NASA Astrophysics Data System (ADS)
Rohyami, Yuli; Anjani, Rafika Debby; Purwanti, Napthalina Putri
2017-03-01
Virgin coconut oil is an excellent product which has result of oil processing business opportunities in the international market. Standardization of virgin coconut oil necessary to satisfy the requirements industry needs. This research is expected as procedure preparation of reference materials. Preparation of virgin coconut oil by Sacharomycescerevisiaeenzyme. Based on the results of this study concluded that the ratio of Saccharomyces cerevisiae can affect the yield of virgin coconut oil produced. The preparation of virgin coconut oil enzymatically using a variety of mass ratio of 0.001 to 0.006% is obtained yield average of 12.40%. The optimum separation of virgin coconut oil on the use of enzymes with a mass ratio of 0.002%. The average water content at a ratio of 0.002% is 0.04 % with a value of uncertainty is 0.005%. The average iodine number in virgin coconut oil produced is 2.4403 ± 0,1974 grams of iodine per 100 grams of oil and optimum iodine number is obtained from the manufacturing process virgin coconut oil with a ratio of 0.006% Saccharomyces cerevisiae. Sacharomycescerevisiae with a ratio of 0.002% results virgin coconut oil with acid number 0.3068 ± 0.1098%. The peroxide value of virgin coconut oil between 0.0108 ± 0.009 to 0.0114 ± 0015milli-equivalent per kilograms. Organoleptic test results and test chemical parameters can be used as the test data that can be developed in prototype preparation of candidate in-house reference material in the testing standards of quality virgin coconut oil.
Gunasekaran, Renuka; Shaker, Mohammed Rafid; Mohd-Zin, Siti Waheeda; Abdullah, Aminah; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah Mydin
2017-01-28
Coconut oil is commonly used as herbal medicine worldwide. There is limited information regarding its effects on the developing embryo and infant growth. We investigated the effect of virgin coconut oil post-natally and until 6 weeks old in mice (age of maturity). Females were fed with either standard, virgin olive oil or virgin coconut oil diets 1 month prior to copulation, during gestation and continued until weaning of pups. Subsequently, groups of pups borne of the respective diets were continuously fed the same diet as its mother from weaning until 6 weeks old. Profiles of the standard and coconut oil diets were analysed by gas chromatography flame ionization detector (GCFID). Analysis of the mean of the total weight gained/ loss over 6 weeks revealed that in the first 3 weeks, pups whose mothers were fed virgin coconut oil and virgin olive oil have a significantly lower body weight than that of standard diet pups. At 6 weeks of age, only virgin coconut oil fed pups exhibited significantly lower body weight. We report that virgin coconut oil modifies the fatty acid profiles of the standard diet by inducing high levels of medium chain fatty acids with low levels of essential fatty acids. Furthermore, pups borne by females fed with virgin coconut oil developed spiky fur. Our study has demonstrated that virgin coconut oil could affect infant growth and appearance via maternal intake; we suggest the use of virgin coconut oil as herbal medicine to be treated with caution.
Antioxidant capacity and phenolic acids of virgin coconut oil.
Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I
2009-01-01
The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.
Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad
2016-10-01
Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.
Flow-specific physical properties of coconut flours
NASA Astrophysics Data System (ADS)
Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid
2015-10-01
Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation.
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-07
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-01
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983
Ogedengbe, O O; Jegede, A I; Onanuga, I O; Offor, U; Peter, A I; Akang, E N; Naidu, E C S; Azu, O O
2018-04-01
The effects of Virgin coconut oil as an adjuvant to highly active antiretroviral therapy (HAART) were investigated on the testicular ultrastructure and biochemical markers in rats. Twenty male Sprague-Dawley rats, weighing 153-169 g were divided into four groups and treated as follows: control A (distilled water), B (HAART), C (HAART+Virgin coconut oil 10 ml/kg) and D (Virgin coconut oil [VCO] 10 ml/kg). Testicular segments were evaluated using transmission electron microscopy. Serum was assayed for testosterone, luteinising hormone, follicle stimulating hormone and testicular tissue for malondialdehyde and glutathione. Ultrastructure of basement membrane (Bm), mitochondria and spermatocytes was normal in the control group. HAART-treated group showed significant increase (p < .01) in Bm thickness with significant decrease in Leydig cell nuclear diameter (p < .05) and volume (p < .01) when compared with control group. Mitochondrial cristae appear collapsed, and Sertoli cells showed cytoplasmic vacuolations. HAART+VCO group showed improved ultrastructural details in Bm, and Sertoli cell and Leydig cells show abundant lipid droplets. Virgin coconut oil-treated group showed thinning of Bm with otherwise normal ultrastructural features of organelles. HAART-treated group showed significant increase (p < .01) in testosterone levels. There was no significant effect on malondialdehyde and glutathione levels. Virgin coconut oil improved testicular morphology and reversed HAART-induced ultrastructural alterations. Further studies on putative mechanism are required. © 2017 Blackwell Verlag GmbH.
Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.
Nevin, K G; Rajamohan, T
2004-09-01
The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.
Ogedengbe, Oluwatosin O; Jegede, Ayoola I; Onanuga, Ismail O; Offor, Ugochukwu; Naidu, Edwin CS; Peter, Aniekan I; Azu, Onyemaechi O
2016-01-01
Increased access to highly active antiretroviral therapy (HAART) has made the management of drug toxicities an increasingly crucial component of HIV. This study investigated the effects of adjuvant use of coconut oil and HAART on testicular morphology and seminal parameters in Sprague- Dawley rats. Twelve adult male Sprague-Dawley rats, weighing 153~169 g were distributed into four groups (A–D) and treated as follows: A served as control (distilled water); B (HAART cocktail- Zidovudine, Lamivudine and Nevirapine); C (HAART + Virgin coconut oil 10 mL/kg) and D (Virgin coconut oil 10 mL/kg). After 56 days of treatment, animals were killed and laparotomy to exercise the epididymis for seminal fluid analyses done whilst testicular tissues were processed for histomorphometric studies. Result showed a significant decline in sperm motility (P < 0.05) and count (P < 0.0001) in HAART-treated animals while there was insignificant changes in other parameters in groups C and D except count that was reduced (P < 0.0001) when compared with controls. Histomorphological studies showed HAART caused disorders in seminiferous tubular architecture with significant (P < 0.01) decline in epithelial height closely mirrored by extensive reticulin framework and positive PAS cells. Adjuvant Virgin coconut oil + HAART resulted in significant decrease in seminiferous tubular diameter (P < 0.05), but other morphometric and histological parameters were similar to control or Virgin coconut oil alone (which showed normal histoarchitecture levels). While derangements in testicular and seminal fluid parameters occurred following HAART, adjuvant treatment with Virgin coconut oil restored the distortions emanating thereof. PMID:27818734
Ogedengbe, Oluwatosin O; Jegede, Ayoola I; Onanuga, Ismail O; Offor, Ugochukwu; Naidu, Edwin Cs; Peter, Aniekan I; Azu, Onyemaechi O
2016-10-01
Increased access to highly active antiretroviral therapy (HAART) has made the management of drug toxicities an increasingly crucial component of HIV. This study investigated the effects of adjuvant use of coconut oil and HAART on testicular morphology and seminal parameters in Sprague- Dawley rats. Twelve adult male Sprague-Dawley rats, weighing 153~169 g were distributed into four groups (A-D) and treated as follows: A served as control (distilled water); B (HAART cocktail- Zidovudine, Lamivudine and Nevirapine); C (HAART + Virgin coconut oil 10 mL/kg) and D (Virgin coconut oil 10 mL/kg). After 56 days of treatment, animals were killed and laparotomy to exercise the epididymis for seminal fluid analyses done whilst testicular tissues were processed for histomorphometric studies. Result showed a significant decline in sperm motility ( P < 0.05) and count ( P < 0.0001) in HAART-treated animals while there was insignificant changes in other parameters in groups C and D except count that was reduced ( P < 0.0001) when compared with controls. Histomorphological studies showed HAART caused disorders in seminiferous tubular architecture with significant ( P < 0.01) decline in epithelial height closely mirrored by extensive reticulin framework and positive PAS cells. Adjuvant Virgin coconut oil + HAART resulted in significant decrease in seminiferous tubular diameter ( P < 0.05), but other morphometric and histological parameters were similar to control or Virgin coconut oil alone (which showed normal histoarchitecture levels). While derangements in testicular and seminal fluid parameters occurred following HAART, adjuvant treatment with Virgin coconut oil restored the distortions emanating thereof.
In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria.
Ogbolu, D O; Oni, A A; Daini, O A; Oloko, A P
2007-06-01
The emergence of antimicrobial resistance, coupled with the availability of fewer antifungal agents with fungicidal actions, prompted this present study to characterize Candida species in our environment and determine the effectiveness of virgin coconut oil as an antifungal agent on these species. In 2004, 52 recent isolates of Candida species were obtained from clinical specimens sent to the Medical Microbiology Laboratory, University College Hospital, Ibadan, Nigeria. Their susceptibilities to virgin coconut oil and fluconazole were studied by using the agar-well diffusion technique. Candida albicans was the most common isolate from clinical specimens (17); others were Candida glabrata (nine), Candida tropicalis (seven), Candida parapsilosis (seven), Candida stellatoidea (six), and Candida krusei (six). C. albicans had the highest susceptibility to coconut oil (100%), with a minimum inhibitory concentration (MIC) of 25% (1:4 dilution), while fluconazole had 100% susceptibility at an MIC of 64 microg/mL (1:2 dilution). C. krusei showed the highest resistance to coconut oil with an MIC of 100% (undiluted), while fluconazole had an MIC of > 128 microg/mL. It is noteworthy that coconut oil was active against species of Candida at 100% concentration compared to fluconazole. Coconut oil should be used in the treatment of fungal infections in view of emerging drug-resistant Candida species.
Nguyen, Van Thi Ai; Le, Truong Dang; Phan, Hoa Ngoc; Tran, Lam Bich
2017-01-01
Free fatty acids (FFAs) were obtained from hydrolyzed virgin coconut oil (VCO) by Candida rugosa lipase (CRL). Four factors' influence on hydrolysis degree (HD) was examined. The best hydrolysis conditions in order to get the highest HD value were determined at VCO to buffer ratio 1 : 5 (w/w), CRL concentration 1.5% (w/w oil), pH 7, and temperature 40°C. After 16 hours' reaction, the HD value achieved 79.64%. FFAs and residual hydrolyzed virgin coconut oil (HVCO) were isolated from the hydrolysis products. They were tested for their antibacterial activity against Gram-negative and Gram-positive bacteria, which can be found in contaminated food and cause food poisoning. FFAs showed their inhibition against Bacillus subtilis (ATCC 11774), Escherichia coli (ATCC 25922), Salmonella enteritidis (ATCC 13076), and Staphylococcus aureus (ATCC 25923) at minimum inhibitory concentration (MIC) of 50%, 60%, 20%, and 40%, respectively. However, VCO and HVCO did not show their antibacterial activity against these tested bacteria.
Phan, Hoa Ngoc; Tran, Lam Bich
2017-01-01
Free fatty acids (FFAs) were obtained from hydrolyzed virgin coconut oil (VCO) by Candida rugosa lipase (CRL). Four factors' influence on hydrolysis degree (HD) was examined. The best hydrolysis conditions in order to get the highest HD value were determined at VCO to buffer ratio 1 : 5 (w/w), CRL concentration 1.5% (w/w oil), pH 7, and temperature 40°C. After 16 hours' reaction, the HD value achieved 79.64%. FFAs and residual hydrolyzed virgin coconut oil (HVCO) were isolated from the hydrolysis products. They were tested for their antibacterial activity against Gram-negative and Gram-positive bacteria, which can be found in contaminated food and cause food poisoning. FFAs showed their inhibition against Bacillus subtilis (ATCC 11774), Escherichia coli (ATCC 25922), Salmonella enteritidis (ATCC 13076), and Staphylococcus aureus (ATCC 25923) at minimum inhibitory concentration (MIC) of 50%, 60%, 20%, and 40%, respectively. However, VCO and HVCO did not show their antibacterial activity against these tested bacteria. PMID:29259829
NASA Astrophysics Data System (ADS)
Rahmah, N. L.; Istikoma, R.; Kumalaningsih, S.
2018-03-01
The quality of Virgin Coconut Oil (VCO) is determined by the quality of coconut milk. High quality of coconut milk can be obtained by proper handling of grated coconut as raw material. When coconut was shredded, the lipases are exposed which can hydrolyse the oil resulting free fatty acid (FFA).Steaming is a technique to inactivate lipases. In addition, a ratio of grated coconut to water and steaming duration are important factor to the VCO extraction. Therefore, this study aimed to obtain the best combination of steaming duration and suitable ratio of grated coconut to water in order to produce high quality VCO. The research design was Factorial Randomized Block Design consisted of 2 factors: steaming duration (5; 10; and 15 minutes) and grated coconut to water ratio (1:0; 1:1; 1:2; 1:3; and 1:4 w/v),each treatment was repeated twice. Parameters analyzed were FFA, moisture content, and yield values. The result showed that the best treatment was a treatment with 15 minutes steaming of grated coconut and 1:4 ratio of grated coconut to water. The best treatment VCO had characteristic as follows: FFA 0.054 %, moisture content 0.129 % and yield 17.563 %.
Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.
Intahphuak, S; Khonsung, P; Panthong, A
2010-02-01
This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.
Virgin coconut oil and its potential cardioprotective effects.
Babu, Abraham Samuel; Veluswamy, Sundar Kumar; Arena, Ross; Guazzi, Marco; Lavie, Carl J
2014-11-01
Emphasis on diet to improve the cardiovascular (CV) risk profile has been the focus of many studies. Recently, virgin coconut oil (VCO) has been growing in popularity due to its potential CV benefits. The chemical properties and the manufacturing process of VCO make this oil healthier than its copra-derived counterpart. This review highlights the mechanism through which saturated fatty acids contribute to CV disease (CVD), how oils and fats contribute to the risk of CVD, and the existing views on VCO and how its cardioprotective effects may make this a possible dietary intervention in isolation or in combination with exercise to help reduce the burden of CVDs.
Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats.
Panchal, Sunil K; Carnahan, Sharyn; Brown, Lindsay
2017-12-01
Increasing prevalence of obesity and metabolic syndrome warrants identification of potential therapeutic options for intervention. This study tested commercially available Virgin Coconut Oil and Coconut Nourish, as coconuts are rich sources of lauric and myristic acids. Male Wistar rats were fed either corn starch diet (C); high-carbohydrate, high-fat diet (H); high-carbohydrate, high-virgin coconut oil diet (HV); or high-carbohydrate, high-coconut Nourish diet (HN) for 16 weeks. Metabolic, liver, and cardiovascular health parameters were measured during and at the end of the study. Virgin coconut oil lowered body weight (C 386±8g, H 516±13g, HV 459±10g), blood glucose concentrations (C 4.2±0.1 mmol/L, H 5.4±0.2 mmol/L, HV 4.6±0.2 mmol/L), systolic blood pressure (C 127±5mmHg, H 149±4mmHg, HV 133±3mmHg,) and diastolic stiffness (C 25.0±1.7, H 31.4±1.2, HV 25.2±2.3,) with improved structure and function of the heart and liver. Coconut Nourish increased total body lean mass (C 255±10g, H 270±16g, HN 303±15g) and lowered plasma total cholesterol concentrations (C 1.6±0.2 mmol/L, H 1.7±0.1 mmol/L, HN 1.0±0.0 mmol/L), systolic blood pressure (C 127±5mmHg, H 149±4mmHg, HN 130±3mmHg) and diastolic stiffness (C 25.0±1.7, H 31.4±1.2, HN 26.5±1.0), improved structure and function of the heart and liver but increased plasma concentrations of triglycerides (C 0.3±0.1 mmol/L, H 1.1±0.4 mmol/L, HN 1.8±0.2 mmol/L) and non-esterified fatty acids (C 1.2±0.3 mmol/L, H 3.3±0.8 mmol/L, HN 5.6±0.4 mmol/L). Thus, the fiber and protein in coconut Nourish and the medium-chain saturated fatty acids in virgin coconut oil may improve cardiovascular and liver complications in obesity.
Craig-Schmidt, M; White, M T; Teer, P; Johnson, J; Lane, H W
1993-01-01
Omega-3 fatty (n-3) acids are believed to inhibit the rate of occurrence and the growth of mammary tumors in rats treated with 7,12-dimethylbenz[a]anthracene (DMBA). Linoleic acid, on the other hand, has been shown to promote mammary tumorigenesis. This study was undertaken to see whether replacing 18% of the corn oil (high in linoleic acid) in a 20% fat diet with menhaden oil (high in n-3 fatty acids, low in linoleic acid) or coconut oil (low in n-3 fatty acids, low in linoleic acid), while keeping constant the cholesterol, antioxidant, and total fat content, would affect tumor incidence in virgin female BALB/c mice dosed with DMBA. Dietary treatment had no effect on body weight, feed intake, or survival to 44 weeks of age (36 wks after the first of 6 DMBA doses). Mammary tumor incidence was the same in the menhaden oil and coconut oil diet groups but was significantly higher in the 20% corn oil diet group. The protective effect of menhaden oil and coconut oil may be due, at least in part, to the decreased linoleic acid content of these diets relative to the corn oil diet. We conclude that n-3 fatty acids per se do not seem to inhibit tumor formation.
Khaw, Kay-Tee; Sharp, Stephen J; Finikarides, Leila; Afzal, Islam; Forouhi, Nita G
2018-01-01
Introduction High dietary saturated fat intake is associated with higher blood concentrations of low-density lipoprotein cholesterol (LDL-C), an established risk factor for coronary heart disease. However, there is increasing interest in whether various dietary oils or fats with different fatty acid profiles such as extra virgin coconut oil may have different metabolic effects but trials have reported inconsistent results. We aimed to compare changes in blood lipid profile, weight, fat distribution and metabolic markers after four weeks consumption of 50 g daily of one of three different dietary fats, extra virgin coconut oil, butter or extra virgin olive oil, in healthy men and women in the general population. Design Randomised clinical trial conducted over June and July 2017. Setting General community in Cambridgeshire, UK. Participants Volunteer adults were recruited by the British Broadcasting Corporation through their websites. Eligibility criteria were men and women aged 50–75 years, with no known history of cancer, cardiovascular disease or diabetes, not on lipid lowering medication, no contraindications to a high-fat diet and willingness to be randomised to consume one of the three dietary fats for 4 weeks. Of 160 individuals initially expressing an interest and assessed for eligibility, 96 were randomised to one of three interventions; 2 individuals subsequently withdrew and 94 men and women attended a baseline assessment. Their mean age was 60 years, 67% were women and 98% were European Caucasian. Of these, 91 men and women attended a follow-up assessment 4 weeks later. Intervention Participants were randomised to extra virgin coconut oil, extra virgin olive oil or unsalted butter and asked to consume 50 g daily of one of these fats for 4 weeks, which they could incorporate into their usual diet or consume as a supplement. Main outcomes and measures The primary outcome was change in serum LDL-C; secondary outcomes were change in total and high-density lipoprotein cholesterol (TC and HDL-C), TC/HDL-C ratio and non-HDL-C; change in weight, body mass index (BMI), waist circumference, per cent body fat, systolic and diastolic blood pressure, fasting plasma glucose and C reactive protein. Results LDL-C concentrations were significantly increased on butter compared with coconut oil (+0.42, 95% CI 0.19 to 0.65 mmol/L, P<0.0001) and with olive oil (+0.38, 95% CI 0.16 to 0.60 mmol/L, P<0.0001), with no differences in change of LDL-C in coconut oil compared with olive oil (−0.04, 95% CI −0.27 to 0.19 mmol/L, P=0.74). Coconut oil significantly increased HDL-C compared with butter (+0.18, 95% CI 0.06 to 0.30 mmol/L) or olive oil (+0.16, 95% CI 0.03 to 0.28 mmol/L). Butter significantly increased TC/HDL-C ratio and non-HDL-C compared with coconut oil but coconut oil did not significantly differ from olive oil for TC/HDL-C and non-HDL-C. There were no significant differences in changes in weight, BMI, central adiposity, fasting blood glucose, systolic or diastolic blood pressure among any of the three intervention groups. Conclusions and relevance Two different dietary fats (butter and coconut oil) which are predominantly saturated fats, appear to have different effects on blood lipids compared with olive oil, a predominantly monounsaturated fat with coconut oil more comparable to olive oil with respect to LDL-C. The effects of different dietary fats on lipid profiles, metabolic markers and health outcomes may vary not just according to the general classification of their main component fatty acids as saturated or unsaturated but possibly according to different profiles in individual fatty acids, processing methods as well as the foods in which they are consumed or dietary patterns. These findings do not alter current dietary recommendations to reduce saturated fat intake in general but highlight the need for further elucidation of the more nuanced relationships between different dietary fats and health. Trial registration number NCT03105947; Results. PMID:29511019
Khaw, Kay-Tee; Sharp, Stephen J; Finikarides, Leila; Afzal, Islam; Lentjes, Marleen; Luben, Robert; Forouhi, Nita G
2018-03-06
High dietary saturated fat intake is associated with higher blood concentrations of low-density lipoprotein cholesterol (LDL-C), an established risk factor for coronary heart disease. However, there is increasing interest in whether various dietary oils or fats with different fatty acid profiles such as extra virgin coconut oil may have different metabolic effects but trials have reported inconsistent results. We aimed to compare changes in blood lipid profile, weight, fat distribution and metabolic markers after four weeks consumption of 50 g daily of one of three different dietary fats, extra virgin coconut oil, butter or extra virgin olive oil, in healthy men and women in the general population. Randomised clinical trial conducted over June and July 2017. General community in Cambridgeshire, UK. Volunteer adults were recruited by the British Broadcasting Corporation through their websites. Eligibility criteria were men and women aged 50-75 years, with no known history of cancer, cardiovascular disease or diabetes, not on lipid lowering medication, no contraindications to a high-fat diet and willingness to be randomised to consume one of the three dietary fats for 4 weeks. Of 160 individuals initially expressing an interest and assessed for eligibility, 96 were randomised to one of three interventions; 2 individuals subsequently withdrew and 94 men and women attended a baseline assessment. Their mean age was 60 years, 67% were women and 98% were European Caucasian. Of these, 91 men and women attended a follow-up assessment 4 weeks later. Participants were randomised to extra virgin coconut oil, extra virgin olive oil or unsalted butter and asked to consume 50 g daily of one of these fats for 4 weeks, which they could incorporate into their usual diet or consume as a supplement. The primary outcome was change in serum LDL-C; secondary outcomes were change in total and high-density lipoprotein cholesterol (TC and HDL-C), TC/HDL-C ratio and non-HDL-C; change in weight, body mass index (BMI), waist circumference, per cent body fat, systolic and diastolic blood pressure, fasting plasma glucose and C reactive protein. LDL-C concentrations were significantly increased on butter compared with coconut oil (+0.42, 95% CI 0.19 to 0.65 mmol/L, P<0.0001) and with olive oil (+0.38, 95% CI 0.16 to 0.60 mmol/L, P<0.0001), with no differences in change of LDL-C in coconut oil compared with olive oil (-0.04, 95% CI -0.27 to 0.19 mmol/L, P=0.74). Coconut oil significantly increased HDL-C compared with butter (+0.18, 95% CI 0.06 to 0.30 mmol/L) or olive oil (+0.16, 95% CI 0.03 to 0.28 mmol/L). Butter significantly increased TC/HDL-C ratio and non-HDL-C compared with coconut oil but coconut oil did not significantly differ from olive oil for TC/HDL-C and non-HDL-C. There were no significant differences in changes in weight, BMI, central adiposity, fasting blood glucose, systolic or diastolic blood pressure among any of the three intervention groups. Two different dietary fats (butter and coconut oil) which are predominantly saturated fats, appear to have different effects on blood lipids compared with olive oil, a predominantly monounsaturated fat with coconut oil more comparable to olive oil with respect to LDL-C. The effects of different dietary fats on lipid profiles, metabolic markers and health outcomes may vary not just according to the general classification of their main component fatty acids as saturated or unsaturated but possibly according to different profiles in individual fatty acids, processing methods as well as the foods in which they are consumed or dietary patterns. These findings do not alter current dietary recommendations to reduce saturated fat intake in general but highlight the need for further elucidation of the more nuanced relationships between different dietary fats and health. NCT03105947; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Use of array of conducting polymers for differentiation of coconut oil products.
Rañola, Rey Alfred G; Santiago, Karen S; Sevilla, Fortunato B
2016-01-01
An array of chemiresistors based on conducting polymers was assembled for the differentiation of coconut oil products. The chemiresistor sensors were fabricated through the potentiostatic electrodeposition of polyaniline (PANi), polypyrrole (PPy) and poly(3-methylthiophene) (P-3MTp) on the gap separating two planar gold electrodes set on a Teflon substrate. The change in electrical resistance of the sensors was measured and observed after exposing the array to the headspace of oil samples. The sensor response was found rapid, reversible and reproducible. Different signals were obtained for each coconut oil sample and pattern recognition techniques were employed for the analysis of the data. The developed system was able to distinguish virgin coconut oil (VCO) from refined, bleached & deodorised coconut oil (RBDCO), flavoured VCO, homemade VCO, and rancid VCO. Copyright © 2015 Elsevier B.V. All rights reserved.
Basripuzi, H B; Sani, R A; Ariff, O M; Chandrawathani, P
2013-09-01
A study was conducted to evaluate the anthelmintic properties of enhanced virgin coconut oil (EVCO) and senduduk (Melastoma malabathricum) plant against strongyle nematodes in goats. Two preparations of 10% EVCO dissolved in 90% virgin coconut oil and 10% EVCO dissolved in 90% palm oil, were given orally to two groups of mixed breeds goats. The efficacy test indicated that EVCO was insufficiently active as an anthelmintic. Four concentrations of senduduk solution (1.25, 2.5, 5.0 and 10 mg ml(-1)) were compared with a control and albendazole in an in vitro test for larvicidal effect. There was no significant larval mortality using senduduk solution. An in vivo test of senduduk was conducted by comparing three groups of goats, namely control, levamisole and treatment groups that were given a daily oral dose of senduduk crude extract with 1g kg(-1) from Day 0 to Day 12 and 2 g kg(-1) from Day 13 to Day 30. This efficacy test with senduduk also gave negative results. The findings obtained indicated that EVCO and senduduk were ineffective as anthelmintics against caprinestrongyle nematodes at the concentrations used.
Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model
Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana
2012-01-01
Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model. PMID:23024690
Virgin coconut oil supplementation prevents bone loss in osteoporosis rat model.
Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana
2012-01-01
Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model.
NASA Astrophysics Data System (ADS)
Omar, Hazreen; Zubairi, Saiful Irwan; Fadhilah, Mohd Faizulhelmi; Omar, Dzolkhifli; Asib, Norhayu
2016-11-01
Carica papaya is a member of the Caricaceae. Its leaves have been used in folk medicine for centuries. Recent studies have shown its beneficial effects as an anti-inflammatory agent (Owoyele et al 2008) and anti-tumour15 as well as antioxidant and wound healing properties7. The study has shown that the effect of carica papaya leaves juice intake also can accelerate the rate of increase in platelet count among the patients infected with dengue fever and dengue haemorrhagic fever18. With all the goodness of carica papaya leaves, a formulation with addition of virgin coconut oil (VCO) is produced to give an enhanced supplement beverage to market nowadays. Virgin coconut oil is well known as anti-oxidant4. The combination of these two substances gives a balance combination in healthy supplement. In recent years the application of emulsion is rapidly increasing in many fields such as cosmetics and paints. Emulsions are dispersions of droplets of one liquid in another, immiscible, liquid in which the droplets are of colloidal or near-colloidal sizes. The combination of water and oil (VCO) with addition of non-ionic surfactant Tween80 was constructed using ternary phase diagram. By considering the Hydrophilic-Lipophilic Balance (HLB) value of each substance will help in producing a stable emulsion.
The effects of virgin coconut oil on bone oxidative status in ovariectomised rat.
Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana
2012-01-01
Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.
The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat
Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana
2012-01-01
Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model. PMID:22927879
Cardoso, Diuli A; Moreira, Annie S B; de Oliveira, Glaucia M M; Raggio Luiz, Ronir; Rosa, Glorimar
2015-11-01
saturated fat restriction has been recommended for coronary arterial disease, but the role of coconut oil (Cocos nucifera L.) extra virgin, lauric acid source in the management of lipid profile remains unclear. to evaluate the effect of nutritional treatment associated with the consumption of extra virgin coconut oil in anthropometric parameters and lipid profile. we conducted a longitudinal study of 116 adults of both sexes presenting CAD. Patients were followed in two stages: the first stage (basal-3 months), intensive nutritional treatment. In the second stage (3-6 months), the subjects were divided into two groups: diet group associated with extra virgin coconut oil consumption (GDOC) and diet group (DG). Held monthly anthropometric measurements: body mass, waist circumference (WC), neck circumference (PP), body mass index (BMI). Gauged to collected blood pressure and blood samples were fasted for 12 hours, for total cholesterol analysis and fractions apoproteins (Apo A-1 and B), glucose, glycated hemoglobin (HbA1C), insulin (I). Comparing the averages at the beginning and end of the study employing the paired Student t-independent. And set the diastolic blood pressure by BMI using ANOVA. Analyses were performed using the SPSS statistical package, being significant p < 0.05. the mean age of the population was 62.4 ± 7.7 years, 63.2% male, 70% elderly, 77.6% infarcted, 52.6% with angina, hypertension and dyslipidemia 100%. In the first stage the nutritional treatment reduced body weight, WC, BMI and PP and insulin concentrations, HbA1C, HOMA-IR and QUICK, without changing the other parameters. In the second stage of the study, it was observed that the GDOC maintained the reduction of body mass, BMI, WC, with a significant difference between groups for DC (-2.1 ± 2,7 cm; p < 0.01). In addition, there was an increase in HDL-C concentrations, Apo A, with significant difference in GD, only for HDL-C (3.1 ± 7.4 mg/dL; p = 0.02). it was observed that the nutritional treatment associated with extra virgin coconut oil consumption reduced the CC and increased HDL-C levels in patients with CAD. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Rohman, A; Man, Yb Che; Sismindari
2009-10-01
Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
Agero, Anna Liza C; Verallo-Rowell, Vermén M
2004-09-01
Xerosis is a common skin condition (1) characterized by dry, rough, scaly, and itchy skin, (2) associated with a defect in skin barrier function, and (3) treated with moisturizers. People in the tropics have effectively used coconut oil as a traditional moisturizer for centuries. Recently, the oil also has been shown to have skin antiseptic effects. A moisturizer with antiseptic effects has value, but there are no clinical studies to document the efficacy and safety of coconut oil as a skin moisturizer. This study aimed to determine the effectivity and safety of virgin coconut oil compared with mineral oil as a therapeutic moisturizer for mild to moderate xerosis. A randomized double-blind controlled clinical trial was conducted on mild to moderate xerosis in 34 patients with negative patch-test reactions to the test products. These patients were randomized to apply either coconut oil or mineral oil on the legs twice a day for 2 weeks. Quantitative outcome parameters for effectivity were measured at baseline and on each visit with a Corneometer CM825 to measure skin hydration and a Sebumeter SM 810 to measure skin lipids. For safety, transepidermal water loss (TEWL) was measured with a Tewameter TM210, and skin surface hydrogen ion concentration (pH) was measured with a Skin pH Meter PH900. Patients and the investigator separately evaluated, at baseline and at each weekly visit, skin symptoms of dryness, scaling, roughness, and pruritus by using a visual analogue scale and grading of xerosis. Coconut oil and mineral oil have comparable effects. Both oils showed effectivity through significant improvement in skin hydration and increase in skin surface lipid levels. Safety was demonstrated through no significant difference in TEWL and skin pH. Subjective grading of xerosis by the investigators and visual analogue scales used by the patients showed a general trend toward better (though not statistically evident) improvement with coconut oil than with mineral oil. Safety for both was further demonstrated by negative patch-test results prior to the study and by the absence of adverse reactions during the study. Coconut oil is as effective and safe as mineral oil when used as a moisturizer.
NASA Astrophysics Data System (ADS)
Safuan, A.; Hamdan, S.; Laili, C. R.
2017-09-01
Virgin Coconut Oil (VCO) has been applied in many application and products. Formation of microemulsion region with surfactant was investigated by using phase diagram. The surfactants used are igepal CO-520 and tween 80. The studies showed that formation of microemulsion region were dependent on the behaviour of the surfactant toward VCO. The result showed that microemulsion regions were present in igepal CO-520 system formed a larger water-in-oil microemulsion region compared to tween 80 system. Certain weight ratios of VCO to surfactants were studied by using evaporation test in order to study the water loss of the microemulsion in ambient condition. The evaporation rate of samples was varies depending their compositon of VCO, surfactant and water.
Mbah, C J
2007-05-01
The lipophilic character of five vehicles (or co-vehicles): diethylhexylmaleate, dimethicone, light mineral oil, octyldodecanol and oleyl alcohol and eight botanical oils: Aloe vera oil, coconut oil, extra virgin olive oil, grape leaf oil, grape seed oil, hazelnut oil, jojoba oil and safflower oil was determined by partitioning esters of p-hydroxybenzoic acid (parabens) between them and phosphate buffer (pH 7.4). The results were compared to those obtained with 1-octanol. The most lipophilic effects were observed with octyldodecanol and oleyl alcohol for the vehicles (or co-vehicles), coconut oil, jojoba oil and safflower oil for botanical oils. Light mineral oil showed the least lipophilic effect. With butylparaben, it was observed that oleyl alcohol, octyldodecanol, coconut oil and jojoba oil were 0.94, 0.91, 0.74 and 0.68 times as lipophilic as 1-octanol respectively. The study indicates that octyldodecanol and oleyl alcohol could be good substitutes for 1-octanol in partition coefficient determination. The estimated permeability coefficients of the parabens suggest that octyldodecanol, oleyl alcohol, coconut oil and jojoba oil could be potential dermal permeation enhancers.
