conclude that the mouse model could be a useful tool for the assessment of pathotype for WNVs. © 2014 CSIRO.

  19. Measurement of airborne influenza virus during hen slaughtering in an ABSL-3E bioBUBBLE®

    USDA-ARS?s Scientific Manuscript database

    Several avian viral diseases, including avian influenza, Newcastle disease, infectious bronchitis or laryngotracheitis, are transmitted via respiratory droplets or by contact with contaminated fomites. Using high pathogenicity avian influenza (HPAI) virus as a model, the objective of the present st...

  20. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage

    PubMed Central

    Ng, Terry Fei Fan; Marine, Rachel; Wang, Chunlin; Simmonds, Peter; Kapusinszky, Beatrix; Bodhidatta, Ladaporn; Oderinde, Bamidele Soji; Wommack, K. Eric

    2012-01-01

    Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10−4), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses. PMID:22933275

  1. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape

    USGS Publications Warehouse

    Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  2. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination.

    PubMed

    Bentley, Emma M; Mather, Stuart T; Temperton, Nigel J

    2015-06-12

    The globalization of the world's economies, accompanied by increasing international travel, changing climates, altered human behaviour and demographics is leading to the emergence of different viral diseases, many of which are highly pathogenic and hence are considered of great public and animal health importance. To undertake basic research and therapeutic development, many of these viruses require handling by highly trained staff in BSL-3/4 facilities not readily available to the majority of the global R&D community. In order to circumvent the enhanced biosafety requirement, the development of non-pathogenic, replication-defective pseudotyped viruses is an effective and established solution to permit the study of many aspects of virus biology in a low containment biosafety level (BSL)-1/2 laboratory. Under the spectre of the unfolding Ebola crisis, this timely conference (the second to be organised by the Viral Pseudotype Unit, www.viralpseudotypeunit.info*) discusses the recent advances in pseudotype technology and how it is revolutionizing the study of important human and animal pathogens (human and avian influenza viruses, rabies/lyssaviruses, HIV, Marburg and Ebola viruses). Key topics addressed in this conference include the exploitation of pseudotypes for serology and serosurveillance, immunogenicity testing of current and next-generation vaccines and new pseudotype assay formats (multiplexing, kit development). The first pseudotype-focused Euroscicon conference organised by the Viral Pseudotype Unit was recently reviewed [1]. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  3. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  4. Global Status of Porcine circovirus Type 2 and Its Associated Diseases in Sub-Saharan Africa

    PubMed Central

    Iweriebor, Benson C.; Okoh, Anthony I.; Obi, Larry C.

    2017-01-01

    Globally, Porcine circovirus type 2 (PCV2) is a recognized viral pathogen of great economic value in pig farming. It is the major cause of ravaging postweaning multisystemic wasting syndrome (PMWS) and many other disease syndromes generally regarded as Porcine circovirus associated diseases (PCVAD) in Europe. PCV2 infections, specifically PMWS, had impacted huge economic loss on swine production at different regions of the world. It has been studied and reported at different parts of the globe including: North and South America, Europe, Asia, Oceania, Middle East, and the Caribbean. However, till date, this virus and its associated diseases have been grossly understudied in sub-Sahara African region and the entire continent at large. Two out of forty-nine, representing just about 4% of countries that make up sub-Sahara Africa presently, have limited records on reported cases and occurrence of the viral pathogen despite the ubiquitous nature of the virus. This review presents an overview of the discovery of Porcine circovirus and its associated diseases in global pig herds and emphasizes the latest trends in PCV2 vaccines and antiviral drugs development and the information gaps that exist on the occurrence of this important viral pathogen in swine herds of sub-Saharan Africa countries. This will serve as wake-up call for immediate and relevant actions by stakeholders in the region. PMID:28386278

  5. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  6. Prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV 1), Leptospirosis and Neosporosis, and associated risk factors in 161 Irish beef herds.

    PubMed

    Barrett, Damien; Parr, Mervyn; Fagan, John; Johnson, Alan; Tratalos, Jamie; Lively, Francis; Diskin, Michael; Kenny, David

    2018-01-06

    There are limited data available, in Ireland or elsewhere, to determine the extent of exposure to various endemic diseases among beef cows and factors associated with exposure to causative pathogens. The objectives of this study were to determine the herd and within herd prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Leptospirosis and Neosporosis in a large scale study of commercial beef herds on the island of Ireland, and to examine herd level factors associated with exposure to these pathogens in these herds. The average number of cows tested per herd was 35.5 (median 30). Herd level seroprevalence to Bovine Herpesvirus-1(BHV-1), Bovine Viral-Diarrhoea Virus (BVDV), Leptospirosis and Neosporosis was 90%, 100%, 91% and 67%, respectively, while the mean within herd prevalence for the these pathogens was 40%, 77.7%, 65.7% and 5.7%, respectively. The study confirms that the level of seroconversion for the four pathogens of interest increases with herd size. There was also evidence that exposure to one pathogen may increase the risk of exposure to another pathogen. Herd level seroprevalences were in excess of 90% for BVDV, BHV-1 and Leptosporosis. Larger herds were subject to increased exposure to disease pathogens. This study suggests that exposure to several pathogens may be associated with the further exposure to other pathogens.

  7. The Flavivirus Protease As a Target for Drug Discovery

    PubMed Central

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2014-01-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363

  8. The flavivirus protease as a target for drug discovery.

    PubMed

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2013-12-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.

  9. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation

    PubMed Central

    Wang, Andrew; Huen, Sarah C.; Luan, Harding H.; Yu, Shuang; Zhang, Cuiling; Gallezot, Jean-Dominique; Booth, Carmen J.; Medzhitov, Ruslan

    2017-01-01

    Summary Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, while blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. PMID:27610573

  10. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    USGS Publications Warehouse

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  11. Bat Guano Virome: Predominance of Dietary Viruses from Insects and Plants plus Novel Mammalian Viruses▿

    PubMed Central

    Li, Linlin; Victoria, Joseph G.; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans. PMID:20463061

  12. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses.

    PubMed

    Li, Linlin; Victoria, Joseph G; Wang, Chunlin; Jones, Morris; Fellers, Gary M; Kunz, Thomas H; Delwart, Eric

    2010-07-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  13. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming

    PubMed Central

    Jeon, Eun Jin; Tadamura, Kazuki; Murakami, Taiki; Inaba, Jun-ichi; Kim, Bo Min; Sato, Masako; Atsumi, Go; Kuchitsu, Kazuyuki; Masuta, Chikara

    2017-01-01

    ABSTRACT Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses. IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection. PMID:28724770

  14. Biochemistry and Molecular Biology of Flaviviruses.

    PubMed

    Barrows, Nicholas J; Campos, Rafael K; Liao, Kuo-Chieh; Prasanth, K Reddisiva; Soto-Acosta, Ruben; Yeh, Shih-Chia; Schott-Lerner, Geraldine; Pompon, Julien; Sessions, October M; Bradrick, Shelton S; Garcia-Blanco, Mariano A

    2018-04-25

    Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.

  15. Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents

    DTIC Science & Technology

    1989-06-30

    disease or ultimately death. DNA viruses are subdivided into five families and include the pathogens responsible for labial and genital herpes, chicken ... pox , shingles and mononucleosis. RNA viruses are present in more numerous forms and are subdivided into ten families. These viruses are unusual in

  16. Adaptive Mutations That Occurred during Circulation in Humans of H1N1 Influenza Virus in the 2009 Pandemic Enhance Virulence in Mice.

    PubMed

    Otte, A; Sauter, M; Daxer, M A; McHardy, A C; Klingel, K; Gabriel, G

    2015-07-01

    During the 2009 H1N1 influenza pandemic, infection attack rates were particularly high among young individuals who suffered from pneumonia with occasional death. Moreover, previously reported determinants of mammalian adaptation and pathogenicity were not present in 2009 pandemic H1N1 influenza A viruses. Thus, it was proposed that unknown viral factors might have contributed to disease severity in humans. In this study, we performed a comparative analysis of two clinical 2009 pandemic H1N1 strains that belong to the very early and later phases of the pandemic. We identified mutations in the viral hemagglutinin (HA) and the nucleoprotein (NP) that occurred during pandemic progression and mediate increased virulence in mice. Lethal disease outcome correlated with elevated viral replication in the alveolar epithelium, increased proinflammatory cytokine and chemokine responses, pneumonia, and lymphopenia in mice. These findings show that viral mutations that have occurred during pandemic circulation among humans are associated with severe disease in mice. In this study, novel determinants of 2009 pandemic H1N1 influenza pathogenicity were identified in the viral hemagglutinin (HA) and the nucleoprotein (NP) genes. In contrast to highly pathogenic avian influenza viruses, increased virulence in mice did not correlate with enhanced polymerase activity but with reduced activity. Lethal 2009 pandemic H1N1 infection in mice correlated with lymphopenia and severe pneumonia. These studies suggest that molecular mechanisms that mediate 2009 pandemic H1N1 influenza pathogenicity are distinct from those that mediate avian influenza virus pathogenicity in mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  18. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for dengue virus particle assembly. NS3 is a multifunctional enzyme that participates in different steps of the viral life cycle. Using reporter systems to dissect different viral processes, we identified a novel N-terminal unstructured region of the NS3 protein as crucial for production of viral particles. Based on our findings, we propose new ideas that include NS3 as a possible scaffold for the viral assembly process. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses

    PubMed Central

    Szécsi, Judit; Boson, Bertrand; Johnsson, Per; Dupeyrot-Lacas, Pia; Matrosovich, Mikhail; Klenk, Hans-Dieter; Klatzmann, David; Volchkov, Viktor; Cosset, François-Loïc

    2006-01-01

    There is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs. We characterise these Flu-VLPs incorporating the HA, NA and M2 proteins and we show that they induce high-titre neutralising antibodies in mice. PMID:16948862

  20. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Experimentally Infected Domestic Ducks Show Efficient Transmission of Indonesian H5N1 Highly Pathogenic Avian Influenza Virus, but Lack Persistent Viral Shedding

    PubMed Central

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. PMID:24392085

  2. Animal migration and risk of spread of viral infections: Chapter 9

    USGS Publications Warehouse

    Prosser, Diann J.; Nagel, Jessica; Takekawa, John Y.; Edited by Singh, Sunit K.

    2013-01-01

    The potential contribution of migration towards the spread of disease is as varied as the ecology of the pathogens themselves and their host populations. This chapter outlines multiple examples of viral diseases in animal populations and their mechanisms of viral spread. Many species of insects, mammals, fish, and birds exhibit migratory behavior and have the potential to disperse diseases over long distances. The majority of studies available on viral zoonoses have focused on birds and bats, due to their highly migratory life histories. A number of studies have reported evidence of changes in the timing of animal migrations in response to climate change. The majority indicate an advancement of spring migration, with few or inconclusive results for fall migration. Predicting the combined effects of climate change on migratory patterns of host species and epidemiology of viral pathogens is complex and not fully realistic.

  3. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens

    USDA-ARS?s Scientific Manuscript database

    In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens by activating natural killer cells (NK), cytotoxic T lymphocytes, and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such i...

  4. Comparison of Luminex NxTAG Respiratory Pathogen Panel and xTAG Respiratory Viral Panel FAST Version 2 for the Detection of Respiratory Viruses

    PubMed Central

    Lee, Chun Kiat; Lee, Hong Kai; Ng, Christopher Wei Siong; Chiu, Lily; Tang, Julian Wei-Tze; Loh, Tze Ping

    2017-01-01

    Owing to advancements in molecular diagnostics, recent years have seen an increasing number of laboratories adopting respiratory viral panels to detect respiratory pathogens. In December 2015, the NxTAG respiratory pathogen panel (NxTAG RPP) was approved by the United States Food and Drug Administration. We compared the clinical performance of this new assay with that of the xTAG respiratory viral panel (xTAG RVP) FAST v2 using 142 clinical samples and 12 external quality assessment samples. Discordant results were resolved by using a laboratory-developed respiratory viral panel. The NxTAG RPP achieved 100% concordant negative results and 86.6% concordant positive results. It detected one coronavirus 229E and eight influenza A/H3N2 viruses that were missed by the xTAG RVP FAST v2. On the other hand, the NxTAG RPP missed one enterovirus/rhinovirus and one metapneumovirus that were detected by FAST v2. Both panels correctly identified all the pathogens in the 12 external quality assessment samples. Overall, the NxTAG RPP demonstrated good diagnostic performance. Of note, it was better able to subtype the influenza A/H3N2 viruses compared with the xTAG RVP FAST v2. PMID:28224774

  5. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    PubMed Central

    Hassard, Francis; Gwyther, Ceri L.; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Brett, Howard; Jones, Davey L.; McDonald, James E.; Malham, Shelagh K.

    2016-01-01

    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments. PMID:27847499

  6. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    PubMed

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens. Copyright © 2017 Sobel Leonard et al.

  7. Systematic analysis of funding awarded for viral hepatitis-related research to institutions in the United Kingdom, 1997-2010.

    PubMed

    Head, M G; Fitchett, J R; Cooke, G S; Foster, G R; Atun, R

    2015-03-01

    Viral hepatitis is responsible for great health, social and economic burden both globally and in the UK. This study aimed to assess the research funding awarded to UK institutions for viral hepatitis research and the relationship of funded research to clinical and public health burden of viral hepatitis. Databases and websites were systematically searched for information on infectious disease research studies funded for the period 1997-2010. Studies specifically related to viral hepatitis research were identified and categorized in terms of funding by pathogen, disease and by a research and development value chain describing the type of science. The overall data set included 6165 studies (total investment £2.6 billion) of which £76.9 million (3.0%) was directed towards viral hepatitis across 323 studies (5.2%). By pathogen, there were four studies specifically investigating hepatitis A (£3.8 million), 69 studies for hepatitis B (21.4%) with total investment of £14.7 million (19.1%) and 236 (73.1%) hepatitis C studies (£62.7 million, 81.5%). There were 4 studies investigating hepatitis G, and none specifying hepatitis D or E. By associated area, viral hepatitis and therapeutics research received £17.0 million, vaccinology £3.1 million and diagnostics £2.9 million. Preclinical research received £50.3 million (65.4%) across 173 studies, whilst implementation and operational research received £19.4 million (25.3%) across 128 studies. The UK is engaged in much hepatology research, but there are areas where the burden is great and may require greater focus, such as hepatitis E, development of a vaccine for hepatitis C, and further research into hepatitis-associated cancers. Private sector data, and funding information from other countries, would also be useful in priority setting. © 2014 The Authors. Journal of Viral Hepatitis Published by John Wiley & Sons Ltd.

  8. Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro

    PubMed Central

    Webb, Stacy R.; Smith, Stacy E.; Fried, Michael G.

    2018-01-01

    ABSTRACT Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families. IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens—Ebola virus, influenza virus, SARS CoV, and rabies virus—self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development. PMID:29669880

  9. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    PubMed

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  10. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  11. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids.

    PubMed

    Barrero, Roberto A; Napier, Kathryn R; Cunnington, James; Liefting, Lia; Keenan, Sandi; Frampton, Rebekah A; Szabo, Tamas; Bulman, Simon; Hunter, Adam; Ward, Lisa; Whattam, Mark; Bellgard, Matthew I

    2017-01-11

    Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21-25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21-22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21-22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21-22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.

  12. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    PubMed Central

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-01-01

    Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants. PMID:15904535

  13. Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome.

    PubMed

    Skraber, S; Gassilloud, B; Schwartzbrod, L; Gantzer, C

    2004-07-01

    The microbiological quality of water is currently assessed by search for fecal bacteria indicators. There is, however, a body of knowledge demonstrating that bacterial indicators are less resistant to environmental factors than human pathogenic viruses and therefore underestimate the viral risk. As river water is often used as a resource for drinking water production, it is particularly important to obtain a valid estimation of the health hazard, including specific viral risk. This work was conducted to compare the survival of infectious Poliovirus-1 used as a pathogenic virus model to the persistence of, on the one hand, thermotolerant coliforms commonly used as indicators and on the other hand, to somatic coliphages and Poliovirus-1 genome considered as potential indicators. We studied the behavior of infectious Poliovirus-1 and the three (potential) indicators of viral contamination in river water at three different temperatures (4 degrees C,18 degrees C and 25 degrees C). This experiment was performed twice with river water sampled at two different periods, once in winter and once in summer. Our results showed that the survival of thermotolerant coliforms can be 1.5-fold lower than infectious Poliovirus-1. In contrast, under all our experimental conditions, somatic coliphages and Poliovirus-1 genome persisted longer than infectious Poliovirus-1, surviving, respectively, 2-6-fold and about 2-fold longer than infectious Poliovirus-1. According to our results exclusively based on survival capacity, somatic coliphages and viral genome, unlike thermotolerant coliforms appear to be better indicators of viral contamination in river water. Moreover, the disappearance of viral genome is well-correlated to that one of infectious virus irrespective of the conditions tested.

  14. Photonic approach to the selective inactivation of viruses with a near-infrared ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, S. M.; Kibler, K.; Jacobs, B.; Wu, T. C.; Li, Zhe; Yan, Hao; Cope, Stephanie; Vaiana, Sara; Kiang, Juliann G.

    2010-02-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared ultrashort pulsed (USP) laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as M13 bacteriophage, tobacco mosaic virus (TMV) to pathogenic viruses like human papillomavirus (HPV) and human immunodeficiency virus (HIV). At the same time sensitive materials like human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  15. [Research Progress on Antiviral Activity of Interferon-induced Transmembrane Proteins].

    PubMed

    Chen, Yongkun; Zhu, Wenfei; Shu, Yuelong

    2016-03-01

    Interferon-induced Transmembrane Proteins (IFITMs) were identified through small interference RNA (siRNA) screening method in 1980s. The antiviral properties of the IFITMs were firstly discovered in 1996. Recently, its antiviral effect and mechanism have become a research hotspot. Many studies have shown that IFITM can inhibit the replication of multiple pathogenic viruses, including influenza A virus (IAV), Human Immunodeficiency Virus (HIV-1), hepatitis C virus (HCV), Ebola virus (EBOV), West Nile virus and so on. IFITMs inhibit the replication of virus in the early stage of the viral life cycle, which occurred before the release of viral genomes into the cytosol. Recent studies indicate that IFITM proteins could block viral replication by mediate viral membrane fusion. However, the mechanism is still under investigation. Here we review the discovery and characterization of the IFITM proteins, elucidate their antiviral activities and the potential mechanisms.

  16. Methods and compositions for identifying cellular genes exploited by viral pathogens.

    USDA-ARS?s Scientific Manuscript database

    Methods and compositions for rapidly identifying CGEPs required for viral infection of mammalian cells are provided. Also provided are methods of inhibiting viral infection of mammalian cells by inhibiting the activity of one or more CGEPs (e.g., as identified in accordance with methods of the inve...

  17. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome

    PubMed Central

    Handley, Scott; Thackray, Larissa B.; Zhao, Guoyan; Presti, Rachel; Miller, Andrew; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F.; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C.; Permar, Sallie R.; Schmitz, Joern E.; Mansfield, Keith; Brenchley, Jason M.; Veazey, Ronald S.; Stappenbeck, Thaddeus S.; Wang, David; Barouch, Dan H.; Virgin, Herbert W.

    2012-01-01

    SUMMARY Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not non-pathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis. PMID:23063120

  18. Discovery of DNA viruses in wild-caught mosquitoes using small RNA high throughput sequencing.

    PubMed

    Ma, Maijuan; Huang, Yong; Gong, Zhengda; Zhuang, Lu; Li, Cun; Yang, Hong; Tong, Yigang; Liu, Wei; Cao, Wuchun

    2011-01-01

    Mosquito-borne infectious diseases pose a severe threat to public health in many areas of the world. Current methods for pathogen detection and surveillance are usually dependent on prior knowledge of the etiologic agents involved. Hence, efficient approaches are required for screening wild mosquito populations to detect known and unknown pathogens. In this study, we explored the use of Next Generation Sequencing to identify viral agents in wild-caught mosquitoes. We extracted total RNA from different mosquito species from South China. Small 18-30 bp length RNA molecules were purified, reverse-transcribed into cDNA and sequenced using Illumina GAIIx instrumentation. Bioinformatic analyses to identify putative viral agents were conducted and the results confirmed by PCR. We identified a non-enveloped single-stranded DNA densovirus in the wild-caught Culex pipiens molestus mosquitoes. The majority of the viral transcripts (.>80% of the region) were covered by the small viral RNAs, with a few peaks of very high coverage obtained. The +/- strand sequence ratio of the small RNAs was approximately 7∶1, indicating that the molecules were mainly derived from the viral RNA transcripts. The small viral RNAs overlapped, enabling contig assembly of the viral genome sequence. We identified some small RNAs in the reverse repeat regions of the viral 5'- and 3' -untranslated regions where no transcripts were expected. Our results demonstrate for the first time that high throughput sequencing of small RNA is feasible for identifying viral agents in wild-caught mosquitoes. Our results show that it is possible to detect DNA viruses by sequencing the small RNAs obtained from insects, although the underlying mechanism of small viral RNA biogenesis is unclear. Our data and those of other researchers show that high throughput small RNA sequencing can be used for pathogen surveillance in wild mosquito vectors.

  19. Analysis of signs and pathology of H5N1-infected ducks from the 2010-2011 Korean highly pathogenic avian influenza outbreak suggests the influence of age and management practices on severity of disease.

    PubMed

    Rhyoo, Moon-Young; Lee, Kyung-Hyun; Moon, Oun-Kyung; Park, Woo-Hee; Bae, You-Chan; Jung, Ji-Youl; Yoon, Soon-Seek; Kim, Hye-Ryoung; Lee, Myoung-Heon; Lee, Eun-Joo; Ki, Mi-Ran; Jeong, Kyu-Shik

    2015-01-01

    We compared the clinical signs, histopathological lesions and distribution of viral antigens among infected young (meat-type) and older (breeder) ducks that were naturally infected with the highly pathogenic avian influenza (HPAI) virus during the 2010-2011 Korean outbreak. The meat-type ducks had a high mortality rate (30%) and showed severe neurological signs such as head tremors and paresis. In contrast, HPAI-infected breeder ducks had minimal clinical signs but a decreased egg production rate. The histopathological characteristics of infected meat-type ducks included necrotic lesions of heart and brain, which may have primarily contributed to the high mortality rate. In contrast, the breeder ducks only presented necrotic splenitis, and viral antigens were only detected in the trachea, lungs and spleen. Younger ducks had a high viral titre in the organs, high levels of viral shedding and a high mortality rate after experimental HPAI virus infection. Compared to the breeder ducks, the meat-type ducks were raised in smaller farms that had poor quarantine and breeding facilities. It is therefore possible that better biosecurity in the breeder farms could have reduced the infection dose and subsequently the severity of the disease. Thus, age and management may be the influencing factors for HPAI susceptibility in ducks.

  20. Macrophage polarization at the crossroad between HIV-1 infection and cancer development.

    PubMed

    Alfano, Massimo; Graziano, Francesca; Genovese, Luca; Poli, Guido

    2013-06-01

    Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro-derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.

  1. Diseases and pathogens associated with mortality in Ontario beef feedlots.

    PubMed

    Gagea, Mihai I; Bateman, Kenneth G; van Dreumel, Tony; McEwen, Beverly J; Carman, Susy; Archambault, Marie; Shanahan, Rachel A; Caswell, Jeff L

    2006-01-01

    This study determined the prevalence of diseases and pathogens associated with mortality or severe morbidity in 72 Ontario beef feedlots in calves that died or were euthanized within 60 days after arrival. Routine pathologic and microbiologic investigations, as well as immunohistochemical staining for detection of bovine viral diarrhea virus (BVDV) antigen, were performed on 99 calves that died or were euthanized within 60 days after arrival. Major disease conditions identified included fibrinosuppurative bronchopneumonia (49%), caseonecrotic bronchopneumonia or arthritis (or both) caused by Mycoplasma bovis (36%), viral respiratory disease (19%), BVDV-related diseases (21%), Histophilus somni myocarditis (8%), ruminal bloat (2%), and miscellaneous diseases (8%). Viral infections identified were BVDV (35%), bovine respiratory syncytial virus (9%), bovine herpesvirus-1 (6%), parainfluenza-3 virus (3%), and bovine coronavirus (2%). Bacteria isolated from the lungs included M. bovis (82%), Mycoplasma arginini (72%), Ureaplasma diversum (25%), Mannheimia haemolytica (27%), Pasteurella multocida (19%), H. somni (14%), and Arcanobacterium pyogenes (19%). Pneumonia was the most frequent cause of mortality of beef calves during the first 2 months after arrival in feedlots, representing 69% of total deaths. The prevalence of caseonecrotic bronchopneumonia caused by M. bovis was similar to that of fibrinosuppurative bronchopneumonia, and together, these diseases were the most common causes of pneumonia and death. M. bovis pneumonia and polyarthritis has emerged as an important cause of mortality in Ontario beef feedlots.

  2. Simultaneous Quantification of Viral Antigen Expression Kinetics Using Data-Independent (DIA) Mass Spectrometry*

    PubMed Central

    Croft, Nathan P.; de Verteuil, Danielle A.; Smith, Stewart A.; Wong, Yik Chun; Schittenhelm, Ralf B.; Tscharke, David C.; Purcell, Anthony W.