Verallo-Rowell, Vermén M; Dillague, Kristine M; Syah-Tjundawan, Bertha S
2008-01-01
Atopic dermatitis (AD) skin is dry and readily colonized by Staphylococcus aureus (SA). Coconut and olive oils are traditionally used to moisturize and treat skin infections. To compare virgin coconut oil (VCO) and virgin olive oil (VOO) in moisturizing dryness and removing SA from colonized AD skin. This was a double-blind controlled trial in two outpatient dermatology clinics with adult AD patients who were diagnosed by history, pattern, evolution, and skin lesions and who were randomized to apply VCO or VOO twice daily at two noninfected sites. SA cultures, photography, and objective-SCORAD severity index (O-SSI) scoring were done at baseline and after 4 weeks. Twenty-six subjects each received VCO or VOO. Of those on VCO, 20 were positive for SA colonies at baseline versus 12 on VOO. Post intervention, only 1 (5%) VCO subject remained positive versus 6 (50%) of those on VOO. Relative risk for VCO was 0.10, significantly superior to that for VOO (10:1, p = .0028; 95% CI, 0.01-0.73); thus, the number needed to treat was 2.2. For the O-SSI, the difference was not significant at baseline (p = .15) but was significantly different post treatment (p = .004); this was reduced for both oils (p < .005) but was greater with VCO. VCO and monolaurin's O-SSI reduction and in vitro broad-spectrum activity against SA (given clinical validity here), fungi, and viruses may be useful in the proactive treatment of AD colonization.
Otuechere, Chiagoziem A; Madarikan, Gbemisola; Simisola, Tinuala; Bankole, Olubukola; Osho, Adeleke
2014-05-01
Trimethoprim-sulfamethoxazole (TMP-SMX) is a broad-spectrum antibiotic. However, its use is associated with toxic reactions. Virgin coconut oil (VCO), derived from coconut, has been widely used throughout history for its medicinal value. The aim of this study was to investigate the beneficial actions of VCO against TMP-SMX-induced alterations in serum biochemical end points. Twenty rats were divided into four groups. Group 1 (control) received no drug, whereas group 2 received TMP-SMX (8/40 mg/kg) twice daily for 7 days. Group 3 was administered coconut oil at a dose of 600 mg/kg body weight per day. The last group was treated with TMP-SMX (8/40 mg/kg) and coconut oil (600 mg/kg) simultaneously. Blood samples were collected from all groups on the 8th day of the experiment for measurement of serum biochemical parameters. Organ weights and coefficients were also evaluated. TMP-SMX caused a significant (p<0.05) increase in the levels of serum total bilirubin, lactate dehydrogenase, and alkaline phosphatase by 192%, 67%, and 41%, respectively, relative to controls. This was followed by a significant reduction in triglyceride and relative kidney weight by 40% and 7%, respectively. There were no significant differences (p>0.05) in the activities of serum aminotransferases, total acid phosphatase, γ-glutamyl transferase, uric acid, cholesterol, albumin, and urea levels. Supplementation of VCO ameliorated TMP-SMX-induced effects by restoring the levels of total bilirubin, alkaline phospahatase, and lactate dehydrogenase. The results of this study demonstrate that the active components of coconut oil had protective effects against the toxic effects induced by TMP-SMX administration, especially in the liver of rats.
Manohar, Vijaya; Echard, Bobby; Perricone, Nicholas; Ingram, Cass; Enig, Mary; Bagchi, Debasis; Preuss, Harry G
2013-06-01
Since monolaurin, a monoglyceride formed in the human body in small quantities, has proven effective both in vitro and in vivo against certain strains of Staphylococcus aureus, an important question arises whether consuming a substance high in lauric acid content, such as coconut oil could increase intrinsic monolaurin production to levels that would be successful in overcoming staphylococcal and other microbial invaders. Both a cup plate method and a microdilution broth culture system were employed to test bacteriostatic and bactericidal effects of the test agents in vitro. To test effectiveness in vivo, female C3H/he mice (10-12 per group) were orally administered sterile saline (regular control), vancomycin (positive control), aqueous monolaurin, or two varieties of coconut oil (refined, bleached, deodorized coconut oil and virgin coconut oil) for 1 week before bacterial challenge and 30 days after. A final group received both monolaurin and vancomycin. In contrast to monolaurin, the coconut oils did not show bactericidal activity in vitro. In vivo, the groups receiving vancomycin, monolaurin, or the combination showed some protection--50-70% survival, whereas the protection from the coconut oils were virtually the same as control--0-16% survival. Although we did not find that the two coconut oils are helpful to overcome S. aureus infections, we corroborated earlier studies showing the ability of monolaurin to do such.
Arunima, S; Rajamohan, T
2012-11-01
Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.
Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.
Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K
2011-01-01
The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.
Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil
Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.
2011-01-01
The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140
Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C
2016-01-01
Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.
Rose, M; White, S; Macarthur, R; Petch, R G; Holland, J; Damant, A P
2007-06-01
A protocol for the measurement of 27 polycyclic aromatic hydrocarbons (PAHs) in vegetable oils by GC/MS has undergone single-laboratory validation. PAHs were measured in three oils (olive pomace, sunflower and coconut oil). Five samples of each oil (one unfortified, and four fortified at concentrations between 2 and 50 microg kg(-1)) were analysed in replicate (four times in separate runs). Two samples (one unfortified and one fortified at 2 microg kg(-1)) of five oils (virgin olive oil, grapeseed oil, toasted sesame oil, olive margarine and palm oil) were also analysed. The validation included an assessment of measurement bias from the results of 120 measurements of a certified reference material (coconut oil BCR CRM458 certified for six PAHs). The method is capable of reliably detecting 26 out of 27 PAHs, at concentration <2 microg kg(-1) which is the European Union maximum limit for benzo[a]pyrene, in vegetable oils, olive pomace oil, sunflower oil and coconut oil. Quantitative results were obtained that are fit for purpose for concentrations from <2 to 50 microg kg(-1) for 24 out of 27 PAHs in olive pomace oil, sunflower oil and coconut oil. The reliable detection of 2 microg kg(-1) of PAHs in five additional oils (virgin olive oil, grapeseed oil, toasted sesame oil, olive margarine and palm oil) has been demonstrated. The method failed to produce fit-for-purpose results for the measurement of dibenzo[a,h]pyrene, anthanthrene and cyclopenta[c,d]pyrene. The reason for the failure was the large variation in results. The likely cause was the lack of availability of (13)C isotope internal standards for these PAHs at the time of the study. The protocol has been shown to be fit-for-purpose and is suitable for formal validation by inter-laboratory collaborative study.
Alves, Naiane F B; Porpino, Suênia K P; Monteiro, Matheus M O; Gomes, Enéas R M; Braga, Valdir A
2015-04-01
The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p < 0.05). SHR + coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p < 0.05). Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p < 0.05). SHR + saline group showed higher superoxide levels when compared with WKY + saline (774 ± 31 vs. 634 ± 19 arbitrary units (AU), respectively; p < 0.05). SHR + trained + coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p < 0.05). In aorta, coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p < 0.05). Oral supplementation with coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.
Empty nano and micro-structured lipid carriers of virgin coconut oil for skin moisturisation.
Noor, Norhayati Mohamed; Khan, Abid Ali; Hasham, Rosnani; Talib, Ayesha; Sarmidi, Mohamad Roji; Aziz, Ramlan; Aziz, Azila Abd
2016-08-01
Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.
Tripetchkul, Sudarut; Kusuwanwichid, Sasithorn; Koonsrisuk, Songpon; Akeprathumchai, Saengchai
2010-08-01
Production of virgin coconut oil via natural fermentation has led to large amount of wastes being generated, i.e., coconut pulp and wastewater containing coconut crème. Objective of this study is to gain more insight into the feasibility of utilization of such wastes as raw materials together with several types of wastes such as fish waste and/or pineapple peel for bioextract production. Chemical, physico-chemical and biological changes including phytotoxicity of the fermented mixture were closely monitored. Physical observation suggested that fermentation of bioextract obtained with fish waste appeared to be complete within the first month of fermentation while bioextract obtained using pineapple waste seemed to be complete after 8 months post-fermentation. Fermentation broth is of blackish color with alcoholic as well as acidic odour with no gas bubble and/or yeast film present on top of the surface. During the whole fermentation interval, several attributes of both bioextracts, e.g., pH, chemical oxygen demand (COD) and organic acids, were statistically different. Further, the total bacteria and lactic acid bacteria present in pineapple bioextract were statistically higher than those of the fish bioextract (p<0.01). The highest germination indices of 123 and 106 were obtained at 21 and 14 days post-fermentation for fish and pineapple bioextracts, respectively. In addition, qualities of both bioextracts conformed well with those specified by the Thai standard for liquid biofertilizer after 1 month fermentation. Results further showed that wastewater derived from virgin coconut oil manufacturing process could effectively be employed together with other types of wastes such as fish waste and pineapple peel for bioextract production. However, for the best bioextract quality, fermentation should be carefully planned since over fermentation led to bioextract of low qualities. Copyright 2010 Elsevier Ltd. All rights reserved.
Mahapatra, Anita; Rajurkar, Sudhir; Eranezhath, Sujith; Manohar, Ram
2013-01-01
Purpose: To study the preventive and therapeutic Hypolipidemic effect of different coconut oil extracts of Vyosakatvivaradi formulation. Method: High fat diet was fed for 21 days to induce Hyperlipidemia. 110 weanling wistar rats randomly divided in to Eleven groups, four in treatment, four in preventive group, two control and one standarad group. Four test drugs – 1. VCO (virgin coconut oil) + HERBS, 2. TCO (Traditional coconut oil) + HERBS, 3. CCO (Commercial coconut oil) + HERBS, 4. TCO + Coconut Milk + HERBS were administered at the dose rate of 0.06ml tid orally for 28 days in treatment group and 28 days in preventive group from the day one of experiment and the results were compared with Simvastatin 10 mg. All the animals were anesthetized using anesthetic ether and pooled blood samples from each group were collected on day Zero, day 21st and on termination day i.e. day 28th after start of actual treatment. Result: Animals in all groups did not reveal any change in their behavior or visible adverse reaction throughout the experimental period. Statistically significant reduction in mean triglyceride values in test drug -4 animals revealed preventive. Statistically significant reduction in the mean cholesterol level (mg/dl) was observed in test drug -4 animals. Statistically significant increase in the mean HDL level 5% level of significance was observed in preventive dose of test drug 3. Microscopic observations of liver, kidney and aorta revealed no significant change. Conclusion: The medicated oil “CCO + HERBS” and TCO + Coconut Milk + HERBS” showed encouraging therapeutic and preventive effects on hyperlipidemia. However, the oil “TCO + Coconut Milk + HERBS” is observed to be better than the oil CCO + HERBS. Though the oils “VCO + HERBS” and “TCO + HERBS” exhibited moderate hypolipidemic action.
Melo, Isabelle T; M Rêgo, Elisabete; Bueno, Nassib B; Gomes, Tâmara C; Oliveira, Suzana L; Trindade-Filho, Euclides M; Cabral, Cyro R; Machado, Tacy S; Galvão, Jaqueline A; R Ataide, Terezinha
2018-02-01
This study evaluated the effects of a ketogenic diet (KD) based on extra virgin coconut oil (Cocos nucifera L., VCO), on the treatment of epileptic rats. Two sets of experiments were conducted. First, male Wistar rats underwent induction of status epilepticus (SE) with the administration of pilocarpine intraperitoneally 21 animals reached spontaneous recurrent seizures (SRS) and were randomly allocated to the dietary regimens and video-monitored for 19 days. In the second experiment, 24 animals were randomized immediately after the induction of SE and followed for 67 days. Diets were as follows: Control (AIN-93G; 7% lipid), KetoTAGsoya (KD based on soybean oil; 69.79% lipid), and KetoTAGcoco (KD based on VCO; 69.79% lipid). There were no differences in the latency to the first crisis, total frequency, and duration of the SRS between groups in 2 experiments. The data suggest no effects of KD, with or without VCO, in rats with pilocarpine-induced epilepsy. © 2018 AOCS.
Virgin coconut oil supplementation ameliorates cyclophosphamide-induced systemic toxicity in mice.
Nair, S S; Manalil, J J; Ramavarma, S K; Suseela, I M; Thekkepatt, A; Raghavamenon, A C
2016-02-01
Virgin coconut oil (VCO) is an unrefined kernal oil, prepared from Cocos nucifera L., having substantial nutritional and medicinal value. Experimental studies have suggested its antioxidant, anti-inflammatory, immunostimulatory and hypolipidemic effects. The present study assesses its effect on formalin-induced chronic inflammation and cyclophosphamide (CTX)-induced systemic toxicity in murine models. Oral administration of VCO effectively reduced formalin-induced paw oedema in mice with more or less similar efficacy as that of diclofenac. The CTX-induced hike in blood urea, creatinine, thiobarbituric acid reactive substances (TBARS) and liver marker enzymes in mice was marginally decreased by VCO (8 g/kg body weight) ingestion orally. The liver and kidney catalase, superoxide dismutase and glutathione peroxidase activities, together with cellular glutathione and TBARS levels, were found to be improved in these animals. Overall the study reveals the protective efficacy of VCO against secondary toxicity induced by CTX possibly through its antioxidant and anti-inflammatory properties. © The Author(s) 2015.
Yalegama, L L W C; Nedra Karunaratne, D; Sivakanesan, Ramiah; Jayasekara, Chitrangani
2013-11-01
The coconut kernel residues obtained after extraction of coconut milk (MR) and virgin coconut oil (VOR) were analysed for their potential as dietary fibres. VOR was defatted and treated chemically using three solvent systems to isolate coconut cell wall polysaccharides (CCWP). Nutritional composition of VOR, MR and CCWPs indicated that crude fibre, neutral detergent fibre, acid detergent fibre and hemicelluloses contents were higher in CCWPs than in VOR and MR. MR contained a notably higher content of fat than VOR and CCWPs. The oil holding capacity, water holding capacity and swelling capacity were also higher in CCWPs than in VOR and MR. All the isolates and MR and VOR had high metal binding capacities. The CCWPs when compared with commercially available fibre isolates, indicated improved dietary fibre properties. These results show that chemical treatment of coconut kernel by-products can enhance the performance of dietary fibre to yield a better product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K
2013-04-01
An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties. © 2013 Institute of Food Technologists®
Effects of Ultrasonic Parameters on the Crystallization Behavior of Virgin Coconut Oil.
Wu, Linhe; Cao, Jun; Bai, Xinpeng; Chen, Haiming; Zhang, Yuxiang; Wu, Qian
2016-12-01
Crystallization behavior of virgin coconut oil (VCO) in the absence and presence of ultrasonic treatment under a temperature gradient field was investigated. The effects of ultrasonic parameters on the crystallization behavior of VCO were studied by differential scanning calorimetry, ultraviolet/visible spectrophotometry and polarized light microscopy. The thermal effect of the ultrasonic treatment was also increased at higher power levels. Therefore, the optimal power level was determined at approximately 36 W. Induction time reduced evidently and the crystallization rate was accelerated under ultrasonic treatment at crystallization temperature (T c ) above 15°C. However, no significant difference in induction time was noted at 13°C. The result of morphological studies showed that the growth mechanism of crystals was significantly changed. Meanwhile, smaller and uniform crystals were produced by the ultrasonic treatment. This study shows a novel technique to accelerate the crystallization rate and alter the growth mechanism of VCO crystals.
Formulation and optimization of virgin coconut oil with Tween-80 incorporated in gellan gum hydrogel
NASA Astrophysics Data System (ADS)
Muktar, Muhammad Zulhelmi; Rose, Laili bt Che; Amin, Khairul Anuar Mat
2017-09-01
The demand for wound care products especially advance and active wound care product are huge. Honey and virgin coconut oil (VCO) are well-known as an ancient treatment to treat wound with its great properties such as antibacterial, anti-inflammatory and anti-viral. In this study, the potential of VCO incorporated in gellan gum (GG) hydrogel was examined. A surfactant, Tween-80 was introduced to reduce the interfacial tension between VCO and water. Ternary phase diagram was constructed to get the microemulsion of VCO. The compositions of VCO and Tween-80 at stable region were chosen and incorporated in GG solution. The swelling, water vapor transmission rates (WVTR) and gel fraction were significantly affected by the composition of VCO. Higher amount of VCO in GG hydrogel increased the tensile strength and gel fraction at a cost of decreased in swelling and WVTR values.
Shilling, Michael; Matt, Laurie; Rubin, Evelyn; Visitacion, Mark Paul; Haller, Nairmeen A; Grey, Scott F; Woolverton, Christopher J
2013-12-01
Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide; in addition, the proliferation of antibiotic-resistant C. difficile is becoming a significant problem. Virgin coconut oil (VCO) has been shown previously to have the antimicrobial activity. This study evaluates the lipid components of VCO for the control of C. difficile. VCO and its most active individual fatty acids were tested to evaluate their antimicrobial effect on C. difficile in vitro. The data indicate that exposure to lauric acid (C12) was the most inhibitory to growth (P<.001), as determined by a reduction in colony-forming units per milliliter. Capric acid (C10) and caprylic acid (C8) were inhibitory to growth, but to a lesser degree. VCO did not inhibit the growth of C. difficile; however, growth was inhibited when bacterial cells were exposed to 0.15-1.2% lipolyzed coconut oil. Transmission electron microscopy (TEM) showed the disruption of both the cell membrane and the cytoplasm of cells exposed to 2 mg/mL of lauric acid. Changes in bacterial cell membrane integrity were additionally confirmed for VCO and select fatty acids using Live/Dead staining. This study demonstrates the growth inhibition of C. difficile mediated by medium-chain fatty acids derived from VCO.
Tangwatcharin, Pussadee; Khopaibool, Prapaporn
2012-07-01
The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.
Srivastava, Yashi; Semwal, Anil Dutt; Sajeevkumar, Vallayil Appukuttan; Sharma, G K
2017-01-01
The blends were prepared of virgin coconut oil with refined soyabean oil (VCO-RSOY) and refined safflower oil (VCO-RSAFF). Blending with VCO improved the fatty acid composition which increased the shelf stability of 20:80 VCO-RSOY and VCO-RSAFF up to 12 months in different packaging systems such as low density polyethylene, linear low density polyethylene, metalized polyester pouches, polyethylene teteraphthalate, high density polyethylene (HDPE), Amber HDPE bottle. The specific spectral regions of FTIR proved to be very useful for the determination of adulteration as well as for the study of oxidation process. Band shifts observed at 3008, 1652, 1397, 1097, 912 and 845 cm -1 have been used to differentiate RSAFF from VCO. VCO spectrums did not have these chemical shifts. Further the spectrum of RSOY showed same band shifts as RSAFF except 1652, 1397, 869.6 and 845 cm -1 . Differential Scanning Calorimetry provided useful information regarding the nature of thermodynamic changes related to physical state of vegetable oil. The physical state changes included melting and crystallization events which require the intake and release of energy.
NASA Astrophysics Data System (ADS)
Widyasanti, Asri; Miracle Lenyta Ginting, Anastasia; Asyifani, Elgina; Nurjanah, Sarifah
2018-03-01
Hand washing with soap is important because it is proven to clean hands from germs and bacteria. The paper soapswere made from coconut oil and virgin coconut oil (VCO) with the addition of glycerin as a plasticizer. The aims of this research were to determine both formulation of paper soap using coconut oil and VCO based with addition of glycerin, and to determine the quality of the paper soapswhich is a disposable hand soap. This research used laboratory experimental method using descriptive analysis. The treatments of this research were treatment A (paper soap without the addition of glycerin), treatment B (paper soap with the addition of glycerin 10% (w/w)), treatment C (paper soap with the addition of glycerin 15% (w/w)), treatment D (paper soap with the addition of glycerin of 20% (w/w)). Parameters tested were moisture content, stability of foam, pH value, insoluble material in ethanol, free alkali content, unsaponified fat, antibacterial activity test, and organoleptic test. The result of physicochemical characteristics for bothcoconut oil-paper soap and VCO-paper soap revealed that treatment C (the addition of glycerin 15% (w/w) was the best soap formulation. Coconut Oil papersoap 15% w/w glicerin had water content 13.72%, the content of insoluble material in ethanol 3.93%, the content of free alkali 0.21%, and the content of unsaponified fat 4.06%, pH value 10.78, stability of foam 97.77%, and antibacterial activity against S. aureus 11.66 mm. Meanwhile, VCO paper soap 15% w/w glicerin had the value of water content of 18.47%, the value stability of foam of 96.7%, the pH value of 10.03, the value of insoluble material in ethanol of 3.49%, the value of free alkali content 0.17%, the value of unsaponified fat 4.91%, and the value of inhibition diameter on the antibacterial activity test 15.28 mm. Based on Mandatory Indonesian National Standard of solid soap SNI 3532:2016 showed that both of paper soap had not been accorded with SNI 3532:2016, unless the value of the insoluble material in ethanol. Moreover, organoleptic tests performed that both paper soap treatment D (20% w/w glicerine) were preferred by the most panelists.
Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death.
Illam, Soorya Parathodi; Narayanankutty, Arunaksharan; Raghavamenon, Achuthan C
2017-07-01
Virgin coconut oil (VCO), extracted from the fresh coconut kernel, is a food supplement enriched with medium chain saturated fatty acids and polyphenolic antioxidants. It is reported to have several health benefits including lipid lowering, antioxidant and anti-inflammatory activities. The pharmacological benefits of VCO have been attributed to its polyphenol content (VCOP), the mechanistic basis of which is less explored. Liquid chromatography/mass spectroscopy (LC/MS) analysis of VCOP documented the presence of gallic acid, ferulic acid (FA), quercetin, methyl catechin, dihydrokaempferol and myricetin glycoside. Pre-treatment of VCOP at different concentrations (25-100 μg/mL) significantly reduced the H 2 O 2 and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced cell death in HCT-15 cells. Giving further insight to its mechanistic basis, oxidative stress induced alterations in glutathione (GSH) levels and activities of GR (Glutathione-Reductase), GPx (Glutathione-Peroxidase), GST (Glutathione-S-Transferase) and catalase (CAT) were restored to near-normal by VCOP, concomitantly reducing lipid peroxidation. The efficacy of VCOP was similar to that of Trolox and FA added in culture. The study thus suggests that VCOP protects cells from pro-oxidant insults by modulating cellular antioxidant status.
Antistress and antioxidant effects of virgin coconut oil in vivo.
Yeap, Swee Keong; Beh, Boon Kee; Ali, Norlaily Mohd; Yusof, Hamidah Mohd; Ho, Wan Yong; Koh, Soo Peng; Alitheen, Noorjahan Banu; Long, Kamariah
2015-01-01
Virgin coconut oil (VCO) has been consumed worldwide for various health-related reasons and some of its benefits have been scientifically evaluated. Medium-chain fatty acids were found to be a potential antidepressant functional food; however, this effect had not been evaluated in VCO, which is rich in polyphenols and medium-chain fatty acids. The aim of this study was to evaluate the antistress and antioxidant effects of VCO in vivo , using mice with stress-induced injury. The antistress effect of VCO (administered per os , at a dose of 10 ml/kg body weight) was evaluated using the forced swim test and chronic cold restraint stress models. VCO was able to reduce immobility time and restore oxidative stress in mice post-swim test. Furthermore, mice treated with VCO were found to exhibit higher levels of brain antioxidants, lower levels of brain 5-hydroxytryptamine and reduced weight of the adrenal glands. Consequently, the serum cholesterol, triglyceride, glucose and corticosterone levels were also lower in VCO-treated mice. These results suggest the potential value of VCO as an antistress functional oil.
Antistress and antioxidant effects of virgin coconut oil in vivo
YEAP, SWEE KEONG; BEH, BOON KEE; ALI, NORLAILY MOHD; YUSOF, HAMIDAH MOHD; HO, WAN YONG; KOH, SOO PENG; ALITHEEN, NOORJAHAN BANU; LONG, KAMARIAH
2015-01-01
Virgin coconut oil (VCO) has been consumed worldwide for various health-related reasons and some of its benefits have been scientifically evaluated. Medium-chain fatty acids were found to be a potential antidepressant functional food; however, this effect had not been evaluated in VCO, which is rich in polyphenols and medium-chain fatty acids. The aim of this study was to evaluate the antistress and antioxidant effects of VCO in vivo, using mice with stress-induced injury. The antistress effect of VCO (administered per os, at a dose of 10 ml/kg body weight) was evaluated using the forced swim test and chronic cold restraint stress models. VCO was able to reduce immobility time and restore oxidative stress in mice post-swim test. Furthermore, mice treated with VCO were found to exhibit higher levels of brain antioxidants, lower levels of brain 5-hydroxytryptamine and reduced weight of the adrenal glands. Consequently, the serum cholesterol, triglyceride, glucose and corticosterone levels were also lower in VCO-treated mice. These results suggest the potential value of VCO as an antistress functional oil. PMID:25452773
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Harini, M.; Widiyani, T.; Artanti, A. N.; Ani, I. L.
2017-02-01
Insulin resistance is caused by inability of target tissues to insulin response. Bay leaves (Eugenia polyantha Wight) fraction or extract have been used for the treatment of antidibetic mellitus type-2 resistance insulin (ADMRI) but it has low solubility and bioavailability. To overcome these problems, ethyl acetate fraction of bay leaves was formulated into self nanoemulsifying drug delivery system (SNEDDS) using Virgin Coconut Oil (VCO) as a carrier oil. This study aims to produce nanoherbal medicine, determine effect of nanoherbal preparation derived from bay leaves as an anti-ADMRI. The results showed that the optimum SNEDDS formula was tween 80 : PEG 400 : Virgin Coconut Oil (30% : 60% : 10%) in 5 mL. It has emulsification time 13.00 seconds with the average of droplet size value 84.5 nanometer and zeta potential value ± 0.2 mV. Morphological observation showed the nanoemulsion particles has spherical shaped and stable in different pH media. Hypoglycaemic effect of single dose metformin, SNEDDS, combination a-half dose of SNEEDS with metformin value is 28.3%; 15.6%; 34.6% respectively.
Nevin, K Govindan; Rajamohan, Thankappan
2009-08-01
Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.
Voon, P T; Ng, T K W; Lee, V K M; Nesaretnam, K
2015-06-01
Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults. A randomized cross-over intervention with three dietary sequences, using virgin OO, PO and CO as test fats, was carried out for 5 weeks on each group consisting of 45 men and women. These test fats were incorporated separately at two-thirds of 30% fat calories into high-protein Malaysian diets. For fasting and nonfasting blood samples, no significant differences were observed on the effects of the three test-fat diets on thrombaxane B2 (TXB2), TXB2/PGF1α ratios and soluble intracellular and vascular cell adhesion molecules. The OO diet induced significantly lower (P<0.05) plasma leukotriene B4 (LTB4) compared with the other two test diets, whereas PGF1α concentrations were significantly higher (P<0.05) at the end of the PO diet compared with the OO diet. Diets rich in saturated fatty acids from either PO or CO and high in monounsaturated oleic acid from virgin OO do not alter the thrombogenicity indices-cellular adhesion molecules, thromboxane B2 (TXB2) and TXB2/prostacyclin (PGF1α) ratios. However, the OO diet lowered plasma proinflammatory LTB4, whereas the PO diet raised the antiaggregatory plasma PGF1α in healthy Malaysian adults. This trial was registered at clinicaltrials.gov as NCT 00941837.
Liau, Kai Ming; Lee, Yeong Yeh; Chen, Chee Keong; Rasool, Aida Hanum G
2011-01-01
Introduction. This is an open-label pilot study on four weeks of virgin coconut oil (VCO) to investigate its efficacy in weight reduction and its safety of use in 20 obese but healthy Malay volunteers. Methodology. Efficacy was assessed by measuring weight and associated anthropometric parameters and lipid profile one week before and one week after VCO intake. Safety was assessed by comparing organ function tests one week before and one week after intake of VCO. Paired t-test was used to analyse any differences in all the measurable variables. Results. Only waist circumference (WC) was significantly reduced with a mean reduction of 2.86 cm or 0.97% from initial measurement (P = .02). WC reduction was only seen in males (P < .05). There was no change in the lipid profile. There was a small reduction in creatinine and alanine transferase levels. Conclusion. VCO is efficacious for WC reduction especially in males and it is safe for use in humans.
Xu, Baocheng; Li, Peiwu; Ma, Fei; Wang, Xiuping; Matthäus, Bertrand; Chen, Ran; Yang, Qingqing; Zhang, Wen; Zhang, Qi
2015-07-01
A new method based on the cholesterol level was developed to detect the presence of animal fats in virgin coconut oil (VCO). In this study, the sterols in VCO and animal fats was separated using conventional one-dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Compared with 1D GC, the GC×GC system could obtain a complete baseline separation of the sterol trimethylsilyl ethers derived from cholesterol and cholestanol, so that the cholesterol content in pure VCO and false VCO adulterated with animal fats could be accurately determined. Cholesterol, a main sterol found in animal fats, represented less than 5mg/kg of VCO. The study demonstrated that the determination of the cholesterol level in VCO could be used for reliable detection of the presence of lard, chicken fat, mutton tallow, beef tallow, or their mixture in VCO at a level as little as 0.25%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liau, Kai Ming; Lee, Yeong Yeh; Chen, Chee Keong; Rasool, Aida Hanum G.
2011-01-01
Introduction. This is an open-label pilot study on four weeks of virgin coconut oil (VCO) to investigate its efficacy in weight reduction and its safety of use in 20 obese but healthy Malay volunteers. Methodology. Efficacy was assessed by measuring weight and associated anthropometric parameters and lipid profile one week before and one week after VCO intake. Safety was assessed by comparing organ function tests one week before and one week after intake of VCO. Paired t-test was used to analyse any differences in all the measurable variables. Results. Only waist circumference (WC) was significantly reduced with a mean reduction of 2.86 cm or 0.97% from initial measurement (P = .02). WC reduction was only seen in males (P < .05). There was no change in the lipid profile. There was a small reduction in creatinine and alanine transferase levels. Conclusion. VCO is efficacious for WC reduction especially in males and it is safe for use in humans. PMID:22164340
NASA Astrophysics Data System (ADS)
Yusuf Wachidah Yuiwarti, Enny; Rini Saraswati, Tyas; Kusdiyantini, Endang
2018-05-01
Virgin coconut oil (VCO) and olive oil are edible oil containing an antioxidant that can prevent free radicals in Rattus rattus norvegicus hypoglycemic due to the damage of pancreatic beta cell after alloxan injection. Virgin coconut oil and olive oil are fatty acids when being consumed will affect lipid metabolism particularly HDL, LDL and cholesterol in serum. This research aims to determine the effect of VCO and Olive oil on cholesterol levels in hyperglycemic rats. Research materials were twenty male Rattus rattus norvegicus. Randomized Factorial Design was used in four treatment groups including P1(control), P2 (mice injected with alloxan), P3 (mice injected with alloxan plus 0.1 ml/BW of each VCO and vitamin E) and P4 (mice injected with alloxan plus 0.1 ml/BW of each olive oil and vitamin E. Each treatment was replicated 5 times. Feed and water were provided adlibitum for four weeks. The result showed that there was no significant difference in the level of HDL serum across the treatments, but P4 had a significantly higher LDL than the other treatments. Moreover, total cholesterol was significantly increased in P4 compared to the other groups. It can be concluded that olive oil could increase the level of cholesterol and LDL in serum, while VCO did not increase the level of cholesterol and LDL so VCO more potential to maintain cholesterol in hyperglycemic Rattus rattus norvegicus.
Khor, Yih Phing; Koh, Soo Peng; Long, Kamariah; Long, Shariah; Ahmad, Sharifah Zarah Syed; Tan, Chin Ping
2014-07-01
Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.
[COCONUT OIL: NON-ALTERNATIVE DRUG TREATMENT AGAINST ALZHEIMER´S DISEASE].
Hu Yang, Iván; De la Rubia Ortí, Jose Enrique; Selvi Sabater, Pablo; Sancho Castillo, Sandra; Rochina, Mariano Julián; Manresa Ramón, Noemí; Montoya-Castilla, Inmaculada
2015-12-01
Alzheimer's dementia is the most prevalent nowadays. As for treatment, there is no definitive cure drug, thus new therapies are needed. In this regard the medium chain triglycerides are a direct source of cellular energy and can be a nonpharmacological alternative to the neuronal death for lack of it, that occurs in Alzheimer patients. to evaluate the impact of coconut oil in the development of Alzheimer's dementia, in any degree of dementia. Also determine whether this improvement influences within variables such as sex and suffering or not Type II Diabetes Mellitus. a prospective study was conducted in patients with Alzheimer's dementia, with a control and an intervention group which was administered 40 ml/day of extra virgin coconut oil. The parameters evaluated were the mini test scores Lobo cognitive test, pre and post intervention in both groups. it was observed in subjects taking the product, a statistically significant increase in test score MECWOLF and therefore an improvement in cognitive status, improving especially women's, those without diabetes mellitus type II, and severe patients. this study, although preliminary, demonstrated the positive influence of coconut oil at the cognitive level of patients with Alzheimer's, this improvement being dependent on sex, presence or absence of diabetes and degree of dementia. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad
2013-01-01
This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707
Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad
2013-01-01
This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies.
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar Am; Xia, Xiaobo; Majid, Amin Ms Abdul; Ji, Dan
2017-01-01
The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells ( P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells ( P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control ( P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 ( P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs ( P = 0.006 and 0.000, respectively). Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.
Kamairudin, Norsuhaili; Gani, Siti Salwa Abd; Masoumi, Hamid Reza Fard; Hashim, Puziah
2014-10-16
The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.
Narayanankutty, Arunaksharan; Palliyil, Devika Mukundan; Kuruvilla, Kezia; Raghavamenon, Achuthan C
2018-03-01
Hepatosteatosis, a form of nonalcoholic fatty liver disease (NAFLD), is being increasingly recognized as a major health burden worldwide. Insulin resistance, dyslipidemia and imbalances in adipokine/cytokine interplay are reported to be involved in the onset and progression of this disease. Use of dietary nutraceuticals in prevention and treatment of NAFLD is emerging. Virgin coconut oil (VCO), a fermented product of fresh coconut kernel, has been shown to impede the development of hepatosteatosis in rats. This study analyzes the potential of VCO to reverse the already developed hepatosteatosis condition. Hyperglycemia, reduced glucose tolerance, dyslipidemia, and hepatic macrovesicles in high-fructose-diet-fed rats (4 weeks) confirmed the development of hepatosteatosis. Natural reversion in these parameters was observed upon shifting to normal diet in untreated control animals. Administration of VCO, however, increased this natural reversion by improving high-density lipoprotein cholesterol level (53.5%) and reducing hepatic and serum triacylglycerols (78.0 and 51.7%). Increased hepatic glutathione level (P < 0.01), antioxidant enzyme activities (P < 0.05) and reduced lipid peroxidation were also noticed in these animals. These observations were in concordance with reduced liver enzyme activities (P < 0.01) and restoration of altered hepatic architecture. The study indicates that VCO can be used as a nutraceutical against hepatosteatosis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Harris, Margaret; Hutchins, Andrea; Fryda, Lisa
2017-04-01
This randomized crossover study compared the impact of virgin coconut oil (VCO) to safflower oil (SO) on body composition and cardiovascular risk factors. Twelve postmenopausal women (58.8 ± 3.7 year) consumed 30 mL VCO or SO for 28 days, with a 28-day washout. Anthropometrics included body weight and hip and waist circumference. Fat percent for total body, android and gynoid, fat mass, and lean mass were measured using dual-energy X-ray absorptiometry. Women maintained their typical diet recording 28 days of food records during the study. Results were analyzed with SPSS v24 with significance at P ≤ .05. Comparisons are reported as paired t-test since no intervention sequence effect was observed. VCO significantly raised total cholesterol, TC (+18.2 ± 22.8 mg/dL), low-density lipoprotein (+13.5 ± 16.0 mg/dL), and high-density lipoprotein, HDL (+6.6 ± 7.5 mg/dL). SO did not significantly change lipid values. TC and HDL were significantly different between test oils. The TC/HDL ratio change showed a neutral effect of both VCO and SO. One person had adverse reactions to VCO and increased inflammation. VCO decreased IL-1β for each person who had a detected sample. The impact of VCO and SO on other cytokines varied on an individual basis. This was the first study evaluating the impact of VCO on body composition in Caucasian postmenopausal women living in the United States. Results are suggestive that individuals wishing to use coconut oil in their diets can do so safely, but more studies need to be conducted with larger sample sizes, diverse populations, and more specific clinical markers such as particle size.
Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis
2003-09-10
A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).
Extra virgin olive oil improves learning and memory in SAMP8 mice.
Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario
2012-01-01
Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.
Cicero, Nicola; Albergamo, Ambrogina; Salvo, Andrea; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Mangano, Valentina; Rotondo, Archimede; Di Stefano, Vita; Di Bella, Giuseppa; Dugo, Giacomo
2018-07-01
Different specialty extra virgin oils, produced by cold-pressing fruits/nuts (olive, pequi, palm, avocado, coconut, macadamia and Brazil nut) and seeds (grapeseed and canola), and retailed in the Brazilian region of Minas Gerais, were chemically characterized. Specifically, for each type of oil, the fatty acid composition was elucidated by GC-FID, the contents of selected polyphenols and squalene were determined respectively by UHPLC-MS and UHPLC-PDA, whereas minerals were explored by means of ICP-MS. Olive oil was confirmed to have the highest MUFA content due to a valuable level of oleic acid, while oils from grapeseed, Brazil nut and canola were marked by nutritionally important PUFA levels. The highest SFA content found in coconut oil was mainly due to the high levels of lauric acid, known for its advantageous HDL-raising effects. As for polyphenols, gourmet oils from palm, coconut and canola showed higher levels of phenolic acids (e.g. p-hydroxybenzoic, ferulic, syringic, acids) than olive oil, which was though characterized by peculiar antioxidants, such as tyrosol and hydroxytyrosol. Also, olive oil had the highest amount of squalene, followed by the oil from Brazil nut. Finally, all the investigated oils had very low levels (order of μg/kg) of pro-oxidant elements, such as Cu, Fe and Mn. Overall, these findings may fill the gaps still present in literature on certain compositional aspects of commercially available gourmet oils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arunima, Sakunthala; Rajamohan, Thankappan
2014-05-28
The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.
Famurewa, Ademola C; Nwankwo, Onyebuchi E; Folawiyo, Abiola M; Igwe, Emeka C; Epete, Michael A; Ufebe, Odomero G
2017-01-01
The literature reports that the health benefits of vegetable oil can be deteriorated by repeated heating, which leads to lipid oxidation and the formation of free radicals. Virgin coconut oil (VCO) is emerging as a functional food oil and its health benefits are attributed to its potent polyphenolic compounds. We investigated the beneficial effect of VCO supplementation on lipid profile, liver and kidney markers in rats fed repeatedly heated palm kernel oil (HPO). Rats were divided into four groups (n = 5). The control group rats were fed with a normal diet; group 2 rats were fed a 10% VCO supplemented diet; group 3 administered 10 ml HPO/kg b.w. orally; group 4 were fed 10% VCO + 10 ml HPO/kg for 28 days. Subsequently, serum markers of liver damage (ALT, AST, ALP and albumin), kidney damage (urea, creatinine and uric acid), lipid profile and lipid ratios as cardiovascular risk indices were evaluated. HPO induced a significant increase in serum markers of liver and kidney damage as well as con- comitant lipid abnormalities and a marked reduction in serum HDL-C. The lipid ratios evaluated for atherogenic and coronary risk indices in rats administered HPO only were remarkably higher than control. It was observed that VCO supplementation attenuated the biochemical alterations, including the indices of cardiovascular risks. VCO supplementation demonstrates beneficial health effects against HPO-induced biochemical alterations in rats. VCO may serve to modulate the adverse effects associated with consumption of repeatedly heated palm kernel oil.
Production of coconut protein powder from coconut wet processing waste and its characterization.
Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S
2012-07-01
Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.
Vysakh, A; Ratheesh, M; Rajmohanan, T P; Pramod, C; Premlal, S; Girish kumar, B; Sibi, P I
2014-05-01
We evaluated the protective efficacy of the polyphenolic fraction from virgin coconut oil (PV) against adjuvant induced arthritic rats. Arthritis was induced by intradermal injection of complete Freund's adjuvant. The activities of inflammatory, antioxidant enzymes and lipid peroxidation were estimated. PV showed high percentage of edema inhibition at a dose of 80mg/kg on 21st day of adjuvant arthritis and is non toxic. The expression of inflammatory genes such as COX-2, iNOS, TNF-α and IL-6 and the concentration of thiobarbituric acid reactive substance were decreased by treatment with PV. Antioxidant enzymes were increased and on treatment with PV. The increased level of total WBC count and C-reactive protein in the arthritic animals was reduced in PV treated rats. Synovial cytology showed that inflammatory cells and reactive mesothelial cells were suppressed by PV. Histopathology of paw tissue showed less edema formation and cellular infiltration on supplementation with PV. Thus the results demonstrated the potential beneficiary effect of PV on adjuvant induced arthritis in rats and the mechanism behind this action is due to its antioxidant and anti-inflammatory effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor.
Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli
2012-01-01
Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.
Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor
Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli
2012-01-01
Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C. PMID:22953055
Physicochemical and sensory properties of ice-cream formulated with virgin coconut oil.
Choo, S Y; Leong, S K; Henna Lu, F S
2010-12-01
The substitution of milk fat with virgin coconut oil (VCO) was used to produce nutritious ice cream with pleasant coconut flavor and aroma. Three formulations were developed whereby formulation VCO4, VCO8 and VCO12 was substituted with 4%, 8% and 12% of VCO, respectively. The physicochemical properties of ice creams analyzed include overrun, meltdown, pH, titratable acidity, total solid, protein and fat content. The fatty acids profile of VCO formulated ice creams and their stabilities over 3 and 6 weeks storage were studied respectively using gas chromatography (GC). Qualitative descriptive analysis (QDA) and consumer affective test were performed among the trained and untrained panelists. Significant differences (p < 0.05) of overrun, pH, total solid, protein and fat content between ice cream formulations were observed except titratable acidity. Increased VCO content in ice cream formulations lowered the melting resistance of ice cream. For GC analysis, the major fatty acid identified was lauric acid. Upon storage time, the concentration of unsaturated fatty acid decreased but the concentration of saturated fatty acid increased. The result of QDA showed that formulation VCO4, VCO8 and VCO12 were significantly (p < 0.05) different in attributes of color, firmness and smoothness as compared to the control ice cream. Formulation VCO12 was highly accepted by panelists in terms of the acceptance level of appearance, aroma, texture, flavor and overall acceptability. Hence, it has a potential marketable value.
Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S
2008-07-23
Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar AM; Xia, Xiaobo; Majid, Amin MS Abdul; Ji, Dan
2017-01-01
Objective: The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Methods: Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. Results: FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively). Conclusion: Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway. PMID:29218091
Arunima, S; Rajamohan, T
2013-09-01
Virgin coconut oil (VCO) extracted by wet processing is popular among the scientific field and society nowadays. The present study was carried out to examine the comparative effect of VCO with copra oil (CO), olive oil (OO) and sunflower oil (SFO) on endogenous antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with the synthetic diet. Results revealed that dietary VCO improved the antioxidant status compared to other three oil fed groups (P < 0.05), which is evident from the increased activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase in tissues. Concentration of reduced glutathione was also found to be increased significantly in liver (532.97 mM per 100 g liver), heart (15.77 mM per 100 g heart) and kidney (1.58 mM per 100 g kidney) of VCO fed rats compared to those fed with CO, OO and SFO (P < 0.05). In addition, the activity of paraoxonase 1 was significantly increased in VCO fed rats compared to other oil fed groups (P < 0.05). Furthermore, VCO administration prevented the oxidative stress, which is indicated by the decreased formation of lipid peroxidation and protein oxidation products like malondialdehyde, hydroperoxides, conjugated dienes and protein carbonyls in serum and tissues compared to other oil fed rats (P < 0.05). Wet processing of VCO retains higher amounts of biologically active unsaponifiable components like polyphenols (84 mg per 100 g oil) and tocopherols (33.12 μg per 100 g oil) etc. compared to other oils (P < 0.05). From these observations, it is concluded that VCO has a beneficial role in improving antioxidant status and hence preventing lipid and protein oxidation.
Zakaria, Z A; Somchit, M N; Mat Jais, A M; Teh, L K; Salleh, M Z; Long, K
2011-01-01
The present study was carried out to investigate the antinociceptive and anti-inflammatory activities of virgin coconut oil (VCO) produced by the Malaysian Agriculture Research and Development Institute (MARDI) using various in vivo models. Two types of VCOs, produced via standard drying (VCOA) and fermentation (VCOB) processes were used in this study. Both VCOA and VCOB were serially diluted using 1% Tween 80 to concentrations (v/v) of 10, 50 and 100%. Antinociceptive and anti- inflammatory activities of both VCOs were examined using various in vivo model systems. The antinociceptive activity of the VCOs were compared to those of 1% Tween 80 (used as a negative control), morphine (5 mg/kg) and/or acetylsalicylic acid (100 mg/kg). Both VCOA and VCOB exhibited significant (p < 0.05) dose-dependent antinociceptive activity in the acetic acid-induced writhing test. Both VCOs also exerted significant (p < 0.05) antinociceptive activity in both phases of the formalin and hot-plate tests. Interestingly, the VCOs exhibited anti-inflammatory activity in an acute (carrageenan-induced paw edema test), but not in a chronic (cotton-pellet-induced granuloma test) model of inflammation. The MARDI-produced VCOs possessed antinociceptive and anti-inflammatory activities. Further studies are needed to confirm these observations. Copyright © 2011 S. Karger AG, Basel.
Kamalaldin, N A; Sulaiman, S A; Yusop, M R; Yahaya, B
2017-01-01
Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.
Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh
2016-01-01
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C. PMID:27383135
Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh
2016-01-01
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
A pilot study: the efficacy of virgin coconut oil as ocular rewetting agent on rabbit eyes.
Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghazali, Ahmad Rohi; Chinn Hooi, Ng; Safie, Nor Hasanah
2015-01-01
Purpose. An open-label pilot study of virgin coconut oil (VCO) was conducted to determine the safety of the agent as ocular rewetting eye drops on rabbits. Methods. Efficacy of the VCO was assessed by measuring NIBUT, anterior eye assessment, corneal staining, pH, and Schirmer value before instillation and at 30 min, 60 min, and two weeks after instillation. Friedman test was used to analyse any changes in all the measurable variables over the period of time. Results. Only conjunctival redness with instillation of saline agent showed significant difference over the period of time (P < 0.05). However, further statistical analysis had shown no significant difference at 30 min, 60 min, and two weeks compared to initial measurement (P > 0.05). There were no changes in the NIBUT, limbal redness, palpebral conjunctiva redness, corneal staining, pH, and Schirmer value over the period of time for each agent (P > 0.05). Conclusion. VCO acts as safe rewetting eye drops as it has shown no significant difference in the measurable parameter compared to commercial brand eye drops and saline. These study data suggest that VCO is safe to be used as ocular rewetting agent on human being.
Effect of virgin coconut oil on properties of surimi gel.
Gani, Asir; Benjakul, Soottawat; Nuthong, Pornpot
2018-02-01
Effects of virgin coconut oil (VCO) at various levels (0-25%) on the properties of croaker surimi gels were studied. As the levels of VCO increased up to 15%, breaking force continuously decreased. No differences in breaking force, deformation and fracture constant were noticeable when VCO of 15-25% was incorporated. Based on texture profile analysis, hardness and chewiness decreased as the level of added VCO increased up to 10%, while no marked changes were observed with the addition of 10-25% VCO. Addition of VCO had no profound impact on springiness, cohesiveness and resilience. No remarkable change in protein pattern among all surimi gel samples was noticed, regardless of VCO levels. Lower elastic (G') as well as loss moduli (G″) of surimi paste were observed when VCO was added, compared to the control. Nevertheless, there was no marked difference in the moduli among samples containing VCO at all levels. Whiteness of surimi gel increased, whereas expressible moisture content decreased as VCO levels increased. Microstructure study revealed that VCO droplets were distributed uniformly in gel network. Overall likeness of surimi gel was also increased for gel added with VCO. Therefore, VCO addition directly affected textural properties and improved the whiteness as well as sensory property of surimi gel.
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.
Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).
Sulaiman, S. A.
2017-01-01
Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma. PMID:28660089
A Pilot Study: The Efficacy of Virgin Coconut Oil as Ocular Rewetting Agent on Rabbit Eyes
Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghazali, Ahmad Rohi; Chinn Hooi, Ng; Safie, Nor Hasanah
2015-01-01
Purpose. An open-label pilot study of virgin coconut oil (VCO) was conducted to determine the safety of the agent as ocular rewetting eye drops on rabbits. Methods. Efficacy of the VCO was assessed by measuring NIBUT, anterior eye assessment, corneal staining, pH, and Schirmer value before instillation and at 30 min, 60 min, and two weeks after instillation. Friedman test was used to analyse any changes in all the measurable variables over the period of time. Results. Only conjunctival redness with instillation of saline agent showed significant difference over the period of time (P < 0.05). However, further statistical analysis had shown no significant difference at 30 min, 60 min, and two weeks compared to initial measurement (P > 0.05). There were no changes in the NIBUT, limbal redness, palpebral conjunctiva redness, corneal staining, pH, and Schirmer value over the period of time for each agent (P > 0.05). Conclusion. VCO acts as safe rewetting eye drops as it has shown no significant difference in the measurable parameter compared to commercial brand eye drops and saline. These study data suggest that VCO is safe to be used as ocular rewetting agent on human being. PMID:25802534
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources
Phan, Hoa N.; Tran, Lam B.
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233
NASA Astrophysics Data System (ADS)
Mulawarman, AANB; Arsana, M. E.; Temaja, I. W.; Sukadana, IBP
2018-01-01
Coconut oil extracted from the coconut milk obtained from fresh coconuts s often called virgin coconut oil (VCO). VCO is beneficial to health as an anti-oxidant and can lower HDL cholesterol in the blood while increasing blood LDL levels. In Indonesia most of VCO being produced on a small scale of home industries. Its production capacity still needs to be increased by improving production processes and implementing an appropriate technology accordingly. This research aims to conduct a study on making small-scale production machinery needed to produce VCO with reduced production time and improved quality of VCO in accordance with ISO 7381 quality criteria. The experimental results of the VCO machine has been develop and tested show good Coefficient of Performance of the system in amount of 3.93 and 2.8 for heating and cooling system respectively. Temperature of the VCO cooling chamber can be maintained in the range of 8°C to 10°C, as well as for heating, the reactor temperature can be maintained from 39°C to 42°C. The expected goal of this research developing a prototype of VCO production machine was done with ability to provide more efficient production process able to increase volume of VCO result by 23%.
Cardioprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.
Kamisah, Yusof; Periyah, Vengadesh; Lee, Kee Tat; Noor-Izwan, Norrashid; Nurul-Hamizah, Amran; Nurul-Iman, Badlishah Sham; Subermaniam, Kogilavani; Jaarin, Kamsiah; Azman, Abdullah; Faizah, Othman; Qodriyah, Hj Mohd Saad
2015-01-01
Virgin coconut oil (VCO) contains high antioxidant activity which may have protective effects on the heart in hypertensive rats. The study investigated the effects of VCO on blood pressure and cardiac tissue by measuring angiotensin-converting enzyme (ACE) activity and its histomorphometry in rats fed with a heated palm oil (HPO) diet. Thirty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control, (ii) orally given VCO (1.42 ml/kg), (iii) fed with a HPO (15%) diet, and (iv) fed with a HPO diet and supplemented with VCO (1.42 ml/kg, po) (HPO+VCO) for 16 weeks. Blood pressure was measured monthly. After 16 weeks, rat hearts were dissected for lipid peroxidation (TBARS) and ACE activity measurement and histomorphometric study. Systolic blood pressure was significantly increased in the HPO group compared with the control starting at week eight (112.91 ± 1.32 versus 98.08 ± 3.61 mmHg, p < 0.05) which was prevented by VCO supplementation (91.73 ± 3.42 mmHg). The consumption of HPO increased TBARS and ACE activity in heart, which were inhibited by VCO supplementation. The increases in the myofiber width and area as well as nuclear size reduction in the HPO group were significantly prevented by VCO supplementation. These results suggested that VCO supplementation possesses a cardioprotective effect by preventing the increase in blood pressure via an antioxidant mechanism and remodeling in rats fed repeatedly with a HPO diet.
Evangelista, Mara Therese Padilla; Abad-Casintahan, Flordeliz; Lopez-Villafuerte, Lillian
2014-01-01
Atopic dermatitis (AD) is a chronic skin disease characterized by defects in the epidermal barrier function and cutaneous inflammation, in which transepidermal water loss (TEWL) is increased and the ability of the stratum corneum to hold water is impaired, causing decreased skin capacitance and hydration. This study investigated the effects of topical virgin coconut oil (VCO) and mineral oil, respectively, on SCORAD (SCORing of Atopic Dermatitis) index values, TEWL, and skin capacitance in pediatric patients with mild to moderate AD, using a randomized controlled trial design in which participants and investigators were blinded to the treatments allocated. Patients were evaluated at baseline, and at 2, 4, and 8 weeks. A total of 117 patients were included in the analysis. Mean SCORAD indices decreased from baseline by 68.23% in the VCO group and by 38.13% in the mineral oil group (P < 0.001). In the VCO group, 47% (28/59) of patients achieved moderate improvement and 46% (27/59) showed an excellent response. In the mineral oil group, 34% (20/58) of patients showed moderate improvement and 19% (11/58) achieved excellent improvement. The VCO group achieved a post-treatment mean TEWL of 7.09 from a baseline mean of 26.68, whereas the mineral oil group demonstrated baseline and post-treatment TEWL values of 24.12 and 13.55, respectively. In the VCO group, post-treatment skin capacitance rose to 42.3 from a baseline mean of 32.0, whereas that in the mineral oil group increased to 37.49 from a baseline mean of 31.31. Thus, among pediatric patients with mild to moderate AD, topical application of VCO for eight weeks was superior to that of mineral oil based on clinical (SCORAD) and instrumental (TEWL, skin capacitance) assessments. © 2013 The International Society of Dermatology.
Storage study and quality evaluation of coconut protein powder.
Naik, Aduja; Prakash, Maya; R, Ravi; Raghavarao, Ksms
2013-11-01
Coconut skim milk and insoluble protein are 2 major byproducts in the production of virgin coconut oil. Coconut skim milk was homogenized along with insoluble protein and spray dried to obtain a value-added product, namely, coconut protein powder (CPP). This study deals with the storage study of CPP under different conditions (refrigerated [control], ambient and accelerated). CPP samples were withdrawn periodically at designated intervals of 15 d for accelerated and control, and 30 d for ambient condition. CPP stored at different conditions exhibited marginal moisture uptake (by 0.74 % w/w for control, 0.76 % w/w for ambient, and 1.26 % w/w for accelerated condition) and as a result, had very little effect on the functional properties of the powder. Withdrawn CPP was tested for sensory quality aspects and subjected to instrumental analysis as well. Withdrawn CPP was incorporated as a milk substitute in dessert (Kheer). Quantitative descriptive analysis of the powder and product (Kheer) showed no significant difference in attributes of CPP during the storage period of 2 mo. Electronic nose analysis revealed that CPP samples were not much different with respect to aroma pattern matching, respectively. © 2013 CSIR-Central Food Technological Research Institute.
Chinwong, Surarong; Chinwong, Dujrudee; Mangklabruks, Ampica
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18-25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results . Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL ( p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion . Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported.
Famurewa, Ademola Clement; Ejezie, Fidelis Ebele
2018-01-01
Literature has confirmed the pathogenic role of cadmium (Cd) and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO) prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally) 2 weeks prior to concurrent Cd administration (5 mg/kg) for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as reduced glutathione (GSH) and malondialdehyde (MDA) contents were analyzed. Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems.
Ogedengbe, O O; Naidu, E C S; Akang, E N; Offor, U; Onanuga, I O; Peter, A I; Jegede, A I; Azu, O O
2018-04-14
The consumption of alcohol by people living with HIV/AIDS is associated with a graver prognosis. Long-term use of antiretrovirals may have certain health challenges that may be aggravated by concomitant alcohol use. This study investigated virgin coconut oil (VCO) as an adjuvant to the deleterious effects of highly active antiretroviral therapy (HAART) and alcohol on the cyto-architecture and functioning of the testis. Forty adult male Sprague-Dawley rats, weighing 165~176 g, were divided into eight groups and treated according to protocol. Testicular histology, stereological parameters, seminal fluid, testosterone, luteinizing hormone, follicle-stimulating hormone, the antioxidants marker malondialdehyde (MDA), and antioxidant glutathione (GSH) were examined. The use of ethanol alone and ethanol + HAART showed extensive degeneration in the seminiferous epithelium, decreased semen quality, disorganized basement membrane and widened, hypocellular interstitium. GSH was significantly decreased in the ethanol alone treated group with no significant effect on testosterone, LH, and MDA levels. Adjuvant treatment with VCO at low dose (2.5 mL/kg/bw) improved sperm motility with a partial restoration of the histopathological alterations. High doses of VCO (5.0 mL/kg/bw) showed greater improvement with respect to sperm counts, increased FSH hormonal and GSH antioxidant levels, and a well-preserved testicular cyto-architecture. © 2018 American Society of Andrology and European Academy of Andrology.
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18–25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results. Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL (p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion. Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported. PMID:29387131
Famurewa, Ademola C; Ekeleme-Egedigwe, Chima A; Nwali, Sophia C; Agbo, Ngozi N; Obi, Joy N; Ezechukwu, Goodness C
2018-05-04
Research findings that suggest beneficial health effects of dietary supplementation with virgin coconut oil (VCO) are limited in the published literature. This study investigated the in vivo effects of a 5-week VCO-supplemented diet on lipid profile, hepatic antioxidant status, hepatorenal function, and cardiovascular risk indices in normal rats. Rats were randomly divided into 3 groups: 1 control and 2 treatment groups (10% and 15% VCO-supplemented diets) for 5 weeks. Serum and homogenate samples were used to analyze lipid profile, hepatorenal function markers, hepatic activities of antioxidant enzymes, and malondialdehyde level. Lipid profile of animals fed VCO diets showed significant reduction in total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels; high-density lipoprotein (HDL) level increased significantly (p < .05) compared to control; and there were beneficial effects on cardiovascular risk indices. The level of malondialdehyde (MDA), a lipid peroxidation marker, remarkably reduced and activities of hepatic antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were markedly increased in VCO diet-fed rats. The VCO diet significantly modulated creatinine, sodium (Na + ), potassium (K + ), chloride (Cl - ), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) compared to control. The findings suggest a beneficial effect of VCO on lipid profile, renal status, hepatic antioxidant defense system, and cardiovascular risk indices in rats.
Capote, F Priego; Jiménez, J Ruiz; de Castro, M D Luque
2007-08-01
An analytical method for the sequential detection, identification and quantitation of extra virgin olive oil adulteration with four edible vegetable oils--sunflower, corn, peanut and coconut oils--is proposed. The only data required for this method are the results obtained from an analysis of the lipid fraction by gas chromatography-mass spectrometry. A total number of 566 samples (pure oils and samples of adulterated olive oil) were used to develop the chemometric models, which were designed to accomplish, step-by-step, the three aims of the method: to detect whether an olive oil sample is adulterated, to identify the type of adulterant used in the fraud, and to determine how much aldulterant is in the sample. Qualitative analysis was carried out via two chemometric approaches--soft independent modelling of class analogy (SIMCA) and K nearest neighbours (KNN)--both approaches exhibited prediction abilities that were always higher than 91% for adulterant detection and 88% for type of adulterant identification. Quantitative analysis was based on partial least squares regression (PLSR), which yielded R2 values of >0.90 for calibration and validation sets and thus made it possible to determine adulteration with excellent precision according to the Shenk criteria.
Valente, Flávia Xavier; Cândido, Flávia Galvão; Lopes, Lílian Lelis; Dias, Desirrê Morais; Carvalho, Samantha Dalbosco Lins; Pereira, Patrícia Feliciano; Bressan, Josefina
2018-06-01
Virgin coconut oil (VCO) is a medium-chain fatty acid source with popularly attributed benefits on obesity management. However, its role on obesity requires elucidation due to its saturated nature. In the study herein, we investigated acute effects of VCO consumption on energy metabolism, cardiometabolic risk markers, and appetitive responses in women with excess body fat. Fifteen adult women with excess body fat (37.43 ± 0.83%) participated in this randomized, crossover, controlled study. Two isocaloric mixed breakfasts containing 25 mL of VCO or control (extra-virgin olive oil-C) were evaluated. Resting energy expenditure (REE), fat oxidation rate (FOR), diet induced thermogenesis (DIT) and appetitive subjective responses were assessed at fasting and postprandial periods (up to 240 min). Cardiometabolic risk markers were assessed at fasting and up to 180 min postprandially. VCO did not affect REE, FOR, and DIT compared to C. In addition, VCO did not cause deleterious change in triglycerides, total cholesterol, HDL-c, LDL-c, triglycerides/HDL-c ratio, uric acid, glucose and Homeostasis Model Assessment of Insulin Resistance Index (HOMA-IR) (P time×treatment > 0.05). However, VCO suppressed less hunger (P time×treatment = 0.003), total satiety (P iAUC = 0.021) and total fullness (P iAUC = 0.035) responses than C. VCO consumption did not acutely change energy metabolism and cardiometabolic risk markers when added to a mixed breakfast but promoted less appetitive responses.
Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.
Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee
2017-08-01
Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mirzaei, Fatemeh; Khazaei, Mozafar; Komaki, Alireza; Amiri, Iraj; Jalili, Cyrus
2018-05-02
Both dyslipidemia and Alzheimer disease (AD) are associated with aging. In this study, the effects of virgin coconut oil (VCO) on inflammasome and oxidative stress in Alzheimer's model (receiving Amyloid-β (Aβ)) and high-fat diet (HFD) model were determined. A total of 120 male Wistar rats, were divided into 12 groups (n = 10), including; healthy control, sham surgery, sham surgery receiving normal saline, HFD, HFD + 8% VCO, HFD + 10% VCO, Aβ received rats, Aβ + 8%VCO, Aβ + 10%VCO, HFD + Aβ, HFD + Aβ+8%VCO, and HFD + Aβ + 10%VCO. Following memory and learning tests, blood sample prepared from the heart and hippocampus of rats in each group was kept at -70 °C for genes expression, oxidative stress, and biochemical tests. Aβ and HFD significantly impaired memory and learning by activating of both NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress (p<0.05), while treatment with both 8 and 10% VCO normalized inflammasome genes expression and oxidative stress (p<0.05). The Congo Red, Cresyl Violet staining and immunohistochemistry (IHC) test revealed that VCO improved hippocampus histological changes, reduced Aβ plaques and phosphorylated Tau. High-fat diet has exacerbated the effects of Aβ, while VCO showed potential neuroprotective effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
Famurewa, Ademola Clement; Ejezie, Fidelis Ebele
2018-01-01
Objective: Literature has confirmed the pathogenic role of cadmium (Cd) and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO) prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Materials and Methods: Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally) 2 weeks prior to concurrent Cd administration (5 mg/kg) for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as reduced glutathione (GSH) and malondialdehyde (MDA) contents were analyzed. Results: Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. Conclusion: This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems. PMID:29387575
Ratheesh, M; Sandya, S; Pramod, C; Asha, S; Svenia, Jose P; Premlal, S; GrishKumar, B
2017-02-01
Kerabala (CB) is a novel ayurvedic formulation used for treating various inflammatory diseases. This formulation was made from virgin coconut oil and it comprises extracts of Sida cordifolia, coconut milk and sesame oil. The current study was performed to evaluate the anti-inflammatory action of CB on carrageenan-induced acute and adjuvant-induced chronic experimental models. 5 mg/kg bwt was found to be potent dose from carrageenan model and evaluated its effect in adjuvant-induced chronic arthritic model. The antioxidant assays like SOD, catalase, glutathione peroxidase, lipid peroxidation product, nitrate level and GSH were measured in paw tissue. Hematological parameters like hemoglobin (HB) count, ESR, WBC count, plasma CRP levels were analyzed. By RT-PCR, the inflammatory markers like cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) expressions were evaluated. The extracellular matrix proteins like MMP-2 and MMP-9 were determined by zymography and its expression by western blotting. Histopathology and cytology of paw tissue and synovium were analyzed. The result indicated that there was a significant increment in the levels of antioxidant enzymes on CB administration. The hematological markers such as ESR, WBC and plasma CRP levels were reduced by CB treatment and it also increases the HB level. The upregulated gene level expressions of inflammatory markers like COX-2, iNOS, TNF-α and IL-6 were down regulated by administration of CB. MMP-2 and MMP-9 expression significantly reduced by CB administration. Massive influx of inflammatory cell infiltration, proliferative collagen in histological analysis of paw tissue of arthritic rat was decreased by CB administration. Synovial cytology of CB administrated group shows reduced number of reactive mesothelial cells and synovial inflammatory cells. This current study shows that ayurvedic drug CB has an antioxidant, anti-inflammatory and anti-arthritic activity in experimental arthritic model. CB as an anti-arthritic drug has beneficial effect for treating inflammation, tissue damage and pain associated with arthritis.
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or...
Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S
2017-03-01
The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
They say coconut oil can aid weight loss, but can it really?
Clegg, M E
2017-10-01
There has in recent years, been much media speculation and consumer interest in the beneficial satiating properties of consuming coconut oil and its potential to aid weight loss. However, the media has primarily cited studies using medium-chain triglycerides (MCT) oil. The current perspective looks at the research that is available on coconut oil. It examines if and how MCT-related research can be applied to coconut oil and if there is potential for coconut oil to aid weight loss. The current report indicates a lack of consistent evidence on the topic of coconut oil, satiety and weight loss. Given both the publicity and the increased consumption of coconut oil further research, particularly long-term clinical trials, in this area are warranted.
Rao, Reena; Lokesh, Belur R
2003-06-01
Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.
Coconut oil has less satiating properties than medium chain triglyceride oil.
Kinsella, R; Maher, T; Clegg, M E
2017-10-01
It is well established that the consumption of medium-chain triglycerides (MCT) can increase satiety and reduce food intake. Many media articles promote the use of coconut oil for weight loss advocating similar health benefits to that of MCT. The aim of this study was to examine the effect of MCT oil compared to coconut oil and control oil on food intake and satiety. Following an overnight fast, participants consumed a test breakfast smoothie containing 205kcal of either (i) MCT oil (ii) coconut oil or (iii) vegetable oil (control) on three separate test days. Participants recorded appetite ratings on visual analogue scales and were presented with an ad libitum lunch meal of preselected sandwiches 180min after consumption of the breakfast. The results showed a significant difference in energy and macronutrient intakes at the ad libitum meal between the three oils with the MCT oil reducing food intake compared to the coconut and control oil. Differences in food intake throughout the day were found for energy and fat, with the control having increased food intake compared to the MCT and coconut. The MCT also increased fullness over the three hours after breakfast compared to the control and coconut oils. The coconut oil was also reported as being less palatable than the MCT oil. The results of this study confirm the differences that exist between MCT and coconut oil such that coconut oil cannot be promoted as having similar effects to MCT oil on food intake and satiety. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.
Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi
2016-01-01
Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.
Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti
2015-12-01
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming
2013-01-01
Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries. PMID:23971051
Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming
2013-01-01
Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim
2010-05-01
The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2018-02-15
Coconut cake, a by-product from milk and oil extractions, contains a high amount of protein. Protein extraction from coconut milk cake and coconut oil cake was investigated. The supernatant and precipitate protein powders from both coconut milk and oil cakes were compared based on their physicochemical and functional properties. Glutelin was the predominant protein fraction in both coconut cakes. Protein powders from milk cake presented higher water and oil absorption capacities than those from oil cake. Both protein powders from oil cake exhibited better foaming capacity and a better emulsifying activity index than those from milk cake. Coconut proteins were mostly solubilized in strong acidic and alkaline solutions. Minimum solubility was observed at pH 4, confirming the isoelectric point of coconut protein. Therefore, the coconut residues after extractions might be a potential alternative renewable plant protein source to use asa food ingredient to enhance food nutrition and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dong, X F; Liu, S; Tong, J M
2018-04-14
Two hundred and sixteen 28-wk-old Hy-line laying hens were randomly distributed to three dietary treatments and fed 1of 3 diets containing 8% soybean oil, fish oil, or coconut oil from 28 to 47 wk of age to investigate comparative effect of dietary soybean oil, fish oil, and coconut oil on the performance, egg quality and blood malondialdehyde (MDA), aspartate transaminase (AST) and uric acid (UA). Hens fed fish oil showed poor performance compared with soybean oil or coconut oil, and especially egg weight throughout the trial was significantly and consistently decreased (P < 0.05) due to dietary fish oil. Unexpectedly, shell reflectivity throughout the majority of the trial was consistently and significantly higher (P < 0.05) when hens fed fish oil than that when fed soybean oil or coconut oil. Dietary treatments affected (P < 0.05) shell shape at 4 of 8 time points tested. Average shell shape in fish oil treatment was higher (P < 0.05) than that of coconut oil group. Albumen height, Haugh unit and yolk color were influenced by dietary treatments only at 1 or 2 time points. However, average albumen height and Haugh unit in fish oil treatment were higher (P < 0.05) than that of soybean oil or coconut oil treatments and average yolk color in coconut oil treatment was higher (P < 0.05) than that of soybean oil group. Serum MDA, AST and UA concentrations were increased (P < 0.05) by fish oil during the majority of the first 2 mo of the trial. These data suggested that the inclusion of fish oil into feed may reduce the performance of laying hens, especially the egg weight, decrease the intensity of egg brown color and increase blood MDA, AST and UA levels compared with soybean oil or coconut oil. As a result, hens fed fish oil may lay smaller, longer and lighter-brown eggs whereas those fed coconut oil produce blunter and darker-brown eggs relative to soybean oil.
Srivastava, Yashi; Semwal, Anil Dutt
2015-02-01
The performance or quality of the Virgin coconut oil (VCO) during continuous/prolonged deep fat frying of soaked bengal gram dhal was evaluated at 180 °C ± 5 °C for 8 h with the help of physico-chemical and rheological parameters. Chemical changes indicated that the free fatty acid (FFA) content and TBA increased significantly (p ≤ 0.05) from 0.11 to 0.98 % lauric acid and 0.06 to 0.61 malonaldehyde/kg of oil respectively. Initially, the peroxide value (PV) of VCO sample was 3.25 meqO2/kg which increased to 9.12 meqO2/kg after 6 h of frying but at the end of frying the value of PV was again found to decrease (8.01 meqO2/kg). The regression coefficients (R(2)) between CD232, CT270 and frying time were 0.964 and 0.983 respectively. The L*, a* and b* colour values measured on the CIELAB colour scale showed a decrease in L* and increase in a*, b* values after 8 h of continuous frying. The p-AV and total polar compounds were increased significantly (p ≤ 0.05) from 2.41 to 17.93 and 2.77 to 8.14 % respectively. Initially, the viscosity of VCO was 49.87cp which increased to 69.87cp after 8 h of continuous frying. The FTIR spectra justify that VCO samples after 8 h of frying found to be stable and acceptable as there was no change occurred at 1,739 cm(-1) frequency which mainly corresponded to carbonylic compounds resulted from the hydroperoxide decompositions after 8 h of continuous frying.
Nevin, K G; Rajamohan, T
2010-01-01
The present study was undertaken to evaluate the effect of a topical application of virgin coconut oil (VCO) on excision wounds in young rats. Three sets of experiments with 3 groups of female Sprague-Dawley rats each consisting of 6 animals were used for studying wound closure time, antioxidant status and biochemical parameters. Group 1 was the control; groups 2 and 3 were treated with 0.5 and 1.0 ml VCO, respectively, 24 h after wound creation for 10 days. After the experimental period, the healing property of VCO was evaluated by monitoring the time taken for complete epithelization as well as levels of various parameters of the wound's granulation tissue. The collagen solubility pattern, glycohydrolase activity, and histopathology of the granulation tissue were also analyzed. The antioxidant status during wound healing was monitored continuously for 14 days. VCO-treated wounds healed much faster, as indicated by a decreased time of complete epithelization and higher levels of various skin components. Pepsin-soluble collagen showed a significant increase in VCO- treated wounds, indicating a higher collagen cross-linking. Glycohydrolase activities were also found to be increased due to a higher turnover of collagen. Antioxidant enzyme activities, and reduced glutathione and malondialdehyde levels were found to be increased on the 10th day after wounding, which were found to have returned to normal levels on day 14 in the treated wounds. The lipid peroxide levels were found to be lower in the treated wounds. A histopathological study showed an increase in fibroblast proliferation and neovascularization in VCO-treated wounds compared to controls. The beneficial effect of VCO can be attributed to the cumulative effect of various biologically active minor components present in it. Copyright 2010 S. Karger AG, Basel.
Law, Kim Sooi; Azman, Nizuwan; Omar, Eshaifol Azam; Musa, Muhammad Yusri; Yusoff, Narazah Mohd; Sulaiman, Siti Amrah; Hussain, Nik Hazlina Nik
2014-08-27
Breast cancer is the most common cancer amongst Malaysian women. Both the disease and its treatment can disrupt the lives of the woman and adversely affect all aspects of life and thus can alter a woman's quality of life. The aim of this study was to examine the effect of virgin coconut oil (VCO) on the quality of life (QOL) of patients diagnosed with breast cancer. This was a prospective study of breast cancer patients admitted into the Oncology Unit of Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. The sample consisted of 60 patients with stage III and IV breast cancer allocated to either an intervention group (n = 30) or a control group (n = 30) using a simple random table. QOL was evaluated from the first cycle of chemotherapy to the sixth cycle, and data were collected using a validated Bahasa Malaysia version of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Breast Cancer Module (EORTC QLQ-C30) and its breast-specific module (QLQ-BR 23). The mean age of breast cancer patients was 50.2 (SD = 13.5) years. There were significant mean score differences for functioning and global QOL between groups (α < 0.01). The intervention group also had better scores for symptoms including fatigue, dyspnea, sleep difficulties, and loss of appetite compared to the control group. Although there are deteriorations for sexual enjoyment, the intervention group exhibited improvement in breast functioning and symptom scores for body image, sexual function, future perspective, breast symptoms, and systemic therapy side effects. VCO consumption during chemotherapy helped improve the functional status and global QOL of breast cancer patients. In addition, it reduced the symptoms related to side effects of chemotherapy.
Rahim, Nur Syafiqah; Lim, Siong Meng; Mani, Vasudevan; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy
2017-12-01
Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Famurewa, Ademola C; Aja, Patrick M; Maduagwuna, Ekenechukwu K; Ekeleme-Egedigwe, Chima A; Ufebe, Odomero G; Azubuike-Osu, Sharon O
2017-12-01
Methotrexate (MTX) is an efficacious anticancer agent constrained in clinical use due to its toxicity on non-targeted tissue, a considerable source of worry to clinicians. Because the toxicity is associated with oxidative stress and inflammation, the study explored antioxidant and anti-inflammatory effect of virgin coconut oil (VCO) supplementation in nephrotoxicity induced by MTX in rats. Rats were randomized into 4 groups (n=6) as follows: Control group; MTX group injected with single dose of MTX (20mg/kg, ip) on day 14; VCO (5%)+MTX and VCO (15%)+MTX groups were pre-treated with VCO diet and injected with single dose of MTX (20mg/kg, ip) on day 14. After 3 days of MTX injection, serum kidney markers, renal activities of antioxidant enzymes and glutathione (GSH) content were determined. Lipid peroxidation level and inflammatory markers- interleukin-6 (IL-6), nitric oxide (NO) and C-reactive protein (CRP) were estimated in kidney. Histopathological alterations were examined for kidney damage. MTX nephrotoxicity was evidenced by markedly elevated serum renal markers along with significant decreases in renal GSH and activities of antioxidant enzymes confirmed by histopathology. Lipid peroxidation level, IL-6, NO and CRP markedly increased compared to control. VCO supplementation prior to MTX injection attenuated MTX-induced oxidative nephrotoxicity via prominent increases in GSH and antioxidant enzyme activities in a dose-dependent manner. The renal inflammatory markers and MDA depleted considerably compared to MTX control group. Histopathological alterations were mitigated to confirm the biochemical indices. VCO supplementation demonstrates nephroprotective activity by attenuating MTX oxidative nephrotoxicity via antioxidant and anti-inflammatory activities in kidney. Our results suggested that VCO may benefit cancer patients on MTX chemotherapy against kidney injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ibrahim, Ahmad H; Khan, Md Shamsuddin Sultan; Al-Rawi, Sawsan S; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Bin Abdul; Al-Suede, Fouad Saleih R; Ji, Dan; Majid, Amin Malik Shah Abdul
2016-11-01
Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies. Copyright © 2016 Elsevier Inc. All rights reserved.
Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Ebrahimi, M
2017-07-01
The aim of this study was to evaluate the effects of 8% virgin coconut oil (VCO) combined with different percentages of egg yolk in Tris extender on the quality of chilled and frozen-thawed bull semen. A total of 24 ejaculates from four bulls were collected using an electroejaculator. Semen samples were diluted with 8% VCO in Tris extender which contained different concentrations 0% (control), 4%, 8%, 12%, 16% and 20% egg yolk. The diluted semen samples were divided into two fractions: one was chilled and stored at 4°C until evaluation after 24, 72, and 144h; the second fraction was processed by chilling for 3h at 4°C to equilibrate, then packaged in 0.25ml straws and frozen and stored in liquid nitrogen at -196°C until evaluation after 7 and 14 days. Both chilled and frozen semen samples were then thawed at 37°C and assessed for general motility using computer-assisted semen analysis (CASA), viability, acrosome integrity, and morphology (eosin-nigrosin), membrane integrity (hypo-osmotic swelling test) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). The results indicate treatments with 8%, 12%, 16% and 20% egg yolk with 8% VCO had greater sperm quality (P<0.05) as compared with the control. The treatment with 20% egg yolk had the greatest sperm quality (P<0.05) among the treated groups for both chilled and frozen-thawed semen. In conclusion, the use of 8% VCO combined with 20% egg yolk in a Tris-based extender enhanced the values for chilled and frozen-thawed quality variables of bull sperm. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...
Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P.; De Geest, Bart
2017-01-01
Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001) was decreased, interstitial fibrosis was 1.88-fold (p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy. PMID:28718833
Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart
2017-07-18
Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density ( p < 0.001) was decreased, interstitial fibrosis was 1.88-fold ( p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.
Coconut oil consumption and cardiovascular risk factors in humans
Eyres, Michael F.; Chisholm, Alexandra; Brown, Rachel C.
2016-01-01
Coconut oil is being heavily promoted as a healthy oil, with benefits that include support of heart health. To assess the merits of this claim, the literature on the effect of coconut consumption on cardiovascular risk factors and outcomes in humans was reviewed. Twenty-one research papers were identified for inclusion in the review: 8 clinical trials and 13 observational studies. The majority examined the effect of coconut oil or coconut products on serum lipid profiles. Coconut oil generally raised total and low-density lipoprotein cholesterol to a greater extent than cis unsaturated plant oils, but to a lesser extent than butter. The effect of coconut consumption on the ratio of total cholesterol to high-density lipoprotein cholesterol was often not examined. Observational evidence suggests that consumption of coconut flesh or squeezed coconut in the context of traditional dietary patterns does not lead to adverse cardiovascular outcomes. However, due to large differences in dietary and lifestyle patterns, these findings cannot be applied to a typical Western diet. Overall, the weight of the evidence from intervention studies to date suggests that replacing coconut oil with cis unsaturated fats would alter blood lipid profiles in a manner consistent with a reduction in risk factors for cardiovascular disease. PMID:26946252
Palazhy, Sabitha; Kamath, Prakash; Vasudevan, D M
2018-01-01
Coconut oil has been used by the people of Kerala as a cooking medium for several decades. Due to its alleged hypercholesterolemic activity, general population in recent times is shifting to cooking oils rich in polyunsaturated fats, the most popular being sunflower oil. The effect of long-term consumption of sunflower oil on oxidative stress in humans is not well investigated. We studied oxidative stress among coronary artery disease (CAD) patients who were consuming coconut oil or sunflower oil as a part of their routine diet. Men, aged 35-70 years, with established CAD, who presented to the hospital for routine cardiac evaluations, were enrolled in this observational study. Group 1 and 2 consisted of 73 and 80 subjects consuming coconut oil and sunflower oil respectively for over a period of 2 years. Lipid profile and parameters for oxidative stress were evaluated among them. Conventional lipid parameters did not differ significantly between the two groups. Mean vitamin C concentration was significantly reduced for subjects on sunflower oil compared to those consuming coconut oil ( P = 0.044). Malondialdehyde was higher for sunflower oil consumers compared to coconut oil consumers ( P < 0.0001). Other parameters such as oxidized LDL, GSH, GPx and SOD were not found to be significantly different between the two groups. The results of the present study show that coconut oil did not induce hypercholesterolemia compared to sunflower oil. On the other hand, sunflower oil group had elevated oxidative stress compared to coconut oil group.
Conlon, Lauren E; King, Ryan D; Moran, Nancy E; Erdman, John W
2012-08-29
Evidence suggests that monounsaturated and polyunsaturated fats facilitate greater absorption of carotenoids than saturated fats. However, the comparison of consuming a polyunsaturated fat source versus a saturated fat source on tomato carotenoid bioaccumulation has not been examined. The goal of this study was to determine the influence of coconut oil and safflower oil on tomato carotenoid tissue accumulation in Mongolian gerbils ( Meriones unguiculatus ) fed a 20% fat diet. Coconut oil feeding increased carotenoid concentrations among many compartments including total carotenoids in the serum (p = 0.0003), adrenal glandular phytoene (p = 0.04), hepatic phytofluene (p = 0.0001), testicular all-trans-lycopene (p = 0.01), and cis-lycopene (p = 0.006) in the prostate-seminal vesicle complex compared to safflower oil. Safflower oil-fed gerbils had greater splenic lycopene concentrations (p = 0.006) compared to coconut oil-fed gerbils. Coconut oil feeding increased serum cholesterol (p = 0.0001) and decreased hepatic cholesterol (p = 0.0003) compared to safflower oil. In summary, coconut oil enhanced tissue uptake of tomato carotenoids to a greater degree than safflower oil. These results may have been due to the large proportion of medium-chain fatty acids in coconut oil, which might have caused a shift in cholesterol flux to favor extrahepatic carotenoid tissue deposition.
Poonnakasem, Naratip; Pujols, Kairy Dharali; Chaiwanichsiri, Saiwarun; Laohasongkram, Kalaya; Prinyawiwatkul, Witoon
2016-01-01
Effects of different oils on physicochemical properties, consumer liking, emotion, and purchase intent of sponge cakes were evaluated. Three healthy oils (extra virgin coconut oil, EVCO; extra virgin olive oil, EVOO; rice bran oil, RBO) compared with butter (the control), were used at 20% (w/w, wheat flour basis) in sponge cake formulations. Five positive (calm, good, happy, pleased, satisfied) and 3 negative (guilty, unsafe, worried) emotion terms, selected from the EsSense Profile(®) with slight modification using an online (N = 234) check-all-that-apply questionnaire, were used for consumer testing. Consumers (N = 148) evaluated acceptability of 9 sensory attributes on a 9-point hedonic scale, 8 emotion responses on a 5-point rating scale, and purchase intent on a binomial scale. Overall liking, emotion, and purchase intent were evaluated before compared with after health benefit statement of oils had been given to consumers. Overall liking and positive emotion (except calm) scores of sponge cake made with EVCO were higher than those made with EVOO and RBO. Specific volume, expansion ratio, and moisture content of control, EVCO, and EVOO were not significantly different, but higher than RBO sponge cake. JAR results showed that sponge cake made with RBO had the least softness that was reflected by the highest hardness (6.61 to 9.69 compared with. 12.76N). Oil (EVCO/EVOO/RBO) health benefit statement provided to consumer significantly increased overall liking, positive emotion, and purchase intent scores while decreased negative emotion scores. Overall liking and pleased emotion were critical attributes influencing purchase intent (odds ratio = 2.06 to 3.75), whereas calm and happy became not critical after health benefit statement had been given. © 2015 Institute of Food Technologists®
Coconut oil consumption and cardiovascular risk factors in humans.
Eyres, Laurence; Eyres, Michael F; Chisholm, Alexandra; Brown, Rachel C
2016-04-01
Coconut oil is being heavily promoted as a healthy oil, with benefits that include support of heart health. To assess the merits of this claim, the literature on the effect of coconut consumption on cardiovascular risk factors and outcomes in humans was reviewed. Twenty-one research papers were identified for inclusion in the review: 8 clinical trials and 13 observational studies. The majority examined the effect of coconut oil or coconut products on serum lipid profiles. Coconut oil generally raised total and low-density lipoprotein cholesterol to a greater extent than cis unsaturated plant oils, but to a lesser extent than butter. The effect of coconut consumption on the ratio of total cholesterol to high-density lipoprotein cholesterol was often not examined. Observational evidence suggests that consumption of coconut flesh or squeezed coconut in the context of traditional dietary patterns does not lead to adverse cardiovascular outcomes. However, due to large differences in dietary and lifestyle patterns, these findings cannot be applied to a typical Western diet. Overall, the weight of the evidence from intervention studies to date suggests that replacing coconut oil with cis unsaturated fats would alter blood lipid profiles in a manner consistent with a reduction in risk factors for cardiovascular disease. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nafar, F; Clarke, J P; Mearow, K M
2017-05-01
Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coconut oil attenuates the effects of amyloid-β on cortical neurons in vitro.
Nafar, Firoozeh; Mearow, Karen M
2014-01-01
Dietary supplementation has been studied as an approach to ameliorating deficits associated with aging and neurodegeneration. We undertook this pilot study to investigate the effects of coconut oil supplementation directly on cortical neurons treated with amyloid-β (Aβ) peptide in vitro. Our results indicate that neuron survival in cultures co-treated with coconut oil and Aβ is rescued compared to cultures exposed only to Aβ. Coconut oil co-treatment also attenuates Aβ-induced mitochondrial alterations. The results of this pilot study provide a basis for further investigation of the effects of coconut oil, or its constituents, on neuronal survival focusing on mechanisms that may be involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, G.L.; Berger, L.L.; Fahey, G.C. Jr.
Ruminant nitrogen utilization of soybean meal treated with (1) 70% ethanol at 23 or 78/sup 0/C, (2) 10% coconut oil or tallow, or (3) a combination of 70% ethanol at 78/sup 0/C and coconut oil or tallow was evaluated. Nitrogen solubility was lowest for soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil and ethanol plus tallow. In situ nitrogen disappearance was lowest for soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil, and ethanol plus tallow. Rates of nitrogen disappearance between 3 and 12 h were lowest for soybean meal treated with ethanolmore » at 78/sup 0/C, ethanol plus coconut oil, and ethanol plus tallow. Nitrogen retained by lambs was greater for lambs fed soybean meal treated with ethanol at 78/sup 0/C than for those fed untreated soybean meal. Ruminal ammonia 4 h post feeding was lowest for lambs fed soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil, and coconut oil. These data indicate that the 78/sup 0/C ethanol treatment improved nitrogen utilization.« less
Removal of Volatile Organics from Humidified Air Streams by Absorption.
1987-12-01
Type Comments Activated Carbons: SK-4 nut shell LCL coconut shell WV-B coal base CT coconut shell Specialty Carbons: Graphpac graphitized carbon area...Capacity, g/g Percentage Sorbent ( virgin ) (treated)D Change SK-4 0.114 0.117 +2.6 Carbosieve S-11 0.195 0.180 -7.7 Spherocarb 0.149 0.151 +1.3 CT...and WV-B with respect to their adsorption capacities. CT and SK-4 are both coconut -derived carbons produced by the same manufacturer. Differences
Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients.
Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2011-05-01
Cocos nucifera (coconut) oil, oil from the dried coconut fruit, is composed of 90% saturated triglycerides. It may function as a fragrance ingredient, hair conditioning agent, or skin-conditioning agent and is reported in 626 cosmetics at concentrations from 0.0001% to 70%. The related ingredients covered in this assessment are fatty acids, and their hydrogenated forms, corresponding fatty alcohols, simple esters, and inorganic and sulfated salts of coconut oil. The salts and esters are expected to have similar toxicological profiles as the oil, its hydrogenated forms, and its constituent fatty acids. Coconut oil and related ingredients are safe as cosmetic ingredients in the practices of use and concentration described in this safety assessment.
Peedikayil, Faizal C; Remy, Vimal; John, Seena; Chandru, T P; Sreenivasan, Prathima; Bijapur, Gufran Ahmed
2016-01-01
Streptococcus mutans is the most common organism causing dental caries. Various chemotherapeutic agents are available that help in treating the bacteria, with each having their own merits and demerits. Recent research has shown that coconut oil has anti-inflammatory and antimicrobial action. Therefore, the present was conducted to determine the antibacterial efficacy of coconut oil and to compare it with chlorhexidine. A total of fifty female children aged 8-12 years were included in the study. Twenty five children were randomly distributed to each group, i.e., the study group (coconut oil) and the control group (chlorhexidine). The participants were asked to routinely perform oil swishing with coconut oil and chlorhexidine and rinse every day in the morning after brushing for 2-3 minutes. S. mutans in saliva and plaque were determined using a chairside method, i.e., the Dentocult SM Strip Mutans test. Patients were instructed to continue oil swishing for 30 days. S. mutans . counts in plaque and saliva on day 1, day 15, and day 30 were recorded and the results were compared using Wilcoxon matched pairs signed ranks test. The results showed that there is a statistically significant decrease in S. mutans . count from coconut oil as well as chlorhexidine group from baseline to 30 days. The study also showed that in comparison of coconut oil and chlorhexidine there is no statistically significant change regarding the antibacterial efficacy. Coconut oil is as effective as chlorhexidine in the reduction of S. mutans .
Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying
2015-02-01
This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.
Manalo, Rafael Vincent; Silvestre, Maries Ann; Barbosa, Aza Lea Anne; Medina, Paul Mark
2017-04-21
Virgin coconut oil (VCO) has been the subject of several studies which have aimed to alleviate Alzheimer's disease (AD) pathology, focusing on in vitro antioxidant and acetylcholinesterase (AChE) inhibitory activities. Here, we studied an underutilized and lesser-valued part of the coconut tree, specifically the leaves, using in vitro and in vivo approaches. Coconut leaf extract (CLE) was screened for antioxidant and AChE inhibitory properties in vitro and therapeutic effects in two strains of transgenic Caenorhabditis elegans expressing amyloid-β 1-42 (Aβ 1-42 ) in muscle cells. CLE demonstrated free radical scavenging activity with an EC 50 that is 79-fold less compared to ascorbic acid, and an AChE inhibitory activity that is 131-fold less compared to Rivastigmine. Surprisingly, in spite of its low antioxidant activity and AChE inhibition, CLE reduced Aβ deposits by 30.31% in CL2006 in a dose-independent manner, and reduced the percentage of paralyzed nematodes at the lowest concentration of CLE (159.38 μg/mL), compared to dH₂O/vehicle (control). Phytochemical analysis detected glycosides, anthocyanins, and hydrolyzable tannins in CLE, some of which are known to be anti-amyloidogenic. Taken together, these findings suggest that CLE metabolites alternatively decrease AB 1-42 aggregation and paralysis prevalence independently of free radical scavenging and AChE inhibition, and this warrants further investigation on the bioactive compounds of CLE.
Oliveira, Natália N F C; Galvão, Andreia S; Amaral, Ester A; Santos, Auderes W O; Sena-Filho, José G; Oliveira, Eugenio E; Teodoro, Adenir V
2017-05-01
The coconut mite, Aceria guerreronis (Acari: Eriophyidae), is a major tropical pest of coconut. Here, we assessed the chemical profiles and the potential use of babassu, degummed soybean, and coconut oils to control A. guerreronis as well as their side-effects on the predatory mite Neoseiulus baraki (Acari: Phytoseiidae), a key natural enemy of the coconut mite. Babassu and coconut oils had similar fatty acids chemical profiles. All vegetable oils showed toxicity to A. guerreronis; degummed soybean oil exhibited the highest toxicity (LC 50 = 0.15 µL/cm 2 ). Although all oils were less toxic to N. baraki, their potential to attract/repel this predatory mite differed. Whereas N. baraki females were unresponsive to coconut oil at both concentrations (i.e., LC 50 and LC 99 estimated for A. guerreronis), irrespective of exposure period (i.e., 1 or 24 h), the babassu oil repelled the predator, independent of exposure period, when applied at its LC 99 (1.48 µL/cm 2 ). Intriguingly, this oil also exhibited attractiveness to N. baraki 24 h after exposure when applied at its LC 50 (0.26 µL/cm 2 ). A similar attractiveness pattern was recorded 24 h after N. baraki was exposed to degummed soybean oil at both concentrations tested (LC 50 = 0.15 µL/cm 2 ; LC 99 = 1.39 µL/cm 2 ). However, N. baraki was repelled by degummed soybean oil at its LC 50 after 1 h of exposure. Therefore, the present study demonstrated that all the vegetable oils used here had higher toxicity to the coconut mite and considerable selectivity to the predator N. baraki, indicating they are promising tools that can potentially be included in management programs to control A. guerreronis in commercial coconut plantations.
2016-04-07
Objective: We evaluated the risk of cardiovascular disease in both control and proatherosclerotic mice consuming diets high in coconut oil. Methods...The mice were weighed and randomly assigned to receive a custom diet with either coconut oil or milk fat. Both diets were formulated to have the...significant differences were seen between knockout and wildtype mice in aorta score regardless of diet, and in liver score with coconut oil diet
Peedikayil, Faizal C.; Remy, Vimal; John, Seena; Chandru, T. P.; Sreenivasan, Prathima; Bijapur, Gufran Ahmed
2016-01-01
Aims: Streptococcus mutans is the most common organism causing dental caries. Various chemotherapeutic agents are available that help in treating the bacteria, with each having their own merits and demerits. Recent research has shown that coconut oil has anti-inflammatory and antimicrobial action. Therefore, the present was conducted to determine the antibacterial efficacy of coconut oil and to compare it with chlorhexidine. Materials and Methods: A total of fifty female children aged 8–12 years were included in the study. Twenty five children were randomly distributed to each group, i.e., the study group (coconut oil) and the control group (chlorhexidine). The participants were asked to routinely perform oil swishing with coconut oil and chlorhexidine and rinse every day in the morning after brushing for 2–3 minutes. S. mutans in saliva and plaque were determined using a chairside method, i.e., the Dentocult SM Strip Mutans test. Patients were instructed to continue oil swishing for 30 days. S. mutans. counts in plaque and saliva on day 1, day 15, and day 30 were recorded and the results were compared using Wilcoxon matched pairs signed ranks test. Results: The results showed that there is a statistically significant decrease in S. mutans. count from coconut oil as well as chlorhexidine group from baseline to 30 days. The study also showed that in comparison of coconut oil and chlorhexidine there is no statistically significant change regarding the antibacterial efficacy. Conclusion: Coconut oil is as effective as chlorhexidine in the reduction of S. mutans. PMID:27891311
Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J
2000-09-01
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.
Topical Coconut Oil in Very Preterm Infants: An Open-Label Randomised Controlled Trial.
Strunk, Tobias; Pupala, Sameer; Hibbert, Julie; Doherty, Dorota; Patole, Sanjay
2018-01-01
The immature fragile skin of preterm infants represents an inadequate protective barrier. The emollient and anti-infective properties of coconut oil make it a potentially beneficial topical agent for this population. Our aim was to evaluate feasibility, safety, and the effects of topical coconut oil on skin condition in very preterm infants. An open-label randomised controlled trial in preterm infants <30 weeks' gestation was conducted. Enrolled infants were randomised to receive either routine care or topical coconut oil (5 mL/kg) twice daily for 21 days, starting within 24 h of birth. The neonatal skin condition was the primary outcome, and was assessed using the Neonatal Skin Condition Score (NSCS) on days 1, 7, 14, and 21. The number of coconut oil applications was recorded to assess clinical feasibility and all enrolled infants were monitored for adverse effects of topical coconut application, such as skin irritation. A total of 72 infants born <30 weeks' gestation were enrolled (36 infants per arm), with comparable demographic characteristics. Topical application of coconut oil was feasible and without adverse effects. The NSCS was maintained in the coconut oil group throughout the intervention period, but deteriorated from a median (IQR) of 3 (3-4) on day 1 to 4 (4-4) on day 21 in the control group (p = 0.01). There were no differences in common neonatal outcomes, including sepsis, necrotising enterocolitis, retinopathy of prematurity, chronic lung disease, and mortality. Topical coconut oil maintained a better skin condition in very preterm infants without adverse effects. This simple, safe, and affordable intervention warrants further investigation. © 2017 S. Karger AG, Basel.
Coconut oil predicts a beneficial lipid profile in pre-menopausal women in the Philippines
Feranil, Alan B.; Duazo, Paulita L.; Kuzawa, Christopher W.; Adair, Linda S.
2011-01-01
Coconut oil is a common edible oil in many countries, and there is mixed evidence for its effects on lipid profiles and cardiovascular disease risk. Here we examine the association between coconut oil consumption and lipid profiles in a cohort of 1,839 Filipino women (age 35–69 years) participating in the Cebu Longitudinal Health and Nutrition Survey, a community based study in Metropolitan Cebu City. Coconut oil intake was measured as individual coconut oil intake calculated using two 24-hour dietary recalls (9.54 ± 8.92 grams). Cholesterol profiles were measured in plasma samples collected after an overnight fast. Mean lipid values in this sample were total cholesterol (TC) (186.52 ± 38.86 mg/dL), high density lipoprotein cholesterol (HDL-c) (40.85 ± 10.30 mg/dL), low density lipoprotein cholesterol (LDL-c) (119.42 ± 33.21 mg/dL), triglycerides (130.75 ± 85.29 mg/dL) and the TC/HDL ratio (4.80 ± 1.41). Linear regression models were used to estimate the association between coconut oil intake and each plasma lipid outcome after adjusting for total energy intake, age, body mass index (BMI), number of pregnancies, education, menopausal status, household assets and urban residency. Dietary coconut oil intake was positively associated with HDL-c levels. PMID:21669587
Determining the Time of Flight and Speed of Sound on Different types of Edible Oil
NASA Astrophysics Data System (ADS)
Azman, N. A.; Hamid, S. B. Abd
2017-11-01
Edible oil is most often plant-based oils that have been extracted from various seeds. There are cases where the fully virgin edible oil was found to be a fraud. The adulterated edible oil indicates the intentional, fraudulent addition of extraneous, improper or cheaper ingredients puts into the oil or the dilution or removal of some valuable ingredient of the oil in order to increase profits. Hence, decrease the reliability of the Malaysian food product quality. This research was done by using the method of time of flight obtained using the Texas Instrument board, TDC1000-TDC7200 EVM connected to an ultrasonic transducer with 1 MHz frequency. The authors measured the time of flight and temperatures controlled from 20°C to 40°C of five vegetable oils (olive oil, sunflower oil, corn oil, coconut oil, and mustard oil). The value is observed and compared with other research from the literature review. From the study, time of flight values decreases exponentially while speed of sound value increases. This relationship will be useful in spectrum unfolding method to investigate the adulteration in different type of edible oil.This research outcome is to investigate the quality value of the different type of edible oil while eliminates the issues where the quality of Malaysian food product is not reliable.
Tarig, A. A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y. M.; Baiee, F. H.; Khumran, A. M.; Salman, H.; Assi, M. A.; Ebrahimi, M.
2017-01-01
Aim: The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. Materials and Methods: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. Results: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. Conclusion: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment. PMID:28717321
Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Assi, M A; Ebrahimi, M
2017-06-01
The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.
Effect of coconut oil in plaque related gingivitis - A preliminary report.
Peedikayil, Faizal C; Sreenivasan, Prathima; Narayanan, Arun
2015-01-01
Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis.
Effect of coconut oil and defaunation treatment on methanogenesis in sheep.
Machmüller, Andrea; Soliva, Carla R; Kreuzer, Michael
2003-01-01
The present study was conducted to evaluate in vivo the role of rumen ciliate protozoa with respect to the methane-suppressing effect of coconut oil. Three sheep were subjected to a 2 x 2 factorial design comprising two types of dietary lipids (50 g x kg(-1) coconut oil vs. 50 g x kg(-1) rumen-protected fat) and defaunation treatment (with vs. without). Due to the defaunation treatment, which reduced the rumen ciliate protozoa population by 94% on average, total tract fibre degradation was reduced but not the methane production. Feeding coconut oil significantly reduced daily methane release without negatively affecting the total tract nutrient digestion. Compared with the rumen-protected fat diet, coconut oil did not alter the energy retention of the animals. There was no interaction between coconut oil feeding and defaunation treatment in methane production. An interaction occurred in the concentration of methanogens in the rumen fluid, with the significantly highest values occurring when the animals received the coconut oil diet and were subjected to the defaunation treatment. Possible explanations for the apparent inconsistency between the amount of methane produced and the concentration of methane-producing microbes are discussed. Generally, the present data illustrate that a depression of the concentration of ciliate protozoa or methanogens in rumen fluid cannot be used as a reliable indicator for the success of a strategy to mitigate methane emission in vivo. The methane-suppressing effect of coconut oil seems to be mediated through a changed metabolic activity and/or composition of the rumen methanogenic population.
How does coconut oil affect cognitive performance in alzheimer patients?
De la Rubia Ortí, José Enrique; Sánchez Álvarez, Carmen; Selvi Sabater, Pablo; Bueno Cayo, Alma María; Sancho Castillo, Sandra; Rochina, Mariano Julián; Hu Yang, Iván
2017-03-30
Introduction: Alzheimer’s disease is one of the most prevalent neurodegenerative dementia in developed world. This fact, coupled with the lack cure, makes new no pharmacological therapeutic strategies such as nutrient management to investigate. In this regard, it stresses the possible influence of coconut oil as alternative energy source capable of stopping the progressively neuronal death that occurs in this disease. Objectives: To assess the cognitive impact of coconut oil in Alzheimer’s patients, and specifically in orientation, language-building, fixing, calculation-concentration and memory areas. Methods: Prospective, longitudinal, qualitative, analytical and experimental study through a clinical trial where 44 patients with Alzheimer’s in region of Ribera (Valencia), of which half was selected to receive during 21 days, 40 ml coconut oil daily divided between breakfast (20 ml) and food (20 ml). Before and after administration of the oil, they were evaluated through cognitive test Mini-Mental State Examination to determine possible changes. Results: It was observed in patients who received coconut oil, that cognitive improvement after completion of the intervention, statistically significant improved in the orientation and language-construction areas. Conclusions: Coconut oil appears to improve cognitive abilities of Alzheimer’s patients, with different intensity depending on the cognitive area.