    2015-01-01

    The generation of antigen-specific reagents is a significant bottleneck in the study of complex pathogens that express many hundreds to thousands of different proteins or to emerging or new strains of viruses that display potential pandemic qualities and therefore require rapid investigation. In these instances the development of antibodies for example can be prohibitively expensive to cover the full pathogen proteome, or the lead time may be unacceptably long in urgent cases where new highly pathogenic viral strains may emerge. Because genomic information on such pathogens can be rapidly acquired this opens up avenues using mass spectrometric approaches to study pathogen antigen expression, host responses and for screening the utility of therapeutics. In particular, data-independent acquisition (DIA) modalities on high-resolution mass spectrometers generate spectral information on all components of a complex sample providing depth of coverage hitherto only seen in genomic deep sequencing. The spectral information generated by DIA can be iteratively interrogated for potentially any protein of interest providing both evidence of protein expression and quantitation. Here we apply a solely DIA mass spectrometry based methodology to profile the viral antigen expression in cells infected with vaccinia virus up to 9 h post infection without the need for antigen specific antibodies or other reagents. We demonstrate deep coverage of the vaccinia virus proteome using a SWATH-MS acquisition approach, extracting quantitative kinetics of 100 virus proteins within a single experiment. The results highlight the complexity of vaccinia protein expression, complementing what is known at the transcriptomic level, and provide a valuable resource and technique for future studies of viral infection and replication kinetics. Furthermore, they highlight the utility of DIA and mass spectrometry in the dissection of host-pathogen interactions. PMID:25755296

  3. BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease.

    PubMed

    Taylor, Raymond; Kotian, Pravin; Warren, Travis; Panchal, Rekha; Bavari, Sina; Julander, Justin; Dobo, Sylvia; Rose, Angela; El-Kattan, Yahya; Taubenheim, Brian; Babu, Yarlagadda; Sheridan, William P

    2016-01-01

    The adenosine nucleoside analog BCX4430 is a direct-acting antiviral drug under investigation for the treatment of serious and life-threatening infections from highly pathogenic viruses, such as the Ebola virus. Cellular kinases phosphorylate BCX4430 to a triphosphate that mimics ATP; viral RNA polymerases incorporate the drug's monophosphate nucleotide into the growing RNA chain, causing premature chain termination. BCX4430 is active in vitro against many RNA viral pathogens, including the filoviruses and emerging infectious agents such as MERS-CoV and SARS-CoV. In vivo, BCX4430 is active after intramuscular, intraperitoneal, and oral administration in a variety of experimental infections. In nonclinical studies involving lethal infections with Ebola virus, Marburg virus, Rift Valley fever virus, and Yellow Fever virus, BCX4430 has demonstrated pronounced efficacy. In experiments conducted in several models, both a reduction in the viral load and an improvement in survival were found to be related to the dose of BCX4430. A Phase 1 clinical trial of intramuscular administration of BCX4430 in healthy subjects is currently ongoing. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  4. Viral safety characteristics of Flebogamma DIF, a new pasteurized, solvent-detergent treated and Planova 20 nm nanofiltered intravenous immunoglobulin.

    PubMed

    Caballero, Santiago; Nieto, Sandra; Gajardo, Rodrigo; Jorquera, Juan I

    2010-07-01

    A new human liquid intravenous immunoglobulin product, Flebogamma DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log(10) TCID(50)) or Plaque Forming Units assay (log(10) PFU). Validation studies demonstrated that each specific step cleared more than 4 log(10) for all viruses assayed. An overall viral clearance between > or =13.33 log(10) and > or =25.21 log(10), was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma DIF has a very high viral safety profile. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  5. Variation in pestivirus growth in testicle primary cell culture is more dependent on the individual cell donor than cattle breed

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) affects cattle from all breeds living in all regions. However, different breeds of cattle appear to have different susceptibilities to developing BRDC. The causes of BRDC are multifactorial and include infection with both viral and bacterial pathogens. Infec...

  6. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  7. DEVELOPMENT OF HUMAN BIOMARKERS OF EXPOSURE TO WATERBORNE PATHOGENS

    EPA Science Inventory

    Contaminated drinking water is major source of waterborne diseases. EPA has published a drinking water contaminant candidate list (CCL) that contains a number of pathogens that potentially could be regulated in drinking water. Studies indicate that certain viral pathogens (adenov...

  8. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  9. ROLE OF VIRAL PATHOGENS IN INFANTS WITH SYSTEMIC INFECTION AT THE NEWBORN INTENSIVE CARE UNITS IN GEORGIA.

    PubMed

    Kochlamazashvili, M; Khatiashvili, Kh; Butsashvili, M; Chubinishvili, O; Khetsuriani, Sh; Kamkamidze, G

    2016-09-01

    In Georgia, causative agents among infants with systemic infections are generally not identified and "neonatal sepsis" is usually diagnosed and treated without determining the etiology. The objective of this study was to estimate the role of viral pathogens (Herpesviridae and Enteroviruses) among neonates with generalized infections. A cross-sectional study was performed among neonates younger than <8 weeks admitted to a neonatal intensive care unit (NICU) at the two largest pediatric hospitals in Tbilisi, Georgia. Laboratory tests were performed by consensus and then by type-specific PCR methods. A total of 187 infants were recruited from the NICUs; most participants (74.9%) were of normal birth weight at admission to the NICU and half (51.3%) were younger than 7 days of age. Almost all babies (91.4%) were treated with a broad-spectrum antibiotic despite a lack of microbe identification. While the overall mortality rate of infants with a systemic infection was 21.9 %, neonatal outcomes were more favorable when the infection was due to enteroviruses (2.9% mortality rate) compared to a herpesvirus infection (16.1% mortality rate). Multivariate analyses identified independent predictors associated with neonatal mortality. These included etiology of infection, APGAR score and the type of delivery. Our investigation suggests that viral pathogens play a substantial role in systemic infections among NICU infants. Utilizing molecular-based testing in these cases could improve both the clinical management and outcomes of neonates with generalized infections.

  10. Review of pathogen treatment reductions for onsite non ...

    EPA Pesticide Factsheets

    Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse of onsite-collected waters; the present work reviewed the relevant QMRA literature to prioritize knowledge gaps and identify health-protective pathogen treatment reduction targets. The review indicated that ingestion of untreated, onsite-collected graywater, rainwater, seepage water and stormwater from a variety of exposure routes resulted in gastrointestinal infection risks greater than the traditional acceptable level of risk. We found no QMRAs that estimated the pathogen risks associated with onsite, non-potable reuse of blackwater. Pathogen treatment reduction targets for non-potable, onsite reuse that included a suite of reference pathogens (i.e., including relevant bacterial, protozoan, and viral hazards) were limited to graywater (for a limited set of domestic uses) and stormwater (for domestic and municipal uses). These treatment reductions corresponded with the health benchmark of a probability of infection or illness of 10−3 per person per year or less. The pathogen treatment reduction targets varied depending on the target health benchmark, reference pathogen, source water, and water reuse application. Overall, there remains a need for pathogen reduction targets that are heal

  11. Pathological Evaluation of Natural Cases of a Highly Pathogenic Avian Influenza Virus, Subtype H5N8, in Broiler Breeders and Commercial Layers in South Korea.

    PubMed

    Bae, Yeon-Ji; Lee, Seung-Baek; Min, Keong-Cheol; Mo, Jong-Suk; Jeon, Eun-Ok; Koo, Bon-Sang; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jeom-Joo; Kim, Jong-Nyeo; Mo, In-Pil

    2015-03-01

    Outbreaks of highly pathogenic avian influenza (HPAI) virus, subtype H5N8, were observed in two different flocks of local broiler breeder farms and a commercial layer farm in South Korea. Clinically, the cases were characterized by a gradual increase in mortality, slow transmission, and unrecognizable clinical signs of HPAI. Gross observations in both cases included hemorrhagic or necrotic lesions in internal organs, such as serosal and mucosal membranes, spleen, and pancreas. Both cases exhibited similar histopathologic lesions, including multifocal malacia in the brain and multifocal or diffuse necrosis in the spleen and pancreas. Immunohistochemical results indicated that neurons and glial cells in the brain, myocytes in the heart, acinar cells in the pancreas, and mononuclear phagocytic cells in several visceral organs were immunopositive for avian influenza viral antigen. To experimentally reproduce the low pathogenicity and the mortality observed in these two cases, 18 specific-pathogen-free chickens and 18 commercial layers were divided into an H5N8 virus-inoculated group and a contact-exposed group. The mortality of the chickens in the inoculation group was 50%-100%, whereas the mean time to death was delayed or death did not occur in the contact-exposed group. The distributions of the viral antigens and histopathologic lesions in the experimental study were similar to those observed in the field cases. These findings suggest that the H5N8 virus induces a different pattern of pathobiology, including slow transmission and low mortality, compared with that of other HPAI viruses. This is the first pathologic description of natural cases of H5N8 in South Korea, and it may be helpful in understanding the pathobiology of novel H5N8 HPAI viruses.

  12. Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation.

    PubMed

    Dal Bosco, Daniela; Sinski, Iraci; Ritschel, Patrícia S; Camargo, Umberto A; Fajardo, Thor V M; Harakava, Ricardo; Quecini, Vera

    2018-06-06

    Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.

  13. Promising approaches for the treatment and prevention of viral respiratory illnesses.

    PubMed

    Papadopoulos, Nikolaos G; Megremis, Spyridon; Kitsioulis, Nikolaos A; Vangelatou, Olympia; West, Peter; Xepapadaki, Paraskevi

    2017-10-01

    Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. T cell responses in experimental viral retinitis: mechanisms, peculiarities and implications for gene therapy with viral vectors.

    PubMed

    Zinkernagel, Martin S; McMenamin, Paul G; Forrester, John V; Degli-Esposti, Mariapia A

    2011-07-01

    T lymphocytes play a decisive role in the course and clinical outcome of viral retinal infection. This review focuses on aspects of the adaptive cellular immune response against viral pathogens in the retina. Two distinct models to study adaptive cell mediated immune responses in viral retinitis are presented: (i) experimental retinitis induced by murine cytomegalovirus (MCMV), where the immune system prevents necrotizing damage to the retina and (ii) retinitis induced by the non-cytopathic lymphocytic choriomeningitis virus (LCMV), where the retinal microanatomy is compromised not by the virus, but by the immune response itself. From these studies it is clear that, in the context of viral infections, the cytotoxic T cell response against a pathogen in the retina does not differ from that seen in other organs, and that once such a response has been initiated, clearing of virus from retinal tissue has priority over preservation of retinal architecture and function. Furthermore, implications drawn from these models for gene therapy in retinal diseases are discussed. Copyright © 2011. Published by Elsevier Ltd.

  15. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    PubMed

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (P<0.05). These findings suggest that turbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  16. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    PubMed

    Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M

    2010-10-07

    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  17. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  18. Quasispecies and virus.

    PubMed

    Domingo, Esteban; Perales, Celia

    2018-05-01

    Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.

  19. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less

  20. Systematic analysis of funding awarded for viral hepatitis-related research to institutions in the United Kingdom, 1997–2010

    PubMed Central

    Head, M G; Fitchett, J R; Cooke, G S; Foster, G R; Atun, R

    2015-01-01

    Viral hepatitis is responsible for great health, social and economic burden both globally and in the UK. This study aimed to assess the research funding awarded to UK institutions for viral hepatitis research and the relationship of funded research to clinical and public health burden of viral hepatitis. Databases and websites were systematically searched for information on infectious disease research studies funded for the period 1997–2010. Studies specifically related to viral hepatitis research were identified and categorized in terms of funding by pathogen, disease and by a research and development value chain describing the type of science. The overall data set included 6165 studies (total investment £2.6 billion) of which £76.9 million (3.0%) was directed towards viral hepatitis across 323 studies (5.2%). By pathogen, there were four studies specifically investigating hepatitis A (£3.8 million), 69 studies for hepatitis B (21.4%) with total investment of £14.7 million (19.1%) and 236 (73.1%) hepatitis C studies (£62.7 million, 81.5%). There were 4 studies investigating hepatitis G, and none specifying hepatitis D or E. By associated area, viral hepatitis and therapeutics research received £17.0 million, vaccinology £3.1 million and diagnostics £2.9 million. Preclinical research received £50.3 million (65.4%) across 173 studies, whilst implementation and operational research received £19.4 million (25.3%) across 128 studies. The UK is engaged in much hepatology research, but there are areas where the burden is great and may require greater focus, such as hepatitis E, development of a vaccine for hepatitis C, and further research into hepatitis-associated cancers. Private sector data, and funding information from other countries, would also be useful in priority setting. PMID:25146854

  1. The mature virion of ectromelia virus, a pathogenic poxvirus, is capable of intrahepatic spread and can serve as a target for delayed therapy.

    PubMed

    Ma, Xueying; Xu, Ren-Huan; Roscoe, Felicia; Whitbeck, J Charles; Eisenberg, Roselyn J; Cohen, Gary H; Sigal, Luis J

    2013-06-01

    Orthopoxviruses (OPVs), which include the agent of smallpox (variola virus), the zoonotic monkeypox virus, the vaccine and zoonotic species vaccinia virus, and the mouse pathogen ectromelia virus (ECTV), form two types of infectious viral particles: the mature virus (MV), which is cytosolic, and the enveloped virus (EV), which is extracellular. It is believed that MVs are required for viral entry into the host, while EVs are responsible for spread within the host. Following footpad infection of susceptible mice, ECTV spreads lymphohematogenously, entering the liver at 3 to 4 days postinfection (dpi). Afterwards, ECTV spreads intrahepatically, killing the host. We found that antibodies to an MV protein were highly effective at curing mice from ECTV infection when administered after the virus reached the liver. Moreover, a mutant ECTV that does not make EV was able to spread intrahepatically and kill immunodeficient mice. Together, these findings indicate that MVs are sufficient for the spread of ECTV within the liver and could have implications regarding the pathogenesis of other OPVs, the treatment of emerging OPV infections, as well as strategies for preparedness in case of accidental or intentional release of pathogenic OPVs.

  2. Guidance to Registrants: Process for Making Claims Against Emerging Viral Pathogens not on EPA-Registered Disinfectant Labels

    EPA Pesticide Factsheets

    This guidance proposes to use an organism hierarchy to identify effective products for use with emerging pathogens and to permit registrants to make limited statements against such pathogens. It provides general guidance to interested parties.

  3. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    PubMed

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. Copyright © 2016 Herod et al.

  4. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    PubMed Central

    Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.

    2016-01-01

    ABSTRACT The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. PMID:27194768

  5. Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses

    PubMed Central

    Menachery, Vineet D.; Eisfeld, Amie J.; Schäfer, Alexandra; Josset, Laurence; Sims, Amy C.; Proll, Sean; Fan, Shufang; Li, Chengjun; Neumann, Gabriele; Tilton, Susan C.; Chang, Jean; Gralinski, Lisa E.; Long, Casey; Green, Richard; Williams, Christopher M.; Weiss, Jeffrey; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Katze, Michael G.; Kawaoka, Yoshihiro

    2014-01-01

    ABSTRACT The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. PMID:24846384

  6. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    PubMed

    Karniychuk, Uladzimir U

    2016-09-02

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708

  8. Severity of Disease in Humanized Mice Infected With Ebola Virus or Reston Virus Is Associated With Magnitude of Early Viral Replication in Liver.

    PubMed

    Spengler, Jessica R; Saturday, Greg; Lavender, Kerry J; Martellaro, Cynthia; Keck, James G; Nichol, Stuart T; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph

    2017-12-27

    Both Ebola virus (EBOV) and Reston virus (RESTV) cause disease in nonhuman primates, yet only EBOV causes disease in humans. To investigate differences in viral pathogenicity, humanized mice (hu-NSG-SGM3) were inoculated with EBOV or RESTV. Consistent with differences in disease in human infection, pronounced weight loss and markers of hepatic damage and disease were observed exclusively in EBOV-infected mice. These abnormalities were associated with significantly higher EBOV replication in the liver but not in the spleen, suggesting that in this model, efficiency of viral replication in select tissues early in infection may contribute to differences in viral pathogenicity. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Dengue Virus Genome Uncoating Requires Ubiquitination.

    PubMed

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade regarding molecular aspects of the fusion step, but little is known about the events that follow this process, which leads to viral RNA release from the nucleocapsid. Here, we investigated the fate of nucleocapsid components (capsid protein and viral genome) during the infection process and found that capsid is degraded by the ubiquitin-proteasome system. However, in contrast to that observed for other RNA and DNA viruses, dengue virus capsid degradation was not responsible for genome uncoating. Interestingly, we found that dengue virus genome release requires a nondegradative ubiquitination step. These results provide the first insights into dengue virus uncoating and present new opportunities for antiviral intervention. Copyright © 2016 Byk et al.

  10. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation

    PubMed Central

    Lin, Shu-Yi

    2017-01-01

    Infectious bronchitis virus (IBV) variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints. PMID:28937583

  11. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  12. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  14. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice.

    PubMed

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-11-18

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.

  15. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice

    PubMed Central

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-01-01

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. PMID:26576844

  16. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    PubMed

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  17. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  18. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens.

    PubMed

    Szeredi, Levente; Jánosi, Szilárd; Pálfi, Vilmos

    2010-09-01

    The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.

  19. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  20. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes A to J.

    PubMed

    Liu, Chun-Jen; Kao, Jia-Horng

    2013-05-01

    Clinical outcomes of chronic hepatitis B virus (HBV) infection vary widely. In addition to host factors, several viral factors including HBV genotype, viral load, specific viral mutations and quantitative HBsAg levels, have been associated with disease outcomes. Among viral factors, HBV genotype correlates with not only the clinical outcomes, but also with the response to interferon treatment. Currently, 10 HBV genotypes have been identified. Compared with genotype A and B cases, patients with genotypes C and D have lower rates and usually delayed onset of spontaneous HBeAg seroconversion. HBV-genotype C has a higher frequency of basal core promoter (BCP) A1762T/G1764A mutation and preS deletion, and a higher viral load than genotype B. Similarly, genotype D has a higher prevalence of BCP A1762T/G1764A mutation than genotype A. These observations suggest pathogenic differences between HBV genotypes. Genotyping of HBV can help practicing physicians identify chronic hepatitis B patients at risk of disease progression. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Endogenous System Microbes as Treatment Process ...

    EPA Pesticide Factsheets

    Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic

  2. Unity in diversity: Shared mechanism of entry among paramyxoviruses

    PubMed Central

    Palgen, Jean-Louis; Jurgens, Eric M.; Moscona, Anne; Palermo, Laura M.; Porotto, Matteo

    2015-01-01

    The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral “fusion machinery”. The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process. PMID:25595799

  3. Recombinant viral-vectored vaccines for the control of avian influenza in poultry

    USDA-ARS?s Scientific Manuscript database

    Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza viruses. Traditionally inactivated adjuvanted vaccines made from a low pathogenic field strain has been used for vaccination, but advances in molecular biology has allowed a number of di...

  4. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    USDA-ARS?s Scientific Manuscript database

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  5. The pathogenesis of Ebola hemorrhagic fever.

    PubMed

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  6. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2015-01-01

    Abstract This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer’s disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials. PMID:26401998

  7. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  8. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  9. What is the risk for exposure to vector-borne pathogens in United States national parks?

    PubMed

    Eisen, Lars; Wong, David; Shelus, Victoria; Eisen, Rebecca J

    2013-03-01

    United States national parks attract > 275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5-10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks.

  10. Molecular epidemiology of viral hemorrhagic septicemia virus in the Great Lakes region

    USGS Publications Warehouse

    Winton, James; Kurath, Gael; Batts, William

    2008-01-01

    Viral hemorrhagic septicemia virus (VHSV) is considered by many nations and international organizations to be one of the most important viral pathogens of finfish (Office International des Epizooties 2007). For several decades following its initial characterization in the 1950s, VHSV was thought to be limited to Europe where it was regarded as an endemic pathogen of freshwater fish that was especially problematic for farmed rainbow trout, an introduced species (Wolf 1988; Smail 1999). Subsequently, it was shown that VHSV was present among many species of marine and anadromous fishes in both the Pacific and Atlantic Oceans where it has been associated with substantial mortality among both wild and cultured fish (Meyers and Winton 1995; Skall et al. 2005).

  11. A Viral-Human Interactome Based on Structural Motif-Domain Interactions Captures the Human Infectome

    PubMed Central

    Guo, Xianwu; Rodríguez-Pérez, Mario A.

    2013-01-01

    Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets. PMID:23951184

  12. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    PubMed

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    ABSTRACT The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. PMID:26339065

  14. What Really Rigs Up RIG-I?

    PubMed

    Barik, Sailen

    2016-01-01

    RIG-I (retinoic acid-inducible gene 1) is an archetypal member of the cytoplasmic DEAD-box dsRNA helicase family (RIG-I-like receptors or RLRs), the members of which play essential roles in the innate immune response of the metazoan cell. RIG-I functions as a pattern recognition receptor that detects nonself RNA as a pathogen-associated molecular pattern (PAMP). However, the exact molecular nature of the viral RNAs that act as a RIG-I ligand has remained a mystery and a matter of debate. In this article, we offer a critical review of the actual viral RNAs that act as PAMPs to activate RIG-I, as seen from the perspective of a virologist, including a recent report that the viral Leader-read-through transcript is a novel and effective RIG-I ligand. © 2016 S. Karger AG, Basel.

  15. The Relationship between the Structure of the Tick-Borne Encephalitis Virus Strains and Their Pathogenic Properties

    PubMed Central

    Belikov, Sergei I.; Kondratov, Ilya G.; Potapova, Ulyana V.; Leonova, Galina N.

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates. PMID:24740396

  16. Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy.

    PubMed

    Sewald, Xaver

    2018-06-20

    Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.

  17. The anti-obesity drug orlistat reveals anti-viral activity.

    PubMed

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

  18. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  19. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    PubMed

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  20. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

    PubMed

    Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel

    2017-02-08

    Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dual Functions of Rift Valley Fever Virus NSs Protein: Inhibition of Host mRNA Transcription and Post-transcriptional Downregulation of Protein Kinase PKR

    PubMed Central

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C. J.; Makino, Shinji

    2011-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-β mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase, PKR, to prevent phosphorylation of eIF2α and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts. PMID:19751406

  2. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  3. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth, Australia (PMH HREC REF 2014117EP). Findings will be disseminated at research conferences and in peer-reviewed journals. PMID:29549211

  4. Using Standardized Interpretation of Chest Radiographs to Identify Adults with Bacterial Pneumonia--Guatemala, 2007-2012.

    PubMed

    Wortham, Jonathan M; Gray, Jennifer; Verani, Jennifer; Contreras, Carmen Lucia; Bernart, Chris; Moscoso, Fabiola; Moir, Juan Carlos; Reyes Marroquin, Emma Lissette; Castellan, Rigoberto; Arvelo, Wences; Lindblade, Kim; McCracken, John P

    2015-01-01

    Bacterial pneumonia is a leading cause of illness and death worldwide, but quantifying its burden is difficult due to insensitive diagnostics. Although World Health Organization (WHO) protocol standardizes pediatric chest radiograph (CXR) interpretation for epidemiologic studies of bacterial pneumonia, its validity in adults is unknown. Patients (age ≥ 15 years) admitted with respiratory infections to two Guatemalan hospitals between November 2007 and March 2012 had urine and nasopharyngeal/oropharyngeal (NP/OP) swabs collected; blood cultures and CXR were also performed at physician clinical discretion. 'Any bacterial infection' was defined as a positive urine pneumococcal antigen test, isolation of a bacterial pneumonia pathogen from blood culture, or detection of an atypical bacterial pathogen by polymerase chain reaction (PCR) of nasopharyngeal/oropharyngeal (NP/OP) specimens. 'Viral infection' was defined as detection of viral pathogens by PCR of NP/OP specimens. CXRs were interpreted according to the WHO protocol as having 'endpoint consolidation', 'other infiltrate', or 'normal' findings. We examined associations between bacterial and viral infections and endpoint consolidation. Urine antigen and/or blood culture results were available for 721 patients with CXR interpretations; of these, 385 (53%) had endpoint consolidation and 253 (35%) had other infiltrate. Any bacterial infection was detected in 119 (17%) patients, including 106 (89%) pneumococcal infections. Any bacterial infection (Diagnostic Odds Ratio [DOR] = 2.9; 95% confidence Interval (CI): 1.3-7.9) and pneumococcal infection (DOR = 3.4; 95% CI: 1.5-10.0) were associated with 'endpoint consolidation', but not 'other infiltrate' (DOR = 1.7; 95% CI: 0.7-4.9, and 1.7; 95% CI: 0.7-4.9 respectively). Viral infection was not significantly associated with 'endpoint consolidation', 'other infiltrate,' or 'normal' findings. 'Endpoint consolidation' was associated with 'any bacterial infection,' specifically pneumococcal infection. Therefore, endpoint consolidation may be a useful surrogate for studies measuring the impact of interventions, such as conjugate vaccines, against bacterial pneumonia.