Martini, Serena; Cavalchi, Martina; Conte, Angela; Tagliazucchi, Davide
2018-07-01
Extra-virgin olive oil is an integral part of the Mediterranean diet and its consumption has been associated with a reduction risk of chronic diseases. Here we tested the potential of extra-virgin olive oil to limit the oxidative phenomena during in vitro gastro-intestinal co-digestion with turkey breast meat. The extra-virgin olive oil was particularly rich in oleuropein aglycone isomers, which represented the 66.8% of total phenolic determined with MS/MS experiments. Meals supplemented with extra-virgin olive oil equivocally affected lipid peroxidation. At low concentration (2.5% respect to meat), a significant inhibition of lipid oxidation was observed, whereas lipid peroxidation was greatly enhanced when the amount of extra-virgin olive oil was increased in the gastro-intestinal system. The inhibitory effect observed at 2.5% extra-virgin olive oil was due to the antioxidant properties of extra-virgin olive oil phenolic compounds. At high concentration, extra-virgin olive oil phenolic compounds (especially hydroxytyrosol-derivative) behaved as pro-oxidants increasing the generation of lipid hydroperoxides from meat. At the same time, the presence in the digestive system of catalysers from meat induced the peroxidation of extra-virgin olive oil fatty acids, which was further intensified by the pro-oxidant activity of extra-virgin olive oil phenolic compounds. Our study underlined the importance of the timing and amount of consumption of extra-virgin olive oil as well as its phenolic composition in limiting the peroxidative phenomena on meat lipids during digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Manalo, Rafael Vincent; Silvestre, Maries Ann; Barbosa, Aza Lea Anne; Medina, Paul Mark
2017-01-01
Virgin coconut oil (VCO) has been the subject of several studies which have aimed to alleviate Alzheimer’s disease (AD) pathology, focusing on in vitro antioxidant and acetylcholinesterase (AChE) inhibitory activities. Here, we studied an underutilized and lesser-valued part of the coconut tree, specifically the leaves, using in vitro and in vivo approaches. Coconut leaf extract (CLE) was screened for antioxidant and AChE inhibitory properties in vitro and therapeutic effects in two strains of transgenic Caenorhabditis elegans expressing amyloid-β1–42 (Aβ1-42) in muscle cells. CLE demonstrated free radical scavenging activity with an EC50 that is 79-fold less compared to ascorbic acid, and an AChE inhibitory activity that is 131-fold less compared to Rivastigmine. Surprisingly, in spite of its low antioxidant activity and AChE inhibition, CLE reduced Aβ deposits by 30.31% in CL2006 in a dose-independent manner, and reduced the percentage of paralyzed nematodes at the lowest concentration of CLE (159.38 μg/mL), compared to dH2O/vehicle (control). Phytochemical analysis detected glycosides, anthocyanins, and hydrolyzable tannins in CLE, some of which are known to be anti-amyloidogenic. Taken together, these findings suggest that CLE metabolites alternatively decrease AB1–42 aggregation and paralysis prevalence independently of free radical scavenging and AChE inhibition, and this warrants further investigation on the bioactive compounds of CLE. PMID:28536360
Ganji, V; Kies, C V
1994-08-01
The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre.
Effect of coconut oil in plaque related gingivitis — A preliminary report
Peedikayil, Faizal C.; Sreenivasan, Prathima; Narayanan, Arun
2015-01-01
Background: Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. Materials and Methods: The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. Results: A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Conclusion: Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis. PMID:25838632
Removal of toxic Congo red dye from water employing low-cost coconut residual fiber.
Rani, K C; Naik, Aduja; Chaurasiya, Ram Saran; Raghavarao, K S M S
2017-05-01
The coconut residual fiber (CRF) is the major byproduct obtained during production of virgin coconut oil. Its application as a biosorbent for adsorption of Congo red was investigated. The CRF was subjected to different pretreatments, namely, pressure cooking, hexane treatment, acid treatment and their combinations. The pretreatment of CRF with the combination of hexane, acid, and pressure cooking resulted in the highest degree of adsorption. The equilibrium data were analyzed and found to fit best to both Langmuir and Freundlich isotherms. Thermodynamic parameters such as standard free energy (ΔG 0 kJ mol -1 ), standard enthalpy (ΔH 0 , kJ mol -1 ) and standard entropy (ΔS 0 , kJ mol -1 K -1 ) of the systems were calculated by using the Langmuir constant. The ΔG 0 , ΔH 0 and ΔS 0 were found to be 16.51 kJ mol -1 , -19.39 kJ mol -1 and -0.12 kJ mol -1 K -1 , respectively, at 300 K. These thermodynamic parameters suggest the present adsorption process to be non-spontaneous and exothermic. The adsorption process was observed to follow pseudo-second-order kinetics. The results suggest that CRF has potential to be a biosorbent for the removal of hazardous material (Congo red dye) with a maximum adsorption capacity of 128.94 mg g -1 at 300 K.
Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel
2012-01-01
The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.
Characterization and Evaluation of Re-Refined Engine Lubricating Oil.
1981-12-01
performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production
Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro
2014-03-12
Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.
Kaushik, Mamta; Reddy, Pallavi; Sharma, Roshni; Udameshi, Pooja; Mehra, Neha; Marwaha, Aditya
2016-01-01
Oil pulling is an age-old practice that has gained modern popularity in promoting oral and systemic health. The scientific verification for this practice is insufficient. Thus, this study evaluated the effect of coconut oil pulling on the count of Streptococcus mutans in saliva and to compare its efficacy with that of Chlorhexidine mouthwash: in vivo. The null hypothesis was that coconut oil pulling has no effect on the bacterial count in saliva. A randomized controlled study was planned and 60 subjects were selected. The subjects were divided into three groups, Group A: Oil pulling, Group B: Chlorhexidine, and Group C: Distilled water. Group A subjects rinsed mouth with 10 ml of coconut oil for 10 minutes. Group B subjects rinsed mouth with 5 ml Chlorhexidine mouthwash for 1 minute and Group C with 5 ml distilled water for 1 minute in the morning before brushing. Saliva samples were collected and cultured on 1st day and after 2 weeks from all subjects. Colonies were counted to compare the efficacy of coconut oil and Chlorhexidine with distilled water. Statistically significant reduction in S. mutans count was seen in both the coconut oil pulling and Chlorhexidine group. Oil pulling can be explored as a safe and effective alternative to Chlorhexidine. Edible oil-pulling therapy is natural, safe and has no side effects. Hence, it can be considered as a preventive therapy at home to maintain oral hygiene.
Design and manufacture a coconut milk squeezer
NASA Astrophysics Data System (ADS)
Wayan Surata, I.; Gde Tirta Nindhia, Tjokorda; Budyanto, D.; Yulianto, A. E.
2017-05-01
The process of cooking oil production generally is started by grating the ripe coconut meat, then pressing the grated meat to obtain coconut milk, and finally heating the coconut milk to obtain the cooking oil. Pressing mechanism to obtain coconut milk is a very important step and decisive in the process of producing cooking oil. The amount of milk produced depends on the pressure applied at the time of pressing grated coconut. The higher the pressure, the more milk is obtained. Some commercial mechanical pressing tools that available in the market are not efficient due to the working steps too much and take long time per cycle of work. The aims of this study was to design and manufacture a power screw squeezer for the collection of coconut milk. Power screw produces a compressive force in the cylinder to push and press the grated coconut until the end of the cylinder while the coconut milk and coconut dregs flow out simultaneously. Screw press was designed using straight shaft configuration with square profile. Performance test was done to investigate the actual capacity and yield of milk produced. The results showed that squeezer of grated coconut worked well with capacity an average of 13,63 kg/h and coconut milk yield of 58%.
Ding, Xuezhi; Long, Ruijun; Zhang, Qian; Huang, Xiaodan; Guo, Xusheng; Mi, Jiandui
2012-10-01
The objective was to evaluate the effect of dietary coconut oil on methane (CH(4)) emissions and the microbial community in Tibetan sheep. Twelve animals were assigned to receive either a control diet (oaten hay) or a mixture diet containing concentrate (maize meal), in which coconut oil was supplemented at 12 g/day or not for a period of 4 weeks. CH(4) emissions were measured by using the 'tunnel' technique, and microbial communities were examined using quantitative real-time PCR. Daily CH(4) production for the control and forage-to-concentrate ratio of 6:4 was 17.8 and 15.3 g, respectively. Coconut oil was particularly effective at reducing CH(4) emissions from Tibetan sheep. The inclusion of coconut oil for the control decreased CH(4) production (in grams per day) by 61.2%. In addition, there was a positive correlation between the number of methanogens and the daily CH(4) production (R = 0.95, P < 0.001). Oaten hay diet containing maize meal (6:4) plus coconut oil supplemented at 12 g/day decreases the number of methanogens by 77% and a decreases in the ruminal fungal population (85-95%) and Fibrobacter succinogenes (50-98%) but an increase in Ruminococcus flavefaciens (25-70%). The results from our experiment suggest that adding coconut oil to the diet can reduce CH(4) emissions in Tibetan sheep and that these reductions persist for at least the 4-week feeding period.
... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... pudding, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...
Fibre optic sensor for the detection of adulterant traces in coconut oil
NASA Astrophysics Data System (ADS)
Sheeba, M.; Rajesh, M.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.
2005-11-01
The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10-3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.
Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage
NASA Astrophysics Data System (ADS)
Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.
2017-08-01
This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction
Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa-Dekker, Aneli M; Dekker, Robert F H
2017-12-18
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)-purified 25.41-fold, recovery of 47.1%-and lipase B (32,000 Da)-purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca 2+ , exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5-10.0 and 20-80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.
A lycopene-enriched virgin olive oil enhances antioxidant status in humans.
Garrido, María; González-Flores, David; Marchena, Ana M; Prior, Estrella; García-Parra, Jesús; Barriga, Carmen; Rodríguez Moratinos, Ana B
2013-06-01
Lycopene, a bioactive red pigment, represents the most potent in vitro antioxidant among carotenoids. Virgin olive oil contains trace amounts of a wide variety of phytochemicals, which have proven to exert beneficial effects on oxidative stress. Since the ingestion of lycopene together with oil reportedly increases its bioavailability, we evaluated urinary antioxidant capacity after the consumption of a lycopene-enriched virgin olive oil (7 mg lycopene day(-1)) compared with the antioxidant effect produced after the ingestion of a virgin olive oil and a sunflower oil during 5 days, in young (25-30 years of age), middle-aged (35-55 years of age) and elderly (65-85 years of age) subjects. The results showed that the consumption of virgin olive oil increased urinary antioxidant capacity in middle-aged and elderly volunteers, whereas the administration of a lycopene-enriched virgin olive oil produced higher antioxidant effects in all of the three age groups assayed. The incorporation of the lycopene-enriched virgin olive oil into the diet may enhance the health-promoting effects of the virgin olive oil, contributing as a functional tool against several disorders where oxidative stress plays an important role. © 2012 Society of Chemical Industry.
Borhan, Farrah Payyadhah; Abd Gani, Siti Salwa; Shamsuddin, Rosnah
2014-01-01
Okara, soybean waste from tofu and soymilk production, was utilised as a natural antioxidant in soap formulation for stratum corneum application. D-optimal mixture design was employed to investigate the influence of the main compositions of okara soap containing different fatty acid and oils (virgin coconut oil A (24-28% w/w), olive oil B (15-20% w/w), palm oil C (6-10% w/w), castor oil D (15-20% w/w), cocoa butter E (6-10% w/w), and okara F (2-7% w/w)) by saponification process on the response hardness of the soap. The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for okara soap hardness in terms of the six design factors considered in this study. Results revealed that the best mixture was the formulation that included 26.537% A, 19.999% B, 9.998% C, 16.241% D, 7.633% E, and 7.000% F. The results proved that the difference in the level of fatty acid and oils in the formulation significantly affects the hardness of soap. Depending on the desirable level of those six variables, creation of okara based soap with desirable properties better than those of commercial ones is possible.
Wu, Y H; Cheong, L C; Meon, S; Lau, W H; Kong, L L; Joseph, H; Vadamalai, G
2013-06-01
A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms.
Fat encapsulation enhances dietary nutrients utilization and growth performance of nursery pigs.
Yang, F; Zhang, S H; Kim, S W; Ren, C X; Tian, M; Cheng, L; Song, J J; Chen, J; Chen, F; Guan, W T
2018-05-31
Encapsulation of fat may facilitate digestion and absorption of fat in nursery pigs. Two experiments were conducted to evaluate (1) effects of encapsulation of palm oil and coconut oil on growth performance, feed intake, feed efficiency, and blood parameters, and (2) effects of encapsulation of palm oil and coconut oil on apparent total tract digestibility (ATTD) of nutrients, and the activity of digestive enzymes in nursery pigs. In Exp. 1, 540 pigs (28 d of age, 8.23 ± 0.22 kg BW) were allotted to 5 treatments based on a randomized complete block design (as-fed basis). Pigs were fed basal diets with 5 different fat sources: 6.0% soybean oil (SBO), 6.0% palm oil (PO), 6.0% palm oil from encapsulated fat (EPO), 6.0% coconut oil (CO), and 6.0% coconut oil from encapsulated fat (ECO) respectively, with 6 pens per treatment and 18 pigs per pen for a 4-wk feeding trial. Dried casein and whey powder used for encapsulation were included at identical levels in all diets. Pigs fed EPO had increased (PPPad libitum for 4 weeks to measure ATTD of diets weekly and digestive enzyme activity at wk 4. Pigs fed EPO, CO, and ECO had increased (PPPEE) compared to other treatments. Pigs fed PO had greater (PP = 0.073) pancreatic lipase activity compared to other treatments whereas dietary treatments had no effect on pancreatic amylase activity. In conclusion, this study indicates that encapsulation of palm oil improved growth performance and ATTD of diets in nursery pigs, whereas the limited effects of encapsulated coconut oil were likely due to the high digestibility of the medium chain triglycerides (MCT) abundant in coconut oil.
Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M
2012-12-01
Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.
46 CFR Appendix I to Part 150 - Exceptions to the Chart
Code of Federal Regulations, 2012 CFR
2012-10-01
... (20) Iso-Propyl alcohol (20) Sulfuric acid (2) Coconut oil (34) Coconut oil acid (34) Palm oil (34... hydrocarbons), nitrogen dioxide, oxidizing materials, or molten sulfur. Sodium acetate, Glycol, Water mixture...
Cox, C; Sutherland, W; Mann, J; de Jong, S; Chisholm, A; Skeaff, M
1998-09-01
The aim of this present study was to determine plasma levels of lathosterol, lipids, lipoproteins and apolipoproteins during diets rich in butter, coconut fat and safflower oil. The study consisted of sequential six week periods of diets rich in butter, coconut fat then safflower oil and measurements were made at baseline and at week 4 in each diet period. Forty-one healthy Pacific island polynesians living in New Zealand participated in the trial. Subjects were supplied with some foods rich in the test fats and were given detailed dietary advice which was reinforced regularly. Plasma lathosterol concentration (P < 0.001), the ratio plasma lathosterol/cholesterol (P=0.04), low density lipoprotein (LDL) cholesterol (P<0.001) and apoB (P<0.001) levels were significantly different among the diets and were significantly lower during coconut and safflower oil diets compared with butter diets. Plasma total cholesterol, HDL cholesterol and apoA-levels were also significantly (P< or =0.001) different among the diets and were not significantly different between buffer and coconut diets. These data suggest that cholesterol synthesis is lower during diets rich in coconut fat and safflower oil compared with diets rich in butter and might be associated with lower production rates of apoB-containing lipoproteins.
NASA Astrophysics Data System (ADS)
Sari, M.
2018-04-01
Soap is a compound of sodium or potassium with fatty acids from vegetable oils or solid animal fats, soft or liquid, and foamy. Considering the potential of VCO as the raw material for making soap and supported by the benefits of red betel leaves, then this research is done by making solid bath soap from VCO which is supplemented with Red betel leaf extract. The purpose of this research is to make solid soap from VCO with an extract of red betel leaf based on SNINo.06-3532199. Analyzing VCO oil, which is used for the manufacture of soap, consists of analysis of saponification figures, Iodine number and peroxide number. Has made solid soap from VCO oil with Red betel leaf extract. From the five quality standards established under SNI 06-3532-1994 only two quality standards that can be done that is water quality and the amount of acidity. The percent of water quality obtained is 10% meanwhile the amount of acidity obtained is 9,32%. According to the data, it can be concluded that the solid soap made was not fulfill SNI 06-3532-1994.
Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.
Kumar, S Naresh
2011-12-28
Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.
Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.
Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin
2016-08-01
Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fatty acids (complying with § 172.860) derived from edible coconut oil, edible palm kernel oil, or both oils. (b) The ingredient meets the following specifications: Acid number: Not to exceed 0.5..., citric acid, succinic acid, and spices; and (2) In compound coatings, cocoa creams, cocoa-based sweets...
Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang
2017-01-01
We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group (n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain. PMID:28621759
Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang
2017-06-16
We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.
Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.
Rele, Aarti S; Mohile, R B
2003-01-01
Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting in no favorable impact on protein loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panek, R.L.; Dixon, W.R.; Rutledge, C.O.
The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total /sup 3/H was decreased significantly in rats receiving the coconut oil dietmore » when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats.« less
1985-08-14
trade deficit. For this year, in addition to importing from the Philippines such tradi- tional commodities as coconut oil , copper ore, timber and...overseas family remittances and one-third from aid. In 1983, total export earnings were 27.5 million tala, with coconut oil making up 41.07 per cent...of this figure. In 1984, total export earnings were 27.5 million tala, with coconut oil making up 41.07 per cent of this figure. In 1984, earnings
Sritabutra, Duangkamon; Soonwera, Mayura
2013-01-01
Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.
LaBarrie, Janna; St-Onge, Marie-Pierre
2017-01-01
Background Consumption of medium chain triglycerides (MCT) in overweight adults increases thermogenesis and improves weight management. Coconut oil is a rich natural source of MCT, but its thermogenic effect is unknown. Our study evaluated the effects of a test oil enriched in coconut oil, on energy expenditure, satiety, and metabolic markers in a randomized, double blind, cross-over study. Methods and findings Fifteen children, age 13-18 years, body mass index >85th percentile for age and sex, were enrolled. Two test meals, containing 20 g of fat from either corn oil or a coconut oil-enriched baking fat (1.1 g of fatty acids with chain lengths ≤ 10C), were administered. A fasting blood sample was taken before breakfast and at 30, 45, 60, 120, and 180 min post-meal for measurement of metabolites. Thermic effect of food (TEF) was assessed over 6 h using indirect calorimetry. Satiety was measured using visual analog scales (VAS). There was no significant effect of fat type, time, or fat type × time interaction on TEF, appetite/satiety, glucose, and insulin area under the curve. There was a significant effect of fat type on leptin (P=0.027), triglycerides (P=0.020) and peptide YY (P=0.0085); leptin and triglyceride concentrations were lower and peptide YY concentrations were higher with corn oil consumption. Conclusion A coconut oil-enriched baking fat does not enhance thermogenesis and satiety in children. Given that this is the only current study of its kind, more research is needed into the use of coconut oil as a tool in weight management in overweight and obese children. PMID:28758166
LaBarrie, Janna; St-Onge, Marie-Pierre
2017-01-01
Consumption of medium chain triglycerides (MCT) in overweight adults increases thermogenesis and improves weight management. Coconut oil is a rich natural source of MCT, but its thermogenic effect is unknown. Our study evaluated the effects of a test oil enriched in coconut oil, on energy expenditure, satiety, and metabolic markers in a randomized, double blind, cross-over study. Fifteen children, age 13-18 years, body mass index >85th percentile for age and sex, were enrolled. Two test meals, containing 20 g of fat from either corn oil or a coconut oil-enriched baking fat (1.1 g of fatty acids with chain lengths ≤ 10C), were administered. A fasting blood sample was taken before breakfast and at 30, 45, 60, 120, and 180 min post-meal for measurement of metabolites. Thermic effect of food (TEF) was assessed over 6 h using indirect calorimetry. Satiety was measured using visual analog scales (VAS). There was no significant effect of fat type, time, or fat type × time interaction on TEF, appetite/satiety, glucose, and insulin area under the curve. There was a significant effect of fat type on leptin (P=0.027), triglycerides (P=0.020) and peptide YY (P=0.0085); leptin and triglyceride concentrations were lower and peptide YY concentrations were higher with corn oil consumption. A coconut oil-enriched baking fat does not enhance thermogenesis and satiety in children. Given that this is the only current study of its kind, more research is needed into the use of coconut oil as a tool in weight management in overweight and obese children.
Tornberg-Belanger, Stephanie N.; Matthan, Nirupa R.; Lichtenstein, Alice H.
2015-01-01
ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Podcast: A podcast concerning this article is available. PMID:27303684
Durán Merás, Isabel; Domínguez Manzano, Jaime; Airado Rodríguez, Diego; Muñoz de la Peña, Arsenio
2018-02-01
Within olive oils, extra virgin olive oil is the highest quality and, in consequence, the most expensive one. Because of that, it is common that some merchants attempt to take economic advantage by mixing it up with other less expensive oils, like olive oil or olive pomace oil. In consequence, the characterization and authentication of extra virgin olive oils is a subject of great interest, both for industry and consumers. This paper reports the potential of front-face total fluorescence spectroscopy combined with second-order chemometric methods for the detection of extra virgin olive oils adulteration with other olive oils. Excitation-emission matrices (EEMs) of extra virgin olive oils and extra virgin olive oils adulterated with olive oils or with olive pomace oils were recorded using front-face fluorescence spectroscopy. The full information content in these fluorescence images was analyzed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC supervised by linear discriminant analysis (LDA-PARAFAC), and discriminant unfolded partial least-squares (DA-UPLS). The discriminant ability of LDA-PARAFAC was studied through the tridimensional plots of the canonical vectors, defining a surface separating the established categories. For DA-UPLS, the discriminant ability was established through the bidimensional plots of predicted values of calibration and validation samples, in order to assign each sample to a given class. The models demonstrated the possibility of detecting adulterations of extra virgin olive oils with percentages of around 15% and 3% of olive and olive pomace oils, respectively. Also, UPLS regression was used to quantify the adulteration level of extra virgin olive oils with olive oils or with olive pomace oils. Copyright © 2017 Elsevier B.V. All rights reserved.
Tsopelas, Fotios; Konstantopoulos, Dimitris; Kakoulidou, Anna Tsantili
2018-07-26
In the present work, two approaches for the voltammetric fingerprinting of oils and their combination with chemometrics were investigated in order to detect the adulteration of extra virgin olive oil with olive pomace oil as well as the most common seed oils, namely sunflower, soybean and corn oil. In particular, cyclic voltammograms of diluted extra virgin olive oils, regular (pure) olive oils (blends of refined olive oils with virgin olive oils), olive pomace oils and seed oils in presence of dichloromethane and 0.1 M of LiClO 4 in EtOH as electrolyte were recorded at a glassy carbon working electrode. Cyclic voltammetry was also employed in methanolic extracts of olive and seed oils. Datapoints of cyclic voltammograms were exported and submitted to Principal Component Analysis (PCA), Partial Least Square- Discriminant Analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA). In diluted oils, PLS-DA provided a clear discrimination between olive oils (extra virgin and regular) and olive pomace/seed oils, while SIMCA showed a clear discrimination of extra virgin olive oil in regard to all other samples. Using methanolic extracts and considering datapoints recorded between 0.6 and 1.3 V, PLS-DA provided more information, resulting in three clusters-extra virgin olive oils, regular olive oils and seed/olive pomace oils-while SIMCA showed inferior performance. For the quantification of extra virgin olive oil adulteration with olive pomace oil or seed oils, a model based on Partial Least Square (PLS) analysis was developed. Detection limit of adulteration in olive oil was found to be 2% (v/v) and the linearity range up to 33% (v/v). Validation and applicability of all models was proved using a suitable test set. In the case of PLS, synthetic oil mixtures with 4 known adulteration levels in the range of 4-26% were also employed as a blind test set. Copyright © 2018 Elsevier B.V. All rights reserved.
Arun, Sumitha; Kumar, Manish; Paul, Thomas; Thomas, Nihal; Mathai, Sarah; Rebekah, Grace; Thomas, Niranjan
2018-03-23
Nutritional guidelines involving the feeding of very low birth weight babies (VLBW) recommend addition of Human Milk Fortifiers to breast milk. Owing to financial constraints, it is a practice in low- and middle-income countries (LMIC) to add coconut oil to aid better weight gain. There are inadequate data on improvement of growth parameters with oral coconut oil supplementation of breast milk. In this randomized controlled trial, we measured growth parameters and body composition of 60 babies who received either breast milk with coconut oil or breast milk alone. Randomization was stratified according to intrauterine growth appropriate for gestational age (n = 30) and small for gestational age (n = 30). There was no difference in weight gain between the two groups. The weight gain velocity was 15 ± 3.6 and 14.4 ± 3.4 g/kg/day (p value = 0.49) in the breast milk alone and in the breast milk with coconut oil group, respectively. There was no difference in increase in head circumference and length. Triceps skinfold thickness (n = 56) was similar in both groups, but subscapular skinfold thickness was significantly more in the coconut oil group. Total body fat percentage did not differ between the groups (25.2 ± 4.3 vs. 25.5 ± 4.3%, p = 0.79). Oral supplementation of coconut oil along with breast milk did not increase growth parameters or result in change in body composition in very low birth weight (VLBW) babies.
NASA Astrophysics Data System (ADS)
Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi
2018-01-01
In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.
Srivastava, Yashi; Semwal, Anil Dutt
2015-12-01
Virgin coconut meal (VCM) cakes were prepared by replacing refined wheat flour (maida) (5 to 20 % level) to check its effect on chemical, textural and rheological attributes of cake. The addition of VCM significantly (p ≤ 0.05) increased redness (a*), yellowness (b*) while reduced lightness (L*) of cakes. The incorporation of VCM affects the hardness, adhesiveness gumminess and chewiness of cake. The effect of flour replacement with VCM increased the viscosity of batter which leads to increase in consistency index and lower the shearthining behavior. The viscoelastic behavior of cake batter in which elastic modulus (G') and viscous modulus (G") both were decreased with the increase in percentage of VCM. The differential scanning calorimetry (DSC) analysis revealed that the onset (To), end set (Tc) and enthalpy of gelatinization (ΔH) increased with the increased level of VCM.
Determination of ultraviolet filter activity on coconut oil cosmetic cream
NASA Astrophysics Data System (ADS)
Widiyati, Eni
2017-08-01
A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.
NASA Astrophysics Data System (ADS)
Limbardo, Rebecca Putri; Santoso, Herry; Witono, Judy Retti
2017-05-01
Cocoa butter has responsibility for dispersion medium to create a stable chocolate bar. Due to the economic reason, cocoa butter is partially or wholly substituted by edible oils e.g palm oil and coconut oil. The objective of the research was to observe the effect of oil substitution in the chocolate bar towards its melting point and texture. The research were divided in three steps which were preliminary research started with fat content analysis in cocoa powder, melting point analysis of substituted oils anc cocoa butter, and iodine number analysis in vegetable fats (cocoa butter, coconut oil, and palm oil), chocolate bar production with substitution 0%, 20%, 40%, 60%, 80%, and 100%wt of cocoa butter with each of substituted oils, and analysis process to determine the chocolate bar melting point with DSC and chocolate bar hardness with texture analyser. The increasement of substituted oils during substitution in chocolate bar would reduce the melting point of chocolate bar from 33.5°C to 31.6°C in palm oil substitution with cocoa butter and 33.5°C to 30.75°C in coconut oil substitution. The hardness of chocolate with palm oil were around 88.5 to 139 g on the 1st cycle and 22.75 to 132 g on the 2nd cycle. The hardness of chocolate with coconut oil were around 74.75 to 152.5 g on the 1st cycle and 53.25 to 132 g on the 2nd cycle. Maximum amount of fats substitution to produce a stable texture chocolate bar is 60% wt.
... do not exceed 120 degrees Fahrenheit. People use coconut oil by mouth for diabetes, heart disease, chronic fatigue, Crohn's disease, irritable bowel syndrome (IBS), Alzheimer's disease, quality of life in people with breast cancer, ...
Code of Federal Regulations, 2014 CFR
2014-04-01
... salt Cellulose acetate butyrate Cellulose acetate propionate Cetyl alcohol Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18) diethanolamine soap, and...
... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...
Code of Federal Regulations, 2012 CFR
2012-04-01
... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... monoacetate Hydroxyethyl cellulose, water-insoluble Hydroxypropyl cellulose identified in § 172.870 of this...
Code of Federal Regulations, 2013 CFR
2013-04-01
... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... monoacetate Hydroxyethyl cellulose, water-insoluble Hydroxypropyl cellulose identified in § 172.870 of this...
Borhan, Farrah Payyadhah; Abd Gani, Siti Salwa; Shamsuddin, Rosnah
2014-01-01
Okara, soybean waste from tofu and soymilk production, was utilised as a natural antioxidant in soap formulation for stratum corneum application. D-optimal mixture design was employed to investigate the influence of the main compositions of okara soap containing different fatty acid and oils (virgin coconut oil A (24–28% w/w), olive oil B (15–20% w/w), palm oil C (6–10% w/w), castor oil D (15–20% w/w), cocoa butter E (6–10% w/w), and okara F (2–7% w/w)) by saponification process on the response hardness of the soap. The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for okara soap hardness in terms of the six design factors considered in this study. Results revealed that the best mixture was the formulation that included 26.537% A, 19.999% B, 9.998% C, 16.241% D, 7.633% E, and 7.000% F. The results proved that the difference in the level of fatty acid and oils in the formulation significantly affects the hardness of soap. Depending on the desirable level of those six variables, creation of okara based soap with desirable properties better than those of commercial ones is possible. PMID:25548777
Code of Federal Regulations, 2010 CFR
2010-04-01
... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... acetate Do. Polyvinyl alcohol (minimum viscosity of 4 percent aqueous solution at 20 °C of 4 centipoises...
Has the use of talc an effect on yield and extra virgin olive oil quality?
Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele
2016-08-01
The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Voon, Phooi Tee; Ng, Tony Kock Wai; Lee, Verna Kar Mun; Nesaretnam, Kalanithi
2011-12-01
Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear. We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults. A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets. No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a). Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferm, R.L.
A process for treating petroleum product spills is described, whereby coconut husk material is spread on the spill to absorb it. When the spill is on fresh or salt water in the form of a slick, the coconut husk material coagulates the film, keeps it from sinking, and forms a mass which lends itself to easy removal from the water by mechanical pickup and the like. The petroleum product can be partially recovered from the coconut husk material by mechanical pressing. Substantially, a complete recovery of crude oil and residual fuel oil can be obtained by extraction with a hydrocarbonmore » solvent. Steam or hot water treatment also may be used to recover the crude oil from the soaked coconut husk material. (10 claims)« less
NASA Astrophysics Data System (ADS)
Salsabila, N.; Moulydia, F.; Bismo, S.
2018-03-01
In this work, the effect of ozonation on coconut oil and mixture of coconut oil and olive oil was studied. The properties of ozonated oils (oleozon) were analytically tested by the method of iodine number, acid number, peroxide number, and FT-IR as general chemical substances. Ozonation may increase the peroxide and acid number for both oils but decrease the iodine number. The best ozonation condition has been seen from an increase of 277.52% acid number, peroxide number about 114.77 meq O2 2-/kg oil, and decrease of iodine number up to 22%. Furthermore, ozonated oils were mixed with herbal extract and be tested the diabetic wound healing ability through antibacterial activity test. A mixture of 160 mL coconut oil that ozonated for 72 hours and 0.18 gram herbal extracts with n-hexane solvent showed the highest inhibition zone of 18.3 mm in Staphylococcus aureus bacteria.
Attya, Mohamed; Benabdelkamel, Hicham; Perri, Enzo; Russo, Anna; Sindona, Giovanni
2010-12-01
The quality of olive oils is sensorially tested by accurate and well established methods. It enables the classification of the pressed oils into the classes of extra virgin oil, virgin oil and lampant oil. Nonetheless, it would be convenient to have analytical methods for screening oils or supporting sensorial analysis using a reliable independent approach based on exploitation of mass spectrometric methodologies. A number of methods have been proposed to evaluate deficiencies of extra virgin olive oils resulting from inappropriate technological treatments, such as high or low temperature deodoration, and home cooking processes. The quality and nutraceutical value of extra virgin olive oil (EVOO) can be related to the antioxidant property of its phenolic compounds. Olive oil is a source of at least 30 phenolic compounds, such as oleuropein, oleocanthal, hydroxytyrosol, and tyrosol, all acting as strong antioxidants, radical scavengers and NSAI-like drugs. We now report the efficacy of MRM tandem mass spectrometry, assisted by the isotope dilution assay, in the evaluation of the thermal stability of selected active principles of extra virgin olive oil.
Coconut, date and oil palm genomics
USDA-ARS?s Scientific Manuscript database
A review of genomics research is presented for the three most economically important palm crops, coconut (Cocos nucifera), date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis), encompassing molecular markers studies of genetic diversity, genetic mapping, quantitative trait loci discovery...
Vijayakumar, Maniyal; Vasudevan, D M; Sundaram, K R; Krishnan, Sajitha; Vaidyanathan, Kannan; Nandakumar, Sandya; Chandrasekhar, Rajiv; Mathew, Navin
2016-01-01
Coronary artery disease (CAD) and its pathological atherosclerotic process are closely related to lipids. Lipids levels are in turn influenced by dietary oils and fats. Saturated fatty acids increase the risk for atherosclerosis by increasing the cholesterol level. This study was conducted to investigate the impact of cooking oil media (coconut oil and sunflower oil) on lipid profile, antioxidant mechanism, and endothelial function in patients with established CAD. In a single center randomized study in India, patients with stable CAD on standard medical care were assigned to receive coconut oil (Group I) or sunflower oil (Group II) as cooking media for 2 years. Anthropometric measurements, serum, lipids, Lipoprotein a, apo B/A-1 ratio, antioxidants, flow-mediated vasodilation, and cardiovascular events were assessed at 3 months, 6 months, 1 year, and 2 years. Hundred patients in each arm completed 2 years with 98% follow-up. There was no statistically significant difference in the anthropometric, biochemical, vascular function, and in cardiovascular events after 2 years. Coconut oil even though rich in saturated fatty acids in comparison to sunflower oil when used as cooking oil media over a period of 2 years did not change the lipid-related cardiovascular risk factors and events in those receiving standard medical care. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Dillard, Alice; Matthan, Nirupa R; Spartano, Nicole L; Butkowski, Ann E; Lichtenstein, Alice H
2013-12-01
Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (-47 and -45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.
Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F
2011-08-01
Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika
2017-01-01
Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858
Govindarajan, Sumitra; Vellingiri, Kishore
2016-04-01
Dietary supplements provide a novel population based health approach for treating hyperlipidemias. Red yeast rice is known to have lipid lowering effects. Combination of red yeast rice with various oils is taken by different population around the world. In this present work, we aimed to compare the effects of red yeast rice with different oil (coconut, rice bran and sunflower oil) supplementations on lipid levels and oxidative stress in rats fed on hypercholesterolemic diet. A Randomized controlled study was conducted on 28 male Sprague Dawley rats. It included 4 arms-Control arm (hypercholesterolemic diet), Test arm A (hypercholesterolemic diet +Red yeast rice + Rice bran oil), arm B (hypercholesterolemic diet +Red yeast rice + Coconut oil) and arm C (hypercholesterolemic diet +Red yeast rice + Sunflower oil). At the end of one month, serum cholesterol, triglycerides, MDA and paraoxonase was measured. The mean values of analytes between the different groups were compared using student 't-' test. The rats fed with red yeast rice and rice bran oil combination showed significantly lower levels of serum cholesterol, triglycerides and MDA when compared to the controls. The serum paraoxonase levels were significantly higher in this group when compared to the controls. The rats fed with red yeast rice and coconut oil combination showed significantly lower serum cholesterol and MDA levels when compared to the controls. The mean triglyceride and paraoxonase levels did not show any statistically significant difference from the controls. The rats on red yeast rice and sunflower oil combination did not show any statistically significant difference in the lipid levels and oxidative stress parameters. The food combination which had best outcome in preventing the development of hyperlipidemia and oxidative stress in rats fed with hypercholesterolemic diet was red yeast rice and rice bran oil. Combining red yeast rice with coconut oil and sunflower oil gave suboptimal benefits.
Craig, S R; Gatlin, D M
1995-12-01
The ability of juvenile red drum (Sciaenops ocellatus) to utilize medium-chain triglycerides (MCT) and other saturated dietary lipids was investigated in two 6-wk feeding experiments. Diets contained solvent-extracted menhaden fish meal to which menhaden fish oil (control), coconut oil, corn oil, beef tallow or various levels of MCT as tricaprylin (30, 46, 65 and 80% of total lipid) were added. Diets were fed to triplicate groups of juvenile red drum in aquaria containing brackish (6%) water. In the first feeding experiment, red drum fed the control diet had the greatest weight gains and feed efficiencies. Weight gain, but not feed was slightly, of fish fed corn oil and fish fed coconut oil was slightly (P < 0.05) lower. In the second feeding experiment, fish fed coconut oil and those fed beef tallow had significantly higher weight gains and feed efficiencies than did fish fed the control diet. Fish fed the diets containing tricaprylin at all inclusion levels in both feeding experiments had significantly lower weight gains and feed efficiencies and higher levels of beta-hydroxybutyric acid in plasma. Fish fed diets with high levels of MCT also had lower (n-3) and greater (n-6) fatty acid levels in the neutral lipid fraction of muscle tissue compared with fish fed the control diet. Coconut oil and beef tallow consistently resulted in greater liver lipid deposition but had variable effects on other tissue indices. Saturated dietary lipids had variable effects on fatty acid composition of muscle polar and neutral lipid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)
A database for coconut crop improvement.
Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam
2005-12-08
Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. http://www.bioinfcpcri.org.
Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe
2017-03-20
Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food-as stated by the European Food Safety Authority (EFSA)-due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.
Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe
2017-01-01
Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA)—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed. PMID:28335517
USDA-ARS?s Scientific Manuscript database
Mature Boer goat wethers were supplemented with 0.5% BW rolled corn and consumed pelleted alfalfa (CON), pelleted Sericea lespedeza (HSL; 6.4% condensed tannins), a 1:1 mixture of alfalfa and lespedeza (MSL), or alfalfa with monensin (ION; 22 mg/kg), coconut oil (CCO; 4%), or soybean oil (SBO; 4%). ...
Coconut oil and palm oil's role in nutrition, health and national development: A review.
Boateng, Laurene; Ansong, Richard; Owusu, William B; Steiner-Asiedu, Matilda
2016-09-01
Coconut and palm oils which were the major sources of dietary fats for centuries in most of West Africa have been branded as unhealthy highly saturated fats. Their consumption has been peddled to supposedly raise the level of blood cholesterol, thereby increasing the risk of coronary heart disease. This adverse view has led to a reduction in their consumption in West Africa and they have been substituted for imported vegetable oils. Recent information however, indicates some beneficial effects of these oils particularly their roles in nutrition, health and national development. There is the need for a better understanding of their effects on health, nutritional status and national development. This paper therefore attempts to review the roles which coconut and palm oils play in these respects in developing countries, as a means of advocating for a return to their use in local diets. None declared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The project was successful in confirming the suitability of shredded coconut husks in potting mix and the acceptability of untreated geothermal steam to pasteurize the mix. The pots were exposed to the steam; the average media temperature was maintained at 160 F for 30 min. The pH levels, which were slightly elevated in virgin media, rose only slightly (< 0.5) after steaming. Salt levels doubled (still safe). Mg solubility increased but not to toxic levels. Test plantings showed no significant differences after 8 months, indicating that coconut fiber can be pasteurized and used to replace imported peat moss. 6 refs,more » 4 tabs.« less
Transesterification of coconut oil for FAME production using ultrasound
NASA Astrophysics Data System (ADS)
Supriadi, Eko; Marlinda, Lenny; Prajitno, Danawati Hari; Mahfud, Mahfud
2017-05-01
To overcome energy crisis, the vegetable oils-derived biofuel can be chosen as an alternative to petroleum-based diesel. The transesterification of coconut oil in methanol with K/γ-Al2O3 catalyst using ultrasound-assisted to produce fatty acid methyl ester (FAME) as one of type biofuel was studied. The reaction occurred in batch reactor at a 9 : 1 molar ratio of methanol to coconut oil. The following reaction conditions were used in the catalytic test : concentration of catalyst to oil of 0.5, 1.0, 1.5, 2.0, and 2.5%, the reaction time of 10, 20, 30, 60, 90, 120, and 150 s, and the frequency ultrasonication of 20 and 40 KHz. At first, the preparation of K/γ-Al2O3 catalyst was done and followed by transesterification process. After reaction, the phase separation and purification from impurities were done. Finally, FAME was analized based on this parameters, i.e., yield, density, viscosity, and flash point. FAME yield of 93.76% was obtained at the frequency ultrasonication of 40 kHz with K/γ-Al2O3 catalyst concentration to oil of 2.5 wt.% for 150 s. It's the best conditions for FAME production by transesterification of coconut oil using ultrasound-assisted.
Samykannu, Mariaamalraj; Achary, Anant
2017-09-01
Coconut oil sludge and oil cake was utilized as carbon source for biosurfactant production by Pseudomonas aeruginosa AMB AS7. The results of optimization study revealed that 1.5% (w/v) of coconut oil cake, 2% (w/v) of coconut oil sludge, pH 7.2, 37 °C, and 120 rpm were the optimum conditions for biosurfactant production. The yield coefficient of biosurfactant on biomass (Y P/X ) was 1.29 g/g. Besides, the results indicated that aeration of 0.5 vvm and agitation of 450 rpm in bioreactor resulted in high volumetric productivity of biosurfactant (r p ) and specific product formation rate (q p ) of 0.115 g/(L h) and 0.0131 g/(g h), respectively in medium containing 2% (w/v) coconut oil sludge. The maximum biosurfactant concentration of 5.53 g/L was obtained during 60 h of cultivation. The emulsification index (EI 24 ) against coconut oil was found to be 88.42 ± 0.5%, and cell surface hydrophobicity of P. aeruginosa AMB AS7 was obtained 32.4 ± 0.9%. FTIR and GC-MS analysis revealed that the biosurfactant is rhamnolipid with anionic charge. The critical micelle concentration (CMC) of rhamnolipid was found to be 50 mg/L. It was found that 66.95% of chromium from aqueous solution can be removed using rhamnolipid at its CMC.
Bouziane, M; Prost, J; Belleville, J
1994-04-01
Fatty livers and the similarity between the skin lesions in kwashiorkor and those described in experimental essential fatty acid (EFA) deficiency have led to the hypothesis that protein and EFA deficiencies may both occur in chronic malnutrition. The relationship between serum very low density lipoprotein (VLDL) and hepatic lipid composition was studied after 28 d of protein depletion to determine the interactions between dietary protein levels and EFA availability. Rats were fed purified diets containing 20 or 2% casein and 5% fat as either soybean oil rich in EFA, or salmon oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, or hydrogenated coconut oil poor in EFA. Animals were divided into six groups, SOC (20% casein + 5% soybean oil), SOd (2% casein + 5% soybean oil), COC (20% casein + 5% hydrogenated coconut oil), COd (2% casein + 5% hydrogenated coconut oil), SAC (20% casein + 5% salmon oil) and SAd (2% casein + 5% salmon oil). After 28 d, liver steatosis and reduced VLDL-phospholipid contents (P < 0.001) were observed in protein-deficient rats. In protein deficiency, triacylglycerol and phospholipid fatty acid compositions in both liver and VLDL showed a decreased polyunsaturated-to-saturated fatty acid ratio. This ratio was higher with the salmon oil diets and lower with the hydrogenated coconut oil diets. Furthermore, independent of the oil in the diet, protein deficiency decreased linoleic and arachidonic acids in VLDL phospholipids. Conversely, despite decreased proportions of EPA at low protein levels, DHA levels remained higher in rats fed salmon oil diets.(ABSTRACT TRUNCATED AT 250 WORDS)
A database for coconut crop improvement
Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam
2005-01-01
Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. Availability http://www.bioinfcpcri.org PMID:17597858
LABORATORY SCALE EVALUATION OF HYDRA-TONE GRAFF-OFF™ COCONUT OIL BASED DEGREASER
This technical and economic assessment evaluated the effectiveness of a biodegradable, coconut oil-based degreaser called Graff-Off™. In immersion (cold) cleaning and rinse tests, Graff-Off™ was compared to a conventional chlorinated solvent 1,1,1 trichloroethane (TCA) and to an ...
Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M
2015-01-01
The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.
NASA Astrophysics Data System (ADS)
Sinaga, M. S.; Ariska, R.; Defriska, P.
2018-02-01
Sambung Nyawa (Gynura procumbent [Lour]. Merr) is commonly well-known as traditional medicine. It contains several chemical constituents such as flavonoids, saponins, tannins and steroids or triterpenoids, which are potential as an antioxidant. The aim of this study was to analyze the effect of Sambung Nyawa leaves to extract as an antioxidant and its ability to preserve the quality of coconut oil. First, flavonoids were extracted from Sambung Nyawa leaves at various leaf to the solvent ratio (w/v) and extraction temperature. The extracts which gave the highest total flavonoids content was added into the coconut oil and stored for 3 days, 6 days, 9 days, 12 days, and 15 days. Total flavonoids content of Sambung Nyawa leaves extracts were evaluated by UV-Vis spectrophotometry. Coconut oil was analyzed for its value of acid, iodine, and peroxide number. The results showed that the highest total flavonoids content of 5.18% was obtained for the leaf to solvent ratio of 1:15 (w/v) and an extraction temperature of 65 °C. The lowest acid number of 0.35%, the highest iodine number of 8.09 g I2/100 g, and the lowest peroxide number of 5.20 mg O2/100 g was obtained for the storage time of 3 days for coconut oil mixed with the Sambung Nyawa leaves extracts.
Ahmed Bijapur, Gufran; Kottayi, Soni; Jose, Deepak
2016-01-01
Background. Early childhood caries (ECC) is associated with early colonisation and high levels of cariogenic microorganisms. With C. albicans being one of those, there is a need to determine the effectiveness of various chemotherapeutic agents against it. The study is aimed at isolating Candida species in children with ECC and at studying the antifungal effect of coconut oil, probiotics, Lactobacillus, and 0.2% chlorhexidine on C. albicans in comparison with ketoconazole. Materials and Methods. Samples were collected using sterile cotton swabs, swabbed on the tooth surfaces from children with ECC of 3 to 6 yrs and streaked on Sabouraud dextrose agar (HI Media) plates and incubated in a 5% CO2 enriched atmosphere at 37°C for 24 hours. Candida was isolated and its susceptibility to probiotics, chlorhexidine, ketoconazole, and coconut oil was determined using Disc Diffusion method. Results. The mean zone of inhibition for chlorhexidine was 21.8 mm, whereas for coconut oil it was 16.8 mm, for probiotics it was 13.5 mm, and for ketoconazole it was 22.3 mm. The difference between the groups was not statistically significant (Chi-square value 7.42, P value 0.06). Conclusion. Chlorhexidine and coconut oil have shown significant antifungal activity which is comparable with ketoconazole. PMID:27051559
Antioxidants in Greek Virgin Olive Oils
Kalogeropoulos, Nick; Tsimidou, Maria Z.
2014-01-01
Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.
2016-04-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.
Olive Oil and Vitamin D Synergistically Prevent Bone Loss in Mice
Tagliaferri, Camille; Davicco, Marie-Jeanne; Lebecque, Patrice; Georgé, Stéphane; Amiot, Marie-Jo; Mercier, Sylvie; Dhaussy, Amélie; Huertas, Alain; Walrand, Stéphane; Wittrant, Yohann; Coxam, Véronique
2014-01-01
As the Mediterranean diet (and particularly olive oil) has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH) or ovariectomized (OVX) mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation. PMID:25551374
Manio, Mark Christian; Matsumura, Shigenobu; Inoue, Kazuo
2018-06-18
Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.
Cera, K R; Mahan, D C; Reinhart, G A
1990-09-01
A total of 280 crossbred pigs weaned at 21 d of age and weighing approximately 6 kg were utilized in five replicates to evaluate pig growth responses when fed a basal diet or one of several dietary lipid sources during a 4-wk postweaning period. A basal corn-soybean meal-corn starch-dried whey diet was compared with diets supplemented at a 7.75% level with one of the following lipid sources: corn oil, coconut oil, soybean oil, medium-chain triglyceride (MCT) or an animal-vegetable blend. A sixth treatment evaluated a roasted soybean diet formulated to an energy:lysine level equivalent to that of the fat-supplemented diets. In Exp. II, 36 crossbred weanling barrows were used to determine apparent fat and N digestibilities when soybean oil, roasted soybean, coconut oil or the MCT-supplemented diets were fed. Although pigs fed coconut oil grew somewhat faster, fat inclusion generally did not increase pig growth rate or result in lowered feed intake during the initial weeks postweaning; during the latter portion of the starter phase the addition of dietary fat resulted in a higher growth rate but feed intake was unaffected, resulting in an overall improvement in feed-to-gain ratio (P less than .05) for all but the roasted soybean diet. Pigs fed coconut oil had higher serum triglyceride and lower serum urea concentrations than did pigs fed diets containing most other lipid sources. Pigs fed MCT and coconut oil diets had a higher (P less than .01) apparent fat digestibility during the initial 2 wk postweaning than pigs fed soybean oil or roasted soybean diets. Pigs fed MCT and roasted soybeans had poorest growth rates; apparent fat and N digestibilities were lowest (P less than .05) for the roasted soybean diet.
NASA Astrophysics Data System (ADS)
Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.
2004-03-01
Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.
Visible and near-infrared spectral signatures for adulteration assessment of extra virgin olive oil
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.
2010-04-01
Because of its high price, the extra virgin olive oil is frequently target for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying the adulteration of extra virgin olive oil caused by lowergrade olive oils. It relies on spectral fingerprinting the test liquid by means of diffuse-light absorption spectroscopy carried out by optical fiber technology in the wide 400-1700 nm spectral range. Then, a smart multivariate processing of spectroscopic data is applied for immediate prediction of adulterant concentration.
Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd
2014-01-01
Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.
Sánchez-Quesada, Cristina; López-Biedma, Alicia; Warleta, Fernando; Campos, María; Beltrán, Gabriel; Gaforio, José J
2013-12-18
Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.
Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P
2018-05-01
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Migrated phthalate levels into edible oils.
Sungur, Sana; Okur, Ramazan; Turgut, Faruk Hilmi; Ustun, Ihsan; Gokce, Cumali
2015-01-01
The determination of phthalates in edible oils (virgin olive oil, olive oil, canola oil, hazelnut oil, sunflower oil, corn oil) sold in Turkish markets was carried out using gas chromatography-mass spectrometry. Mean phthalate concentrations were between 0.102 and 3.863 mg L(-1) in virgin olive oil; 0.172 and 6.486 mg L(-1) in olive oil; 0.501 and 3.651 mg L(-1) in hazelnut oil; 0.457 and 3.415 mg L(-1) in canola oil; 2.227 and 6.673 mg L(-1) in sunflower oil; and 1.585 and 6.248 mg L(-1) in corn oil. Furthermore, the influence of the types of oil and container to the phthalate migration was investigated. The highest phthalate levels were measured in sunflower oil. The lowest phthalate levels were determined in virgin olive oil and hazelnut oil. The highest phthalate levels were determined in oil samples contained in polyethylene terephthalate.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...EPA issued a final rule in the Federal Register of July 8, 2009, concerning polyglyceryl phthalate ester of coconut oil fatty acids; exemption from the requirement of a tolerance. This document is being issued to correct the inert ingredient name and CAS numbers.
NASA Astrophysics Data System (ADS)
Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud
2015-12-01
A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.
George, S; Jayachandran, K
2013-02-01
To improve biosurfactant production economics by the utilization of potential low-cost materials. In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying oils in cooking and also furthering the value of oil nuts. © 2012 The Society for Applied Microbiology.
Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens.
Medina, Eduardo; Romero, Concepción; Brenes, Manuel; De Castro, Antonio
2007-05-01
The survival of foodborne pathogens in aqueous extracts of olive oil, virgin olive oil, vinegar, and several beverages was evaluated. Vinegar and aqueous extracts of virgin olive oil showed the strongest bactericidal activity against all strains tested. Red and white wines also killed most strains after 5 min of contact, black and green tea extracts showed weak antimicrobial activity under these conditions, and no effect was observed for the remaining beverages (fruit juices, Coca-Cola, dairy products, coffee, and beer). The phenolic compound content of the aqueous olive oil and virgin olive oil extracts could explain their antibacterial activity, which was also confirmed in mayonnaises and salads used as food models. Virgin olive oil in mayonnaises and salads reduced the counts of inoculated Salmonella Enteritidis and Listeria monocytogenes by approximately 3 log CFU/g. Therefore, olive oil could be a hurdle component in certain processed foods and exert a protective effect against foodborne pathogens when contaminated foods are ingested.
Chemistry and health of olive oil phenolics.
Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J
2009-03-01
The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.
Effect of Temperature on Ultrasonic Signal Propagation for Extra Virgin Olive Oil Adulteration
NASA Astrophysics Data System (ADS)
Alias, N. A.; Hamid, S. B. Abdul; Sophian, A.
2017-11-01
Fraud cases involving adulteration of extra virgin olive oil has become significant nowadays due to increasing in cost of supply and highlight given the benefit of extra virgin olive oil for human consumption. This paper presents the effects of temperature variation on spectral formed utilising pulse-echo technique of ultrasound signal. Several methods had been introduced to characterize the adulteration of extra virgin olive oil with other fluid sample such as mass chromatography, standard method by ASTM (density test, distillation test and evaporation test) and mass spectrometer. Pulse-echo method of ultrasound being a non-destructive method to be used to analyse the sound wave signal captured by oscilloscope. In this paper, a non-destructive technique utilizing ultrasound to characterize extra virgin olive oil adulteration level will be presented. It can be observed that frequency spectrum of sample with different ratio and variation temperature shows significant percentages different from 30% up to 70% according to temperature variation thus possible to be used for sample characterization.
Rueda, Ascensión; Samaniego-Sánchez, Cristina; Olalla, Manuel; Giménez, Rafael; Cabrera-Vique, Carmen; Seiquer, Isabel; Lara, Luis
2016-01-01
Analysis of phenolic profile and tocopherol fractions in conjunction with chemometrics techniques were used for the accurate characterization of extra virgin argan oil and eight other edible vegetable virgin oils (olive, soybean, wheat germ, walnut, almond, sesame, avocado, and linseed) and to establish similarities among them. Phenolic profile and tocopherols were determined by HPLC coupled with diode-array and fluorescence detectors, respectively. Multivariate factor analysis (MFA) and linear correlations were applied. Significant negative correlations were found between tocopherols and some of the polyphenols identified, but more intensely (P < 0.001) between the γ-tocopherol and oleuropein, pinoresinol, and luteolin. MFA revealed that tocopherols, especially γ-fraction, most strongly influenced the oil characterization. Among the phenolic compounds, syringic acid, dihydroxybenzoic acid, oleuropein, pinoresinol, and luteolin also contributed to the discrimination of the oils. According to the variables analyzed in the present study, argan oil presented the greatest similarity with walnut oil, followed by sesame and linseed oils. Olive, avocado, and almond oils showed close similarities.
da Silveira, Roberta; Vágula, Julianna Matias; de Lima Figueiredo, Ingrid; Claus, Thiago; Galuch, Marilia Bellanda; Santos Junior, Oscar Oliveira; Visentainer, Jesui Vergilio
2017-12-01
Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH 4 ] + ) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, C; Hristov, A N; Heyler, K S; Cassidy, T W; Long, M; Corl, B A; Karnati, S K R
2011-11-01
The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (-156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and C8:0) concentration and increased medium-chain (C12:0 and C14:0) and total trans fatty acids in milk. Overall, the MP-deficient diets decreased N losses, but could not sustain milk production in this study. Coconut oil decreased feed intake and similar to DMP, suppressed fiber digestibility. Despite decreased protozoal counts, coconut oil had no effect on the methanogen population in the rumen. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Valls, Rosa-Maria; Soler, Aranzazu; Girona, Josefa; Heras, Mercedes; Romero, Maria-Paz; Covas, Maria-Isabel; Solà, Rosa; Masana, Lluis; Motilva, Maria-Jose
2010-09-21
The effect of repeated consumption of virgin olive oil on endogenous phenolic metabolites of fasting plasma is unknown. For this reason, we hypothesized that regular long-term virgin olive oil intake could have an indirect protection effect on the endogenous phenols. Thus, the aim of the study was to determine the phenolic profile of human plasma in a fasting state of long-term regular virgin olive oil consumers, using the fasting plasma of non-consumers as a natural control. Forty participants living in the area of Reus (Catalonia, Spain) were selected, 20 life-long regular consumers of virgin olive oil and a natural control of 20 non-consumers, the latter being Rumanians who dislike the taste of olive oil. The diet was obtained from 3-day food records. The results showed similar phenolic composition of fasting plasmas of the two volunteer groups. Of special interest is that more of the compounds quantified showed higher concentration in fasting plasma from habitual virgin olive oil consumers. The compounds were semi-quantified using caffeic acid as the calibration standard. The quantification of fasting consumer's plasma showed higher concentration of a hydroxyflavanone type compound (2.90+/-0.04 microM vs 1.5+/-0.04 microM) and a catecholamine derivative (0.70+/-0.03 microM vs 0.56+/-0.03 microM) than the plasma of non-consumers (P<0.05). The results suggest an indirect protective mechanism of long-term regular virgin olive oil consumption related to the protection of the endogenous antioxidant system. Copyright 2010 Elsevier B.V. All rights reserved.
Villarejo, Ana Belén; Ramírez-Sánchez, Manuel; Segarra, Ana Belén; Martínez-Cañamero, Magdalena; Prieto, Isabel
2015-06-01
High-fat diets are associated with the development of cardiovascular diseases. The efficacy of the current strategies of treatment is still not entirely satisfactory, and new approaches are being considered. To analyze the beneficial effects of extra virgin olive oil as a major component of the Mediterranean diet, we studied systolic blood pressure and angiotensinase activities, since this enzyme is involved in the metabolism of angiotensins, in the kidney of hypertensive rats fed during 12 weeks with a diet enriched with extra virgin olive oil compared with a standard diet. As a reflex of oxidative stress, 8-isoprostanes and nitric oxide were quantified in urine. Results demonstrated a progressive increase in systolic blood pressure until the end of the feeding period in both groups. However, this increase was delayed in the extra virgin olive oil group until week six, with the systolic blood pressure being always lower in this group. Nitric oxide and 8-isoprostanes were lower in the extra virgin olive oil group. While we can deduce a higher formation of angiotensin 2-10 in the renal cortex, a higher availability of angiotensin II may be presumed in the renal medulla of animals fed an extra virgin olive oil diet than in animals fed a standard diet. Our results support the beneficial influence of extra virgin olive oil on cardiovascular function and suggest that the Mediterranean diet may be beneficial in itself but it may also be an effective tool in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.
Settling of virgin olive oil from horizontal screw solid bowl in static conditions.
Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio
2017-08-01
This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.
Assessment of Helicobacter pylori eradication by virgin olive oil.
Castro, Manuel; Romero, Concepción; de Castro, Antonio; Vargas, Julio; Medina, Eduardo; Millán, Raquel; Brenes, Manuel
2012-08-01
A recent study conducted by Medina et al. disclosed that virgin olive oil has a bactericidal effect in vitro against Helicobacter pylori because of its contents of certain phenolic compounds with dialdehydic structures. We carried out two clinical trials to evaluate the effect of virgin olive oil on H. pylori-infected individuals. Two different pilot studies were performed with 60 H. pylori-infected adults. In the first study, thirty subjects who tested positive for H. pylori received 30 g of washed virgin olive oil for 14 days, and after 1 month, the patients took 30 g of unwashed virgin olive oil for another 14 days. In a second study, a group of 30 subjects received 30 g of a different virgin olive oil for 14 days. Helicobacter pylori-infection status was checked by the urea breath test. Helicobacter pylori was eradicated in 8 of 30 individuals when microorganism status was checked after 4-6 weeks from the first clinical intervention although 12 of 30 individuals did not show H. pylori infection at 24-72 hour of the last oil dose. Eradication rates were 27 and 40% by intention to treat and per protocol, respectively. Moreover, only 3 of 30 individuals were H. pylori negative after 4-6 weeks from the second clinical intervention but 5 of 30 were negative at 24-72 hour of the last oil dose. Eradication rates were 10 and 11% by intention to treat and per protocol, respectively. It must also be noted that 13 subjects withdrew from the studies because of taste and nausea drawbacks. The administration of virgin olive oil showed moderate effectiveness in eradicating H. pylori. Further studies are needed to confirm these findings, especially with longer periods, different administration conditions, and several types of olive oils. © 2012 Blackwell Publishing Ltd.
Jung, Mun Y; Choi, Dong S; Park, Ki H; Lee, Bosoon; Min, David B
2011-01-01
A spectrofluorometer equipped with a highly sensitive near-IR InGaAs detector was used for the direct visualization of singlet oxygen emission at 1268 nm in olive oil during light irradiation with various different wavelengths. The virgin olive oil in methylene chloride (20% w/v, oxygen saturated) was irradiated at the 301, 417, 454, 483, and 668 nm, then the emission at 1268 nm, singlet oxygen dimole decaying was observed. The result showed the highest production of (1)O(2) with light irradiation at 417 nm, and followed by at 668 nm in virgin olive oil, indicating that pheophytin a and chlorophyll a were the most responsible components for the production of singlet oxygen. The UV light irradiations at the wavelength of 200, 250, and 300 nm did not induce any detectable luminescence emission at 1268 nm, but 350 nm produced weak emission at 1269 nm. The quantity of (1)O(2) produced with excitation at 350 nm was about 1/6 of that of irradiation at 417 nm. Addition of an efficient (1)O(2) quencher, 1,4-diazabicyclo[2.2.2]octane, in virgin olive oil in methylene chloride greatly decreased the luminescence emission at 1268 nm, confirming the singlet oxygen production in olive oil. Singlet oxygen production was more efficient in oxygen-purged virgin olive oil than in oxygen non-purged olive oil. This represents first report on the direct observation of singlet oxygen formation in olive oil as well as in real-food system after visible light illumination. Practical Application: The present results show the positive evidence of the singlet oxygen involvement in rapid oxidative deterioration of virgin olive oil under visible light. This paper also shows the effects of different wavelength of light irradiation on the formation of singlet oxygen in olive oil. The present results would provide important information for the understanding of the mechanism involved in rapid oxidative quality deterioration of virgin olive oil under light illumination and for searching the preventive methods of deterioration of olive oil quality under light.
Deol, Poonamjot; Evans, Jane R.; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S.; Spindler, Stephen; Sladek, Frances M.
2015-01-01
The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659
Seiquer, Isabel; Rueda, Ascensión; Olalla, Manuel; Cabrera-Vique, Carmen
2015-12-01
Argan oil is becoming increasingly popular in the edible-oil market as a luxury food with healthy properties. This paper analyzes (i) the bioavailability of the polyphenol content and antioxidant properties of extra virgin argan oil (EVA) by the combination of in vitro digestion and absorption across Caco-2 cells and (ii) the protective role of the oil bioaccessible fraction (BF) against induced oxidative stress. Results were compared with those obtained with extra virgin olive oil (EVO). Higher values of polyphenols and antioxidant activity were observed in the BF obtained after the in vitro digestion of oils compared with the initial chemical extracts; the increase was higher for EVA but absolute BF values were lower than EVO. Bioaccessible polyphenols from EVA were absorbed by Caco-2 cells in higher proportions than from EVO, and minor differences were observed for antioxidant activity. Preincubation of cell cultures with BF from both oils significantly protected against oxidation, limiting cell damage and reducing reactive oxygen species generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Field incidence on Brontispa longissima (Gestro), an invasive pest of coconut
NASA Astrophysics Data System (ADS)
Khairul, Anuar W. A. Wan; Idris, A. B.
2013-11-01
The Coconut Leaf Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae) is one the most serious pests of coconut palms. This study was aimed to investigate the field incidence of Brontispa longissima infestation at Department of Agricultural, Parit Botak, Batu Pahat, Johor. B. longissima were collected from infested coconut and other palms and reared in the laboratory at MARDI, Serdang under ambient condition. The field incidence on the common varieties of coconut especially matag, pandan, tagnanan and other palms, oil palm were assessed. There was a significant difference in the mean percentage of leaf damage among palm varieties in the field (P<0.05). The pandan variety had the highest (40.93±0.91) mean of percentage leaf damage compared to matag (38.92±0.90), tagnanan (33.64±0.86) and oil palm (0±0.00). There was a significant (P<0.05) interactions between varieties and month on percentage of leaf damage in the field. The damaged incidence was highest in March and that the damage on pandan leaf was significantly (72.55±2.05) higher on matag (70.03±2.16), tagnanan (55.68±2.96) and oil palm (0±0.00).
Rawat, Pragati; Agarwal, Swatantra; Tripathi, Siddhi
2017-09-01
Purpose: Tissue conditioners are used for healing of abused oral tissues. They may harbour microorganisms causing oral diseases such as candidiasis compromising the health of the patient. Also, addition of antifungal agents into tissue conditioner may alter its properties. This study compares the anti-fungal property and mechanical properties of tissue conditioner containing different antifungal agents. Methods: Three antifungal agents, one synthetic - fluconazole, and two natural - oregano oil and virgin coconut oil were added into the tissue conditioner (Viscogel) in different concentrations. The antifungal property, tensile bond strength and viscoelasticity of Viscogel containing these antifungal agents were assessed after 24 hours, three days and seven days. Results: While, the highest antifungal activity was shown by Viscogel containing fluconazole, the maximum tensile bond strength was found to be of Viscogel alone (control). Although Viscogel alone and in combination of fluconazole showed deterioration in viscoelasticity, Viscogel in combination of natural agents showed no significant changes over the period of seven days. Conclusion: Incorporation of the natural agents in the tissue conditioner can be used as an effective alternative to systemic or topical synthetic antifungal agents.
Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed
2016-01-01
Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/ PMID:26827236
Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults.
Vijayakumar, Venugopal; Shankar, Nagashree R; Mavathur, Ramesh; Mooventhan, A; Anju, Sood; Manjunath, N K
2018-02-20
Background There exist controversies about the health effects of coconut. Fresh coconut consumption on human health has not been studied substantially. Fresh coconut consumption is a regular part of the diet for many people in tropical countries like India, and thus there is an increasing need to understand the effects of fresh coconut on various aspects of health. Aim To compare the effects of increased saturated fatty acid (SFA) and fiber intake, provided by fresh coconut, versus monounsaturated fatty acid (MUFA) and fiber intake, provided by a combination of groundnut oil and groundnuts, on anthropometry, serum insulin, glucose levels and blood pressure in healthy adults. Materials Eighty healthy volunteers, randomized into two groups, were provided with a standardized diet along with either 100 g fresh coconut or an equivalent amount of groundnuts and groundnut oil for a period of 90 days. Assessments such as anthropometric measurements, blood pressure, blood sugar and insulin levels were performed before and after the supplementation period. Results Results of this study showed a significant reduction in fasting blood sugar (FBS) in both the groups. However, a significant reduction in body weight was observed in the coconut group, while a significant increase in diastolic pressure was observed in the groundnut group. Conclusions Results of this study suggest that fresh coconut-added diet helps reduce blood glucose levels and body weight in normal healthy individuals.
Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C
2016-12-01
The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.
Intrauterine administration of plant oils inhibits luteolysis in the mare.