  5. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    PubMed

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Behavioral, metabolic, and immune consequences of chronic alcohol or cannabinoids on HIV/AIDs: Studies in the Non-Human Primate SIV model

    PubMed Central

    Molina, Patricia E.; Amedee, Angela M.; Winsauer, Peter; Nelson, Steve; Bagby, Gregory; Simon, Liz

    2015-01-01

    HIV-associated mortality has been significantly reduced with antiretroviral therapy (ART), and HIV infection has become a chronic disease that frequently coexists with many disorders, including substance abuse (Azar et al. 2010; Phillips et al. 2001). Alcohol and drugs of abuse may modify host-pathogen interactions at various levels including behavioral, metabolic, and immune consequences of HIV infection, as well as the ability of the virus to integrate into the genome and replicate in host cells. Identifying mechanisms responsible for these interactions is complicated by many factors, such as the tissue specific responses to viral infection, multiple cellular mechanisms involved in inflammatory responses, neuroendocrine and localized responses to infection, and kinetics of viral replication. An integrated physiological analysis of the biomedical consequences of chronic alcohol and drug use or abuse on disease progression is possible using rhesus macaques infected with simian immunodeficiency virus (SIV), a relevant model of HIV infection. This review will provide an overview of the data gathered using this model to show that chronic administration of two of the most commonly abused substances, alcohol and cannabinoids (Δ9-Tetrahydrocannabinol; THC), affect host-pathogen interactions. PMID:25795088

  7. FilmArray® Gastrointestinal (GI) Panel for Viral Acute Gastroenteritis Detection in Pediatric Patients

    PubMed Central

    Kanwar, Neena; Jackson, Jami; Duffy, Susan; Chapin, Kimberle; Cohen, Daniel; Leber, Amy; Daly, Judy a; Pavia, Andrew; Larsen, Chari; Baca, Tanya; Bender, Jeffery; Bard, Jennifer Dien; Festekjian, Ara; Holmberg, Kristen; Bourzac, Kevin; Selvarangan, Rangaraj

    2017-01-01

    Abstract Background Acute viral gastroenteritis is one of the leading causes of diarrheal diseases. The FilmArray GI Panel is a PCR based assay that detects 22 different enteric pathogens including five viruses (Adenovirus F 40/41, Astrovirus, Norovirus GI/GII, Rotavirus A, and Sapovirus (I, II, IV, and V)) in an hour. The epidemiology and management of acute viral gastroenteritis is described. Methods Children with acute gastroenteritis were prospectively enrolled at emergency departments of five geographically different pediatric facilities during 2015–2016. Stool specimens were collected and tested by the FilmArray GI Panel. Results A total of 1157 subjects were enrolled in the study. Stool specimens from 961 subjects were collected. Subjects with viral, bacterial, and parasitic etiology as identified by the FilmArray GI Panel were 429 (44.6%), 392 (40.8%), and 41 (4.3%), respectively. Viral AGE was common in winter months from October through March (274/429; 63.9%); norovirus was the leading viral agent (205/429; 47.8%) and was more commonly detected in winter months (147/205; 71.7%). Other viruses detected include Adenovirus F 40/41, Astrovirus, Rotavirus, and Sapovirus in 94 (9.8%), 49 (5.1%), 28 (2.9%), and 97 (10.1%) specimens, respectively. Co-infections with multiple pathogens was found in 244 (25.4%) of all specimens tested. Only 39/961 subjects received a viral standard of care (SOC) test result. The FilmArray GI panel detected viruses in higher percentage of stool specimens when SOC was not requested 45% (415/922) vs. requested 36% (14/39) [P = 0.32]. Viral infections were the highest among 148 hospitalizations: virus (26.4%), bacteria (22.9%), bacteria and virus (16.9%), and parasite (0.6%) and norovirus was the leading viral etiology associated with hospitalizations (n = 27; 69.2%). AGE due to viral (24.6%) or bacterial (27.6%) causes had similar repeat visits to hospital [P = 0.45]. Conclusion Viruses are leading cause of AGE resulting in ED visits; norovirus is the leading viral agent. Viral AGE leads to significant hospitalizations and repeat hospital visits. Implementation of comprehensive test like the FilmArray GI panel may aid in appropriate management of children with AGE. Disclosures S. Duffy, BioFire Diagnostics: Investigator, Research grant; K. Chapin, BioFire Diagnostics: Investigator, Research grant; A. Leber, BioFIre Diagnostics: Research Contractor and Scientific Advisor, Research support, Speaker honorarium and Travel expenses; A. Pavia, BioFire Diagnostics: Grant Investigator, Research grant; J. Dien Bard, BioFire: Consultant and Investigator, Research grant and Speaker honorarium; 
 K. Holmberg, BioFire Diagnostics: Employee, Salary; K. Bourzac, BioFire Diagnostics: Employee, Salary; R. Selvarangan, BioFire Diagnostics: Board Member and Investigator, Consulting fee and Research grant; Luminex Diagnostics: Investigator, Research grant

  8. Viruses in Marine Animals: Discovery, Detection, and Characterization

    NASA Astrophysics Data System (ADS)

    Fahsbender, Elizabeth

    Diseases in marine animals are emerging at an increasing rate. Disease forecasting enabled by virus surveillance presents a proactive solution for managing emerging diseases. Broad viral surveys aid in disease forecasting by providing baseline data on viral diversity associated with various hosts, including many that are not associated with disease. However, these viruses can become pathogens due to expansion in host or geographic range, as well as when changing conditions shift the balance between commensal viruses and the host immune system. Therefore, it is extremely valuable to identify and characterize viruses present in many different hosts in a variety of environments, regardless of whether the hosts are symptomatic or not. The lack of a universal gene shared by all viruses makes virus surveillance difficult, because no single assay exists that can detect the enormous diversity of viruses. Viral metagenomics circumvents this issue by purifying viral particles directly from host tissues and sequencing the nucleic acids, allowing for virus identification. However, virus identification is only the first step, which should ideally be followed by complete sequencing of the viral genome to identify genes of interest and develop assays to reveal viral prevalence, tropism, ecology, and pathogenicity. This dissertation focuses on the discovery of novel viruses in marine animals, characterization of complete viral genomes, and the development of subsequent diagnostic assays for further analysis of virus ecology. First, viral metagenomics was used to explore the viruses present in the healthy Weddell seal (Leptonychotes weddellii) population in Antarctica, which led to the discovery of highly prevalent small, circular single-stranded DNA (ssDNA) viruses. The lack of knowledge regarding the viruses of Antarctic wildlife warrants this study to determine baseline viral communities in healthy animals that can be used to survey changes over time. From the healthy Weddell seals, viral metagenomics led to the discovery of 152 novel anellovirus genomes, encompassing two anellovirus species. Characterizing these viruses is important for understanding the prevalence and diversity of ssDNA viruses, which have only recently been described in marine animals. Furthermore, since emerging diseases can be caused by changing conditions affecting host susceptibility to a virus that was previously not related to disease (opportunistic pathogen), having baseline data allows for quick identification of the pathogen. In addition to determining baseline data, viral metagenomics can explore the role of viruses in disease. A novel virus, Asterias forbesi-associated circular virus (AfaCV), was discovered in the Atlantic sea star Asterias forbesi displaying symptoms of sea star wasting disease (SSWD). AfaCV was the first circular replicase-encoding ssDNA (CRESS-DNA) virus discovered in echinoderms, but it was only present in 10% of SSWD sea stars indicating it is not involved in the development of the disease. This dissertation also focuses on elucidating the role of two previously characterized viruses, chelonid fibropapillomatosis-associated herpesvirus (CHHV5; Chelonid herpesvirus 5, ChHV5) and Zalophus californianus anellovirus (ZcAV), in animal health. PCR amplicon sequencing was used to obtain large portions of the 132 kb genome of ChHV5, the putative etiological agent of the neoplastic sea turtle disease, fibropapillomatosis. Obtaining the genome of ChHV5 from Florida green, Kemp's ridley, and loggerhead sea turtles provides data for phylogenetic analysis across geographic locations and sea turtle species, as well as a reference for designing downstream molecular assays to examine viral latency. ZcAV was first described from the lungs of captive sea lions involved in a mortality event. PCR could not detect ZcAV in the blood of infected animals, and since sea lions are a protected species, it is not possible to obtain lung biopsies from live sea lions to determine ZcAV prevalence or its role in sea lion health. To answer these important questions, an enzyme-linked immunosorbent assay (ELISA) was developed to detect antibodies to ZcAV in serum from wild sea lion populations. This newly developed ELISA showed that sea lions mount an immune response to ZcAV, and was used to determine the prevalence of ZcAV among wild sea lion populations. This dissertation makes an important contribution to marine science through discovery and characterization of viruses present in healthy and diseased marine animals. Several different methods were used for virus whole-genome sequencing including viral metagenomics, PCR amplicon sequencing, and target enrichment. These findings were expanded upon by developing and using PCR assays and a serological assay to screen for virus prevalence. These methods have implications for viral surveillance and understanding the role of novel viruses in animal health.

  9. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  10. The bovine paranasal sinuses: Bacterial flora, epithelial expression of nitric oxide and potential role in the in-herd persistence of respiratory disease pathogens.

    PubMed

    Murray, Gerard M; O'Neill, Rónan G; Lee, Alison M; McElroy, Máire C; More, Simon J; Monagle, Aisling; Earley, Bernadette; Cassidy, Joseph P

    2017-01-01

    The bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD) persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99) and of cattle submitted for post-mortem examination (PME: n = 34) were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV) and bovine parainfluenza-3 virus (BPIV-3). Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME). Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (<10%). While serology indicated widespread exposure of both clinically normal and cattle submitted for PME to BPIV-3 and BRSV (seroprevalences of 91.6% and 84.7%, respectively), PCR identified BPIV-3 in only one animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO) within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS), was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans.

  11. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  12. Surveillance theory applied to virus detection: a case for targeted discovery

    USGS Publications Warehouse

    Bogich, Tiffany L.; Anthony, Simon J.; Nichols, James D.

    2013-01-01

    Virus detection and mathematical modeling have gone through rapid developments in the past decade. Both offer new insights into the epidemiology of infectious disease and characterization of future risk; however, modeling has not yet been applied to designing the best surveillance strategies for viral and pathogen discovery. We review recent developments and propose methods to integrate viral and pathogen discovery and mathematical modeling through optimal surveillance theory, arguing for a more targeted approach to novel virus detection guided by the principles of adaptive management and structured decision-making.

  13. [THE CLINICAL AND EPIDEMIOLOGICAL CHARACTERISTICS OF MALARIA CONCURRENT WITH OTHER INFECTIONS AND INVASIONS].

    PubMed

    Kondrashin, A V; Tokmalaev, A K; Morozov, E N; Morozova, L F

    2016-01-01

    The present review considers malaria infection concurrent with different species of helminths, bacterial and viral infections, as well as mixed malaria pathogens in the subtropical and tropical countries of the world, causing the clinical picture and epidemiological situation to be different. Malaria co-infections with different pathogenic micro-organisms, such as HIV, tuberculosis, viral hepatitides, and others, affect almost one third of the planet's population. It is known that people who are at risk for malaria may be also at risk for other parasitic and infectious diseases, most commonly helminthisms.

  14. Viral and vector zoonotic exploitation of a homo-sociome memetic complex.

    PubMed

    Rupprecht, C E; Burgess, G W

    2015-05-01

    As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host-pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological skills and biotechnical abilities alone, if a homo-sociome memetic complex approach is also entertained in a modern transdisciplinary context, neglected viral zoonosis may be better understood, controlled, prevented and possibly eliminated, in a more holistic One Health context. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    PubMed

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  16. Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus.

    PubMed

    Baldridge, Megan T; Lee, Sanghyun; Brown, Judy J; McAllister, Nicole; Urbanek, Kelly; Dermody, Terence S; Nice, Timothy J; Virgin, Herbert W

    2017-04-01

    Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1 -deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1 -null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity. IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1 -/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections. Copyright © 2017 American Society for Microbiology.

  17. Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus

    PubMed Central

    Baldridge, Megan T.; Lee, Sanghyun; Brown, Judy J.; McAllister, Nicole; Urbanek, Kelly; Dermody, Terence S.

    2017-01-01

    ABSTRACT Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1. We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity. IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo. Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1−/− mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections. PMID:28077655

  18. Healthcare workers mobile phone usage: A potential risk for viral contamination. Surveillance pilot study.

    PubMed

    Cavari, Yuval; Kaplan, Or; Zander, Aviva; Hazan, Guy; Shemer-Avni, Yonat; Borer, Abraham

    2016-01-01

    Mobile phones are commonly used by healthcare workers (HCW) in the working environment, as they allow instant communication and endless resource utilisation. Studies suggest that mobile phones have been implicated as reservoirs of bacterial pathogens, with the potential to cause nosocomial infection. This study aimed to investigate the presence of Respiratory Syncytial Virus, Adenovirus and Influenza Virus on HCWs mobile phones and to identify risk factors implied by HCWs practice of mobile phones in a clinical paediatric environment. Fifty HCWs' mobile phones were swabbed over both sides of the mobile phone, for testing of viral contamination during 8 days in January 2015. During the same period, a questionnaire investigating usage of mobile phones was given to 101 HCWs. Ten per cent of sampled phones were contaminated with viral pathogens tested for. A total of 91% of sampled individuals by questionnaire used their mobile phone within the workplace, where 37% used their phone at least every hour. Eighty-nine (88%) responders were aware that mobile phones could be a source of contamination, yet only 13 (13%) disinfect their cell phone regularly. Mobile phones in clinical practice may be contaminated with viral pathogenic viruses. HCWs use their mobile phone regularly while working and, although the majority are aware of contamination, they do not disinfect their phones.

  19. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    PubMed

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells.

    PubMed

    Buitendijk, Maarten; Eszterhas, Susan K; Howell, Alexandra L

    2014-05-01

    Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.

  1. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Epidemiology of viral pathogens of free-ranging dogs and Indian foxes in a human-dominated landscape in central India.

    PubMed

    Belsare, A V; Vanak, A T; Gompper, M E

    2014-08-01

    There is an increasing concern that free-ranging domestic dog (Canis familiaris) populations may serve as reservoirs of pathogens which may be transmitted to wildlife. We documented the prevalence of antibodies to three viral pathogens, canine parvovirus (CPV), canine distemper virus (CDV) and canine adenovirus (CAV), in free-ranging dog and sympatric Indian fox (Vulpes bengalensis) populations in and around the Great Indian Bustard Wildlife Sanctuary, in Maharashtra, central India. A total of 219 dogs and 33 foxes were sampled during the study period. Ninety-three percentage of dogs and 87% of foxes were exposed to one or more of the three pathogens. Exposure rates in dogs were high: >88% for CPV, >72% for CDV and 71% for CAV. A large proportion of adult dogs had antibodies against these pathogens due to seroconversion following earlier natural infection. The high prevalence of exposure to these pathogens across the sampling sessions, significantly higher exposure rates of adults compared with juveniles, and seroconversion in some unvaccinated dogs documented during the study period suggests that these pathogens are enzootic. The prevalence of exposure to CPV, CDV and CAV in foxes was 48%, 18% and 52%, respectively. Further, a high rate of mortality was documented in foxes with serologic evidence of ongoing CDV infection. Dogs could be playing a role in the maintenance and transmission of these pathogens in the fox population, but our findings show that most dogs in the population are immune to these pathogens by virtue of earlier natural infection, and therefore, these individuals make little current or future contribution to viral maintenance. Vaccination of this cohort will neither greatly improve their collective immune status nor contribute to herd immunity. Our findings have potentially important implications for dog disease control programmes that propose using canine vaccination as a tool for conservation management of wild carnivore populations. © 2014 Blackwell Verlag GmbH.

  3. Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses

    PubMed Central

    Farkas, Kata; Harrison, Christian; Jones, David L.; McCarthy, Alan J.

    2018-01-01

    ABSTRACT Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere’s viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management. PMID:29795788

  4. Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses.

    PubMed

    Adriaenssens, Evelien M; Farkas, Kata; Harrison, Christian; Jones, David L; Allison, Heather E; McCarthy, Alan J

    2018-01-01

    Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere's viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management.

  5. Innate immunity against HIV-1 infection.

    PubMed

    Altfeld, Marcus; Gale, Michael

    2015-06-01

    During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.

  6. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    PubMed

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  7. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens

    PubMed Central

    2011-01-01

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF. PMID:21982125

  8. Microbiological safety of drinking water: United States and global perspectives.

    PubMed Central

    Ford, T E

    1999-01-01

    Waterborne disease statistics only begin to estimate the global burden of infectious diseases from contaminated drinking water. Diarrheal disease is dramatically underreported and etiologies seldom diagnosed. This review examines available data on waterborne disease incidence both in the United States and globally together with its limitations. The waterborne route of transmission is examined for bacterial, protozoal, and viral pathogens that either are frequently associated with drinking water (e.g., Shigella spp.), or for which there is strong evidence implicating the waterborne route of transmission (e.g., Leptospira spp.). In addition, crucial areas of research are discussed, including risks from selection of treatment-resistant pathogens, importance of environmental reservoirs, and new methodologies for pathogen-specific monitoring. To accurately assess risks from waterborne disease, it is necessary to understand pathogen distribution and survival strategies within water distribution systems and to apply methodologies that can detect not only the presence, but also the viability and infectivity of the pathogen. Images Figure 1 Figure 2 PMID:10229718

  9. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  10. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee

    PubMed Central

    Flenniken, Michelle L.; Andino, Raul

    2013-01-01

    Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869

  11. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  12. Viruses and antiviral immunity in Drosophila.

    PubMed

    Xu, Jie; Cherry, Sara

    2014-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.

    PubMed

    Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K

    2012-02-28

    The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.

  15. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections

    PubMed Central

    McLay, Lisa; Liang, Yuying

    2014-01-01

    Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections. PMID:24068704

  16. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections.

    PubMed

    McLay, Lisa; Liang, Yuying; Ly, Hinh

    2014-01-01

    Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.

  17. Evaluation and Comparison of the Pathogenicity and Host Immune Responses Induced by a G2b Taiwan Porcine Epidemic Diarrhea Virus (Strain Pintung 52) and Its Highly Cell-Culture Passaged Strain in Conventional 5-Week-Old Pigs.

    PubMed

    Chang, Yen-Chen; Kao, Chi-Fei; Chang, Chia-Yu; Jeng, Chian-Ren; Tsai, Pei-Shiue; Pang, Victor Fei; Chiou, Hue-Ying; Peng, Ju-Yi; Cheng, Ivan-Chen; Chang, Hui-Wen

    2017-05-19

    A genogroup 2b (G2b) porcine epidemic diarrhea virus (PEDV) Taiwan Pintung 52 (PEDVPT) strain was isolated in 2014. The pathogenicity and host antibody responses elicited by low-passage (passage 5; PEDVPT-P5) and high-passage (passage 96; PEDVPT-P96) PEDVPT strains were compared in post-weaning PEDV-seronegative pigs by oral inoculation. PEDVPT-P5-inoculation induced typical diarrhea during 1-9 days post inoculation with fecal viral shedding persisting for 26 days. Compared to PEDVPT-P5, PEDVPT-P96 inoculation induced none-to-mild diarrhea and lower, delayed fecal viral shedding. Although PEDVPT-P96 elicited slightly lower neutralizing antibodies and PEDV-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) titers, a reduction in pathogenicity and viral shedding of the subsequent challenge with PEDVPT-P5 were noted in both PEDVPT-P5- and PEDVPT-P96-inoculated pigs. Alignment and comparison of full-length sequences of PEDVPT-P5 and PEDVPT-P96 revealed 23 nucleotide changes and resultant 19 amino acid substitutions in non-structure proteins 2, 3, 4, 9, 14, 15, spike, open reading frame 3 (ORF3), and membrane proteins with no detectable deletion or insertion. The present study confirmed the pathogenicity of the PEDVPT isolate in conventional post-weaning pigs. Moreover, data regarding viral attenuation and potency of induced antibodies against PEDVPT-P5 identified PEDVPT-P96 as a potential live-attenuated vaccine candidate.

  18. Molecular detection of Porcine circovirus type 2 in swine herds of Eastern Cape Province South Africa.

    PubMed

    Afolabi, Kayode Olayinka; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Okoh, Anthony Ifeanyi

    2017-11-02

    Porcine circovirus type 2 (PCV2) remains the main causative viral pathogen of porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. This present study aims at determining the occurrence of the viral pathogen in swine herds of the Province. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6 to 60% in the studied farms. The majority (15 out of 17 = 88%) of the analyzed sequences were found clustering with other PCV2b strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This is the first report of PCV2 in swine herds of the Province and the first detection of PCV2b and PCV2d in South African swine herds. It follows the first reported case of PCV2a in an outbreak of porcine multisystemic wasting syndrome (PMWS) in Gauteng Province, South Africa more than one decade ago. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to effectively curb its spread.

  19. Review of Non-Bacterial Infections in Respiratory Medicine: Viral Pneumonia.

    PubMed

    Galván, José María; Rajas, Olga; Aspa, Javier

    2015-11-01

    Although bacteria are the main pathogens involved in community-acquired pneumonia, a significant number of community-acquired pneumonia are caused by viruses, either directly or as part of a co-infection. The clinical picture of these different pneumonias can be very similar, but viral infection is more common in the pediatric and geriatric populations, leukocytes are not generally elevated, fever is variable, and upper respiratory tract symptoms often occur; procalcitonin levels are not generally affected. For years, the diagnosis of viral pneumonia was based on cell culture and antigen detection, but since the introduction of polymerase chain reaction techniques in the clinical setting, identification of these pathogens has increased and new microorganisms such as human bocavirus have been discovered. In general, influenza virus type A and syncytial respiratory virus are still the main pathogens involved in this entity. However, in recent years, outbreaks of deadly coronavirus and zoonotic influenza virus have demonstrated the need for constant alert in the face of new emerging pathogens. Neuraminidase inhibitors for viral pneumonia have been shown to reduce transmission in cases of exposure and to improve the clinical progress of patients in intensive care; their use in common infections is not recommended. Ribavirin has been used in children with syncytial respiratory virus, and in immunosuppressed subjects. Apart from these drugs, no antiviral has been shown to be effective. Prevention with anti-influenza virus vaccination and with monoclonal antibodies, in the case of syncytial respiratory virus, may reduce the incidence of pneumonia. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. A Role for Neutrophils in Viral Respiratory Disease.

    PubMed

    Camp, Jeremy V; Jonsson, Colleen B

    2017-01-01

    Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.

  1. What is the Risk for Exposure to Vector-Borne Pathogens in United States National Parks?

    PubMed Central

    EISEN, LARS; WONG, DAVID; SHELUS, VICTORIA; EISEN, REBECCA J.

    2015-01-01

    United States national parks attract >275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5–10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks. PMID:23540107

  2. Prospects for new viral vaccines.

    PubMed

    Marmion, B P

    1980-08-11

    Animal virology has made outstanding contributions to preventive medicine by the development of vaccines for the control of infectious disease in man and animals. Cost-benefit analysis indicates substantial savings in health care costs from the control of diseases such as smallpox, poliomyelitis, yellow fever and measels. Areas for further development include vaccines for influenza (living, attenuated virus), the herpes group (varicella: cytomegalovirus), respiratory syncytial virus, rotavirus and hepatitis A, B, and non A/non B. The general options for vaccine formulation are discussed with particular emphasis on approaches with the use of viral genetics to 'tailor make' vaccine viruses with defined growth potential in laboratory systems, low pathogenicity, and defined antigens. Current progress with the development of an inactivated hepatitis B vaccine is reviewed as a case study in vaccine development. The impact of recent experiments in cloning hepatitis B virus DNA in E. coli on the production of a purified viral polypeptide vaccine is assessed.

  3. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates.

    PubMed

    Li, Yan; Khalafalla, Abdelmalik Ibrahim; Paden, Clinton R; Yusof, Mohammed F; Eltahir, Yassir M; Al Hammadi, Zulaikha M; Tao, Ying; Queen, Krista; Hosani, Farida Al; Gerber, Susan I; Hall, Aron J; Al Muhairi, Salama; Tong, Suxiang

    2017-01-01

    Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.

  4. High molecular weight polysaccharide that binds and inhibits virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  5. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    PubMed Central

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU. PMID:22163042

  6. An approach for identification of unknown viruses using sequencing-by-hybridization.

    PubMed

    Katoski, Sarah E; Meyer, Hermann; Ibrahim, Sofi

    2015-09-01

    Accurate identification of biological threat agents, especially RNA viruses, in clinical or environmental samples can be challenging because the concentration of viral genomic material in a given sample is usually low, viral genomic RNA is liable to degradation, and RNA viruses are extremely diverse. A two-tiered approach was used for initial identification, then full genomic characterization of 199 RNA viruses belonging to virus families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, and Togaviridae. A Sequencing-by-hybridization (SBH) microarray was used to tentatively identify a viral pathogen then, the identity is confirmed by guided next-generation sequencing (NGS). After optimization and evaluation of the SBH and NGS methodologies with various virus species and strains, the approach was used to test the ability to identify viruses in blinded samples. The SBH correctly identified two Ebola viruses in the blinded samples within 24 hr, and by using guided amplicon sequencing with 454 GS FLX, the identities of the viruses in both samples were confirmed. SBH provides at relatively low-cost screening of biological samples against a panel of viral pathogens that can be custom-designed on a microarray. Once the identity of virus is deduced from the highest hybridization signal on the SBH microarray, guided (amplicon) NGS sequencing can be used not only to confirm the identity of the virus but also to provide further information about the strain or isolate, including a potential genetic manipulation. This approach can be useful in situations where natural or deliberate biological threat incidents might occur and a rapid response is required. © 2015 Wiley Periodicals, Inc.

  7. Helper T Cell Responses to Respiratory Viruses in the Lung: Development, Virus Suppression, and Pathogenesis.

    PubMed

    Miyauchi, Kosuke

    The lung is an important line of defense that is exposed to respiratory infectious pathogens, including viruses. Lung epithelial cells and/or alveolar macrophages are initially targeted by respiratory viruses. Once respiratory viruses invade the cells of the lung, innate immunity is activated to inhibit viral replication. Innate immune signaling also activates virus-specific adaptive immune responses. The helper T cells play pivotal roles in the humoral and cellular adaptive immune responses. Helper T cells are categorized into several distinct subsets (e.g., T H 1, T H 2, T FH , T H 17, and Treg), differentiated by their corresponding signature cytokine production profiles. Helper T cells migrate into the airways and the lung after respiratory virus infections. The behavior of the helper T cells differs with each respiratory virus-in some cases, the response is beneficial; in other cases, it is harmful. Here, the general mechanisms underlying helper T cell responses to viral infections are summarized, and functions and reactions of the helper T cells against some respiratory viral infections are discussed. In influenza virus infections, T H 1 cells, which regulate the cytotoxic T lymphocytes and IgG2 responses, are efficiently activated. T FH cells required for highly specific and memory humoral responses are also activated on influenza infections. In infections with respiratory syncytial virus and rhinovirus, T H 2 cells develop in the lung and contribute to pathogenesis. In many cases, Treg cells inhibit excessive virus-specific T cell responses that can contribute to viral pathogenicity.

  8. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    PubMed

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  9. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans

    PubMed Central

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A.; Miska, Eric A.

    2013-01-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms. PMID:23811144

  10. High frequency of parasitic and viral stool pathogens in patients with active ulcerative colitis: report from a tropical country.

    PubMed

    Banerjee, Debabrata; Deb, Rachana; Dar, Lalit; Mirdha, Bijay R; Pati, Sunil K; Thareja, Sandeep; Falodia, Sushil; Ahuja, Vineet

    2009-01-01

    Diarrhoeal relapses in patients with ulcerative colitis (UC) may be associated with enteric infections and its diagnosis may lessen avoidable exposure to corticosteroids and/or immunosuppressants. The purpose of this study was to assess the frequency of stool pathogens (parasitic and viral) in patients with active UC. This prospective cross-sectional study included 49 consecutive patients (32 M, 17 F, mean age 35.8+/-12 years) with active UC. Three stool samples were collected from each patient and examined for parasitic infection. Rectal biopsies were obtained during sigmoidoscopy to demonstrate cytomegalovirus (CMV) inclusion bodies and to conduct qualitative polymerase chain reaction (PCR) for CMV and herpes simplex virus (HSV) DNA detection. Median duration of illness was 3.9+/-3.7 years and 83.7% of the patients had moderate to severe disease. The prevalence of parasitic infections in UC was 12%. The organisms isolated were Strongyloides stercoralis in 4%, Ankylostoma duodenale in 4%, Cryptosporidium in 2% and Entamoeba histolytica in 2% of the patients. The prevalence of CMV and HSV in rectal biopsies using qualitative PCR was 8% and 10%, respectively. No predictive factor was identified with CMV superinfection in patients with active UC. In India there is a high prevalence of parasitic and viral infections in patients with active UC. The results of the study suggest that, in tropical countries with a known high prevalence of parasitic diseases, aggressive evaluation for parasitic and viral infections should be carried out, as early identification and prompt treatment of such infections can improve the clinical course of patients with active UC.

  11. Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV)

    PubMed Central

    Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A.; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M.

    2011-01-01

    The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action. PMID:21502533

  12. Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV).

    PubMed

    Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M

    2011-04-26

    The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action.

  13. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. © 2013 Elsevier B.V. All rights reserved.

  14. Dry eye disease caused by viral infection: review.

    PubMed

    Alves, Monica; Angerami, Rodrigo Nogueira; Rocha, Eduardo Melani

    2013-01-01

    Dry eye disease and ocular surface disorders may be caused or worsened by viral agents. There are several known and suspected virus associated to ocular surface diseases. The possible pathogenic mechanisms for virus-related dry eye disease are presented herein. This review serves to reinforce the importance of ophthalmologists as one of the healthcare professional able to diagnose a potentially large number of infected patients with high prevalent viral agents.

  15. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  16. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    PubMed

    Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  17. Epidemiological and pathological investigation of fowl aviadenovirus serotypes 8b and 11 isolated from chickens with inclusion body hepatitis in Spain (2011-2013).

    PubMed

    Oliver-Ferrando, S; Dolz, R; Calderón, C; Valle, R; Rivas, R; Pérez, M; Biarnés, M; Blanco, A; Bertran, K; Ramis, A; Busquets, N; Majó, N

    2017-04-01

    Inclusion body hepatitis caused by different fowl aviadenovirus (FAdV) serotypes has been described in several countries in recent years. In Spain, from the spring of 2011 to 2013, an increased number of outbreaks in broiler and broiler breeder flocks from different regions occurred. The objectives of the present work were to carry out the molecular characterization of FAdV strains from Spanish inclusion body hepatitis cases and to study the pathogenicity and viral dynamics of these strains in specific pathogen-free (SPF) chickens. A total of 52 inclusion body hepatitis clinical cases, including 45 from broiler farms and seven from broiler breeder farms, were analysed by conventional polymerase chain reaction and sequencing targeting the FAdV hexon gene. From these, 37 strains were classified as FAdV type 8b, while the remaining 15 were classified as FAdV types 11 (n = 10), 2 (n = 4) and 8a (n = 1). In addition, two different FAdVs belonging to the genotypes 8b and 11 were used for experimental infection. Specific pathogen-free five-day-old birds were inoculated intramuscularly with a high (10 6.5 tissue culture infective dose (TCID) 50 /ml) or low (10 4 TCID 50 /ml) dose of the above-mentioned FAdVs. No mortality was observed in any of the experimental groups, and only one bird showed evident clinical signs. However, macroscopic and microscopic hepatic lesions, as well as viral DNA, were detected in birds from all infection groups. Inclusion bodies and viral DNA were also detected in the pancreas and in the small and the large intestine in some birds. Long-lasting shedding and transmission to contact birds were confirmed in all infected groups.

  18. Patient-derived avian influenza A (H5N6) virus is highly pathogenic in mice but can be effectively treated by anti-influenza polyclonal antibodies.

    PubMed

    Pan, Weiqi; Xie, Haojun; Li, Xiaobo; Guan, Wenda; Chen, Peihai; Zhang, Beiwu; Zhang, Mincong; Dong, Ji; Wang, Qian; Li, Zhixia; Li, Shufen; Yang, Zifeng; Li, Chufang; Zhong, Nanshan; Huang, Jicheng; Chen, Ling

    2018-06-13

    Highly pathogenic avian influenza A (H5N6) virus has been circulating in poultry since 2013 and causes sporadic infections and fatalities in humans. Due to the re-occurrence and continuous evolution of this virus subtype, there is an urgent need to better understand the pathogenicity of the H5N6 virus and to identify effective preventative and therapeutic strategies. We established a mouse model to evaluate the virulence of H5N6 A/Guangzhou/39715/2014 (H5N6/GZ14), which was isolated from an infected patient. BALB/c mice were inoculated intranasally with H5N6/GZ14 and monitored for morbidity, mortality, cytokine production, lung injury, viral replication, and viral dissemination to other organs. H5N6/GZ14 is highly pathogenic and can kill 50% of mice at a very low infectious dose of 5 plaque-forming units (pfu). Infection with H5N6/GZ14 showed rapid disease progression, viral replication to high titers in the lung, a strongly induced pro-inflammatory cytokine response, and severe lung injury. Moreover, infectious H5N6/GZ14 could be detected in the heart and brain of the infected mice. We also demonstrated that anti-influenza polyclonal antibodies generated by immunizing rhesus macaques could protect mice from lethal infection. Our results provide insights into the pathogenicity of the H5N6 human isolate.

  19. Viral infections in transplant recipients.

    PubMed

    Razonable, R R; Eid, A J

    2009-12-01

    Solid organ and hematopoietic stem cell transplant recipients are uniquely predisposed to develop clinical illness, often with increased severity, due to a variety of common and opportunistic viruses. Patients may acquire viral infections from the donor (donor-derived infections), from reactivation of endogenous latent virus, or from the community. Herpes viruses, most notably cytomegalovirus and Epstein Barr virus, are the most common among opportunistic viral pathogens that cause infection after solid organ and hematopoietic stem cell transplantation. The polyoma BK virus causes opportunistic clinical syndromes predominantly in kidney and allogeneic hematopoietic stem cell transplant recipients. The agents of viral hepatitis B and C present unique challenges particularly among liver transplant recipients. Respiratory viral illnesses due to influenza, respiratory syncytial virus, and parainfluenza virus may affect all types of transplant recipients, although severe clinical disease is observed more commonly among lung and allogeneic hematopoietic stem cell transplant recipients. Less common viral infections affecting transplant recipients include those caused by adenoviruses, parvovirus B19, and West Nile virus. Treatment for viruses with proven effective antiviral drug therapies should be complemented by reduction in the degree of immunosuppression. For others with no proven antiviral drugs for therapy, reduction in the degree of immunosuppression remains as the sole effective strategy for management. Prevention of viral infections is therefore of utmost importance, and this may be accomplished through vaccination, antiviral strategies, and aggressive infection control measures.

  20. Cerebral Candidal Abscess and Bovine Viral Diarrhoea Virus Infection in an Aborted Bovine Fetus.

    PubMed

    Vilander, A C; Niles, G A; Frank, C B

    2016-01-01

    Candida species are opportunistic fungi associated with immunosuppression and are the most commonly isolated fungal pathogens from the human central nervous system. Invasive candidiasis is reported uncommonly in animals and there have only been two reports of candidal infection of the brain. This report presents a case of a cerebral candidal abscess in an aborted late-term calf co-infected with bovine viral diarrhoea virus. Candida etchellsii, a species not previously identified as pathogenic, was identified as the causative agent by polymerase chain reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Viral evasion of DNA-stimulated innate immune responses

    PubMed Central

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  2. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    PubMed

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry.

    PubMed

    Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian

    2007-08-01

    Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.

  4. Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection.

    PubMed

    Caballero, Ignacio S; Yen, Judy Y; Hensley, Lisa E; Honko, Anna N; Goff, Arthur J; Connor, John H

    2014-11-06

    Lassa virus and Marburg virus are two causative agents of viral hemorrhagic fever. Their diagnosis is difficult because patients infected with either pathogen present similar nonspecific symptoms early after infection. Current diagnostic tests are based on detecting viral proteins or nucleic acids in the blood, but these cannot be found during the early stages of disease, before the virus starts replicating in the blood. Using the transcriptional response of the host during infection can lead to earlier diagnoses compared to those of traditional methods. In this study, we use RNA sequencing to obtain a high-resolution view of the in vivo transcriptional dynamics of peripheral blood mononuclear cells (PBMCs) throughout both types of infection. We report a subset of host mRNAs, including heat-shock proteins like HSPA1B, immunoglobulins like IGJ, and cell adhesion molecules like SIGLEC1, whose differences in expression are strong enough to distinguish Lassa infection from Marburg infection in non-human primates. We have validated these infection-specific expression differences by using microarrays on a larger set of samples, and by quantifying the expression of individual genes using RT-PCR. These results suggest that host transcriptional signatures are correlated with specific viral infections, and that they can be used to identify highly pathogenic viruses during the early stages of disease, before standard detection methods become effective.

  5. Development and validation of quantitative PCR for detection of Terrapene herpesvirus 1 utilizing free-ranging eastern box turtles (Terrapene carolina carolina).

    PubMed

    Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C

    2016-06-01

    Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Discovery of a Novel Hepatovirus (Phopivirus of Seals) Related to Human Hepatitis A Virus.

    PubMed

    Anthony, S J; St Leger, J A; Liang, E; Hicks, A L; Sanchez-Leon, M D; Jain, K; Lefkowitch, J H; Navarrete-Macias, I; Knowles, N; Goldstein, T; Pugliares, K; Ip, H S; Rowles, T; Lipkin, W I

    2015-08-25

    Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV. Hepatitis A virus (HAV) is an important viral hepatitis in humans because of the substantial number of cases each year in regions with low socioeconomic status. The origin of HAV is unknown, and no nonprimate HAV-like viruses have been described. Here, we describe the discovery of an HAV-like virus in seals. This finding suggests that the diversity and evolutionary history of these viruses might be far greater than previously thought and may provide insight into the origin and pathogenicity of HAV. Copyright © 2015 Anthony et al.

  7. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    PubMed

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew

    PubMed Central

    2018-01-01

    Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research. PMID:29470397

  9. Investigating the complex viral community of the turkey gut: an update from the laboratory and the field

    USDA-ARS?s Scientific Manuscript database

    Periodic monitoring of poultry flocks in the United States via molecular diagnostic methods has revealed a number of potential enteric viral pathogens in continuous circulation in turkeys and chickens. Recently, numerous enteric samples collected from turkey flocks in the southeastern United States ...

  10. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  11. Role of Viral Hemorrhagic Septicemia Virus (VHSV) Matrix (M) Protein in Suppressing Host Transcription

    USDA-ARS?s Scientific Manuscript database

    Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antivir...

  12. Travel-related acquisition of diarrhoeagenic bacteria, enteral viruses and parasites in a prospective cohort of 98 Dutch travellers.

    PubMed

    van Hattem, Jarne M; Arcilla, Maris S; Grobusch, Martin P; Bart, Aldert; Bootsma, Martin C; van Genderen, Perry J; van Gool, Tom; Goorhuis, Abraham; van Hellemond, Jaap J; Molenkamp, Richard; Molhoek, Nicky; Oude Lashof, Astrid M; Stobberingh, Ellen E; de Wever, Bob; Verbrugh, Henri A; Melles, Damian C; Penders, John; Schultsz, Constance; de Jong, Menno D

    2017-09-01

    Limited prospective data are available on the acquisition of viral, bacterial and parasitic diarrhoeagenic agents by healthy individuals during travel. To determine the frequency of travel associated acquisition of 19 pathogens in 98 intercontinental travellers, qPCR was used to detect 8 viral pathogens, 6 bacterial enteric pathogens and 5 parasite species in faecal samples collected immediately before and after travel. We found high pre-travel carriage rates of Blastocystis spp. and Dientamoeba fragilis of 32% and 19% respectively. Pre-travel prevalences of all other tested pathogens were below 3%. Blastocystis spp. (10%), Plesiomonas shigelloides (7%), D. fragilis (6%) and Shigella spp. (5%) were the most frequently acquired pathogens and acquisition of enteral viruses and hepatitis E virus in this relatively small group of travellers was rare or non-existent. Our findings suggest that the role of viruses as the cause of persisting traveller's diarrhoea is limited and bacterial pathogens are more likely as a cause of traveller's diarrhoea. The substantial proportion of travellers carrying Blastocystis spp. and D. fragilis before travel warrants cautious interpretation of positive samples in returning travellers with gastrointestinal complaints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. RECOVERY AND ASSAY OF VIRUSES FROM BIOSOLIDS

    EPA Science Inventory

    In a review of EPA's rule on sewage sludges, the National Research Council recommended that EPA develop improved methods for pathogens using modern technologies. They specifically mentioned viral pathogens that cannot be cultured and those that are difficult to culture. As a re...

  14. Bayesian evidence and epidemiological implications of environmental contamination from acute respiratory infection in long-term care facilities.

    PubMed

    Diaz-Decaro, J D; Launer, B; Mckinnell, J A; Singh, R; Dutciuc, T D; Green, N M; Bolaris, M; Huang, S S; Miller, L G

    2018-05-01

    Skilled nursing home facilities (SNFs) house a vulnerable population frequently exposed to respiratory pathogens. Our study aims to gain a better understanding of the transmission of nursing home-acquired viral respiratory infections in non-epidemic settings. Symptomatic surveillance was performed in three SNFs for residents exhibiting acute respiratory symptoms. Environmental surveillance of five high-touch areas was performed to assess possible transmission. All resident and environmental samples were screened using a commercial multiplex polymerase chain reaction platform. Bayesian methods were used to evaluate environmental contamination. Among nursing home residents with respiratory symptoms, 19% had a detectable viral pathogen (parainfluenza-3, rhinovirus/enterovirus, RSV, or influenza B). Environmental contamination was found in 20% of total room surface swabs of symptomatic residents. Environmental and resident results were all concordant. Target period prevalence among symptomatic residents ranged from 5.5 to 13.3% depending on target. Bayesian analysis quantifies the probability of environmental shedding due to parainfluenza-3 as 92.4% (95% CI: 86.8-95.8%) and due to rhinovirus/enterovirus as 65.6% (95% CI: 57.9-72.5%). Our findings confirm that non-epidemic viral infections are common among SNF residents exhibiting acute respiratory symptoms and that environmental contamination may facilitate further spread with considerable epidemiological implications. Findings further emphasise the importance of environmental infection control for viral respiratory pathogens in long-term care facilities.

  15. Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Liu, Suli; Zhu, Wenfei; Feng, Zhaomin; Gao, Rongbao; Guo, Junfeng; Li, Xiyan; Liu, Jia; Wang, Dayan; Shu, Yuelong

    2018-05-02

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.

  16. Identification and characterization of Highlands J virus from a Mississippi sandhill crane using unbiased next-generation sequencing

    USGS Publications Warehouse

    Ip, Hon S.; Wiley, Michael R.; Long, Renee; Gustavo, Palacios; Shearn-Bochsler, Valerie; Whitehouse, Chris A.

    2014-01-01

    Advances in massively parallel DNA sequencing platforms, commonly termed next-generation sequencing (NGS) technologies, have greatly reduced time, labor, and cost associated with DNA sequencing. Thus, NGS has become a routine tool for new viral pathogen discovery and will likely become the standard for routine laboratory diagnostics of infectious diseases in the near future. This study demonstrated the application of NGS for the rapid identification and characterization of a virus isolated from the brain of an endangered Mississippi sandhill crane. This bird was part of a population restoration effort and was found in an emaciated state several days after Hurricane Isaac passed over the refuge in Mississippi in 2012. Post-mortem examination had identified trichostrongyliasis as the possible cause of death, but because a virus with morphology consistent with a togavirus was isolated from the brain of the bird, an arboviral etiology was strongly suspected. Because individual molecular assays for several known arboviruses were negative, unbiased NGS by Illumina MiSeq was used to definitively identify and characterize the causative viral agent. Whole genome sequencing and phylogenetic analysis revealed the viral isolate to be the Highlands J virus, a known avian pathogen. This study demonstrates the use of unbiased NGS for the rapid detection and characterization of an unidentified viral pathogen and the application of this technology to wildlife disease diagnostics and conservation medicine.

  17. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water.

    PubMed

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2016-09-01

    The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Designing a Biocontainment Unit to Care for Patients with Serious Communicable Diseases: A Consensus Statement

    DTIC Science & Technology

    2006-08-29

    smallpox), by a global emerging infectious disease (e.g., avian influenza , viral hemorrhagic fevers), or by a laboratory accident. One approach to...of providing care to patients with avian influenza , severe acute respiratory syndrome (SARS), or viral hemorrhagic fever (VHF) while assuring optimal...infected with pathogens introduced by a bioterrorist act (e.g., smallpox), by a global emerging infectious disease (e.g., avian influenza , viral

  19. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  20. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    USGS Publications Warehouse

    Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P

    2017-01-01

    incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.

  1. Viral Pneumonia in Patients with Hematologic Malignancy or Hematopoietic Stem Cell Transplantation.

    PubMed

    Vakil, Erik; Evans, Scott E

    2017-03-01

    Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Animal models of highly pathogenic RNA viral infections: encephalitis viruses.

    PubMed

    Holbrook, Michael R; Gowen, Brian B

    2008-04-01

    The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.

  3. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  4. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV.

    PubMed

    Wang, Ling; Li, Guangyu; Yao, Zhi Q; Moorman, Jonathan P; Ning, Shunbin

    2015-09-01

    MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses.

    PubMed

    Martines, Roosecelis Brasil; Ng, Dianna L; Greer, Patricia W; Rollin, Pierre E; Zaki, Sherif R

    2015-01-01

    Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Perspectives for immunotherapy: which applications might achieve an HIV functional cure?

    PubMed

    Vieillard, Vincent; Gharakhanian, Shahin; Lucar, Olivier; Katlama, Christine; Launay, Odile; Autran, Brigitte; Ho Tsong Fang, Raphael; Crouzet, Joël; Murphy, Robert L; Debré, Patrice

    2016-06-21

    The major advances achieved in devising successful combined antiretroviral therapy (cART) have enabled the sustained control of HIV replication. However, this is associated with costly lifelong treatment, partial immune restoration, chronic inflammation and persistent viral reservoirs. In this context, new therapeutic strategies deserve investigation as adjuncts to cART so as to potentiate immune responses that are capable of completely containing HIV pathogenicity, particularly if cART is discontinued. This may seem a dauntingly high hurdle given the results to date. This review outlines the key research efforts that have recently resurrected immunotherapeutic options, and some of the approaches tested to date. These areas include promising cytokines or vaccine strategies, using different viral or non-viral vectors based on polyvalent "mosaic" antigens and highly conserved HIV envelope peptides, broadly neutralizing antibodies or new properties of antibodies to improve the control of immune system homeostasis. These novel immunotherapeutic strategies appear promising per se, or in combination with TLR-agonists in order to bypass the complexity of the interplay between immune activation, massive CD4+ T-cell loss and viral persistence.

  7. Glycosylation on Hemagglutinin Affects the Virulence and Pathogenicity of Pandemic H1N1/2009 Influenza A Virus in Mice

    PubMed Central

    Li, Yongtao; Bradley, Konrad C.; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-01-01

    The two glycosylation sites (Asn142 and Asn177) were observed in the HA of most human seasonal influenza A/H1N1 viruses, while none in pandemic H1N1/2009 influenza A (pH1N1) viruses. We investigated the effect of the two glycosylation sites on viral virulence and pathogenicity in mice using recombinant pH1N1. The H1N1/144 and H1N1/177 mutants which gained potential glycosylation sites Asn142 and Asn177 on HA respectively were generated from A/Mexico/4486/2009(H1N1) by site-directed mutagenesis and reverse genetics, the same as the H1N1/144+177 gained both glycosylation sites Asn142 and Asn177. The biological characteristics and antigenicity of the mutants were compared with wild-type pH1N1. The virulence and pathogenicity of recombinants were also detected in mice. Our results showed that HA antigenicity and viral affinity for receptor may change with introduction of the glycosylation sites. Compared with wild-type pH1N1, the mutant H1N1/177 displayed an equivalent virus titer in chicken embryos and mice, and increased virulence and pathogenicity in mice. The H1N1/144 displayed the highest virus titer in mice lung. However, the H1N1/144+177 displayed the most serious alveolar inflammation and pathogenicity in infected mice. The introduction of the glycosylation sites Asn144 and Asn177 resulted in the enhancement on virulence and pathogenicity of pH1N1 in mice, and was also associated with the change of HA antigenicity and the viral affinity for receptor. PMID:23637827

  8. The Role of Particle-Mediated DNA Vaccines in Biodefense Preparedness

    DTIC Science & Technology

    2005-06-17

    vaccines in biodefense preparedness Hansi J. Deana,T, Joel Haynesa, Connie Schmaljohnb aPowderJect Vaccines , Inc. 8551 Research Way, Middleton, WI 53562...accepted 25 January 2005 Available online 12 April 2005Abstract Particle-mediated epidermal delivery (PMED) of DNA vaccines is based on the acceleration...recent years, data have accumulated on the utility of PMED for delivery of DNA vaccines against a number of viral pathogens, including filoviruses

  9. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication

    PubMed Central

    Courtney, David G.

    2018-01-01

    Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication. PMID:29447282

  10. An Ecological and Conservation Perspective on Advances in the Applied Virology of Zoonoses

    PubMed Central

    Vandegrift, Kurt J.; Wale, Nina; Epstein, Jonathan H.

    2011-01-01

    The aim of this manuscript is to describe how modern advances in our knowledge of viruses and viral evolution can be applied to the fields of disease ecology and conservation. We review recent progress in virology and provide examples of how it is informing both empirical research in field ecology and applied conservation. We include a discussion of needed breakthroughs and ways to bridge communication gaps between the field and the lab. In an effort to foster this interdisciplinary effort, we have also included a table that lists the definitions of key terms. The importance of understanding the dynamics of zoonotic pathogens in their reservoir hosts is emphasized as a tool to both assess risk factors for spillover and to test hypotheses related to treatment and/or intervention strategies. In conclusion, we highlight the need for smart surveillance, viral discovery efforts and predictive modeling. A shift towards a predictive approach is necessary in today’s globalized society because, as the 2009 H1N1 pandemic demonstrated, identification post-emergence is often too late to prevent global spread. Integrating molecular virology and ecological techniques will allow for earlier recognition of potentially dangerous pathogens, ideally before they jump from wildlife reservoirs into human or livestock populations and cause serious public health or conservation issues. PMID:21994738

  11. Small molecules targeting viral RNA.

    PubMed

    Hermann, Thomas

    2016-11-01

    Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  12. Porcine semen as a vector for transmission of viral pathogens.

    PubMed

    Maes, Dominiek; Van Soom, Ann; Appeltant, Ruth; Arsenakis, Ioannis; Nauwynck, Hans

    2016-01-01

    Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses

    PubMed Central

    Williams, Simon Hedley; Sameroff, Stephen; Sanchez Leon, Maria; Jain, Komal; Lipkin, W. Ian

    2014-01-01

    ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases. PMID:25056893

  14. Low prevalence of human pathogens on fresh produce on farms and in packing facilities

    USDA-ARS?s Scientific Manuscript database

    Foodborne illness burdens individuals around the world. Consumption of produce contaminated with bacterial, parasite, and viral pathogens causes a significant proportion of cases of foodborne illness. Farms and packing facilities provide opportunities for contamination. This research aimed to determ...