Wilsher, S; Allen, W R
2011-01-01
The maternal recognition of pregnancy (MRP) signal in the mare has not been determined, although oestrogens have been proposed as a potential candidate. To determine effects of intrauterine administration of oestrogen and various oils on cyclic luteolysis in the mare. Intrauterine oestradiol or fatty acids may suppress luteolysis in the cycling mare when administered during late dioestrus. A single 1 ml dose of slow-release oestradiol (10 mg/ml) in fractionated coconut oil was infused into the uterine lumen of cycling mares on Days 6, 8, 10, 12 or 14 post ovulation (n=12 in each group). Four further groups, each of 12 mares, received an intrauterine infusion of either 1 ml of fractionated coconut oil, peanut oil, mineral oil or a slow-release preparation of oestradiol (10 mg/ml) in mineral oil on Day 10 post ovulation. Serial blood samples were assayed for progesterone concentrations to monitor luteal function. Intrauterine administration of oestradiol in fractionated coconut oil showed peak efficacy at Day 10 when luteolysis was delayed in 11/12 (92%) mares. The ability of the treatment to delay luteolysis was not significantly different when administered on Days 8 (9/12; 75%), 12 (10/12; 83%) or 14 (6/12; 50%) of dioestrus, but declined significantly when given on Day 6 (3/12; 25%). Oestradiol was not needed to initiate luteostasis since fractionated coconut oil alone or peanut oil administered at Day 10 induced the same high rate of luteal persistence (11/12; 92% for both oils). In contrast, mineral oil did not prolong luteal lifespan, either when administered alone (2/12; 17%) or combined with oestradiol (3/12; 25%). These results do not unequivocally rule out a possible involvement of embryonic oestrogens in MRP in the mare but suggest it is unlikely. The results demonstrate that plant oils can postpone luteolysis, suggesting they may modulate synthesis or release of prostaglandins from the mare's endometrium. Administration of fractionated coconut or peanut oil on Day 10 post ovulation provides an effective and practical method of prolonging luteal function ('pseudopregnancy') thereby suppressing unwanted oestrous behaviour. Further studies to elucidate the mechanism by which this is achieved may increase understanding of both luteostasis and MRP signal in the mare. © 2010 EVJ Ltd.
Ganji, V; Kies, C V
1996-03-01
The objective of this study was to investigate the effect of psyllium husk fiber supplementation to the diets of soybean and coconut oil on serum lipids in normolipidemic humans. A 28-day study was divided into four 7-day experimental periods. Dietary periods were soybean oil (SO), soybean oil plus psyllium fiber (SO + PF), coconut oil (CO) and coconut oil plus psyllium fiber (CO + PF), and were arranged to a randomized cross over design. Ten subjects consumed controlled diet containing 30% fat calories (20% from test oils and 10% from controlled diet) and 20 g per day of psyllium during fiber supplementation periods. SO + PF diet significantly reduced serum cholesterol compared with SO diet (P < 0.001). CO + PF diet significantly reduced serum cholesterol compared with CO diet (P < 0.014). Hypocholesterolemic response was greater with SO + PF compared with CO + PF (0.36 mmol 1(-1) vs 0.31 mmol 1(-1)). Reductions in low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were parallel to reductions of serum cholesterol. SO diet decreased, while CO diet increased serum cholesterol, LDL cholesterol and apo B. Very-low density lipoprotein cholesterol, high-density lipoprotein cholesterol and apo A-1 were unaffected by psyllium fiber and saturation of fat. Reduction of serum cholesterol was due to reduction of LDL cholesterol. Psyllium fiber supplementation lowered serum cholesterol regardless of saturation level of dietary fat.
Fernando, W M A D B; Martins, Ian J; Goozee, K G; Brennan, Charles S; Jayasena, V; Martins, R N
2015-07-14
Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and may be beneficial to people developing or already with memory impairment, as in Alzheimer's disease (AD). Coconut is classified as a highly nutritious 'functional food'. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hypertension - these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins) found in coconut may assist in preventing the aggregation of amyloid-β peptide, potentially inhibiting a key step in the pathogenesis of AD. The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.
2010-01-01
Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether effects attributed to its phenolic fraction are exerted at transcriptional level in vivo. To achieve this goal, we aimed at identifying expression changes in genes which could be mediated by virgin olive oil phenol compounds in the human. Results Postprandial gene expression microarray analysis was performed on peripheral blood mononuclear cells during postprandial period. Two virgin olive oil-based breakfasts with high (398 ppm) and low (70 ppm) content of phenolic compounds were administered to 20 patients suffering from metabolic syndrome following a double-blinded, randomized, crossover design. To eliminate the potential effect that might exist in their usual dietary habits, all subjects followed a similar low-fat, carbohydrate rich diet during the study period. Microarray analysis identified 98 differentially expressed genes (79 underexpressed and 19 overexpressed) when comparing the intake of phenol-rich olive oil with low-phenol olive oil. Many of these genes seem linked to obesity, dyslipemia and type 2 diabetes mellitus. Among these, several genes seem involved in inflammatory processes mediated by transcription factor NF-κB, activator protein-1 transcription factor complex AP-1, cytokines, mitogen-activated protein kinases MAPKs or arachidonic acid pathways. Conclusion This study shows that intake of virgin olive oil based breakfast, which is rich in phenol compounds is able to repress in vivo expression of several pro-inflammatory genes, thereby switching activity of peripheral blood mononuclear cells to a less deleterious inflammatory profile. These results provide at least a partial molecular basis for reduced risk of cardiovascular disease observed in Mediterranean countries, where virgin olive oil represents a main source of dietary fat. Admittedly, other lifestyle factors are also likely to contribute to lowered risk of cardiovascular disease in this region. PMID:20406432
Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R
2012-09-01
Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes in extra virgin olive oil during storage. The essential oil of the oregano variety called "Cordobes" exhibited better protecting effect on sensory properties of olive oil than the other oregano varieties. The addition of oregano essential oil should be considered for the food industry as a natural source of antioxidant additives for preserving sensory properties in extra virgin olive oil and other similar food products. © 2012 Institute of Food Technologists®
Virgin Olive Oil and Hypertension.
Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Abia, Rocio; Muriana, Francisco Jg
2016-01-01
The incidence of high blood pressure (BP) along with other cardiovascular (CV) risk factors on human health has been studied for many years. These studies have proven a link between unhealthy dietary habits and sedentary lifestyle with the onset of hypertension, which is a hallmark of CV and cerebrovascular diseases. The Mediterranean diet, declared by the UNESCO as an Intangible Cultural Heritage since 2013, is rich in vegetables, legumes, fruits and virgin olive oil. Thanks to its many beneficial effects, including those with regard to lowering BP, the Mediterranean diet may help people from modern countries to achieve a lower occurrence of CV disease. Data from human and animal studies have shown that the consumption of virgin olive oil shares most of the beneficial effects of the Mediterranean diet. Virgin olive oil is the only edible fat that can be consumed as a natural fruit product with no additives or preservatives, and contains a unique constellation of bioactive entities, namely oleic acid and minor constituents. In this review, we summarize what is known about the effects of virgin olive oil on hypertension.
How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.
Beltran, Gabriel; Sánchez, Raquel; Sánchez-Ortiz, Araceli; Aguilera, Maria P; Bejaoui, Mohamed A; Jimenez, Antonio
2016-08-01
Olives dropped on the ground naturally sometimes are not separated from those fresh and healthy collected from the tree for harvest and processing. In this work we compared the quality, ethanol content and bioactive components of virgin olive oils from ground-picked olives, tree-picked fruits and their mixture. Ground-picked olives produced 'Lampante' virgin olive oils; these are of a lower quality category, because of important alterations in chemical and sensory characteristics. Ethyl esters showed the highest values, although under the regulated limit. The mixture of ground and tree-picked olives gave oils classified as 'virgin' because of sensory defects, although the quality parameters did not exceed the limits for the 'extra' category. Ethanol content showed a significant increase in the oils from ground- picked olives and their mixture with respect to those from tree-picked fruits. Furthermore, bioactive compounds showed a significant decrease as fruit quality was poorer. Ground-picked olives must be harvested and processed separately since they produce low-quality virgin olive oils with sensory defects and lower concentrations of bioactive compounds. The higher acidity and ethanol concentration observed in oils from ground-picked fruits or their mixture may help ethyl ester synthesis during storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Martínez Gila, Diego Manuel; Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier
2018-03-25
Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation.
Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier
2018-01-01
Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation. PMID:29587403
Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias
2015-06-01
The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P < 0.05) in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) when FOO was compared with CG and OO, respectively. Hydroperoxides showed a significant decrease (P < 0.05) when FOO was compared with CG, whereas there was an increase in total peroxyl radical-trapping antioxidant potential/advanced oxidation protein products (TRAP/AOPP; P < 0.05) in FOO when compared with FO. In relation to baseline values, there was a significant decrease (P < 0.05) in LDL-C values, and TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C indexes in FOO. There was also a decrease (P < 0.05) in hydroperoxides, in AOPP and in AOPP/TRAP index in FOO, and an increase (P < 0.05) in TRAP/AOPP index in FOO and in TRAP/uric acid ratio in OO. The present study provides evidence that increased dietary ω-3 polyunsaturated fatty acids and extra virgin olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in patients with MetS. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential effects of dietary fats on sympathetic nervous system activity in the rat.
Young, J B; Walgren, M C
1994-01-01
Fat feeding stimulates sympathetic nervous system (SNS) activity in rats. To determine if fats vary in their potency as stimulants of the SNS, [3H]norepinephrine ([3H]NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of animals fed lab chow diets supplemented with safflower oil, coconut oil, or medium-chain triglycerides (MCT). At 5 days, all three fats accelerated [3H]NE turnover in heart and did so equally, but only when the fat supplement represented an increase in energy intake. However, after 14 days, safflower oil and coconut oil but not MCT increased [3H]NE turnover in heart compared with turnover rates obtained in animals fed isoenergetic amounts of chow. Furthermore, the stimulatory effect of safflower oil on [3H]NE turnover was statistically greater than that seen in animals fed equivalent amounts of coconut oil. In vivo synthesis of NE assessed by accumulation of dopamine (DA) in heart following inhibition of dopamine-beta-hydroxylase (D beta H) was likewise highest in safflower oil-fed rats and lowest in those fed MCT. Thus, sympathetic activation by dietary fat varies among different fats, suggesting a role for fatty acid intake in dietary regulation of the SNS.
Status of the bioactive phytoceuticals during deep-fat frying of snack food using nutra-coconut oil.
Maneesh Kumar, M; Faiza, Sheema; Debnath, Sukumar; Nasirullah
2017-10-01
The present study was carried out to study the physico-chemical changes that take place in both product and oil during the deep fat frying of a traditional savoury snack 'kodubale', at 120-160 °C for 120-600 s using coconut oil (CO) and nutra-coconut oil (NCO). Further, kinetic studies on moisture loss, oil uptake, color and degradation of β-carotene, total polyphenol content and antioxidant activity for kodubale was carried out during frying as a function of temperature and time. The study showed that the kinetic coefficients for above parameters increased with temperature and time and the data obtained were well fitted with first order kinetic model. The results also revealed that NCO fried product retained major phenolic acids due to the presence of antioxidants in the NCO which was enriched with flaxseed oil concentrate. The fatty acids profile of oil extracted from products obtained by frying using NCO was characterized with higher ω-3 and ω-6 fatty acids content as compared to same obtained using CO. However, the breaking strength and sensory characteristics of CO and NCO fried kodubale was found to have no significant difference ( p < 0.05).
40 CFR 52.2770 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... approval, the sulfur-in-fuel-oil limitation to 1.5 percent, by weight, applicable to Martin Marietta... weight, applicable to Martin Marietta Alumina and the Hess Oil Virgin Islands Corporation, both located..., applicable to Martin Marietta Alumina and the Hess Oil Virgin Islands Corporation, both located in the...
Martín-Peláez, Sandra; Mosele, Juana Ines; Pizarro, Neus; Farràs, Marta; de la Torre, Rafael; Subirana, Isaac; Pérez-Cano, Francisco José; Castañer, Olga; Solà, Rosa; Fernandez-Castillejo, Sara; Heredia, Saray; Farré, Magí; Motilva, María José; Fitó, Montserrat
2017-02-01
To investigate the effect of virgin olive oil phenolic compounds (PC) alone or in combination with thyme PC on blood lipid profile from hypercholesterolemic humans, and whether the changes generated are related with changes in gut microbiota populations and activities. A randomized, controlled, double-blind, crossover human trial (n = 12) was carried out. Participants ingested 25 mL/day for 3 weeks, preceded by 2-week washout periods, three raw virgin olive oils differing in the concentration and origin of PC: (1) a virgin olive oil (OO) naturally containing 80 mg PC/kg, (VOO), (2) a PC-enriched virgin olive oil containing 500 mg PC/kg, from OO (FVOO), and (3) a PC-enriched virgin olive oil containing a mixture of 500 mg PC/kg from OO and thyme, 1:1 (FVOOT). Blood lipid values and faecal quantitative changes in microbial populations, short chain fatty acids, cholesterol microbial metabolites, bile acids, and phenolic metabolites were analysed. FVOOT decreased seric ox-LDL concentrations compared with pre-FVOOT, and increased numbers of bifidobacteria and the levels of the phenolic metabolite protocatechuic acid compared to VOO (P < 0.05). FVOO did not lead to changes in blood lipid profile nor quantitative changes in the microbial populations analysed, but increased the coprostanone compared to FVOOT (P < 0.05), and the levels of the faecal hydroxytyrosol and dihydroxyphenylacetic acids, compared with pre-intervention values and to VOO, respectively (P < 0.05). The ingestion of a PC-enriched virgin olive oil, containing a mixture of olive oil and thyme PC for 3 weeks, decreases blood ox-LDL in hypercholesterolemic humans. This cardio-protective effect could be mediated by the increases in populations of bifidobacteria together with increases in PC microbial metabolites with antioxidant activities.
1987-04-27
have imported these materials at prices higher than the material prices set by the state. The price of coconut oil in the southern provinces has...important source of exports. Here it is necessary to pay attention to developing the various kinds of food products: vegetables, beans, peanuts, oil ...short-term industrial crops, and must effectively develop such long-range industrial crops as coffee, tea, pepper, coconuts , etc., to fully utilize
Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed
2016-06-01
With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.
Quiles, José L; Huertas, Jesús R; Ochoa, Julio J; Battino, Maurizio; Mataix, José; Mañas, Mariano
2003-04-01
We investigated whether the intake of virgin olive oil or sunflower oil and performance of physical exercise (at different states) affect plasma levels of triacylglycerols, total cholesterol, and fatty acid profile in rats. The study was carried out with six groups of male rats subjected for 8 wk to a diet based on virgin olive oil (three groups) or sunflower oil (three groups) as dietary fat. One group for each diet acted as sedentary control; the other two groups ran in a treadmill for 8 wk at 65% of the maximum oxygen consumption. One group for each diet was killed 24 h after the last bout of exercise and the other was killed immediately after the exercise performance. Triacylglycerols, total cholesterol, and fatty acid profile were analyzed in plasma. Analysis of variance was used to test differences among groups. Animals fed on virgin olive oil had lower triacylglycerol and cholesterol values. Physical exercise reduced these parameters with both dietary treatments. Fatty acid profile showed higher monounsaturated fatty acid proportion in virgin olive fed oil animals and a higher omega-6 polyunsaturated fatty acid proportion in sunflower oil fed animals. Physical exercise reduced the levels of monounsaturated fatty acids with both diets and increased the proportions of omega-3 polyunsaturated fatty acids. Results from the present study supported the idea that physical exercise and the intake of virgin olive oil are very good ways of reducing plasma triacylglycerols and cholesterol, which is desirable in many pathologic situations. Concerning findings on fatty acid profile, we had results similar to those of other investigators regarding the effect of different sources of dietary fat on plasma. The most interesting results came from the effect of physical exercise, with significant increases in the levels of omega-3 polyunsaturated fatty acids, which may contribute to the antithrombotic state and lower production of proinflammatory prostanoids attributed to physical exercise.
Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed
2016-01-01
Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/. © The Author(s) 2016. Published by Oxford University Press.
Natural oils and waxes: studies on stick bases.
Budai, Lívia; Antal, István; Klebovich, Imre; Budai, Marianna
2012-01-01
The objective of the present article was to examine the role of origin and quantity of selected natural oils and waxes in the determination of the thermal properties and hardness of stick bases. The natural oils and waxes selected for the study were sunflower, castor, jojoba, and coconut oils. The selected waxes were yellow beeswax, candelilla wax, and carnauba wax. The hardness of the formulations is a critical parameter from the aspect of their application. Hardness was characterized by the measurement of compression strength along with the softening point, the drop point, and differential scanning calorimetry (DSC). It can be concluded that coconut oil, jojoba oil, and carnauba wax have the greatest influence on the thermal parameters of stick bases.
Medium-chain triglyceride feeding in premature infants: effects on calcium and magnesium absorption.
Tantibhedhyangkul, P; Hashim, S A
1978-04-01
The effect of medium-chain triglycerides (MCT) on the absorption of calcium and magnesium in premature infants was studied in 34 infants with birth weights lower than 2,000 gm. The infants were divided into three groups and fed three formulas similar in nutrient content except for the type of fat, as follows: group 1 (control): corn oil, oleo, and coconut oil (39:41:20); group 2: MCT, corn oil, and coconut oil (40:40:20); group 3: MCT and corn oil (80:20). The infants fed MCT-containing formulas absorbed significantly more calcium than the control group. Magnesium absorption was significantly increased in the 80% MCT group.
Virgin and recycled engine oil differentiation: a spectroscopic study.
Al-Ghouti, Mohammad A; Al-Atoum, Lina
2009-01-01
As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied.
Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil
NASA Astrophysics Data System (ADS)
Meena Kumari, M.; Philip, Daizy
2013-07-01
The use of edible oil for the synthesis of metal nanoparticles by wet chemical method is reported for the first time. The paper presents an environmentally benign bottom up approach for the synthesis of gold and silver nanoparticles using edible coconut oil at 373 K. The formation of silver nanoparticles is signaled by the brownish yellow color and that of gold nanoparticles by the purple color. Fine control over the nanoparticle size and shape from triangular to nearly spherical is achieved by varying the quantity of coconut oil. The nanoparticles have been characterized by UV-Visible, Transmission Electron Microscopy and X-ray Diffraction. The chemical interaction of capping agents with metal nanoparticles is manifested using Fourier Transform Infrared Spectroscopy. The stable and crystalline nanoparticles obtained using this simple method show remarkable size-dependent catalytic activity in the reduction of the cationic dye methylene blue (MB) to leuco methylene blue (LMB). The first order rate constants calculated uphold the size dependent catalytic activity of the synthesized nanoparticles.
Composition and properties of virgin pistachio oils and their by-products from different cultivars.
Ojeda-Amador, Rosa M; Fregapane, Giuseppe; Salvador, María Desamparados
2018-02-01
Pistachios (Pistacia vera) exhibit an interesting nutritional value, due to the high content of oleic acid and minor components with antioxidant and bioactive properties. This work aimed to characterize pistachio virgin oils and their partially defatted residual cakes, obtained from eight cultivars (Aegina, Avdat, Kastel, Kerman, Larnaka, Mateur, Napoletana, and Sirora). Interesting results on phenolics, tocopherols and antioxidant activity were observed, which were greatly affected by variety. Pistachio virgin oils are rich in healthy oleic acid (55-74%), phytosterols (3200-7600mg/kg) and γ-tocopherol (550-720mg/kg). A high content of phenolic compounds (8600-15000mg/kg gallic acid equivalents) and the corresponding antioxidant activities (12-46 and 155-496mmol/kg for DPPH and ORAC) of the residual cakes demonstrate their potential applications as functional ingredients and as rich sources of bioactive compounds. Moreover, virgin pistachio oils possess peculiar and pleasant sensory characteristics, contributing greater added value to the consumers compared to refined vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Melucci, Dora; Bendini, Alessandra; Tesini, Federica; Barbieri, Sara; Zappi, Alessandro; Vichi, Stefania; Conte, Lanfranco; Gallina Toschi, Tullia
2016-08-01
At present, the geographical origin of extra virgin olive oils can be ensured by documented traceability, although chemical analysis may add information that is useful for possible confirmation. This preliminary study investigated the effectiveness of flash gas chromatography electronic nose and multivariate data analysis to perform rapid screening of commercial extra virgin olive oils characterized by a different geographical origin declared in the label. A comparison with solid phase micro extraction coupled to gas chromatography mass spectrometry was also performed. The new method is suitable to verify the geographic origin of extra virgin olive oils based on principal components analysis and discriminant analysis applied to the volatile profile of the headspace as a fingerprint. The selected variables were suitable in discriminating between "100% Italian" and "non-100% Italian" oils. Partial least squares discriminant analysis also allowed prediction of the degree of membership of unknown samples to the classes examined. Copyright © 2016. Published by Elsevier Ltd.
Ochoa, Julio J.; Llamas-Elvira, José M.; López-Frías, Magdalena
2017-01-01
The role of dietary fat unsaturation and the supplementation of coenzyme Q have been evaluated in relation to bone health. Male Wistar rats were maintained for 6 or 24 months on two diets varying in the fat source, namely virgin olive oil, rich in monounsaturated fatty acids, or sunflower oil, rich in n-6 polyunsaturated fatty acids. Both dietary fats were supplemented or not with coenzyme Q10 (CoQ10). Bone mineral density (BMD) was evaluated in the femur. Serum levels of osteocalcin, osteopontin, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), adrenocorticotropin (ACTH) and parathyroid hormone (PTH), as well as urinary F2-isoprostanes were measured. Aged animals fed on virgin olive oil showed higher BMD than those fed on sunflower oil. In addition, CoQ10 prevented the age-related decline in BMD in animals fed on sunflower oil. Urinary F2-isoprostanes analysis showed that sunflower oil led to the highest oxidative status in old animals, which was avoided by supplementation with CoQ10. In conclusion, lifelong feeding on virgin olive oil or the supplementation of sunflower oil on CoQ10 prevented, at least in part mediated by a low oxidative stress status, the age-related decrease in BMD found in sunflower oil fed animals. PMID:28661441
Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years
Lazzerini, Cristina; Domenici, Valentina
2017-01-01
Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651
Devi, Amita; Khatkar, B S
2018-01-01
This study was carried out to investigate the effect of fatty acid composition and microstructure properties of fats and oils on the textural properties of cookie dough and quality attributes of cookies. Fatty acid composition and microstructure properties of six fats and oils (butter, hydrogenated fat, palm oil, coconut oil, groundnut oil, and sunflower oil) were analyzed. Sunflower oil was found to be the most unsaturated oil with 88.39% unsaturated fatty acid content. Coconut oil and palm oil differed from other fats and oils by having an appreciable amount of lauric acid (59.36%) and palmitic acid (42.14%), respectively. Microstructure size of all fats and oils ranged from 1 to 20 μm being the largest for coconut oil and the smallest for palm oil. In palm oil, small rod-shaped and randomly arranged microstructures were observed, whereas sunflower oil and groundnut oil possessed large, scattered ovule shaped microstructures. It was reported that sunflower oil produced the softest dough, the largest cookie spread and the hardest cookie texture, whereas hydrogenated fat produced the stiffest dough, the lowest spread and most tender cookies. Statistical analysis depicted that palmitic acid and oleic acid demonstrated a positive correlation with dough hardness. Linoleic acid exhibited positive link with cookie spread ratio (r = 0.836**) and breaking strength (r = 0.792**). Microstructure size showed a significant positive relationship with dough density (r = 0.792**), cookie density (r = 0.386*), spread ratio (r = 0.312*), and breaking strength (r = 0.303*).
Ghosh, Probir Kumar; Bhattacharjee, Paramita; Mitra, Souvik; Poddar-Sarkar, Mousumi
2014-01-01
Coconut copra from West coast tall variety, cultivated in Kerala, India, was subjected to aqueous and solvent extractions (using n-hexane). Additionally, oil was extracted from the copra in Soxhlet assembly using petroleum ether (b.p. 60–80°C). Physicochemical and phytochemical analyses were conducted for the extracts and the oil, with commercial coconut oil as the experimental control. The physicochemical analyses showed that the aqueous extract of copra was milky-white in color with a sweet odor, while the solvent extract was pale yellow and odorless. The commercial oil had 0.08 ± 0.02% oleic acid and a TOTOX value of 7.73 ± 0.78, lower than the Soxhlet extracted oil. Among all the extracts and oils, best phytochemical properties, antioxidant activity (DPPH activity, IC50 value 0.04 ± 0.01 mg/mL), total phenol (0.96 ± 0.04 mg gallic acid eq./g dry copra), reducing power (40.49 ± 1.84 mg BHT eq./g dry copra), and anti-inflammatory activity (NO activity, IC50 value 0.77 ± 0.06 mg/mL) were obtained in the commercial coconut oil, followed by the Soxhlet extracted oil, aqueous extract, and solvent extract. Fatty acid composition analyses showed mainly medium chain fatty acids in the copra oil with lauric acid as the predominant fatty acid (51.88% and 44.84% in Soxhlet extracted and commercial oils, resp.). PMID:26904626
Ghosh, Probir Kumar; Bhattacharjee, Paramita; Mitra, Souvik; Poddar-Sarkar, Mousumi
2014-01-01
Coconut copra from West coast tall variety, cultivated in Kerala, India, was subjected to aqueous and solvent extractions (using n-hexane). Additionally, oil was extracted from the copra in Soxhlet assembly using petroleum ether (b.p. 60-80°C). Physicochemical and phytochemical analyses were conducted for the extracts and the oil, with commercial coconut oil as the experimental control. The physicochemical analyses showed that the aqueous extract of copra was milky-white in color with a sweet odor, while the solvent extract was pale yellow and odorless. The commercial oil had 0.08 ± 0.02% oleic acid and a TOTOX value of 7.73 ± 0.78, lower than the Soxhlet extracted oil. Among all the extracts and oils, best phytochemical properties, antioxidant activity (DPPH activity, IC50 value 0.04 ± 0.01 mg/mL), total phenol (0.96 ± 0.04 mg gallic acid eq./g dry copra), reducing power (40.49 ± 1.84 mg BHT eq./g dry copra), and anti-inflammatory activity (NO activity, IC50 value 0.77 ± 0.06 mg/mL) were obtained in the commercial coconut oil, followed by the Soxhlet extracted oil, aqueous extract, and solvent extract. Fatty acid composition analyses showed mainly medium chain fatty acids in the copra oil with lauric acid as the predominant fatty acid (51.88% and 44.84% in Soxhlet extracted and commercial oils, resp.).
Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention.
DebMandal, Manisha; Mandal, Shyamapada
2011-03-01
Coconut, Cocos nucifera L., is a tree that is cultivated for its multiple utilities, mainly for its nutritional and medicinal values. The various products of coconut include tender coconut water, copra, coconut oil, raw kernel, coconut cake, coconut toddy, coconut shell and wood based products, coconut leaves, coir pith etc. Its all parts are used in someway or another in the daily life of the people in the traditional coconut growing areas. It is the unique source of various natural products for the development of medicines against various diseases and also for the development of industrial products. The parts of its fruit like coconut kernel and tender coconut water have numerous medicinal properties such as antibacterial, antifungal, antiviral, antiparasitic, antidermatophytic, antioxidant, hypoglycemic, hepatoprotective, immunostimulant. Coconut water and coconut kernel contain microminerals and nutrients, which are essential to human health, and hence coconut is used as food by the peoples in the globe, mainly in the tropical countries. The coconut palm is, therefore, eulogised as 'Kalpavriksha' (the all giving tree) in Indian classics, and thus the current review describes the facts and phenomena related to its use in health and disease prevention. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.
2016-02-01
This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent
Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed
2018-03-21
Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.
Measurement of spices and seasonings in India: Opportunities for cancer epidemiology and prevention
Ferrucci, Leah M.; Daniel, Carrie R.; Kapur, Kavita; Chadha, Puneet; Shetty, Hemali; Graubard, Barry I.; George, Preethi S.; Osborne, Whitney; Yurgalevitch, Susan; Devasenapathy, Niveditha; Chatterjee, Nilanjan; Prabhakaran, Dorairaj; Gupta, Prakash C.; Mathew, Aleyamma; Sinha, Rashmi
2011-01-01
Bioactive components of many foods added during cooking have potential antioxidant, anti-inflammatory, antimicrobial, antibacterial and chemopreventive properties. However, epidemiologic studies generally do not collect detailed information on these items which include spices, chilies, coconuts, garlic, onions, and oils. Since India has some of the highest spice consumption in the world, we developed a computer-based food preparer questionnaire to estimate per capita consumption of 19 spices, chilies, coconuts, garlic, onions, and 13 cooking oils among 3,625 participants in the India Health Study, a multicenter pilot study in three regions of India. We observed notable regional differences in consumption of spices, chilies, coconut, garlic, and onions. In Trivandrum, over 95 percent of the participants consumed 12 different spices, while in New Delhi and Mumbai, 95 percent of participants consumed only four and five spices, respectively. Cooking oil use also varied, as ghee was most common in New Delhi (96.8%) followed by mustard seed oil (78.0%), while in Trivandrum the primary oil was coconut (88.5%) and in Mumbai it was peanut (68.5%). There was some variation in consumption by education, income, and religion. Using a novel method for assessing food items primarily added during cooking, we successfully estimated per capita consumption within an epidemiologic study. Based on basic science research and suggestive ecologic level data on cancer incidence and spice consumption, improving epidemiologic assessment of these potentially chemopreventive food items may enhance our understanding of diet and cancer risk. PMID:21338207
Measurement of spices and seasonings in India: opportunities for cancer epidemiology and prevention.
Ferrucci, Leah M; Daniel, Carrie R; Kapur, Kavita; Chadha, Puneet; Shetty, Hemali; Graubard, Barry I; George, Preethi S; Osborne, Whitney; Yurgalevitch, Susan; Devasenapathy, Niveditha; Chatterjee, Nilanjan; Prabhakaran, Dorairaj; Gupta, Prakash C; Mathew, Aleyamma; Sinha, Rashmi
2010-01-01
Bioactive components of many foods added during cooking have potential antioxidant, anti-inflammatory, antimicrobial, antibacterial and chemopreventive properties. However, epidemiologic studies generally do not collect detailed information on these items, which include spices, chilies, coconuts, garlic, onions, and oils. Since India has some of the highest spice consumption in the world, we developed a computer-based food preparer questionnaire to estimate per capita consumption of 19 spices, chilies, coconuts, garlic, onions, and 13 cooking oils among 3,625 participants in the India Health Study, a multicenter pilot study in three regions of India. We observed notable regional differences in consumption of spices, chilies, coconut, garlic, and onions. In Trivandrum, over 95 percent of the participants consumed 12 different spices, while in New Delhi and Mumbai, 95 percent of participants consumed only four and five spices, respectively. Cooking oil use also varied, as ghee was most common in New Delhi (96.8%) followed by mustard seed oil (78.0%), while in Trivandrum the primary oil was coconut (88.5%) and in Mumbai it was peanut (68.5%). There was some variation in consumption by education, income, and religion. Using a novel method for assessing food items primarly added during cooking, we successfully estimated per capita consumption within an epidemiologic study. Based on basic science research and suggestive ecologic level data on cancer incidence and spice consumption, improving epidemiologic assessment of these potentially chemopreventive food items may enhance our understanding of diet and cancer risk.
Khan, Tariq Mahmood; Iqbal, Sohail; Rashid, Muhammad Adnan
2017-01-01
Extra virgin olive oil (EVOO) is fruit oil with rich source of monounsaturated fats and powerful antioxidants. It acts as hypolipidemic agent and significant decrease of plasma lipids level was observed with EVOO use. Atorvastatin is hypolipidemic drug commonly used for treatment of hyperlipidaemia. The purpose of this study was to determine & compare the lipid lowering effect of EVOO with atorvastatin in type 2 diabetic dyslipidaemia which is leading cause of microvascular diseases. This randomised controlled trial was conducted on 60 already diagnosed cases of type 2 diabetes mellitus with dyslipidaemia. All sixty subjects were divided randomly into 2 groups. Atorvastatin 40 mg was given to Group One and two tablespoons of extra virgin olive oil orally per day was given to Group Two. Blood was collected for estimation of plasma lipids level at base line, 4th week, and 6th weeks in two groups and was compared statistically. The present study demonstrated 20-40% lipid lowering effect of atorvastatin on plasma lipids level with 9-16% increase in HDL while extra virgin olive oil showed 14-25% reduction in plasma lipids with 8-12% increase in HDL-cholesterol level. This study concludes that both atorvastatin and extra virgin olive oil are effective in reducing plasma lipids level in type 2 diabetic dyslipidaemia with more prominent effect of atorvastatin than EVOO.
NASA Astrophysics Data System (ADS)
Zheng, Lijuan; Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Zeng, Heping; Yu, Jin
2014-09-01
Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined.
Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development.
Lou-Bonafonte, José M; Arnal, Carmen; Navarro, María A; Osada, Jesús
2012-07-01
As olive oil is the main source of calories in the Mediterranean diet, a great deal of research has been devoted to characterizing its role in atherosclerosis. Virgin olive oil is an oily matrix that contains hydrocarbons, mainly squalene; triterpenes such as uvaol, erythrodiol, oleanolic, and maslinic acid; phytosterols; and a wide range of phenolic compounds comprising simple phenols, flavonoids, secoiridoids, and lignans. In this review, we analyze the studies dealing with atherosclerosis and olive oil in several species. A protective role of virgin olive oil against atherosclerosis has been shown in ApoE-deficient mice and hamsters. In the former animal, sex, dose, and dietary cholesterol are modulators of the outcome. Contradictory findings have been reported for rabbits, a circumstance that could be due to the profusion of experimental designs, differing in terms of doses and animal strains, as well as sources of olive oils. This role has yet to be fully validated in humans. Minor components of olive oil have been shown to be involved in atherosclerosis protection. Nevertheless, evidence of the potential of isolated compounds or the right combination of them to achieve the antiatherosclerotic effect of virgin olive oil is inconclusive and will undoubtedly require further experimental support. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suitability of polystyrene as a functional barrier layer in coloured food contact materials.
Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy
2015-01-01
Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.
Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.
Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G
2014-06-01
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.
2017-10-01
Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.
Quality monitoring of extra-virgin olive oil using an optical sensor
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Paolesse, R.; Di Natale, C.; Del Nobile, A.; Benedetto, A.; Mentana, A.