  15. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect transmitted infectious diseases. The fact that many viruses carry...

  16. The Microbial Detection Array Combined with Random Phi29-Amplification Used as a Diagnostic Tool for Virus Detection in Clinical Samples

    PubMed Central

    Erlandsson, Lena; Rosenstierne, Maiken W.; McLoughlin, Kevin; Jaing, Crystal; Fomsgaard, Anders

    2011-01-01

    A common technique used for sensitive and specific diagnostic virus detection in clinical samples is PCR that can identify one or several viruses in one assay. However, a diagnostic microarray containing probes for all human pathogens could replace hundreds of individual PCR-reactions and remove the need for a clear clinical hypothesis regarding a suspected pathogen. We have established such a diagnostic platform for random amplification and subsequent microarray identification of viral pathogens in clinical samples. We show that Phi29 polymerase-amplification of a diverse set of clinical samples generates enough viral material for successful identification by the Microbial Detection Array, demonstrating the potential of the microarray technique for broad-spectrum pathogen detection. We conclude that this method detects both DNA and RNA virus, present in the same sample, as well as differentiates between different virus subtypes. We propose this assay for diagnostic analysis of viruses in clinical samples. PMID:21853040

  17. Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus

    PubMed Central

    Barnard, Karen N.; Ossiboff, Robert J.; Khedri, Zahra; Feng, Kurtis H.; Yu, Hai; Chen, Xi; Varki, Ajit

    2017-01-01

    ABSTRACT Sialic acids (Sias) are important glycans displayed on the cells and tissues of many different animals and are frequent targets for binding and modification by pathogens, including influenza viruses. Influenza virus hemagglutinins bind Sias during the infection of their normal hosts, while the encoded neuraminidases and/or esterases remove or modify the Sia to allow virion release or to prevent rebinding. Sias naturally occur in a variety of modified forms, and modified Sias can alter influenza virus host tropisms through their altered interactions with the viral glycoproteins. However, the distribution of modified Sia forms and their effects on pathogen-host interactions are still poorly understood. Here we used probes developed from viral Sia-binding proteins to detect O-acetylated (4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl) Sias displayed on the tissues of some natural or experimental hosts for influenza viruses. These modified Sias showed highly variable displays between the hosts and tissues examined. The 9-O-acetyl (and 7,9-) modified Sia forms were found on cells and tissues of many hosts, including mice, humans, ferrets, guinea pigs, pigs, horses, dogs, as well as in those of ducks and embryonated chicken egg tissues and membranes, although in variable amounts. The 4-O-acetyl Sias were found in the respiratory tissues of fewer animals, being primarily displayed in the horse and guinea pig, but were not detected in humans or pigs. The results suggest that these Sia variants may influence virus tropisms by altering and selecting their cell interactions. IMPORTANCE Sialic acids (Sias) are key glycans that control or modulate many normal cell and tissue functions while also interacting with a variety of pathogens, including many different viruses. Sias are naturally displayed in a variety of different forms, with modifications at several positions that can alter their functional interactions with pathogens. In addition, Sias are often modified or removed by enzymes such as host or pathogen esterases or sialidases (neuraminidases), and Sia modifications can alter those enzymatic activities to impact pathogen infections. Sia chemical diversity in different hosts and tissues likely alters the pathogen-host interactions and influences the outcome of infection. Here we explored the display of 4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl modified Sia forms in some target tissues for influenza virus infection in mice, humans, birds, guinea pigs, ferrets, swine, horses, and dogs, which encompass many natural and laboratory hosts of those viruses. PMID:28904995

  18. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    USDA-ARS?s Scientific Manuscript database

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  19. An emerging role for p21-activated kinases (Paks) in viral infections.

    PubMed

    Van den Broeke, Celine; Radu, Maria; Chernoff, Jonathan; Favoreel, Herman W

    2010-03-01

    p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival and motility, and abnormal Pak function is associated with a number of human diseases. Here, we discuss emerging evidence that these enzymes also play a major role in the entry, replication and spread of many important pathogenic human viruses, including HIV. Careful assessment of the potential role of Paks in antiviral immunity will be pivotal to evaluate thoroughly the potential of agents that inhibit Pak as a new class of anti-viral therapeutics.

  20. Development of a broad-spectrum antiviral with activity against Ebola virus.

    PubMed

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  1. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses.

    PubMed Central

    Pruss, G; Ge, X; Shi, X M; Carrington, J C; Bowman Vance, V

    1997-01-01

    Synergistic viral diseases of higher plants are caused by the interaction of two independent viruses in the same host and are characterized by dramatic increases in symptoms and in accumulation of one of the coinfecting viruses. In potato virus X (PVX)/potyviral synergism, increased pathogenicity and accumulation of PVX are mediated by the expression of potyviral 5' proximal sequences encoding P1, the helper component proteinase (HC-Pro), and a fraction of P3. Here, we report that the same potyviral sequence (termed P1/HC-Pro) enhances the pathogenicity and accumulation of two other heterologous viruses: cucumber mosaic virus and tobacco mosaic virus. In the case of PVX-potyviral synergism, we show that the expression of the HC-Pro gene product, but not the RNA sequence itself, is sufficient to induce the increase in PVX pathogenicity and that both P1 and P3 coding sequences are dispensable for this aspect of the synergistic interaction. In protoplasts, expression of the potyviral P1/HC-Pro region prolongs the accumulation of PVX (-) strand RNA and transactivates expression of a reporter gene from a PVX subgenomic promoter. Unlike the synergistic enhancement of PVX pathogenicity, which requires only expression of HC-Pro, the enhancement of PVX (-) strand RNA accumulation in protoplasts is significantly greater when the entire P1/HC-Pro sequence is expressed. These results indicate that the potyviral P1/HC-Pro region affects a step in disease development that is common to a broad range of virus infections and suggest a mechanism involving transactivation of viral replication. PMID:9212462

  2. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, John Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  3. Inactivation of human norovirus and Tulane virus in simple mediums and fresh whole strawberries by ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    Human norovirus (NoV) is a major cause of fresh produce associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintainin...

  4. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  5. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  6. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina

    USDA-ARS?s Scientific Manuscript database

    Metagenomics and next generation sequencing were employed to discover new virus natural enemies of the fire ant, Solenopsis invicta Buren in its native range (i.e., Formosa, Argentina) with the ultimate goal of testing and releasing new viral pathogens into U.S. S. invicta populations to provide nat...

  7. Childhood meningitis in the conjugate vaccine era: a prospective cohort study.

    PubMed

    Sadarangani, Manish; Willis, Louise; Kadambari, Seilesh; Gormley, Stuart; Young, Zoe; Beckley, Rebecca; Gantlett, Katherine; Orf, Katharine; Blakey, Sarah; Martin, Natalie G; Kelly, Dominic F; Heath, Paul T; Nadel, Simon; Pollard, Andrew J

    2015-03-01

    Bacterial conjugate vaccines have dramatically changed the epidemiology of childhood meningitis; viral causes are increasingly predominant, but the current UK epidemiology is unknown. This prospective study recruited children under 16 years of age admitted to 3 UK hospitals with suspected meningitis. 70/388 children had meningitis-13 bacterial, 26 viral and 29 with no pathogen identified. Group B Streptococcus was the most common bacterial pathogen. Infants under 3 months of age with bacterial meningitis were more likely to have a reduced Glasgow Coma Score and respiratory distress than those with viral meningitis or other infections. There were no discriminatory clinical features in older children. Cerebrospinal fluid (CSF) white blood cell count and plasma C-reactive protein at all ages, and CSF protein in infants <3 months of age, distinguished between bacterial meningitis and viral meningitis or other infections. Improved diagnosis of non-bacterial meningitis is urgently needed to reduce antibiotic use and hospital stay. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Plasma membrane signaling in HIV-1 infection.

    PubMed

    Abbas, Wasim; Herbein, Georges

    2014-04-01

    Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    PubMed

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  10. Viral Surveillance in Serum Samples From Patients With Acute Liver Failure By Metagenomic Next-Generation Sequencing.

    PubMed

    Somasekar, Sneha; Lee, Deanna; Rule, Jody; Naccache, Samia N; Stone, Mars; Busch, Michael P; Sanders, Corron; Lee, William M; Chiu, Charles Y

    2017-10-16

    Twelve percent of all acute liver failure (ALF) cases are of unknown origin, often termed indeterminate. A previously unrecognized hepatotropic virus has been suspected as a potential etiologic agent. We compared the performance of metagenomic next-generation sequencing (mNGS) with confirmatory nucleic acid testing (NAT) to routine clinical diagnostic testing in detection of known or novel viruses associated with ALF. Serum samples from 204 adult ALF patients collected from 1998 to 2010 as part of a nationwide registry were analyzed. One hundred eighty-seven patients (92%) were classified as indeterminate, while the remaining 17 patients (8%) served as controls, with infections by either hepatitis A virus or hepatitis B virus (HBV), or a noninfectious cause for their ALF. Eight cases of infection from previously unrecognized viral pathogens were detected by mNGS (4 cases of herpes simplex virus type 1, including 1 case of coinfection with HBV, and 1 case each of HBV, parvovirus B19, cytomegalovirus, and human herpesvirus 7). Several missed dual or triple infections were also identified, and assembled viral genomes provided additional information on genotyping and drug resistance mutations. Importantly, no sequences corresponding to novel viruses were detected. These results suggest that ALF patients should be screened for the presence of uncommon viruses and coinfections, and that most cases of indeterminate ALF in the United States do not appear to be caused by novel viral pathogens. In the future, mNGS testing may be useful for comprehensive diagnosis of viruses associated with ALF, or to exclude infectious etiologies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Community-acquired respiratory infections are common in patients with non-Hodgkin lymphoma and multiple myeloma.

    PubMed

    Lavi, Noa; Avivi, Irit; Kra-Oz, Zipora; Oren, Ilana; Hardak, Emilia

    2018-07-01

    Available data suggest that respiratory infections are associated with increased morbidity and mortality in patients hospitalized due to acute leukemia and allogeneic stem cell transplantation (allo-SCT). However, the precise incidence, risk factors, and severity of respiratory infection, mainly community-acquired, in patients with lymphoma and multiple myeloma (MM) are not fully determined. The current study aimed to investigate risk factors for respiratory infections and their clinical significance in patients with B cell non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) in the first year of diagnosis. Data of consecutive patients diagnosed with NHL or MM and treated at the Rambam Hematology Inpatient and Outpatient Units between 01/2011 and 03/2012 were evaluated. Information regarding anticancer treatment, incidence and course of respiratory infections, and infection-related outcomes was analyzed. One hundred and sixty episodes of respiratory infections were recorded in 103 (49%) of 211 (73-MM, 138-NHL) patients; 126 (79%) episodes were community-acquired, 47 (29%) of them required hospitalization. In univariate analysis, age < 60 years, MM diagnosis, and autologous SCT increased the respiratory infection risk (P = 0.058, 0.038, and 0.001, respectively). Ninety episodes (56% of all respiratory episodes) were examined for viral pathogens. Viral infections were documented in 25/90 (28%) episodes, 21 (84%) of them were community-acquired, requiring hospitalization in 5 (24%) cases. Anti-flu vaccination was performed in 119 (56%) patients. Two of the six patients diagnosed with influenza were vaccinated. Respiratory infections, including viral ones, are common in NHL and MM. Most infections are community-acquired and have a favorable outcome. Rapid identification of viral pathogens allows avoiding antibiotic overuse in this patient population.

  12. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates

    PubMed Central

    Eltahir, Yassir M.; Al Hammadi, Zulaikha M.; Tao, Ying; Queen, Krista; Hosani, Farida Al; Gerber, Susan I.; Hall, Aron J.; Al Muhairi, Salama

    2017-01-01

    Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population. PMID:28902913

  13. [Study on the classification of dominant pathogens related to febrile respiratory syndrome, based on the method of Bayes discriminant analysis].

    PubMed

    Li, X C; Li, J S; Meng, L; Bai, Y N; Yu, D S; Liu, X N; Liu, X F; Jiang, X J; Ren, X W; Yang, X T; Shen, X P; Zhang, J W

    2017-08-10

    Objective: To understand the dominant pathogens of febrile respiratory syndrome (FRS) patients in Gansu province and to establish the Bayes discriminant function in order to identify the patients infected with the dominant pathogens. Methods: FRS patients were collected in various sentinel hospitals of Gansu province from 2009 to 2015 and the dominant pathogens were determined by describing the composition of pathogenic profile. Significant clinical variables were selected by stepwise discriminant analysis to establish the Bayes discriminant function. Results: In the detection of pathogens for FRS, both influenza virus and rhinovirus showed higher positive rates than those caused by other viruses (13.79%, 8.63%), that accounting for 54.38%, 13.73% of total viral positive patients. Most frequently detected bacteria would include Streptococcus pneumoniae , and haemophilus influenza (44.41%, 18.07%) that accounting for 66.21% and 24.55% among the bacterial positive patients. The original-validated rate of discriminant function, established by 11 clinical variables, was 73.1%, with the cross-validated rate as 70.6%. Conclusion: Influenza virus, Rhinovirus, Streptococcus pneumoniae and Haemophilus influenzae were the dominant pathogens of FRS in Gansu province. Results from the Bayes discriminant analysis showed both higher accuracy in the classification of dominant pathogens, and applicative value for FRS.

  14. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  15. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  16. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  17. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE PAGES

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; ...

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  18. Prevention and control of viral diseases of salmonids

    USGS Publications Warehouse

    Amend, Donald F.

    1976-01-01

    Three viral diseases of salmonids are of worldwide concern: infectious pancreatic necrosis (IPN) viral hemorrhagic septicemia (VHS), and infectious hematopoietic necrosis (IHN). Six principal approaches are being used to prevent or control these diseases: 1) preventing contact o the pathogen with the host, 2) environmental manipulation, 3) immunization, 4) chemotherapy, 5 selective breeding for disease resistance, and 6) reducing stress conditions which augment disease conditions. Preventing the introduction of a pathogen into a new stock of fish has been accomplished mainly by implementing stringent laws to prevent transport of infected fish into uninfected areas. Stocks of fish already infected are sometimes destroyed, and the hatchery is disinfected and restocked with fish free of specific pathogens. Environmental manipulation (elevated water temperature) has been successfully used to control IHN. Chemotherapeutics such as povidone-iodine for IPN and benzipyrene for IHN show promise of controlling mortalities; however, the practicality of using these drugs to eliminate the carrier fish has not been evaluated. Salmonids are capable of developing immune responses to viruses; however, development of effective vaccines, selective breeding for disease resistance, and identification of stress conditions which augment disease are still in the experimental phase.

  19. Viral infection potentiates the increase in airway blood flow produced by substance P.

    PubMed

    Yamawaki, I; Geppetti, P; Bertrand, C; Chan, B; Massion, P; Piedimonte, G; Nadel, J A

    1995-08-01

    We examined the effect of respiratory tract infection with Sendai virus on the responsiveness of airway blood flow to substance P (SP) in rats. Pathogen-free rats were inoculated with either Sendai virus suspension or sterile viral growth medium into each nostril. Five days later, we measured airway and esophageal blood flows before and immediately after injection of SP or histamine into the left ventricle of rats in both groups using a modification of the reference-sample microsphere technique. Viral infection potentiated the increase in airway blood flow evoked by SP but not by histamine. We also examined the effect of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the SP-induced increase in airway blood flow. Both phosphoramidon (NEP inhibitor) and captopril (ACE inhibitor) potentiated the increase in airway blood flow produced by SP in pathogen-free rats. In the presence of both peptidase inhibitors, a submaximal dose of SP increased blood flow to a similar level in infected and pathogen-free rats. Thus decreased activity of both ACE and NEP may be involved in the exaggerated increase in airway blood flow evoked by SP in virus-infected rats.

  20. A comprehensive collection of systems biology data characterizing the host response to viral infection.

    PubMed

    Aevermann, Brian D; Pickett, Brett E; Kumar, Sanjeev; Klem, Edward B; Agnihothram, Sudhakar; Askovich, Peter S; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R W; Dash, Pradyot; Diercks, Alan H; Eisfeld, Amie J; Ellis, Amy; Fan, Shufang; Ferris, Martin T; Gralinski, Lisa E; Green, Richard R; Gritsenko, Marina A; Hatta, Masato; Heegel, Robert A; Jacobs, Jon M; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M; Kelly, Sara; Law, G Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O; Mitchell, Hugh; Monroe, Matthew E; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L; Purvine, Samuel O; Rosenberger, Carrie M; Sanders, Catherine J; Schepmoes, Athena A; Shukla, Anil K; Sims, Amy; Sova, Pavel; Tam, Vincent C; Tchitchek, Nicolas; Thomas, Paul G; Tilton, Susan C; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D; Waters, Katrina M; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G; Scheuermann, Richard H

    2014-01-01

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

  1. Screening for Viral Pathogens in African Simian Bushmeat Seized at A French Airport.

    PubMed

    Temmam, Sarah; Davoust, Bernard; Chaber, Anne-Lise; Lignereux, Yves; Michelle, Caroline; Monteil-Bouchard, Sonia; Raoult, Didier; Desnues, Christelle

    2017-08-01

    Illegal bushmeat traffic is an important threat to biodiversity conservation of several endangered species and may contribute to the emergence and spread of infectious diseases in humans. The hunting, manipulation and consumption of wildlife-based products, especially those of primate origin, may be a threat to human health; however, few studies have investigated the role of bushmeat trade and consumption as a potential source of human infections to date. In this study, we report the screening of viral pathogens in African simian game seized by French customs at Toulouse Blagnac Airport. Epifluorescence microscopy revealed the presence of virus-like particles in the samples, and further metagenomic sequencing of the DNA and RNA viromes confirmed the presence of sequences related to the Siphoviridae, Myoviridae and Podoviridae bacteriophage families; some of them infecting bacterial hosts that could be potentially pathogenic for humans. To increase the sensitivity of detection, twelve pan-generic PCRs targeting several viral zoonoses were performed, but no positive signal was detected. A large-scale inventory of bacteria, viruses and parasites is urgently needed to globally assess the risk for human health of the trade, manipulation and consumption of wildlife-related bushmeat. © 2016 Blackwell Verlag GmbH.

  2. A comprehensive collection of systems biology data characterizing the host response to viral infection

    PubMed Central

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R.W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa E.; Green, Richard R.; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sara; Law, G. Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie M.; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicolas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.

    2014-01-01

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection. PMID:25977790

  3. Chemical Approaches to Control Gene Expression

    PubMed Central

    Gottesfeld, Joel M.; Turner, James M.; Dervan, Peter B.

    2000-01-01

    A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.). PMID:11097426

  4. Immunopathogenic and Neurological Mechanisms of Canine Distemper Virus

    PubMed Central

    Carvalho, Otávio Valério; Botelho, Clarisse Vieira; Ferreira, Caroline Gracielle Torres; Scherer, Paulo Oldemar; Soares-Martins, Jamária Adriana Pinheiro; Almeida, Márcia Rogéria; Silva Júnior, Abelardo

    2012-01-01

    Canine distemper is a highly contagious viral disease caused by the canine distemper virus (CDV), which is a member of the Morbillivirus genus, Paramyxoviridae family. Animals that most commonly suffer from this disease belong to the Canidae family; however, the spectrum of natural hosts for CDV also includes several other families of the order Carnivora. The infectious disease presents worldwide distribution and maintains a high incidence and high levels of lethality, despite the availability of effective vaccines, and no specific treatment. CDV infection in dogs is characterized by the presentation of systemic and/or neurological courses, and viral persistence in some organs, including the central nervous system (CNS) and lymphoid tissues. An elucidation of the pathogenic mechanisms involved in canine distemper disease will lead to a better understanding of the injuries and clinical manifestations caused by CDV. Ultimately, further insight about this disease will enable the improvement of diagnostic methods as well as therapeutic studies. PMID:23193403

  5. Systemic sclerosis and infections.

    PubMed

    Randone, Silvia Bellando; Guiducci, Serena; Cerinic, Marco Matucci

    2008-10-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular obliteration, excessive extracellular matrix deposition and fibrosis of the connective tissues of the skin, lungs, gastrointestinal tract, heart, and kidneys. Numerous infectious agents (bacterial and viral) have been proposed as possible triggering factors (Parvovirus B19, Cytomegalovirus, Epstein-Barr virus, Retroviruses). Homology between viruses and autoantibody targets suggests that molecular mimicry may have a role in initiating antibody response in different disorders characterized by diffuse vascular disease, including SSc. Endothelial cell may be infected bacteria or viruses that play a particular role in inducing vasculitis. The pathogenic hypothesis include: a mechanism of molecular mimicry, the role played by endothelial cell damage, the presence of superantigens and the role of microchimeric cells. Although several studies provide important information linking infectious agents to SSc, a direct casual association between infections and SSc is still missing. In SSc viral products could synergize with other factors in the microenvironment predisposing to SSc development.

  6. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID:24896088

  7. Pathogenesis of highly pathogenic avian influenza A virus (H7N1) infection in chickens inoculated with three different doses.

    PubMed

    Chaves, Aida J; Busquets, Nuria; Campos, Naiana; Ramis, Antonio; Dolz, Roser; Rivas, Raquel; Valle, Rosa; Abad, F Xavier; Darji, Ayub; Majo, Natalia

    2011-04-01

    To study the pathogenesis of a H7N1 highly pathogenic avian influenza virus strain, specific pathogen free chickens were inoculated with decreasing concentrations of virus: 10(5.5) median embryo lethal dose (ELD(50)) (G1), 10(3.5) ELD(50) (G2) and 10(1.5) ELD(50) (G3). Disease progression was monitored over a period of 16 days and sequential necropsies and tissue samples were collected for histological and immunohistochemical examination. Viral RNA loads were also quantified in different tissues, blood, oropharyngeal swabs, and cloacal swabs using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Clinical signs of depression, apathy, listlessness, huddling and ruffled feathers were recorded in G1 and a few G2 birds, whilst neurological signs were only observed in chickens inoculated with the highest dose. Gross lesions of haemorrhages were observed in the unfeathered skin of the comb and legs, and skeletal muscle, lung, pancreas and kidneys of birds inoculated with 10(5.5) ELD(50) and 10(3.5) ELD(50) doses. Microscopic lesions and viral antigen were demonstrated in cells of the nasal cavity, lung, heart, skeletal muscle, brain, spinal cord, gastrointestinal tract, pancreas, liver, bone marrow, thymus, bursa of Fabricius, spleen, kidney, adrenal gland and skin. Viral RNA was detected by RT-qPCR in kidney, lung, intestine, and brain samples of G1 and G2 birds. However, in birds infected with the lowest dose, viral RNA was detected only in brain and lung samples in low amounts at 5 and 7 days post infection. Interestingly, viral shedding was observed in oropharyngeal and cloacal swabs with proportionate decrease with the inoculation dose. We conclude that although an adequate infectious dose is critical in reproducing the clinical infection, chickens exposed to lower doses can be infected and shed virus representing a risk for the dissemination of the viral agent.

  8. Adenovirus, MS2 and PhiX174 interactions with drinking water biofilms developed on PVC, cement and cast iron.

    PubMed

    Helmi, K; Menard-Szczebara, F; Lénès, D; Jacob, P; Jossent, J; Barbot, C; Delabre, K; Arnal, C

    2010-01-01

    Biofilms colonizing pipe surfaces of drinking water distribution systems could provide habitat and shelter for pathogenic viruses present in the water phase. This study aims (i) to develop a method to detect viral particles present in a drinking water biofilm and (ii) to study viral interactions with drinking water biofilms. A pilot scale system was used to develop drinking water biofilms on 3 materials (7 cm(2) discs): PVC, cast iron and cement. Biofilms were inoculated with viral model including MS2, PhiX174 or adenovirus. Five techniques were tested to recover virus from biofilms. The most efficient uses beef extract and glycine at pH = 9. After sonication and centrifugation, the pH of the supernatant is neutralized prior to viral analysis. The calculated recovery rates varied from 29.3 to 74.6% depending on the virus (MS2 or PhiX174) and the material. Applying this protocol, the interactions of virus models (MS2 and adenovirus) with drinking water biofilms were compared. Our results show that adsorption of viruses to biofilms depends on their isoelectric points, the disc material and the hydrodynamic conditions. Applying hydrodynamic conditions similar to those existing in drinking water networks resulted in a viral adsorption corresponding to less than 1% of the initial viral load.

  9. Genomic characterization of H14 subtype influenza A viruses in New World waterfowl and experimental infectivity in mallards Anas platyrhynchos

    USGS Publications Warehouse

    Ramey, Andy M.; Poulson, Rebecca L.; Gonzalez-Reiche, Ana S.; Perez, Daniel R.; Stalknecht, David E.; Brown, Justin D.

    2014-01-01

    Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.

  10. Viral Diversity of House Mice in New York City.

    PubMed

    Williams, Simon H; Che, Xiaoyu; Garcia, Joel A; Klena, John D; Lee, Bohyun; Muller, Dorothy; Ulrich, Werner; Corrigan, Robert M; Nichol, Stuart; Jain, Komal; Lipkin, W Ian

    2018-04-17

    The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus. IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology. Copyright © 2018 Williams et al.

  11. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.

    PubMed

    Grabowski, Jeffrey M; Hill, Catherine A

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis , the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.

  12. A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era

    PubMed Central

    Grabowski, Jeffrey M.; Hill, Catherine A.

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030. PMID:29312896

  13. Retrospective use of next-generation sequencing reveals the presence of Enteroviruses in acute influenza-like illness respiratory samples collected in South/South-East Asia during 2010-2013.

    PubMed

    Rutvisuttinunt, Wiriya; Klungthong, Chonticha; Thaisomboonsuk, Butsaya; Chinnawirotpisan, Piyawan; Ajariyakhajorn, Chuanpis; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Lon, Chanthap; Saunders, David; Wangchuk, Sonam; Shrestha, Sanjaya K; Velasco, John Mark S; Alera, Maria Theresa P; Simasathien, Sriluck; Buddhari, Darunee; Jarman, Richard G; Macareo, Louis R; Yoon, In-Kyu; Fernandez, Stefan

    2017-09-01

    Emerging and re-emerging respiratory pathogens represent an increasing threat to public health. Etiological determination during outbreaks generally relies on clinical information, occasionally accompanied by traditional laboratory molecular or serological testing. Often, this limited testing leads to inconclusive findings. The Armed Forces Research Institute of Medical Sciences (AFRIMS) collected 12,865 nasopharyngeal specimens from acute influenza-like illness (ILI) patients in five countries in South/South East Asia during 2010-2013. Three hundred and twenty-four samples which were found to be negative for influenza virus after screening with real-time RT-PCR and cell-based culture techniques demonstrated the potential for viral infection with evident cytopathic effect (CPE) in several cell lines. To assess whether whole genome next-generation sequencing (WG-NGS) together with conventional molecular assays can be used to reveal the etiology of influenza negative, but CPE positive specimens. The supernatant of these CPE positive cell cultures were grouped in 32 pools containing 2-26 supernatants per pool. Three WG-NGS runs were performed on these supernatant pools. Sequence reads were used to identify positive pools containing viral pathogens. Individual samples in the positive pools were confirmed by qRT-PCR, RT-PCR, PCR and Sanger sequencing from the CPE culture and original clinical specimens. WG-NGS was an effective way to expand pathogen identification in surveillance studies. This enabled the identification of a viral agent in 71.3% (231/324) of unidentified surveillance samples, including common respiratory pathogens (100/324; 30.9%): enterovirus (16/100; 16.0%), coxsackievirus (31/100; 31.0%), echovirus (22/100; 22.0%), human rhinovirus (3/100; 3%), enterovirus genus (2/100; 2.0%), influenza A (9/100; 9.0%), influenza B, (5/100; 5.0%), human parainfluenza (4/100; 4.0%), human adenovirus (3/100; 3.0%), human coronavirus (1/100; 1.0%), human metapneumovirus (2/100; 2.0%), and mumps virus (2/100; 2.0%), in addition to the non-respiratory pathogen herpes simplex virus type 1 (HSV-1) (172/324; 53.1%) and HSV-1 co-infection with respiratory viruses (41/324; 12.7%). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. HoBi-like viruses: an emerging group of pestiviruses

    USDA-ARS?s Scientific Manuscript database

    The genus Pestivirus is composed by four important pathogens of livestock: bovine viral diarrhea virus types 1 and 2 (BVDV-1 and BVDV-2), classical swine fever virus (CSFV) and border disease virus of sheep (BDV). BVDV are major pathogens of cattle and infection results in significant economic losse...

  15. The mosquito battlefield: understanding the mosquito’s molecular weaponry against pathogens

    USDA-ARS?s Scientific Manuscript database

    This presentation will introduce vector-borne diseases and all the vectors implicated. A focus will be made on the most important vector-borne diseases: Malaria and Dengue. Describing the epidemiology of arboviral diseases, and how each vector responds to protozoan, bacterial and viral pathogens. In...

  16. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses.

    PubMed

    Martín-Acebes, Miguel A; Vázquez-Calvo, Ángela; Saiz, Juan-Carlos

    2016-10-01

    Flaviviruses are emerging arthropod-borne pathogens that cause life-threatening diseases such as yellow fever, dengue, West Nile encephalitis, tick-borne encephalitis, Kyasanur Forest disease, tick-borne encephalitis, or Zika disease. This viral genus groups >50 viral species of small enveloped plus strand RNA virus that are phylogenetically closely related to hepatitis C virus. Importantly, the flavivirus life cycle is intimately associated to host cell lipids. Along this line, flaviviruses rearrange intracellular membranes from the endoplasmic-reticulum of the infected cells to develop adequate platforms for viral replication and particle biogenesis. Moreover, flaviviruses dramatically orchestrate a profound reorganization of the host cell lipid metabolism to create a favorable environment for viral multiplication. Consistently, recent work has shown the importance of specific lipid classes in flavivirus infections. For instances, fatty acid synthesis is linked to viral replication, phosphatidylserine and phosphatidylethanolamine are involved on the entry of flaviviruses, sphingolipids (ceramide and sphingomyelin) play a key role on virus assembly and pathogenesis, and cholesterol is essential for innate immunity evasion in flavivirus-infected cells. Here, we revise the current knowledge on the interactions of the flaviviruses with the cellular lipid metabolism to identify potential targets for future antiviral development aimed to combat these relevant health-threatening pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Wild, insectivorous bats might be carriers of Campylobacter spp.

    PubMed

    Hazeleger, Wilma C; Jacobs-Reitsma, Wilma F; Lina, Peter H C; de Boer, Albert G; Bosch, Thijs; van Hoek, Angela H A M; Beumer, Rijkelt R

    2018-01-01

    The transmission cycles of the foodborne pathogens Campylobacter and Salmonella are not fully elucidated. Knowledge of these cycles may help reduce the transmission of these pathogens to humans. The presence of campylobacters and salmonellas was examined in 631 fresh fecal samples of wild insectivorous bats using a specially developed method for the simultaneous isolation of low numbers of these pathogens in small-sized fecal samples (≤ 0.1 g). Salmonella was not detected in the feces samples, but thermotolerant campylobacters were confirmed in 3% (n = 17) of the bats examined and these pathogens were found in six different bat species, at different sites, in different ecosystems during the whole flying season of bats. Molecular typing of the 17 isolated strains indicated C. jejuni (n = 9), C. coli (n = 7) and C. lari (n = 1), including genotypes also found in humans, wildlife, environmental samples and poultry. Six strains showed unique sequence types. This study shows that insectivorous bats are not only carriers of viral pathogens, but they can also be relevant for the transmission of bacterial pathogens. Bats should be considered as carriers and potential transmitters of Campylobacter and, where possible, contact between bats (bat feces) and food or feed should be avoided.

  18. Mutagenesis-Mediated Decrease of Pathogenicity as a Feature of the Mutant Spectrum of a Viral Population

    PubMed Central

    Sanz-Ramos, Marta; Rodríguez-Calvo, Teresa; Sevilla, Noemí

    2012-01-01

    Background RNA virus populations are heterogeneous ensembles of closely related genomes termed quasispecies. This highly complex distribution of variants confers important properties to RNA viruses and influences their pathogenic behavior. It has been hypothesized that increased mutagenesis of viral populations, by treatment with mutagenic agents, can induce alterations in the pathogenic potential of a virus population. In this work we investigate whether mutagenized foot-and-mouth disease virus (FMDV) populations display changes in their virulence in mice. Methodology and Principal Findings FMDV C-S8c1 was passaged in BHK cells in the presence of the mutagenic agent ribavirin. Decline in viral titer and viral RNA progeny was observed in the first passage, fluctuating around a constant value thereafter. Hence, the specific infectivity remained stable during the passages. The viral population harvested from passage 9 (P9 R) showed decreased virulence in mice, with a lethal dose 50 (LD50) >104 PFU, as compared with LD50 of 50 PFU of the parental population FMDV C-S8c1. This decrease in virulence was associated to a 20-fold increase in the mutation frequency of the P9 R population with respect to C-S8c1. Interestingly, individual biological clones isolated from the attenuated population P9 R were as virulent as the parental virus C-S8c1. Furthermore, a mixed population of C-S8c1 and P9 R was inoculated into mice and showed decreased virulence as compared to C-S8c1, suggesting that population P9 R is able to suppress the virulent phenotype of C-S8c1. Conclusion Ribavirin-mediated mutagenesis of an FMDV population resulted in attenuation in vivo, albeit a large proportion of its biological clones displayed a highly virulent phenotype. These results, together with the suppression of C-S8c1 by mutagenized P9 R population, document a suppressive effect of mutagenized viral quasispecies in vivo, and suggest novel approaches to the treatment and prevention of viral diseases. PMID:22761933

  19. Detection of African swine fever virus DNA in blood samples stored on FTA cards from asymptomatic pigs in Mbeya region, Tanzania.

    PubMed

    Braae, U C; Johansen, M V; Ngowi, H A; Rasmussen, T B; Nielsen, J; Uttenthal, Å

    2015-02-01

    The aim of the study was to assess whether blood samples collected onto FTA(®) cards could be used in combination with real-time PCR for the detection of African swine fever virus (ASFV) DNA in samples from resource-poor settings under the assumption that asymptomatically (sub-clinically) infected pigs may be present. Blood samples were collected from clinically healthy pigs from Mbeya Region, Tanzania. The blood samples were stored on FTA(®) cards and analysed by real-time PCR assays in duplicate; three pigs had high levels of viral DNA (Ct values of 27-29), and three pigs had a low level of viral DNA (Ct 36-45). Four pigs were positive in one of the duplicate samples only, but clear products of the expected size were obtained when the reactions were analysed by gel electrophoresis. For comparison, blood samples from pigs experimentally infected with either a pathogenic (OURT T88/1) or a non-pathogenic (OURT T88/3) isolate of ASFV were collected, stored on FTA(®) cards and analysed in the same way. The blood from pigs infected with the OURT T88/1 isolate showed high levels of viral DNA (Ct 22-33), whereas infection with non-pathogenic OURT T88/3 isolate resulted in only low levels of viral DNA (Ct 39) in samples collected at 10-14 days after inoculation. © 2013 Blackwell Verlag GmbH.

  20. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections.

    PubMed

    Campos, Rafael K; Garcia-Blanco, Mariano A; Bradrick, Shelton S

    2017-07-09

    Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.

  1. Rotavirus I in feces of a cat with diarrhea.

    PubMed

    Phan, Tung G; Leutenegger, Christian M; Chan, Roxanne; Delwart, Eric

    2017-06-01

    A divergent rotavirus I was detected using viral metagenomics in the feces of a cat with diarrhea. The eleven segments of rotavirus I strain Felis catus encoded non-structural and structural proteins with amino acid identities ranging from 25 to 79% to the only two currently sequenced members of that viral species both derived from canine feces. No other eukaryotic viral sequences nor bacterial and protozoan pathogens were detected in this fecal sample suggesting the involvement of rotavirus I in feline diarrhea.

  2. Raw Sewage Harbors Diverse Viral Populations

    PubMed Central

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected. PMID:21972239

  3. Recycling Endosomes and Viral Infection.

    PubMed

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  4. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  5. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  6. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin were above 50%; they were all sensitive to vancomycin and linezolid. The drug-resistance rates of Haemophilus influenzae to cefaclor and cefuroxime were above 60%, but it was sensitive to cefotaxime. The drug-resistance rates of Escherichia coli and Klebsiella pneumoniae to ampicillin, cefotaxime, and ceftriaxone were above 60%, but they were sensitive to carbapenems and compound preparation of enzyme inhibitors. Bacteria are the main pathogens in children with severe CAP and mixed infection is prevalent. The drug-resistance rates of these pathogenic bacteria are high.

  7. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple stresses, further validates known resistance-associated genes, and highlights new potential target genes, some lineage specific to rice, that play important roles in response to stress, providing a roadmap to develop varieties of rice that are more resistant to multiple biotic and abiotic stresses, as encountered in nature. PMID:23398910

  8. Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism.

    PubMed Central

    Chivasa, S.; Murphy, A. M.; Naylor, M.; Carr, J. P.

    1997-01-01

    Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi. PMID:12237364

  9. The roles of ebolavirus glycoproteins in viral pathogenesis.

    PubMed

    Ning, Yun-Jia; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-02-01

    Ebolaviruses are highly dangerous pathogens exhibiting extreme virulence in humans and nonhuman primates. The majority of ebolavirus species, most notably Zaire ebolavirus, can cause Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, in humans. EVD is associated with case-fatality rates as high as 90%, and there is currently no specific treatment or licensed vaccine available against EVD. Understanding the molecular biology and pathogenesis of ebolaviruses is important for the development of antiviral therapeutics. Ebolavirus encodes several forms of glycoproteins (GPs), which have some interesting characteristics, including the transcriptional editing coding strategy and extensive O-glycosylation modification, clustered in the mucin-like domain of GP1, full-length GP (GP 1,2 ), and shed GP. In addition to the canonical role of the spike protein, GP 1,2 , in viral entry, ebolavirus GPs appear to have multiple additional functions, likely contributing to the complex pathogenesis of the virus. Here, we review the roles of ebolavirus GPs in viral pathogenesis.

  10. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    PubMed Central

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  11. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  12. Ebolaviruses: New roles for old proteins.

    PubMed

    Cantoni, Diego; Rossman, Jeremy S

    2018-05-01

    In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein's primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity.

  13. Ebolaviruses: New roles for old proteins

    PubMed Central

    2018-01-01

    In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein’s primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity. PMID:29723187

  14. Deep Sequencing to Identify the Causes of Viral Encephalitis

    PubMed Central

    Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.

    2014-01-01

    Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691

  15. Genetic diversification of an emerging pathogen: A decade of mutation by the fish Viral Hemorrhagic Septicemia (VHS) virus in the Laurentian Great Lakes

    USDA-ARS?s Scientific Manuscript database

    Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus, which causes one of the world's most serious fish diseases, infecting >80 freshwater and marine species across the Northern Hemisphere. A new, novel, and especially virulent substrain - VHSv-IVb - first appeared in the Laurentian Gre...

  16. Insights in luteovirid structural biology guided by chemical cross-linking and high resolution mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Interactions among plant pathogenic viruses in the family /react-text Luteoviridae react-text: 233 and their plant hosts and insect vectors are governed by the topology of the viral capsid, which is the sole vehicle for long distance movement of the viral genome. Previous application of a mass spect...

  17. The Pathogenicity Determinant of Citrus Tristeza Virus Causing the Seedling Yellows Syndrome is Located at the 3’-Terminal Region of the Viral Genome

    USDA-ARS?s Scientific Manuscript database

    Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) causes some of the more important viral diseases of citrus worldwide. The ability to map disease-inducing determinants of CTV is needed to develop better diagnostic and disease control procedures. A distinctive phenotype of s...

  18. Differential expression of miRNA-423-5p in serum from cattle challenged with bovine viral diarrhea virus

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) is an RNA virus that causes respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. However, microRNA profiles in cattle exposed to BVDV are currently nonexistent and few studies have been reported; therefore,...

  19. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression.

    PubMed

    Fuentes, Sandra M; Sun, Dengyun; Schmitt, Anthony P; He, Biao

    2010-01-01

    Paramyxoviruses include many important human and animal pathogens such as measles virus, mumps virus, human parainfluenza viruses, and respiratory syncytial virus, as well as emerging viruses such as Nipah virus and Hendra virus. The paramyxovirus RNA-dependent RNA polymerase consists of the phosphoprotein (P) and the large protein. Both of these proteins are essential for viral RNA synthesis. The P protein is phosphorylated at multiple sites, probably by more than one host kinase. While it is thought that the phosphorylation of P is important for its role in viral RNA synthesis, the precise role of P protein phosphorylation remains an enigma. For instance, it was demonstrated that the putative CKII phosphorylation sites of the P protein of respiratory syncytial virus play a role in viral RNA synthesis using a minigenome replicon system; however, mutating these putative CKII phosphorylation sites within a viral genome had no effect on viral RNA synthesis, leading to the hypothesis that P protein phosphorylation, at least by CKII, does not play a role in viral RNA synthesis. Recently, it has been reported that the phosphorylation state of the P protein of parainfluenza virus 5, a prototypical paramyxovirus, correlates with the ability of P protein to synthesize viral RNA, indicating that P protein phosphorylation does in fact play a role in viral RNA synthesis. Furthermore, host kinases PLK1, as well as AKT1 have been found to play critical roles in paramyxovirus RNA synthesis through regulation of P protein phosphorylation status. Beyond furthering our understanding of paramyxovirus RNA replication, these recent discoveries may also result in a new paradigm in treating infections caused by these viruses, as host kinases that regulate paramyxovirus replication are investigated as potential targets of therapeutic intervention.

  20. Detection of pathogenic organisms in food, water, and body fluids

    NASA Astrophysics Data System (ADS)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  1. The status of live viral vaccination in early life.

    PubMed

    Gans, Hayley A

    2013-05-17

    The need for neonatal vaccines is supported by the high disease burden during the first year of life particularly in the first month. Two-thirds of childhood deaths are attributable to infectious diseases of which viruses represent key pathogens. Many infectious diseases have the highest incidence, severity and mortality in the first months of life, and therefore early life vaccination would provide significant protection and life savings. For some childhood viral diseases successful vaccines exist, such as against measles, mumps, rubella, varicella, influenza poliovirus, and rotavirus, but their use in the first year particularly at birth is not yet practiced. Vaccines against other key pathogens continue to elude scientists such as against respiratory syncytial virus. The obstacles for early and neonatal vaccination are complex and include host factors, such as a developing immune system and the interference of passively acquired antibodies, as well vaccine-specific issues, such as optimal route of administration, titer and dosing requirements. Importantly, additional host and infrastructure barriers also present obstacles to neonatal vaccination in the developing world where morbidity and mortality rates are highest. This review will highlight the current live viral vaccines and their use in the first year of life, focusing on efficacy and entertaining the barriers that exist. It is important to understand the successes of current vaccines and use this knowledge to determine strategies that are successful in young infants and for the development of new vaccines for use in early life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment.

    PubMed

    Brown, Vienna R; Bevins, Sarah N

    2018-01-01

    Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.

  3. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment

    PubMed Central

    Brown, Vienna R.; Bevins, Sarah N.

    2018-01-01

    Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable. PMID:29556501

  4. Epidemiology and Factors Related to Clinical Severity of Acute Gastroenteritis in Hospitalized Children after the Introduction of Rotavirus Vaccination.

    PubMed

    Kim, Ahlee; Chang, Ju Young; Shin, Sue; Yi, Hana; Moon, Jin Soo; Ko, Jae Sung; Oh, Sohee

    2017-03-01

    We aimed to investigate epidemiology and host- and pathogen-related factors associated with clinical severity of acute gastroenteritis (AGE) in children after rotavirus vaccination introduction. Factors assessed included age, co-infection with more than 2 viruses, and virus-toxigenic Clostridium difficile co-detection. Fecal samples and clinical information, including modified Vesikari scores, were collected from hospitalized children with AGE. The presence of enteric viruses and bacteria, including toxigenic C. difficile, was detected by polymerase chain reaction (PCR). Among the 415 children included, virus was detected in stool of 282 (68.0%) children. Co-infection with more than 2 viruses and toxigenic C. difficile were found in 24 (8.5%) and 26 (9.2%) children with viral AGE, respectively. Norovirus (n = 130) infection, including norovirus-associated co-infection, was the most frequent infection, especially in children aged < 24 months (P < 0.001). In the severity-related analysis, age < 24 months was associated with greater diarrheal severity (P < 0.001) and modified Vesikari score (P = 0.001), after adjustment for other severity-related factors including rotavirus status. Although the age at infection with rotavirus was higher than that for other viruses (P = 0.001), rotavirus detection was the most significant risk factor for all severity parameters, including modified Vesikari score (P < 0.001). Viral co-infection and toxigenic C. difficile co-detection were not associated with any severity-related parameter. This information will be helpful in the management of childhood AGE in this era of rotavirus vaccination and availability of molecular diagnostic tests, which often lead to the simultaneous detection of multiple pathogens.

  5. Comparative Genomics of Herpesviridae Family to Look for Potential Signatures of Human Infecting Strains

    PubMed Central

    2016-01-01

    Herpesviridae family is one of the significant viral families which comprises major pathogens of a wide range of hosts. This family includes at least eight species of viruses which are known to infect humans. This family has evolved 180–220 million years ago and the present study highlights that it is still evolving and more genes can be added to the repertoire of this family. In addition, its core-genome includes important viral proteins including glycoprotein B and helicase. Most of the infections caused by human herpesviruses have no definitive cure; thus, search for new therapeutic strategies is necessary. The present study finds core-genome of human herpesviruses that differs from that of Herpesviridae family and nonhuman herpes strains of this family and might be a putative target for vaccine development. The phylogenetic reconstruction based upon the protein sequences of core gene set of Herpesviridae family reveals the sharp splits of its different subfamilies and supports the hypothesis of coevolution of viruses with their hosts. In addition, data mining for cis-elements in the genomes of human herpesviruses results in the prediction of numerous regulatory elements which can be used for regulating the expression of viral based vectors implicated in gene therapies. PMID:27314006

  6. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter.

    PubMed

    Reis, A; Stallknecht, D; Ritz, C; García, M

    2012-08-01

    To determine the risk of infection associated with exposure to low-pathogenic avian influenza (AI) virus-contaminated poultry litter, the tenacity of low pathogenic A/Ck/CA/431/00(H6N2), A/Mallard/MN/355779/00(H5N2), and A/turkey/Ohio/313053/04(H3N2) was evaluated. Viral stocks were incubated with poultry litter from commercial flocks at 25°C. Three types of poultry litter, wood shavings, shavings plus gypsum, and shavings plus peanut hulls, from commercial broiler flocks were used. The 3 low-pathogenic avian influenza viruses retained infectivity for one day in wood shavings and shavings plus peanut hulls litter types, whereas in wood shavings plus gypsum, litter viruses remained infective for up to 3 d. In contrast to the survivability in litter, all the viruses maintained infectivity in water for 4 d at titers of log(10)4.5. The infectivity of A/Ck/CA/431/00(H6N2) shed by experimentally infected layers, broilers, and turkeys was retained for one day, independently of the type of litter. In commercial production where a high density of birds are housed, the viral load shed by an infected flock will be significantly higher than the viral load shed 3 d postinfection obtained under the experimental conditions used in this study. Therefore proper management and disposal of poultry by products, such as windrow composting of litter and the composting of carcasses during an AI outbreak should be implemented.

  7. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    PubMed

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Congenital Cytomegalovirus Infection: Molecular Mechanisms Mediating Viral Pathogenesis

    PubMed Central

    Schleiss, Mark R.

    2013-01-01

    Human cytomegalovirus (CMV) is responsible for approximately 40,000 congenital infections in the United States each year. Congenital CMV disease frequently produces serious neurodevelopmental disability, as well as vision impairment and sensorineural hearing loss. Development of a CMV vaccine is therefore considered to be a major public health priority. The mechanisms by which CMV injures the fetus are complex and likely include a combination of direct fetal injury induced by pathologic virally-encoded gene products, an inability of the maternal immune response to control infection, and the direct impact of infection on placental function. CMV encodes gene products that function, both at the RNA and the protein level, to interfere with many cellular processes. These include gene products that modify the cell cycle; interfere with apoptosis; induce an inflammatory response; mediate vascular injury; induce site-specific breakage of chromosomes; promote oncogenesis; dysregulate cellular proliferation; and facilitate evasion of host immune responses. This minireview summarizes current concepts regarding these aspects of the molecular virology of CMV and the potential pathogenic impact of viral gene expression on the developing fetus. Areas for potential development of novel therapeutic intervention are suggested for improving the outcome of this disabling congenital infection. PMID:21827434

  10. Paramyxovirus Assembly and Budding: Building Particles that Transmit Infections

    PubMed Central

    Harrison, Megan S.; Sakaguchi, Takemasa; Schmitt, Anthony P.

    2010-01-01

    The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release. PMID:20398786

  11. Clinical characteristics of children with viral single- and co-infections and a petechial rash.

    PubMed

    Schneider, Henriette; Adams, Ortwin; Weiss, Christel; Merz, Ulrich; Schroten, Horst; Tenenbaum, Tobias

    2013-05-01

    Children with petechial rash are more likely to undergo invasive diagnostics, to be treated with antibiotics for potential bacterial infection and to be hospitalized. However, viruses have also been associated with petechial rash. Nonetheless, a systematic analysis of viral infections with modern available techniques as quantitative real-time polymerase chain reaction in the context of petechial rash is lacking. The purpose of this pediatric study was to prospectively uncover viral pathogens that may promote the emergence of petechiae and to analyze the correlation with the clinical characteristics and course. We conducted a prospective study in children (0 to 18 years) presenting with petechiae and signs or symptoms of infection at the emergency department between November 2009 and March 2012. In nasopharyngeal aspirates the following viruses were analyzed by quantitative real-time polymerase chain reaction: cytomegalovirus, Epstein-Barr virus, parvovirus B19, influenza A and B, parainfluenza viruses, human respiratory syncytial virus A and B, human metapneumovirus, rhinovirus, enterovirus, adenovirus, human coronavirus OC43, 229E, NL63 and human bocavirus. A viral pathogen was identified in 67% of the analyzed 58 cases with petechial rash. Virus positive patients showed a significantly higher incidence of lower respiratory tract infections. Forty-one percent were viral coinfections, which were significantly younger than virus negative patients, had a higher leukocyte count and were hospitalized for a longer time. A petechial rash is frequently associated viral single- and coinfections and can rapidly be identified via quantitative real-time polymerase chain reaction.

  12. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodeling.

    PubMed

    Zhou, Yang; Kang, Min-Jong; Jha, Babal Kant; Silverman, Robert H; Lee, Chun Geun; Elias, Jack A

    2013-09-01

    Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.

  13. Serum biochemical profile and molecular detection of pathogens in semen of infertile male dromedary camels (Camelus dromedarius).

    PubMed

    Al-Busadah, Khaled A; El-Bahr, Sabry M; Khalafalla, Abdelmalik I

    2017-05-01

    Detection of pathogens in the semen of camels has not been completely elucidated. Therefore, the current study aimed to determine the association of some economically important pathogens with infertility in 94 male infertile camels through molecular detection and estimation of selected biochemical parameters in serum of these animals compared with a control non infected fertile animals (n=40). PCR analysis of semen samples of infertile camels indicated that, four potential pathogens namely Mycoplasma spp., Leptospira spp., Brucella melitensis, and Bovine viral diarrhea virus (BVDV) were detected in 50 semen samples of infertile camels whereas, 44 semen samples of infertile camels were free of pathogens and all tested semen samples were negative for bovine herpes virus 1, Salmonella spp. and Trypanosoma evansi. Single and mixed infection was detected in 88% and 12% of the infected semen samples, respectively. Mycoplasma spp., Leptospira spp., Brucella and Bovine viral diarrhea virus infection represented 66%, 27.2%, 4.5% and 2.3% of the single infected semen samples. Mycoplasma spp.+Leptospira spp. and Mycoplasma spp.+Brucella spp. were detected in 83.3% and 16.7% of mixed infected semen samples, respectively. Testosterone concentration decreased significantly in infertile infected camels compare to both control and infertile non infected animals that remained comparable. The current findings reported the molecular detection of mixed infection in camel semen for the first time. Mycoplasma spp. is the most widely recognized microorganism in the present study and together with Leptospira spp., Brucella spp. and Bovine viral diarrhea virus, might be associated with infertility in dromedary camels. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.

    PubMed

    Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2014-04-17

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

  15. Global trends in emerging viral diseases of wildlife origin

    USGS Publications Warehouse

    Sleeman, Jonathan M.; Ip, Hon S.

    2015-01-01

    The following article provides examples of recently emerged viral diseases of wildlife origin. The examples have been selected to illustrate the drivers of emerging viral diseases, both novel pathogens and previously known diseases, the impacts of these diseases, as well as the role of wildlife both as “villains” or reservoirs as well as “victims” of these viral diseases. The article also discusses potential management strategies for emerging viral diseases in wildlife populations and future science directions in wildlife health to prevent, prepare, respond to, and recover from these disease events. Finally, the concept of One Health and its potential role in developing solutions to these issues of mutual concern is discussed.

  16. High diversity of picornaviruses in rats from different continents revealed by deep sequencing.

    PubMed

    Hansen, Thomas Arn; Mollerup, Sarah; Nguyen, Nam-Phuong; White, Nicole E; Coghlan, Megan; Alquezar-Planas, David E; Joshi, Tejal; Jensen, Randi Holm; Fridholm, Helena; Kjartansdóttir, Kristín Rós; Mourier, Tobias; Warnow, Tandy; Belsham, Graham J; Bunce, Michael; Willerslev, Eske; Nielsen, Lars Peter; Vinner, Lasse; Hansen, Anders Johannes

    2016-08-17

    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.

  17. Interleukin-13 associates with life-threatening rhinovirus infections in infants and young children.

    PubMed

    Caballero, Mauricio T; Hijano, Diego R; Acosta, Patricio L; Mateu, Cecilia G; Marcone, Débora N; Linder, Jodell E; Talarico, Laura B; Elder, John M; Echavarria, Marcela; Miller, Eva Kathryn; Polack, Fernando P

    2018-04-17

    Delineate risk factors associated with severe hypoxemia (O 2 sat ≤87%) in infants and children younger than 2 years hospitalized with single pathogen HRV infection. Prospective study in a yearly catchment population of 56 560 children <2 years old between 2011 and 2013 in Argentina. All children with respiratory signs and O 2 sat <93% on admission were included. HRV infections were identified by reverse transcriptase-polymerase chain reaction. Epidemiologic, clinical, viral, and immunological risk factors were assessed. Among 5012 hospitalized patients, HRV was detected as a single pathogen in 347 (6.92%) subjects. Thirty-two (9.2%) had life-threatening disease. Traditional risk factors for severe bronchiolitis did not affect severity of illness. HRV viral load, HRV groups, and type II and III interferons did not associate with severe hypoxemia. Interleukin-13 Levels in respiratory secretions at the time of admission (OR = 7.43 (3-18.4); P < 0.001 for IL-13 >10 pg/mL) predisposed to life-threatening disease. Targeted interventions against IL-13 should be evaluated to decrease severity of HRV illness in infancy and early childhood. © 2018 Wiley Periodicals, Inc.

  18. Apnea in Children Hospitalized With Bronchiolitis

    PubMed Central

    Mansbach, Jonathan M.; Stevenson, Michelle; Macias, Charles G.; Fisher, Erin Stucky; Barcega, Besh; Sullivan, Ashley F.; Espinola, Janice A.; Piedra, Pedro A.; Camargo, Carlos A.

    2013-01-01

    OBJECTIVE: To identify risk factors for inpatient apnea among children hospitalized with bronchiolitis. METHODS: We enrolled 2207 children, aged <2 years, hospitalized with bronchiolitis at 16 sites during the winters of 2007 to 2010. Nasopharyngeal aspirates (NPAs) were obtained on all subjects, and real-time polymerase chain reaction was used to test NPA samples for 16 viruses. Inpatient apnea was ascertained by daily chart review, with outcome data in 2156 children (98%). Age was corrected for birth <37 weeks. Multivariable logistic regression was performed to identify independent risk factors for inpatient apnea. RESULTS: Inpatient apnea was identified in 108 children (5%, 95% confidence interval [CI] 4%–6%). Statistically significant, independent predictors of inpatient apnea included: corrected ages of <2 weeks (odds ratio [OR] 9.67) and 2 to 8 weeks (OR 4.72), compared with age ≥6 months; birth weight <2.3 kg (5 pounds; OR 2.15), compared with ≥3.2 kg (7 pounds); caretaker report of previous apnea during this bronchiolitis episode (OR 3.63); preadmission respiratory rates of <30 (OR 4.05), 30 to 39 (OR 2.35) and >70 (OR 2.26), compared with 40 to 49; and having a preadmission room air oxygen saturation <90% (OR 1.60). Apnea risk was similar across the major viral pathogens. CONCLUSIONS: In this prospective, multicenter study of children hospitalized with bronchiolitis, inpatient apnea was associated with younger corrected age, lower birth weight, history of apnea, and preadmission clinical factors including low or high respiratory rates and low room air oxygen saturation. Several bronchiolitis pathogens were associated with apnea, with similar apnea risk across the major viral pathogens. PMID:24101759

  19. Retrospective Evaluation of Infants Aged 1-60 Days With Residual CSF Tested Using the FilmArray® Meningitis/Encephalitis (ME) Panel.

    PubMed

    Blaschke, Anne J; Holmberg, Kristen M; Daly, Judy A; Leber, Amy L; Dien Bard, Jennifer; Korgenski, Ernest K; Bourzac, Kevin M; Kanack, Kristen J

    2018-04-18

    In pediatric practice it is common for infants under 2 months of age to undergo evaluation for sepsis when they are ill, often including lumbar puncture (LP) to assess for central nervous system (CNS) infection. The FilmArray® Meningitis/Encephalitis (ME) Panel is a newly approved test for rapid identification of CNS pathogens. Our objective was to study the epidemiology of CNS infection in young infants and the potential impact of rapid multiplex PCR on their care.A performance evaluation of the FilmArray ME Panel was conducted from 2/2014-9/2014 at 11 sites. FilmArray ME Panel results were compared to reference standards but not shared with providers. In our study, medical records for infants (aged 1-60 days) enrolled at 3 sites were reviewed for clinical, laboratory and outcome data.145 infants were reviewed. Median age was 25 days. Most were hospitalized [134/145 (92%)], received antibiotics [123/145 (85%)] and almost half [71/145 (49%)] received acyclovir. One infant had a bacterial pathogen, likely false-positive, identified by the FilmArray ME Panel. Thirty-six infants (25%) had a viral pathogen detected, including 21 enteroviruses. All infants with enteroviral meningitis detected by the FilmArray ME Panel and conventional PCR were hospitalized, but 20% were discharged in less than 24 hours when conventional PCR results became available.The FilmArray ME Panel may play a role in the evaluation of young infants for CNS infection. Results may be used to guide management, possibly resulting in decreased length of stay and antimicrobial exposure for infants with low-risk viral infection detected. Copyright © 2018 Blaschke et al.

  20. Overview of recent DNA vaccine development for fish

    USGS Publications Warehouse

    Kurath, G.; ,

    2005-01-01

    Since the first description of DNA vaccines for fish in 1996, numerous studies of genetic immunisation against the rhabdovirus pathogens infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) have established their potential as both highly efficacious biologicals and useful basic research tools. Single small doses of rhabdovirus DNA constructs provide extremely strong protection against severe viral challenge under a variety of conditions. DNA vaccines for several other important fish viruses, bacteria, and parasites are under investigation, but they have not yet shown high efficacy. Therefore, current research is focussed on mechanistic studies to understand the basis of protection, and on improvement of the nucleic acid vaccine applications against a wider range of fish pathogens.

  1. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus) in four strains of Culex tarsalis (Diptera: Culicidae): an immunocytochemical study.

    PubMed

    Oviedo, Marco V Neira; Romoser, William S; James, Calvin Bl; Mahmood, Farida; Reisen, William K

    2011-04-18

    BACKGROUND: Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several "barriers", including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV), we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion. METHODS: Using immunostained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains - Coachella Valley, Riverside County (COAV) and Kern National Wildlife Refuge (KNWR); and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP), and WEEV resistance (WR). RESULTS AND CONCLUSIONS: Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth, whereas the WR and KNWR strains were less competent. Consistent with earlier studies, WEEV resistance appeared to be related to a dose-dependent midgut infection barrier, and a midgut escape barrier. The midgut escape barrier was not dependent upon the ingested viral dose. Consistent with midgut infection modulation, disseminated infections were less common in the WR and KNWR strains than in the HVP and COAV strains. Once the virus disseminated from the midgut, all strains were able to develop salivary gland infections. The possible roles of observed pathology will be discussed in a subsequent paper.

  2. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus) in four strains of Culex tarsalis (Diptera: Culicidae): an immunocytochemical study

    PubMed Central

    Oviedo, Marco V Neira; Romoser, William S; James, Calvin BL; Mahmood, Farida; Reisen, William K

    2012-01-01

    Background Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several “barriers”, including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV), we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion. Methods Using immunostained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains – Coachella Valley, Riverside County (COAV) and Kern National Wildlife Refuge (KNWR); and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP), and WEEV resistance (WR). Results and conclusions Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth, whereas the WR and KNWR strains were less competent. Consistent with earlier studies, WEEV resistance appeared to be related to a dose-dependent midgut infection barrier, and a midgut escape barrier. The midgut escape barrier was not dependent upon the ingested viral dose. Consistent with midgut infection modulation, disseminated infections were less common in the WR and KNWR strains than in the HVP and COAV strains. Once the virus disseminated from the midgut, all strains were able to develop salivary gland infections. The possible roles of observed pathology will be discussed in a subsequent paper. PMID:22629118

  3. Influenza A virus TRIMs the type I interferon response.

    PubMed

    Ludwig, Stephan; Wolff, Thorsten

    2009-05-08

    The virulence of many pathogenic viruses depends on suppression of the innate type I interferon defense. For influenza viruses, a unique strategy has now been unraveled, as the viral nonstructural protein 1 was shown to inhibit activation of the pathogen recognition receptor RIG-I by binding the ubiquitin ligase TRIM25.

  4. Divergence in substrate specificity by the vOTU domain of various strains of highly-pathogenic PRRSV and the implications to pathogenicity

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread with a high variation in sequence and virulence among the divergent strains and causes an economically destructive disease. A viral ovarian domain protease (vOTU) has been previously identified within the nonstructural protein...

  5. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    PubMed

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2016-01-01

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single-genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development, and vaccine protection, including sieving effects on breakthrough virus strains. Copyright © 2015 Li et al.

  6. Isolation and identification of Duck tembusu virus strain lH and development of latex-agglutination diagnostic method for rapid detection of antibodies.

    PubMed

    Wang, Quanxi; Wen, Yaping; Yifan Huang; Wu, Yijian; Cai, Yilong; Xu, Lihui; Wang, Changkang; Li, Ang; Wu, Baocheng; Chen, Jilong

    2014-12-01

    SUMMARY. An outbreak of egg-drop syndrome occurred on a Sheldrake duck farm in Longhai in Fujian Province, China, in 2012. The main clinical symptoms were sharply reduced egg production, crooked necks, and death. We isolated the virus from the sick ducks, identified it, and observed the histopathologic changes after viral infection. We detected viral RNA in the blood and feces of the infected ducks and developed a latex-agglutination diagnostic method to detect anti-Tembusu-virus antibodies. Our results show that the pathogenic virus is a Tembusu virus. The histopathologic changes included follicular cell degeneration and necrosis, follicular cavity filled with blood cells, massive necrosis in the brain, and degeneration and necrosis of the nerve and glial cells. When the transmission of the virus in the infected ducks was studied, the duck blood was positive for viral nucleic acid for up to 29 days, and the feces were positive for viral nucleic acid for up to 13 days. We successfully established a simple, rapid, and easy- to-use latex-agglutination diagnostic method for the detection of antibodies against duck Tembusu virus.

  7. Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum.

    PubMed

    Biesold, Susanne E; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M; Kalko, Elisabeth K V; Oppong, Samuel; Drosten, Christian; Müller, Marcel A

    2011-01-01

    Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs.

  8. The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features.

    PubMed

    Fan, Shengtao; Cai, Hongzhi; Xu, Xingli; Feng, Min; Wang, Lichun; Liao, Yun; Zhang, Ying; He, Zhanlong; Yang, Fengmei; Yu, Wenhai; Wang, Jingjing; Zhou, Jumin; Li, Qihan

    2017-01-30

    As one of the major pathogens for human herpetic diseases, herpes simplex virus type 1 (HSV1) causes herpes labialis, genital herpes and herpetic encephalitis. Our aim here was to investigate the infectious process of HSV1 in rhesus macaques and the pathological features induced during this infection. Clinical symptoms that manifested in the rhesus macaque during HSV1 infection included vesicular lesions and their pathological features. Viral distribution in the nervous tissues and associated pathologic changes indicated the typical systematic pathological processes associated with viral distribution of HSV1.Interestingly, vesicular lesions recurred in oral skin or in mucosa associated with virus shedding in macaques within four to five months post-infection,and viral latency-associated transcript (LAT) mRNA was found in the trigeminal ganglia (TG)on day 365 post-infection. Neutralization testing and enzyme-linked immunospot (ELISpot) detection of specific T cell responses confirmed the specific immunity induced by HSV1 infection. Thus, rhesus macaques could serve as an infectious model for HSV1 due to their typical clinical symptoms and the pathological recurrence associated with viral latency in nervous tissues.

  9. Characterisation of the canine faecal virome in healthy dogs and dogs with acute diarrhoea using shotgun metagenomics.

    PubMed

    Moreno, Paloma S; Wagner, Josef; Mansfield, Caroline S; Stevens, Matthew; Gilkerson, James R; Kirkwood, Carl D

    2017-01-01

    The virome has been increasingly investigated in numerous animal species and in different sites of the body, facilitating the identification and discovery of a variety of viruses. In spite of this, the faecal virome of healthy dogs has not been investigated. In this study we describe the faecal virome of healthy dogs and dogs with acute diarrhoea in Australia, using a shotgun metagenomic approach. Viral sequences from a range of different virus families, including both RNA and DNA families, and known pathogens implicated in enteric disease were documented. Twelve viral families were identified, of which four were bacteriophages. Eight eukaryotic viral families were detected: Astroviridae, Coronaviridae, Reoviridae, Picornaviridae, Caliciviridae, Parvoviridae, Adenoviridae and Papillomaviridae. Families Astroviridae, Picornaviridae and Caliciviridae were found only in dogs with acute diarrhoea, with Astroviridae being the most common family identified in this group. Due to its prevalence, characterisation the complete genome of a canine astrovirus was performed. These studies indicate that metagenomic analyses are useful for the investigation of viral populations in the faeces of dogs. Further studies to elucidate the epidemiological and biological relevance of these findings are warranted.

  10. Characterisation of the canine faecal virome in healthy dogs and dogs with acute diarrhoea using shotgun metagenomics

    PubMed Central

    Wagner, Josef; Mansfield, Caroline S.; Stevens, Matthew; Gilkerson, James R.; Kirkwood, Carl D.

    2017-01-01

    The virome has been increasingly investigated in numerous animal species and in different sites of the body, facilitating the identification and discovery of a variety of viruses. In spite of this, the faecal virome of healthy dogs has not been investigated. In this study we describe the faecal virome of healthy dogs and dogs with acute diarrhoea in Australia, using a shotgun metagenomic approach. Viral sequences from a range of different virus families, including both RNA and DNA families, and known pathogens implicated in enteric disease were documented. Twelve viral families were identified, of which four were bacteriophages. Eight eukaryotic viral families were detected: Astroviridae, Coronaviridae, Reoviridae, Picornaviridae, Caliciviridae, Parvoviridae, Adenoviridae and Papillomaviridae. Families Astroviridae, Picornaviridae and Caliciviridae were found only in dogs with acute diarrhoea, with Astroviridae being the most common family identified in this group. Due to its prevalence, characterisation the complete genome of a canine astrovirus was performed. These studies indicate that metagenomic analyses are useful for the investigation of viral populations in the faeces of dogs. Further studies to elucidate the epidemiological and biological relevance of these findings are warranted. PMID:28570584

  11. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    USGS Publications Warehouse

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  12. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America.

    PubMed

    Grear, Daniel A; Hall, Jeffrey S; Dusek, Robert J; Ip, Hon S

    2018-04-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number ( R 0 ) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds ( R 0  > 1) and poultry ( R 0  ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R 0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  13. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  14. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    PubMed

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family. Copyright © 2018 American Society for Microbiology.

  15. Human parvovirus 4 ‘PARV4’ remains elusive despite a decade of study

    PubMed Central

    Matthews, Philippa C.; Sharp, Colin; Simmonds, Peter; Klenerman, Paul

    2017-01-01

    Human parvovirus 4 (‘PARV4’) is a small DNA tetraparvovirus, first reported in 2005. In some populations, PARV4 infection is uncommon, and evidence of exposure is found only in individuals with risk factors for parenteral infection who are infected with other blood-borne viruses. In other settings, seroprevalence studies suggest an endemic, age-associated transmission pattern, independent of any specific risk factors. The clinical impact of PARV4 infection remains uncertain, but reported disease associations include an influenza-like syndrome, encephalitis, acceleration of HIV disease, and foetal hydrops. In this review, we set out to report progress updates from the recent literature, focusing on the investigation of cohorts in different geographical settings, now including insights from Asia, the Middle East, and South America, and discussing whether attributes of viral or host populations underpin the striking differences in epidemiology. We review progress in understanding viral phylogeny and biology, approaches to diagnostics, and insights that might be gained from studies of closely related animal pathogens. Crucial questions about pathogenicity remain unanswered, but we highlight new evidence supporting a possible link between PARV4 and an encephalitis syndrome. The unequivocal evidence that PARV4 is endemic in certain populations should drive ongoing research efforts to understand risk factors and routes of transmission and to gain new insights into the impact of this virus on human health. PMID:28184291

  16. Expanding severe acute respiratory infection (SARI) surveillance beyond influenza: The process and data from 1 year of implementation in Vietnam.

    PubMed

    Alroy, Karen A; Do, Trang Thuy; Tran, Phu Dac; Dang, Tan Quang; Vu, Long Ngoc; Le, Nga Thi Hang; Dang, Anh Duc; Ngu, Nghia Duy; Ngo, Tu Huy; Hoang, Phuong Vu Mai; Phan, Lan Trong; Nguyen, Thuong Vu; Nguyen, Long Thanh; Nguyen, Thinh Viet; Vien, Mai Quang; Le, Huy Xuan; Dao, Anh The; Nguyen, Trieu Bao; Pham, Duoc Tho; Nguyen, Van Thi Tuyet; Pham, Thanh Ngoc; Phan, Binh Hai; Whitaker, Brett; Do, Thuy Thi Thu; Dao, Phuong Anh; Balajee, S Arunmozhi; Mounts, Anthony W

    2018-05-13

    In 2016, as a component of the Global Health Security Agenda, the Vietnam Ministry of Health expanded its existing influenza sentinel surveillance for severe acute respiratory infections (SARI) to include testing for 7 additional viral respiratory pathogens. This article describes the steps taken to implement expanded SARI surveillance in Vietnam and reports data from 1 year of expanded surveillance. The process of expanding the suite of pathogens for routine testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) included laboratory trainings, procurement/distribution of reagents, and strengthening and aligning SARI surveillance epidemiology practices at sentinel sites and regional institutes (RI). Surveillance data showed that of 4003 specimens tested by the RI laboratories, 20.2% (n = 810) were positive for influenza virus. Of the 3193 influenza-negative specimens, 41.8% (n = 1337) were positive for at least 1 non-influenza respiratory virus, of which 16.2% (n = 518), 13.4% (n = 428), and 9.6% (n = 308) tested positive for respiratory syncytial virus, rhinovirus, and adenovirus, respectively. The Government of Vietnam has demonstrated that expanding respiratory viral surveillance by strengthening and building upon an influenza platform is feasible, efficient, and practical. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens

    PubMed Central

    Bayliss, Sion C.; Verner-Jeffreys, David W.; Bartie, Kerry L.; Aanensen, David M.; Sheppard, Samuel K.; Adams, Alexandra; Feil, Edward J.

    2017-01-01

    Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools. PMID:28217117

  18. Plant Viral Proteases: Beyond the Role of Peptide Cutters

    PubMed Central

    Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio

    2018-01-01

    Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.

  19. Amino Acid Substitutions in PB1 of Avian Influenza Viruses Influence Pathogenicity and Transmissibility in Chickens

    PubMed Central

    Suzuki, Yasushi; Uchida, Yuko; Tanikawa, Taichiro; Maeda, Naohiro; Takemae, Nobuhiro

    2014-01-01

    ABSTRACT Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686–2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. IMPORTANCE We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of internal genes. PMID:25031333

  20. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity

    PubMed Central

    Willner, Dana; Furlan, Mike; Schmieder, Robert; Grasis, Juris A.; Pride, David T.; Relman, David A.; Angly, Florent E.; McDole, Tracey; Mariella, Ray P.; Rohwer, Forest; Haynes, Matthew

    2011-01-01

    The human oropharynx is a reservoir for many potential pathogens, including streptococcal species that cause endocarditis. Although oropharyngeal microbes have been well described, viral communities are essentially uncharacterized. We conducted a metagenomic study to determine the composition of oropharyngeal DNA viral communities (both phage and eukaryotic viruses) in healthy individuals and to evaluate oropharyngeal swabs as a rapid method for viral detection. Viral DNA was extracted from 19 pooled oropharyngeal swabs and sequenced. Viral communities consisted almost exclusively of phage, and complete genomes of several phage were recovered, including Escherichia coli phage T3, Propionibacterium acnes phage PA6, and Streptococcus mitis phage SM1. Phage relative abundances changed dramatically depending on whether samples were chloroform treated or filtered to remove microbial contamination. pblA and pblB genes of phage SM1 were detected in the metagenomes. pblA and pblB mediate the attachment of S. mitis to platelets and play a significant role in S. mitis virulence in the endocardium, but have never previously been detected in the oral cavity. These genes were also identified in salivary metagenomes from three individuals at three time points and in individual saliva samples by PCR. Additionally, we demonstrate that phage SM1 can be induced by commonly ingested substances. Our results indicate that the oral cavity is a reservoir for pblA and pblB genes and for phage SM1 itself. Further studies will determine the association between pblA and pblB genes in the oral cavity and the risk of endocarditis. PMID:20547834

  1. The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in Drosophila

    PubMed Central

    Ferreira, Álvaro Gil; Naylor, Huw; Esteves, Sara Santana; Pais, Inês Silva; Martins, Nelson Eduardo; Teixeira, Luis

    2014-01-01

    Pathogen entry route can have a strong impact on the result of microbial infections in different hosts, including insects. Drosophila melanogaster has been a successful model system to study the immune response to systemic viral infection. Here we investigate the role of the Toll pathway in resistance to oral viral infection in D. melanogaster. We show that several Toll pathway components, including Spätzle, Toll, Pelle and the NF-kB-like transcription factor Dorsal, are required to resist oral infection with Drosophila C virus. Furthermore, in the fat body Dorsal is translocated from the cytoplasm to the nucleus and a Toll pathway target gene reporter is upregulated in response to Drosophila C Virus infection. This pathway also mediates resistance to several other RNA viruses (Cricket paralysis virus, Flock House virus, and Nora virus). Compared with control, viral titres are highly increased in Toll pathway mutants. The role of the Toll pathway in resistance to viruses in D. melanogaster is restricted to oral infection since we do not observe a phenotype associated with systemic infection. We also show that Wolbachia and other Drosophila-associated microbiota do not interact with the Toll pathway-mediated resistance to oral infection. We therefore identify the Toll pathway as a new general inducible pathway that mediates strong resistance to viruses with a route-specific role. These results contribute to a better understanding of viral oral infection resistance in insects, which is particularly relevant in the context of transmission of arboviruses by insect vectors. PMID:25473839

  2. Age‐related alterations in immune responses to West Nile virus infection

    PubMed Central

    2016-01-01

    Summary West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti‐viral immune genes, but age is the most well‐defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll‐like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age‐related impairment of many functions relevant to anti‐viral responses. Natural killer cells control many viral infections and show age‐related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood–brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age‐related up‐regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing. PMID:27612657

  3. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix).

    PubMed

    Bertran, Kateri; Dolz, Roser; Busquets, Núria; Gamino, Virginia; Vergara-Alert, Júlia; Chaves, Aida J; Ramis, Antonio; Abad, F Xavier; Höfle, Ursula; Majó, Natàlia

    2013-03-28

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.

  4. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix)

    PubMed Central

    2013-01-01

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses. PMID:23537387

  5. Toscana meningoencephalitis: a comparison to other viral central nervous system infections

    PubMed Central

    Jaijakul, Siraya; Arias, Cesar A.; Hossein, Monir; Arduino, Roberto C.; Wootton, Susan H.; Hasbun, Rodrigo

    2012-01-01

    Background Toscana virus (TOSV) is an emerging pathogen causing central nervous system (CNS) infection in Mediterranean countries, mostly during summer season. Objectives To compare the clinical and laboratory characteristics of Toscana CNS infections to the most common viral pathogens seen in the United States. Study Design We performed a case series of patients with 41 TOSV infection and compared the clinical characteristics, laboratory findings, imaging results and clinical outcomes to the most commonly recognized viral causes of meningoencephalitis in the US (enterovirus (n=60), herpes simplex virus (n=48), and west nile virus (n=30) from our multi-center study of patients with aseptic meningoencephalitis syndromes in the Greater Houston area. Results TOSV infection occurs in different age groups compared to enterovirus, HSV, and WNV. All infections most frequently occur during summer-fall except HSV which distributes throughout the year. All patients with TOSV had history of travel to endemic areas. There are differences in clinical presentation and CSF findings comparing TOSV and enterovirus, HSV, and WNV infection. There are no significant differences in outcomes of each infection except WNV meningoencephalitis which had a poorer outcome compared to TOSV infection. Conclusions TOSV is an emerging pathogen that should be considered in the differential diagnosis of patients with CNS infections and a recent travel history to endemic areas. PMID:22867730

  6. Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks

    PubMed Central

    Schat, Karel A.; Bingham, John; Butler, Jeff M.; Chen, Li-Mei; Lowther, Sue; Crowley, Tamsyn M.; Moore, Robert J.; Donis, Ruben O.; Lowenthal, John W.

    2012-01-01

    Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens. PMID:22363523

  7. Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks.

    PubMed

    Schat, Karel A; Bingham, John; Butler, Jeff M; Chen, Li-Mei; Lowther, Sue; Crowley, Tamsyn M; Moore, Robert J; Donis, Ruben O; Lowenthal, John W

    2012-01-01

    Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.

  8. Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014.

    PubMed

    Dong, Nan; Fang, Liurong; Yang, Hao; Liu, Han; Du, Ting; Fang, Puxian; Wang, Dang; Chen, Huanchun; Xiao, Shaobo

    2016-11-30

    Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes diarrhea in piglets. Since the first outbreak of PDCoV in the United States in 2014, this novel porcine coronavirus has been detected in South Korea, Canada, Mexico, Thailand, and China. In this study, a Chinese PDCoV strain, designated CHN-HN-2014, was isolated from piglets with severe diarrhea on a pig farm in Henan Province, China, and examined with a specific immunofluorescence assay and electron microscopy. Genomic analysis showed that CHN-HN-2014 shares 91.6%-99.4% nucleotide identity with other known PDCoV strains. The pathogenicity of CHN-HN-2014 was further investigated in 5-day-old and 21-day-old piglets. Both kinds of piglets developed clear clinical symptoms, including vomiting, anorexia, lethargy, and severe diarrhea, by 2days postinoculation (DPI), and diarrhea persisted for about 5-6 days. Viral shedding was detected in rectal swabs until 14 DPI in challenged 5-day-old pigs and until 18 DPI in challenged 21-day-old pigs. At necropsy at 4 DPI, macroscopic and microscopic lesions were observed and viral antigen was detected in the small intestines with immunohistochemical staining. These data demonstrate that Chinese PDCoV strain CHN-HN-2014 shares high nucleotide identity with previously reported PDCoV strains and is pathogenic in 5-day-old and 21-day-old piglets. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The role of strigolactones and ethylene in disease caused by Pythium irregulare.

    PubMed

    Blake, Sara N; Barry, Karen M; Gill, Warwick M; Reid, James B; Foo, Eloise

    2016-06-01

    Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth-promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant-microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant-pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole-plant levels using a set of well-characterized hormone mutants, including an ethylene-insensitive ein2 mutant and SL-deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility.

    PubMed

    Taylor, Steven L; McGuckin, Michael A; Wesselingh, Steve; Rogers, Geraint B

    2018-02-01

    Glycans form a highly variable constituent of our mucosal surfaces and profoundly affect our susceptibility to infection and disease. The diversity and importance of these surface glycans can be seen in individuals who lack a functional copy of the fucosyltransferase gene, FUT2. Representing around one-fifth of the population, these individuals have an altered susceptibility to many bacterial and viral infections and diseases. The mediation of host-pathogen interactions by mucosal glycans, such as those added by FUT2, is poorly understood. We highlight, with specific examples, important mechanisms by which host glycans influence infection dynamics, including by: acting as pathogen receptors (or receptor-decoys), promoting microbial stability, altering the physical characteristics of mucus, and acting as immunological markers. We argue that the effect glycans have on infection dynamics has profound implications for many aspects of healthcare and policy, including clinical management, outbreak control, and vaccination policy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Viruses are prevalent in non-ventilated hospital-acquired pneumonia.

    PubMed

    Shorr, Andrew F; Zilberberg, Marya D; Micek, Scott T; Kollef, Marin H

    2017-01-01

    Hospital-acquired pneumonia arising in non-ventilated patients (NVHAP) is traditionally thought to be caused by bacteria, and little is known about viral etiologies in this syndrome. We sought to describe the prevalence of viruses causing NVHAP and to determine factors independently associated with the isolation of a virus. We identified patients with NVHAP over one year and reviewed their cultures to determine etiologies. Patients with a viral process were compared to those with either negative cultures or a bacterial infection to determine variables independently associated with the recovery of a virus. Among 174 cases, cultures were positive in 46.0%, with viruses identified in 22.4%. Bacterial pathogens arose 23.6% of subjects. The most common viruses included rhinovirus, influenza, and parainfluenza. We noted no seasonality in the isolation of viral organisms, and most cases of viral NVHAP developed after more than a week length of stay (LOS). Outcomes in viral NVHAP were similar to those with bacterial NVHAP. Patients with viral and bacterial NVHAP were generally similar. Two variables were independently associated with isolation of a virus: a history of coronary artery disease (adjusted odds ratio: 5.16, 95% CI: 1.14-22.44) and a LOS of greater than 10 days prior to NVHAP diagnosis (adjusted odds ratio: 2.97, 95% CI: 1.35-6.51). As a screening test for a virus, neither had a good sensitivity or specificity. Viruses represent a common cause of NVHAP. Clinicians should consider viral diagnostic testing in NVHAP, as this may represent a means to enhance antimicrobial stewardship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Host plant associated enhancement of immunity and survival in virus infected caterpillars.

    PubMed

    Smilanich, Angela M; Langus, Tara C; Doan, Lydia; Dyer, Lee A; Harrison, Joshua G; Hsueh, Jennifer; Teglas, Mike B

    2018-01-01

    Understanding the interaction between host plant chemistry, the immune response, and insect pathogens can shed light on host plant use by insect herbivores. In this study, we focused on how interactions between the insect immune response and plant secondary metabolites affect the response to a viral pathogen. Based upon prior research, we asked whether the buckeye caterpillar, Junonia coenia (Nymphalidae), which specializes on plants containing iridoid glycosides (IGs), is less able to resist the pathogenic effects of a densovirus infection when feeding on plants with high concentrations of IGs. In a fully factorial design, individuals were randomly assigned to three treatments, each of which had two levels: (1) exposed to the densovirus versus control, (2) placed on a plant species with high concentrations of IGs (Plantago lanceolata, Plantaginaceae) versus low concentrations of IGs (P. major), and (3) control versus surface sterilized to exclude surface microbes that may contribute to viral resistance. We measured phenoloxidase (PO) activity, hemocyte counts, and gut bacterial diversity (16S ribosomal RNA) during the fourth larval instar, as well as development time, pupal weight, and survival to adult. Individuals infected with the virus were immune-suppressed (as measured by PO response and hemocyte count) and developed significantly faster than virus-free individuals. Contrary to our predictions,mortality was significantly less for virus challengedindividuals reared on the high IG plant compared to the low IG plant.This suggests that plant secondary metabolites can influence survival from viral infection and may be associated with activation of PO. Removing egg microbes did not affect the immune response or survival of the larvae. In summary, these results suggest that plant secondary metabolites are important for survival against a viral pathogen. Even though the PO response was better on the high IG plant, the extent to which this result contributes to survival against the virus needs further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Signatures of Pleiotropy, Economy and Convergent Evolution in a Domain-Resolved Map of Human–Virus Protein–Protein Interaction Networks

    PubMed Central

    Garamszegi, Sara; Franzosa, Eric A.; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology. PMID:24339775

  14. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    PubMed

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.

  15. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  16. Diagnostics for Lassa Fever: Detecting Host Antibody Responses.

    PubMed

    Salvato, Maria S; Lukashevich, Igor S; Medina-Moreno, Sandra; Zapata, Juan Carlos

    2018-01-01

    There are two types of viral diagnostics: (1) those that detect components of the pathogen (like viral RNA or proteins) and (2) those that detect host molecules that rise or fall as a consequence of pathogen infection (like anti-viral antibodies or virus-induced inflammatory cytokines). Quantitative PCR to detect Lassa RNA, and clinical chemistry to detect high liver enzymes (AST/ALT) are commonly used to diagnose Lassa fever. Here, we discuss the various types of diagnostics for Lassa fever and the urgent need for early diagnosis. We also describe a protocol for using the attenuated Lassa vaccine candidate, ML29 , as an antigen for detecting Lassa-specific antibodies. Since antibodies are developed late in the progression of Lassa fever disease, this is not an early diagnostic, but is more useful in surveillance of the population to determine the sero-prevalence of antibodies to Lassa virus (LASV ), and to define treatment options for people in close contact with a Lassa-infected person.

  17. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using pointmore » mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.« less

  18. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs.

  19. Specific Pathogen Free Macaque Colonies: A Review of Principles and Recent Advances for Viral Testing and Colony Management

    PubMed Central

    Yee, JoAnn L.; Vandeford, Thomas H.; Didier, Elizabeth S.; Gray, Stanton; Lewis, Anne; Roberts, Jeffrey; Taylor, Kerry; Bohm, Rudolf P.

    2016-01-01

    Specific Pathogen Free (SPF) macaques provide valuable animal models for biomedical research. In 1989 the National Center for Research Resources (now Office of Research Infrastructure Programs ORIP) of the National Institutes of Health initiated experimental research contracts to establish and maintain SPF colonies. The derivation and maintenance of SPF macaque colonies is a complex undertaking requiring knowledge of the biology of the agents for exclusion and normal physiology and behavior of macaques, application of the latest diagnostic technology, facilities management, and animal husbandry. This review provides information on the biology of the four viral agents targeted for exclusion in ORIP SPF macaque colonies, describes current state-of-the-art viral diagnostic algorithms, presents data from proficiency testing of diagnostic assays between laboratories at institutions participating in the ORIP SPF program, and outlines management strategies for maintaining the integrity of SPF colonies using results of diagnostic testing as a guide to decision making. PMID:26932456

  20. Neurotropic Astrovirus in Cattle with Nonsuppurative Encephalitis in Europe

    PubMed Central

    Bouzalas, Ilias G.; Wüthrich, Daniel; Walland, Julia; Drögemüller, Cord; Zurbriggen, Andreas; Vandevelde, Marc; Oevermann, Anna; Bruggmann, Rémy

    2014-01-01

    Encephalitis is a frequently diagnosed condition in cattle with neurological diseases. Many affected animals present with a nonsuppurative inflammatory reaction pattern in the brain. While this pattern supports a viral etiology, the causative pathogen remains unknown in a large proportion of cases. Using viral metagenomics, we identified an astrovirus (bovine astrovirus [BoAstV]-CH13) in the brain of a cow with nonsuppurative encephalitis. Additionally, BoAstV RNA was detected with reverse transcription-PCR and in situ hybridization in about one fourth (5/22 animals) of cattle with nonsuppurative encephalitis of unknown etiology. Viral RNA was found primarily in neurons and at the site of pathology. These findings support the notion that BoAstV infection is a common cause of encephalitis in cattle. Phylogenetically, BoAstV-CH13 was closely related to rare astrovirus isolates from encephalitis cases in animals and a human patient. Future research needs to be directed toward the pathogenic mechanisms, epidemiology, and potential cross-species transmission of these neurotropic astroviruses. PMID:24989603

  1. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia.

    PubMed

    Voiriot, Guillaume; Visseaux, Benoit; Cohen, Johana; Nguyen, Liem Binh Luong; Neuville, Mathilde; Morbieu, Caroline; Burdet, Charles; Radjou, Aguila; Lescure, François-Xavier; Smonig, Roland; Armand-Lefèvre, Laurence; Mourvillier, Bruno; Yazdanpanah, Yazdan; Soubirou, Jean-Francois; Ruckly, Stephane; Houhou-Fidouh, Nadhira; Timsit, Jean-François

    2016-10-25

    Multiplex polymerase chain reaction (mPCR) enables recovery of viruses from airways of patients with community-acquired pneumonia (CAP), although their clinical impact remains uncertain. Among consecutive adult patients who had undergone a mPCR within 72 hours following their admission to one intensive care unit (ICU), we retrospectively included those with a final diagnosis of CAP. Four etiology groups were clustered: bacterial, viral, mixed (viral-bacterial) and no etiology. A composite criterion of complicated course (hospital death or mechanical ventilation > 7 days) was used. A subgroup analysis compared patients with bacterial and viral-bacterial CAP matched on the bacterial pathogens. Among 174 patients (132 men [76 %], age 63 [53-75] years, SAPSII 38 [27;55], median PSI score 106 [78;130]), bacterial, viral, mixed and no etiology groups gathered 46 (26 %), 53 (31 %), 45 (26 %) and 30 (17 %) patients, respectively. Virus-infected patients displayed a high creatine kinase serum level, a low platelet count, and a trend toward more frequent alveolar-interstitial infiltrates. A complicated course was more frequent in the mixed group (31/45, 69 %), as compared to bacterial (18/46, 39 %), viral (15/53, 28 %) and no etiology (12/30, 40 %) groups (p < 0.01). In multivariate analysis, the mixed (viral-bacterial) infection was independently associated with complicated course (reference: bacterial pneumonia; OR, 3.58; CI 95 %, 1.16-11; p = 0.03). The subgroup analysis of bacteria-matched patients confirmed these findings. Viral-bacterial coinfection during severe CAP in adults is associated with an impaired presentation and a complicated course.

  2. Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery

    PubMed Central

    Yang, Yu; Garver, Lindsey S.; Bingham, Karen M.; Hang, Jun; Jochim, Ryan C.; Davidson, Silas A.; Richardson, Jason H.; Jarman, Richard G.

    2015-01-01

    Mosquito blood meals taken from humans and animals potentially represent a useful source of blood for the detection of blood-borne pathogens. In this feasibility study, Anopheles stephensi mosquitoes were fed with blood meals spiked with dengue virus type 2 (DENV-2) and harvested at serial time points. These mosquitoes are not competent vectors, and the virus is not expected to replicate. Ingested blood was spotted on Whatman FTA cards and stored at room temperature. Mosquito abdomens were removed and stored at −80°C. Control blood meal aliquots were stored in vials or applied onto FTA cards. After 4 weeks of storage, the samples were extracted using beadbeating and QIAamp Viral RNA kit (Qiagen Sciences, Germantown, MD). Recovered viral RNA was analyzed by DENV-2 TaqMan RT-PCR assay and next-generation sequencing (NGS). Overall viral RNA recovery efficiency was 15% from the directly applied dried blood spots and approximately 20% or higher for dried blood spots made by blotting mosquito midgut on FTA cards. Viral RNA in mosquito-ingested blood decreases over time, but remains detectable 24 hours after blood feeding. The viral sequences in FTA-stored specimens can be maintained at room temperature. The strategy has the potential utility in expedited zoonotic virus discovery and blood-borne pathogen surveillance. PMID:26416112

  3. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    PubMed Central

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  4. A Molecularly Cloned, Live-Attenuated Japanese Encephalitis Vaccine SA14-14-2 Virus: A Conserved Single Amino Acid in the ij Hairpin of the Viral E Glycoprotein Determines Neurovirulence in Mice

    PubMed Central

    Kim, Jin-Kyoung; Yun, Gil-Nam; Lee, Eun-Young; Li, Long; Kuhn, Richard J.; Rossmann, Michael G.; Morrey, John D.; Lee, Young-Min

    2014-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other encephalitic flaviviruses. PMID:25077483

  5. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Treesearch

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  6. The effects of administration of ligands for Toll-like receptor 4 and 21 against Marek’s disease in chickens

    USDA-ARS?s Scientific Manuscript database

    Ligands for Toll-like receptors (TLRs) are known to stimulate immune responses, leading to protection against bacterial and viral pathogens. Here, we aimed to examine the effects of various TLR ligands on the development of Marek’s disease in chickens. Specific-pathogen free chickens were treated wi...

  7. Two Asian highly pathogenic strains of Type 2 PRRSV in United States swine

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic PRRSV (HP-PRRSV) has been circulating in Asia for 7 years. rJXwn06 and rSRV07 were rescued from infectious clones of two HP-PRRSV for investigation at the National Animal Disease Center. The clinical disease and viral replication kinetics of HP-PRRSV were compared to prototype stra...

  8. A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance.

    PubMed

    Smith, Jacqueline; Smith, Nikki; Yu, Le; Paton, Ian R; Gutowska, Maria Weronika; Forrest, Heather L; Danner, Angela F; Seiler, J Patrick; Digard, Paul; Webster, Robert G; Burt, David W

    2015-08-04

    Chickens are susceptible to infection with a limited number of Influenza A viruses and are a potential source of a human influenza pandemic. In particular, H5 and H7 haemagglutinin subtypes can evolve from low to highly pathogenic strains in gallinaceous poultry. Ducks on the other hand are a natural reservoir for these viruses and are able to withstand most avian influenza strains. Transcriptomic sequencing of lung and ileum tissue samples from birds infected with high (H5N1) and low (H5N2) pathogenic influenza viruses has allowed us to compare the early host response to these infections in both these species. Chickens (but not ducks) lack the intracellular receptor for viral ssRNA, RIG-I and the gene for an important RIG-I binding protein, RNF135. These differences in gene content partly explain the differences in host responses to low pathogenic and highly pathogenic avian influenza virus in chicken and ducks. We reveal very different patterns of expression of members of the interferon-induced transmembrane protein (IFITM) gene family in ducks and chickens. In ducks, IFITM1, 2 and 3 are strongly up regulated in response to highly pathogenic avian influenza, where little response is seen in chickens. Clustering of gene expression profiles suggests IFITM1 and 2 have an anti-viral response and IFITM3 may restrict avian influenza virus through cell membrane fusion. We also show, through molecular phylogenetic analyses, that avian IFITM1 and IFITM3 genes have been subject to both episodic and pervasive positive selection at specific codons. In particular, avian IFITM1 showed evidence of positive selection in the duck lineage at sites known to restrict influenza virus infection. Taken together these results support a model where the IFITM123 protein family and RIG-I all play a crucial role in the tolerance of ducks to highly pathogenic and low pathogenic strains of avian influenza viruses when compared to the chicken.

  9. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I.

    PubMed

    Wang, Penghua; Arjona, Alvaro; Zhang, Yue; Sultana, Hameeda; Dai, Jianfeng; Yang, Long; LeBlanc, Philippe M; Doiron, Karine; Saleh, Maya; Fikrig, Erol

    2010-10-01

    Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.

  10. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling.

    PubMed

    Burnum-Johnson, Kristin E; Kyle, Jennifer E; Eisfeld, Amie J; Casey, Cameron P; Stratton, Kelly G; Gonzalez, Juan F; Habyarimana, Fabien; Negretti, Nicholas M; Sims, Amy C; Chauhan, Sadhana; Thackray, Larissa B; Halfmann, Peter J; Walters, Kevin B; Kim, Young-Mo; Zink, Erika M; Nicora, Carrie D; Weitz, Karl K; Webb-Robertson, Bobbie-Jo M; Nakayasu, Ernesto S; Ahmer, Brian; Konkel, Michael E; Motin, Vladimir; Baric, Ralph S; Diamond, Michael S; Kawaoka, Yoshihiro; Waters, Katrina M; Smith, Richard D; Metz, Thomas O

    2017-01-26

    The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.

  11. MPLEx: A method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling

    PubMed Central

    Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.

    2017-01-01

    The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes. PMID:28091625

  12. Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples.

    PubMed

    Anis, Eman; Hawkins, Ian K; Ilha, Marcia R S; Woldemeskel, Moges W; Saliki, Jeremiah T; Wilkes, Rebecca P

    2018-07-01

    The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle ( C T ) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory. Copyright © 2018 Anis et al.

  13. Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater.

    PubMed

    Chen, Rong; Ao, Dong; Ji, Jiayuan; Wang, Xiaochang C; Li, Yu-You; Huang, Yue; Xue, Tao; Guo, Hongbing; Wang, Nan; Zhang, Lu

    2017-02-15

    Increasing use of reclaimed wastewater (RW) for replenishing urban landscape ponds has aroused public concern about the water quality. Three ponds replenished with RW in three cities in China were chosen to investigate 22 indexes of water quality in five categories. This was achieved by comparing three pairs of ponds in the three different cities, where one pond in each pair was replenished with RW and the other with surface water (SW). The nutrients condition, heavy metal concentration and ecotoxicity did not differ significantly between RW- and SW-replenished ponds. By contrast, significant differences were observed in algal growth and pathogen risk. RW ponds presented a Cyanophyta-Chlorophyta-Bacillariophyta type with high algal diversity while SW ponds presented a Cyanophyta type with low diversity. Regrowth of bacterial pathogens and especially survival of viral pathogens in RW, was the main driver behind the higher risk for RW ponds compared with SW ones. The duration of RW replenishment was proved to have a marked impact on the algal growth and pathogen risk. With continued RW replenishment, non-dominant algal species subjected to decrease while dominant species were enhanced resulting in the biomass increasing but diversity declining, and the risk posed by viral pathogens might become greater. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.

    2016-10-01

    We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.

  15. Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation.

    PubMed

    Zhao, Youbo; Monroy, Guillermo L; You, Sixian; Shelton, Ryan L; Nolan, Ryan M; Tu, Haohua; Chaney, Eric J; Boppart, Stephen A

    2016-10-01

    We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.

  16. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    PubMed

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    PubMed Central

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  18. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release

    PubMed Central

    Spiegel, Martin; Plegge, Teresa; Pöhlmann, Stefan

    2016-01-01

    Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle. PMID:27455305

  19. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis and ichthyophoniasis in confined juvenile Pacific herring Clupea pallasii

    USGS Publications Warehouse

    Hershberger, P.; Hart, A.; Gregg, J.; Elder, N.; Winton, J.

    2006-01-01

    Capture of wild, juvenile herring Clupea pallasii from Puget Sound (Washington, USA) and confinement in laboratory tanks resulted in outbreaks of viral hemorrhagic septicemia (VHS), viral erythrocytic necrosis (VEN) and ichthyophoniasis; however, the timing and progression of the 3 diseases differed. The VHS epidemic occurred first, characterized by an initially low infection prevalence that increased quickly with confinement time, peaking at 93 to 98% after confinement for 6 d, then decreasing to negligible levels after 20 d. The VHS outbreak was followed by a VEN epidemic that, within 12 d of confinement, progressed from undetectable levels to 100% infection prevalence with >90% of erythrocytes demonstrating inclusions. The VEN epidemic persisted for 54 d, after which the study was terminated, and was characterized by severe blood dyscrasias including reduction of mean hematocrit from 42 to 6% and replacement of mature erythrocytes with circulating erythroblasts and ghost cells. All fish with ichthyophoniasis at capture died within the first 3 wk of confinement, probably as a result of the multiple stressors associated with capture, transport, confinement, and progression of concomitant viral diseases. The results illustrate the differences in disease ecology and possible synergistic effects of pathogens affecting marine fish and highlight the difficulty in ascribing a single causation to outbreaks of disease among populations of wild fishes. ?? Inter-Research 2006.

  20. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    PubMed

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc glycoprotein can restore the pathogenicity of attenuated mutants resulting from deletions or mutations in the nonstructural protein NSs. Our findings highlight the fact that careful consideration should be taken when designing live attenuated vaccines based on deletions of nonstructural proteins since single mutations in the viral glycoproteins appear to revert attenuated mutants to virulent phenotypes. Copyright © 2016 Varela et al.

Top