2006-04-01
An optical sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra-virgin olive oils, and shows effective potential for achieving a non destructive olfactory perception of oil ageing. The sensor is an optical scanner, fitted with an array of metalloporphyrin-based sensors. The scanner provides exposure of the sensors to the flow of the oil vapor being tested, and their sequential spectral interrogation. Spectral data are then processed using chemometric methodologies.
Hachicha Hbaieb, Rim; Kotti, Faten; García-Rodríguez, Rosa; Gargouri, Mohamed; Sanz, Carlos; Pérez, Ana G
2015-05-01
The ability of olive endogenous enzymes β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POX), to determine the phenolic profile of virgin olive oil was investigated. Olives used for oil production were stored for one month at 20 °C and 4 °C and their phenolic content and enzymatic activities were compared to those of ripening olive fruits. Phenolic and volatile profiles of the corresponding oils were also analysed. Oils obtained from fruits stored at 4 °C show similar characteristics to that of freshly harvested fruits. However, the oils obtained from fruits stored at 20 °C presented the lowest phenolic content. Concerning the enzymatic activities, results show that the β-glucosidase enzyme is the key enzyme responsible for the determination of virgin olive oil phenolic profile as the decrease in this enzyme activity after 3 weeks of storage at 20 °C was parallel to a dramatic decrease in the phenolic content of the oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification of 3-MCPD esters to verify the adulteration of extra virgin olive oil.
Hung, Wei-Ching; Peng, Guan-Jhih; Tsai, Wen-Ju; Chang, Mei-Hua; Liao, Chia-Ding; Tseng, Su-Hsiang; Kao, Ya-Min; Wang, Der-Yuan; Cheng, Hwei-Fang
2017-09-01
The adulteration of olive oil is an important issue around the world. This paper reports an indirect method by which to identify 3-monochloropropane-1,2-diol (3-MCPD) esters in olive oils. Following sample preparation, the samples were spiked with 1,2-bis-palmitoyl-3-chloropropanediol standard for analysis using gas chromatograph-tandem mass spectrometry. The total recovery ranged from 102.8% to 105.5%, the coefficient of variation ranged from 1.1% to 10.1%, and the limit of quantification was 0.125 mg/kg. The content of 3-MCPD esters in samples of refined olive oil (0.97-20.53 mg/kg) exceeded those of extra virgin olive oil (non-detected to 0.24 mg/kg). These results indicate that the oil refining process increased the content of 3-MCPD esters, which means that they could be used as a target compound for the differentiation of extra virgin olive oil from refined olive oil in order to prevent adulteration.
Influence of anatomical site and topical formulation on skin penetration of sunscreens
Benson, Heather AE; Sarveiya, Vikram; Risk, Stacey; Roberts, Michael S
2005-01-01
Sunscreen products are widely used to protect the skin from sun-related damage. Previous studies have shown that some sunscreen chemicals are absorbed across the skin to the systemic circulation. The current study shows that absorption into the skin of sunscreen chemicals applied to the face is up to four times greater than that of the same product applied to the back. This has implications for the way sunscreen products are formulated and may allow the use of less potent products on the face compared with the rest of the body. The effect of formulation vehicles on the release and skin penetration of the common sunscreen agent benzophenone-3 (common name oxybenzone) was also assessed. Penetration of benzophenone-3 across excised human epidermis and high-density polyethylene (HDPE) membrane was measured using in vitro Franz-type diffusion cells. Penetration and epidermal retention was measured following application of infinite and finite (epidermis only) doses of benzophenone-3 in five vehicles: liquid paraffin, coconut oil, 50:50 ethanol:coconut oil, aqueous cream BP, and oily cream BP. Highest benzophenone-3 skin retention was observed for the ethanol:coconut oil combination. Maximal and minimal benzophenone-3 fluxes were observed from liquid paraffin and coconut oil, respectively. The alcohol-based vehicle exhibited low benzophenone-3 release from the vehicle but high skin penetration and retention. PMID:18360561
NASA Astrophysics Data System (ADS)
Dukhi, Veresha; Bissessur, Ajay; Ngila, Catherine Jane; Ijumba, Nelson Mutatina
2013-07-01
The blending of transformer oil (used mainly as an insulating oil) with appropriate synthetic antioxidants, such as BHT (2,6-di-tert-butyl-4-methylphenol) and DBP (2,6-di-tert-butylphenol) have been previously reported. This article is focused on the use of antioxidant extracts from turmeric (Curcuma longa), a natural source. Turmeric is well known for its antimicrobial, antioxidant and anticarcinogenic properties owing to the active nature of its components. Extracts from powdered turmeric were subsequently blended into naphthenic-based uninhibited virgin transformer oil, hereinafter referred to as extract-oil blends (E-OB). Thin-layer chromatography (TLC) of the oil blends revealed that five components extracted from turmeric powder were successfully blended into the oil. Subsequent gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of the compounds: curcumene, sesquiphellandrene, ar-turmerone, turmerone and curlone. Thermogravimetric analysis (TGA) of the extract-oil blends, containing various levels of extracts, revealed an average temperature shift of ˜8.21°C in the initial onset of degradation in comparison to virgin non-blended oil. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that an increase in the mass aliquot of turmeric extracts in the transformer oil increased the free radical scavenging activity of the oil. Electrical properties of the oil investigated showed that the dissipation factor in the blended oil was found to be lower than that of virgin transformer oil. Evidently, a lower dissipation value renders the oil blend as a superior insulator over normal virgin non-blended oil. This investigation elucidated improved physico-chemical properties of transformer oil blended with turmeric antioxidant extracts.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.
2010-09-01
A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.
Olutoye, M A; Hameed, B H
2013-03-01
An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694
Pérez, Ana G; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil.
da Silva, Débora de Cássia; Tavares, Maryane Gabriela; do Nascimento, Camila Karina Brito; Lira, Eduardo Carvalho; Dos Santos, Ângela Amâncio; Maia, Luciana Maria Silva de Seixas; Batista-de-Oliveira Hornsby, Manuella
2018-03-01
Virgin coconut oil (CO) and treadmill exercise have been reported to improve memory performance in young rats. CO has also been associated with antistress properties in young, stressed mice. Therefore, in this study we aimed to investigate whether CO and treadmill exercise could synergistically ameliorate the effects of chronic stress on anxiety-like behavior and episodic-like memory in young rats. The rats received CO and were exercised (Ex) from the 15 th to the 45 th day of life. The animals were supplemented with CO (10 mL kg -1 day -1 ) or a vehicle (V, distilled water and 0.009% Cremophor) via oral gavage. The Ex animals were placed for 30 min day -1 on a treadmill, with the speed gradually increasing from the first week to the last. From the 46 th to the 54 th postnatal day, with the exception of the 51 st and the 52 nd day, all rats were subjected to restraint stress. Afterwards, all rats underwent the open-field test to evaluate locomotor activity and anxiety-like behavior. To evaluate episodic-like memory, all animals underwent tests to recognize object identity and special location. Lastly, lipid profile and murinometric parameters were evaluated. A two-way ANOVA test followed by a Tukey test demonstrated that the CO&Ex group explored more of the unprotected central area of the OFT (27.04 ± 4.03 s, p < 0.01), when compared to the control group (15.36 ± 2.54 s). CO&Ex spent more time exploring the novel location of the object (71.62 ± 3.04%, p < 0.01), when compared to the control group (58.62 ± 2.48%). CO and exercise during lactation can ameliorate the effects of stress on anxiety-like behavior and episodic-like memory in young rats.
Diel de Amorim, Mariana; Nielsen, Kayla; Cruz, Raissa Karolliny Salgueiro; Card, Claire
2016-07-15
Intrauterine plant oil infusion, including fractionated coconut oil, has been previously found to be a safe, inexpensive, and reversible method of prolonging the luteal phase in mares when administered on Day 10 of the estrous cycle. Our objective was to understand the uteroovarian response to the administration of fractionated coconut oil infusion in the uterus of diestrous mares. We hypothesized that intrauterine coconut oil administration on Day 10 would prolong luteal life span in a dose-dependent fashion and would result in higher serum progesterone levels than untreated mares at the expected time of luteolysis. Light-horse mares (n = 18) were examined using transrectal palpation and ultrasonography to determine if they had a normal interovulatory interval and were then examined daily in estrus until the day of ovulation (Day 0) and then every other day during an estrous cycle. Jugular blood was drawn on Day 11, Day 13, Day 15, and Day 17, centrifuged, and serum stored until assayed for progesterone (P4; Siemens Coat-a-Count Progesterone RIA, Los Angeles, CA, USA). Mares were randomly assigned to treatment and studied over one to two estrous cycles with a rest cycle after each treatment cycle. Groups were: control (n = 5), fractionated coconut oil 1.0 mL (Miglyol 810; Sasol Oil, Witten, Germany) infused in the uterus with an artificial insemination pipette on Day 10 (Group 1; n = 5) and fractionated coconut oil 0.5 mL infused in the uterus with an embryo transfer gun, on Day 10 (Group 2; n = 5). All statistical analyses were performed using analytical software (Stata SE, version 13.1, College Station, TX, USA) at P < 0.05. Data were first evaluated using the Shapiro-Wilk test for normality. Differences between groups in days to luteolysis (DTL) were examined using analysis of variance and Bonferroni, and the effect of day and treatment on P4 levels were examined using the Kruskal-Wallis and Dunn's all pairwise test. There was a significant difference in DTL between the groups (P = 0.0083), with fewer DTL in Group 1 compared to control (P = 0.011) and to Group 2 (P = 0.034). There was a significant effect of day (P < 0.0001) on P4 levels with Day 11 P4 levels higher than Day 15 and Day 17 and Day 13 P4 levels higher than Day 15 or Day 17 (P < 0.03). There was a significant effect of treatment group (P = 0.0098) on P4 levels with control and Group 2 levels higher than Group 1 mares (P = 0.0012, P = 0.0495, respectively). We concluded that intrauterine administration of 1 mL of fractionated coconut oil lowered P4 levels in diestrus in a dose-dependent fashion and did not prolonged the luteal phase of the mares. Copyright © 2016 Elsevier Inc. All rights reserved.
Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S
2016-01-15
The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015 Society of Chemical Industry.
Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique
2017-01-01
The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).
The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction
NASA Astrophysics Data System (ADS)
SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.
2016-03-01
Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.
Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan
2012-12-15
Coconut cream and fusel oil, two low-cost natural substances, were used as starting materials for the biosynthesis of flavour-active octanoic acid esters (ethyl-, butyl-, isobutyl- and (iso)amyl octanoate) using lipase Palatase as the biocatalyst. The Taguchi design method was used for the first time to optimize the biosynthesis of esters by a lipase in an aqueous system of coconut cream and fusel oil. Temperature, time and enzyme amount were found to be statistically significant factors and the optimal conditions were determined to be as follows: temperature 30°C, fusel oil concentration 9% (v/w), reaction time 24h, pH 6.2 and enzyme amount 0.26 g. Under the optimised conditions, a yield of 14.25mg/g (based on cream weight) and signal-to-noise (S/N) ratio of 23.07 dB were obtained. The results indicate that the Taguchi design method was an efficient and systematic approach to the optimisation of lipase-catalysed biological processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS.
de Souza, Letícia Maria; de Santana, Felipe Bachion; Gontijo, Lucas Caixeta; Mazivila, Sarmento Júnior; Borges Neto, Waldomiro
2015-09-01
This paper proposes a new method for the quantitative analysis of soybean oil (SO) and sunflower oil (SFO) as adulterants in extra virgin flaxseed oil (EFO) by applying Mid Infrared Spectroscopy (MIR) associated with chemometric technique of Partial Least Squares (PLS). The PLS models were built in accordance with standard method ASTM E1655-05 and these showed good correlation between the reference values and those calculated using the PLS models with low error values, with R = 0.998 for SFO and R = 0.999 for SO in EFO. These models were validated analytically in accordance with Brazilian and international guidelines through the estimate of figures of merit parameters, thus showing an effective and feasible method to control the quality of extra virgin flaxseed oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nangia, Sushma; Paul, Vinod Kumar; Deorari, Ashok Kumar; Sreenivas, V; Agarwal, Ramesh; Chawla, Deepak
2015-12-01
Topical emollient application reduces trans-epidermal water loss (TEWL) in preterm neonates. Coconut oil used traditionally for infant massage in India has not been evaluated for the same. Very low birth weight (VLBW) neonates were randomized at 12 h of age to Oil (n = 37) or Control (n = 37) groups. Oil group neonates received twice-daily coconut oil application without massage, and Control group received standard care. TEWL was measured every 12 h using an evaporimeter till Day 7 when skin swabs were obtained for bacterial growth and skin condition was assessed using a validated score. Birth weight (g; mean ± SD: 1213 + 214 vs. 1164 + 208, p = 0.31), gestation [week; median (interquartile range): 32 (31-33) vs. 32 (29-33), p = 0.10] and other baseline variables were comparable. TEWL was significantly reduced (g/m(2)/h, mean difference: -6.80, 95% confidence interval: -3.48, -10.15; p < 0.01) with better skin condition and lower bacterial growth in the Oil group (20% vs. 60%, p < 0.01). Coconut oil application reduced TEWL without increasing skin colonization in VLBW neonates. NCT01758068. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Smith, P. R.; Cimato, A.; Attilio, C.; Huertas, R.; Melgosa Latorre, Manuel; Bertho, A. C.; O'Rourke, B.; McMillan, N. D.
2005-05-01
Scattered colorimetry, i.e., multi-angle and multi-wavelength absorption spectroscopy performed in the visible spectral range, was used to map three kinds of liquids: extra virgin olive oils, frying oils, and detergents in water. By multivariate processing of the spectral data, the liquids could be classified according to their intrinisic characteristics: geographic area of extra virgin olive oils, degradation of frying oils, and surfactant types and mixtures in water.
Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.
Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M
2014-10-01
Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wagner, Claudia; Bonte, Anja; Brühl, Ludger; Niehaus, Karsten; Bednarz, Hanna; Matthäus, Bertrand
2018-04-01
Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Bowen Yoho, W S; Swank, V A; Eastridge, M L; O'Diam, K M; Daniels, K M
2013-04-01
The objective of this study was to determine whether altering the fatty acid (FA) profile of milk replacer (MR) with coconut oil, which contains a high concentration of medium-chain FA, to more closely match the FA profile typically found in whole milk from Jersey cows, would improve Jersey calf performance. Male (n=18) and female (n=32) Jersey calves were assigned at birth to 1 of 4 liquid diets: (1) pasteurized Jersey saleable whole milk [pSWM; 27.9% crude protein (CP) and 33.5% fat]; (2) 29.3% CP and 29.1% fat MR, containing 100% of fat as edible lard (100:00); (3) 28.2% CP and 28.0% fat MR, containing 80% of fat as lard and 20% as coconut oil (80:20); and (4) 28.2% CP and 28.3% fat MR, containing 60% of the fat as lard and 40% as coconut oil (60:40). Calves were fed their respective liquid diet twice daily during wk 1 through 7 and once daily until weaning (approximately wk 8). Calves had ad libitum access to grain and water, and calves were monitored 1 wk postweaning. Average daily gain and body weight did not differ by treatment. Calves fed pSWM tended to have greater hip height (HH) than calves fed 80:20 (80.5 vs. 79.7 cm). Coconut oil tended to have a quadratic effect on HH, with calves fed 100:00, 80:20, and 60:40 at 79.2, 79.7, and 78.5 cm, respectively. No difference was observed in withers height between pSWM and 80:20. Coconut oil had a quadratic effect on withers height, with calves fed 100:00, 80:20, and 60:40 at 76.6, 77.5, and 76.5 cm, respectively. Change in HH from birth to 9 wk tended to be greater for calves fed pSWM than calves fed 80:20 (0.218 vs. 0.194 cm/d). Calves fed pSWM had higher milk dry matter intake (DMI) than calves fed 80:20 (0.580 vs. 0.518 kg/d). No effect of coconut oil was observed on milk DMI. Grain DMI and total DMI did not differ among treatments. Calves fed pSWM had an increase in days with a fecal score >2 compared with calves fed 80:20 (4.24 vs. 2.00 d). Coconut oil had a quadratic effect on fecal score, with calves fed 100:00, 80:20, and 60:40 scoring 4.00, 2.00, and 3.63 d, respectively. Respiratory score did not differ among treatments. In conclusion, DMI and average daily gain were similar among treatments. However, differences among treatments in skeletal growth and fecal scores are indicative of some possible benefits of medium-chain FA on calf health and performance. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief
2015-12-01
Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.
USDA-ARS?s Scientific Manuscript database
Objective: The cardiovascular benefit of extra virgin olive oils (EVOOs) may increase with their phenolic content or concentrations of specific phytochemicals. Oleocanthal and oleacin are EVOO phenolics, and as oleocanthal is a cyclooxygenase (COX) inhibitor, it may influence platelet aggregation. T...
Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco
2016-09-01
This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.
Woolley, Christine; Garcia, Antonio A; Santello, Marco
2017-04-12
Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1-50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term "ereptiospiration" is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.
Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning
NASA Astrophysics Data System (ADS)
Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.
2017-07-01
As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.
Sayago, Ana; González-Domínguez, Raúl; Beltrán, Rafael; Fernández-Recamales, Ángeles
2018-09-30
This work explores the potential of multi-element fingerprinting in combination with advanced data mining strategies to assess the geographical origin of extra virgin olive oil samples. For this purpose, the concentrations of 55 elements were determined in 125 oil samples from multiple Spanish geographic areas. Several unsupervised and supervised multivariate statistical techniques were used to build classification models and investigate the relationship between mineral composition of olive oils and their provenance. Results showed that Spanish extra virgin olive oils exhibit characteristic element profiles, which can be differentiated on the basis of their origin in accordance with three geographical areas: Atlantic coast (Huelva province), Mediterranean coast and inland regions. Furthermore, statistical modelling yielded high sensitivity and specificity, principally when random forest and support vector machines were employed, thus demonstrating the utility of these techniques in food traceability and authenticity research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content.
Tena, Noelia; Aparicio, Ramón; García-González, Diego L
2009-11-11
The monitoring of frying oils by an effective and rapid method is one of the demands of food companies and small food retailers. In this work, a method based on ATR-FTIR has been developed for monitoring the oil degradation in frying procedures. The IR bands changing during frying in sunflower, soybean, and virgin olive oils have been examined in their linear relationship with the content of total polar compounds, which is a preferred parameter for frying control. The bands assigned to conjugated and isolated trans double bonds that are commonly used for the determination of trans content provided the best relationships. Then, the area covering 978-960 cm(-1) was chosen to build a model for predicting polar material content for the particular case of virgin olive oil. A virgin olive oil was heated up to 94 h, and samples collected every 2 h constituted the training set. These samples were analyzed to obtain their FTIR spectra and to determine the composition of fatty acids and the content of total polar compounds. The excellent results predicting the polar material content (adjusted R(2) 0.997) was successfully validated with an external set of samples. The analysis of the fatty acid composition confirmed the relationship between the trans content and the content of total polar compounds.
Volpe, Maria Grazia; De Cunzo, Fausta; Siano, Francesco; Paolucci, Marina; Barbarisi, Costantina; Cammarota, Giancarlo
2014-01-01
The purpose of this study was to investigate three types of extraction methods of extra virgin olive oil (EVOO) from the same cultivar (Ortice olive cultivar): traditional or pressing (T) system, decanter centrifugation (DC) system and a patented horizontal axis decanter centrifugation (HADC) system. Oil samples were subjected to chemical analyses: free acidity, peroxide value, ultraviolet light absorption K232 and K270, total polyphenols, antioxidant capacity, volatile compounds and olfactory characteristics by electronic nose. The two centrifugation systems showed better free acidity and peroxides value but total polyphenol content was particularly high in extra virgin olive oil produced by patented HADC system. Same volatile substances that positively characterize the oil aroma were found in higher amount in the two centrifugation systems, although some differences have been detected between DC and HADC system, other were found in higher amount in extra virgin olive oil produced by T system. The electronic nose analysis confirmed these results, principal component analysis (PCA) and correlation matrix showed the major differences between EVOO produced by T and HADC system. Taken together the results showed that DC and HADC systems produce EVOO with better characteristics than T system and patented HADC is the best extraction system.
Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study
2014-01-01
Background It is unknown whether individuals at high cardiovascular risk sustain a benefit in cardiovascular disease from increased olive oil consumption. The aim was to assess the association between total olive oil intake, its varieties (extra virgin and common olive oil) and the risk of cardiovascular disease and mortality in a Mediterranean population at high cardiovascular risk. Methods We included 7,216 men and women at high cardiovascular risk, aged 55 to 80 years, from the PREvención con DIeta MEDiterránea (PREDIMED) study, a multicenter, randomized, controlled, clinical trial. Participants were randomized to one of three interventions: Mediterranean Diets supplemented with nuts or extra-virgin olive oil, or a control low-fat diet. The present analysis was conducted as an observational prospective cohort study. The median follow-up was 4.8 years. Cardiovascular disease (stroke, myocardial infarction and cardiovascular death) and mortality were ascertained by medical records and National Death Index. Olive oil consumption was evaluated with validated food frequency questionnaires. Multivariate Cox proportional hazards and generalized estimating equations were used to assess the association between baseline and yearly repeated measurements of olive oil intake, cardiovascular disease and mortality. Results During follow-up, 277 cardiovascular events and 323 deaths occurred. Participants in the highest energy-adjusted tertile of baseline total olive oil and extra-virgin olive oil consumption had 35% (HR: 0.65; 95% CI: 0.47 to 0.89) and 39% (HR: 0.61; 95% CI: 0.44 to 0.85) cardiovascular disease risk reduction, respectively, compared to the reference. Higher baseline total olive oil consumption was associated with 48% (HR: 0.52; 95% CI: 0.29 to 0.93) reduced risk of cardiovascular mortality. For each 10 g/d increase in extra-virgin olive oil consumption, cardiovascular disease and mortality risk decreased by 10% and 7%, respectively. No significant associations were found for cancer and all-cause mortality. The associations between cardiovascular events and extra virgin olive oil intake were significant in the Mediterranean diet intervention groups and not in the control group. Conclusions Olive oil consumption, specifically the extra-virgin variety, is associated with reduced risks of cardiovascular disease and mortality in individuals at high cardiovascular risk. Trial registration This study was registered at controlled-trials.com (http://www.controlled-trials.com/ISRCTN35739639). International Standard Randomized Controlled Trial Number (ISRCTN): 35739639. Registration date: 5 October 2005. PMID:24886626
Musumeci, Giuseppe; Trovato, Francesca Maria; Pichler, Karin; Weinberg, Annelie Martina; Loreto, Carla; Castrogiovanni, Paola
2013-12-01
Mediterranean diet includes a relatively high fat consumption mostly from monounsaturated fatty acids mainly provided by olive oil, the principal source of culinary and dressing fat. The beneficial effects of olive oil have been widely studied and could be due to its phytochemicals, which have been shown to possess anti-inflammatory properties. Lubricin is a chondroprotective glycoprotein and it serves as a critical boundary lubricant between opposing cartilage surfaces. A joint injury causes an initial flare of cytokines, which decreases lubricin expression and predisposes to cartilage degeneration such as osteoarthritis. The aim of this study was to evaluate the role of extra-virgin olive oil diet and physical activity on inflammation and expression of lubricin in articular cartilage of rats after injury. In this study we used histomorphometric, histological, immunocytochemical, immunohistochemical, western blot and biochemical analysis for lubricin and interleukin-1 evaluations in the cartilage and in the synovial fluid. We report the beneficial effect of physical activity (treadmill training) and extra-virgin olive oil supplementation, on the articular cartilage. The effects of anterior cruciate ligament transection decrease drastically the expression of lubricin and increase the expression of interleukin-1 in rats, while after physical activity and extra-virgin olive oil supplemented diet, the values return to a normal level compared to the control group. With our results we can confirm the importance of the physical activity in conjunction with extra-virgin olive oil diet in medical therapy to prevent osteoarthritis disease in order to preserve the articular cartilage and then the entire joint.
Violante, B; Gerbaudo, L; Borretta, G; Tassone, F
2009-11-01
Olive oil, the principal fat of Mediterranean Diet, is known to improve several cardiovascular risk factors at relatively high doses together with intensive modifications of dietary habits. Since this is hard to obtain in the long term, an intervention with encapsulated oil supplements might be more feasible. Aim of this preliminary study was to investigate the effects of the supplementation of a moderate amount of encapsulated extra virgin olive oil vs a lower dose in mildly hypercholesterolemic subjects, as part of their established diet, on blood lipid profile. A prospective randomized study was performed. Thirty-four mildly hypercholesterolemic subjects [age, mean+/-SD: 46+/-7 yr; total cholesterol (TC): 235+/-28 mg/dl] were randomly assigned to receive 2 g (group A) or 4 g (group B) per os of extra-virgin olive oil for 3 months. TC, triglycerides (TG), LDL cholesterol, HDL cholesterol, apolipoprotein A1 (Apo-AI), apolipoprotein B (Apo-B), and atherogenic index of plasma (AIP) were evaluated at the beginning and at the end of the study. In group B, but not in group A, a significant reduction of Apo-B values (7%) was observed; TG concentrations showed a trend towards reduction and Apo-A1 values a trend towards increase (9%). A significant decrease in Apo-B/Apo-A1 ratio (p<0.01) was also observed in group B. Extra virgin olive oil supplementation significantly decreased AIP from baseline in group B (p<0.05). The results of the present study seem to suggest that the daily supplementation, on top of the normal diet, of at least 4 g of extra virgin olive oil, in mildly hypercholesterolemic subjects, is associated to favorable modifications of the plasmatic lipid profile.
Medium-chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption.
Tantibhedhyangkul, P; Hashim, S A
1975-03-01
The effect of medium-chain triglycerides (MCT) on the "physiological" steatorrhea of prematurity was studied in 34 infants with birthweights below 2,000 gm. The infants were divided into three groups and fed three formulas identical in nutrient content except for the type of fat, as follows: group 1 (control): corn oil, oleo, and coconut oil (39:41:20); group 2: MCT, corn oil, and coconut oil (40:40:20); group 3: MCT and corn oil (80:20). The infants fed MCT-containing formulas had striking diminution in stool volume and frequency. Their total fat absorption was significantly improved when compared with controls; nitrogen absorption was slightly but significantly improved in the 80% MCT group. The results also suggest that nitrogen sparing may be enhanced in premature infants fed MCT-containing formulas.
Reid, Anna-Jean M; Budge, Suzanne M
2015-01-01
Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.
A novel reliable method of DNA extraction from olive oil suitable for molecular traceability.
Raieta, Katia; Muccillo, Livio; Colantuoni, Vittorio
2015-04-01
Extra virgin olive oil production has a worldwide economic impact. The use of this brand, however, is of great concern to Institutions and private industries because of the increasing number of fraud and adulteration attempts to the market products. Here, we present a novel, reliable and not expensive method for extracting the DNA from commercial virgin and extra virgin olive oils. The DNA is stable overtime and amenable for molecular analyses; in fact, by carrying out simple sequence repeats (SSRs) markers analysis, we characterise the genetic profile of monovarietal olive oils. By comparing the oil-derived pattern with that of the corresponding tree, we can unambiguously identify four cultivars from Samnium, a region of Southern Italy, and distinguish them from reference and more widely used varieties. Through a parentage statistical analysis, we also identify the putative pollinators, establishing an unprecedented and powerful tool for olive oil traceability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extra virgin olive oil consumption reduces the risk of osteoporotic fractures in the PREDIMED trial.
García-Gavilán, J F; Bulló, M; Canudas, S; Martínez-González, M A; Estruch, R; Giardina, S; Fitó, M; Corella, D; Ros, E; Salas-Salvadó, J
2018-02-01
The incidence of osteoporotic fractures is lower in countries in the Mediterranean basin. Virgin olive oil, a key component of the Mediterranean Diet (MDiet), with recognised beneficial effects on metabolism and cardiovascular health, may decrease the risk of osteoporotic fractures. The aim to this study was to explore the effect of chronic consumption of total olive oil and its varieties on the risk of osteoporosis-related fractures in a middle-aged and elderly Mediterranean population. We included all participants (n = 870) recruited in the Reus (Spain) centre of the PREvención con DIeta MEDiterránea (PREDIMED) trial. Individuals, aged 55-80 years at high cardiovascular risk, were randomized to a MedDiet supplemented with extra-virgin olive oil, a MedDiet supplemented with nuts, or a low-fat diet. The present analysis was an observational cohort study nested in the trial. A validated food frequency questionnaire was used to assess dietary habits and olive oil consumption. Information on total osteoporotic fractures was obtained from a systematic review of medical records. The association between yearly repeated measurements of olive oil consumption and fracture risk was assessed by multivariate Cox proportional hazards. We documented 114 incident cases of osteoporosis-related fractures during a median follow-up of 8.9 years. Treatment allocation had no effect on fracture risk. Participants in the highest tertile of extra-virgin olive oil consumption had a 51% lower risk of fractures (HR:0.49; 95% CI:0.29-0.81. P for trend = 0.004) compared to those in the lowest tertile after adjusting for potential confounders. Total and common olive oil consumption was not associated with fracture risk. Higher consumption of extra-virgin olive oil is associated with a lower risk of osteoporosis-related fractures in middle-aged and elderly Mediterranean population at high cardiovascular risk. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Vegetable oil fortified feeds in the nutrition of very low birthweight babies.
Vaidya, U V; Hegde, V M; Bhave, S A; Pandit, A N
1992-12-01
Two kinds of oils (i) Polyunsaturated fatty acids (PUFA) rich Safflower oil, and (ii) Medium chain triglyceride (MCT) rich Coconut oil were added to the feeds of 46 very low birthweight (VLBW) babies to see if such a supplementation is capable of enhancing their weight gain. Twenty two well matched babies who received no fortification served as controls. The oil fortification raised the energy density of the feeds from approximately 67 kcal/dl to 79 kcal/dl. Feed volumes were restricted to a maximum of 200 ml/kg/day. The mean weight gain was highest and significantly higher than the controls in the Coconut oil group (19.47 +/- 8.67 g/day or 13.91 g/day). Increase in the triceps skinfold thickness and serum triglycerides were also correspondingly higher in this group. The lead in the weight gain in this group continued in the follow up period (corrected age 3 months). As against this, higher weight gain in Safflower oil group (13.26 +/- 6.58 g/day) as compared to the controls (11.59 +/- 5.33 g/day), failed to reach statistically significant proportions, probably because of increased statistically significant proportions, probably because of increased steatorrhea (stool fat 4+ in 50% of the samples tested). The differences in the two oil groups are presumably because of better absorption of MCT rich coconut oil. However, individual variations in weight gain amongst the babies were wide so that some control babies had higher growth rates than oil fortified ones. The technique of oil fortification is fraught with dangers of intolerance, contamination and aspiration. Long term effects of such supplementation are largely unknown.(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of virgin olive oil versus piroxicam phonophoresis on exercise-induced anterior knee pain.
Nakhostin-Roohi, Babak; Khoshkhahesh, Faegheh; Bohlooli, Shahab
2016-01-01
The main purpose of this study was to evaluate the effects of virgin olive oil phonophoresis on female athletes' anterior knee pain (AKP). A double blinded randomized clinical trial was conducted. Ninety-three female athletes suffering from AKP voluntarily participated in this study. Patients were randomly assigned into olive oil (n=31), piroxicam (n=31) or base gel phonophoresis (n=31) groups. At the baseline visit, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire was filled by subjects who were then treated with olive oil, piroxicam or pure phonophoresis for 12 sessions. After 6 and 12 sessions of physiotherapy, subjects filled the questionnaire again. Main outcomes were significant improvement in pain, stiffness, physical function, and total WOMAC scores. Although, there was a significant reduction in symptoms of AKP at the end of the therapy in all groups (p<0.05), but in olive oil group, this improvement was seen after 6 sessions of treatment (p<0.001). A significant difference between olive oil group and piroxicam and/or phonophoresis group was observed after 6 sessions of therapy (p<0.05). It could be proposed that phonophoresis with virgin olive oil is as effective as piroxicam gel on lowering WOMAC scores of AKP in female athletes and also has several beneficial properties including faster effect and shorter duration of therapy. The exact mechanism of beneficial action of virgin olive oil on AKP is not clear and requires further studies.
USDA-ARS?s Scientific Manuscript database
Recent studies on the use of near infrared (NIR) spectroscopy for the qualitative characterization of extra virgin olive oil, are reported and discussed in this paper. Research results confirms that NIR spectroscopy, combined with chemometric data analysis, allows to simultaneously evaluate all qual...
Nagashree, Rokkam Shankar; Manjunath, N K; Indu, M; Ramesh, M; Venugopal, V; Sreedhar, P; Pavithra, N; Nagendra, Hongasandra R
2017-07-01
The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.
Assunção, Monica L; Ferreira, Haroldo S; dos Santos, Aldenir F; Cabral, Cyro R; Florêncio, Telma M M T
2009-07-01
The effects of dietary supplementation with coconut oil on the biochemical and anthropometric profiles of women presenting waist circumferences (WC) >88 cm (abdominal obesity) were investigated. The randomised, double-blind, clinical trial involved 40 women aged 20-40 years. Groups received daily dietary supplements comprising 30 mL of either soy bean oil (group S; n = 20) or coconut oil (group C; n = 20) over a 12-week period, during which all subjects were instructed to follow a balanced hypocaloric diet and to walk for 50 min per day. Data were collected 1 week before (T1) and 1 week after (T2) dietary intervention. Energy intake and amount of carbohydrate ingested by both groups diminished over the trial, whereas the consumption of protein and fibre increased and lipid ingestion remained unchanged. At T1 there were no differences in biochemical or anthropometric characteristics between the groups, whereas at T2 group C presented a higher level of HDL (48.7 +/- 2.4 vs. 45.00 +/- 5.6; P = 0.01) and a lower LDL:HDL ratio (2.41 +/- 0.8 vs. 3.1 +/- 0.8; P = 0.04). Reductions in BMI were observed in both groups at T2 (P < 0.05), but only group C exhibited a reduction in WC (P = 0.005). Group S presented an increase (P < 0.05) in total cholesterol, LDL and LDL:HDL ratio, whilst HDL diminished (P = 0.03). Such alterations were not observed in group C. It appears that dietetic supplementation with coconut oil does not cause dyslipidemia and seems to promote a reduction in abdominal obesity.
Borsonelo, Elizabethe Cristina; Suchecki, Deborah; Galduróz, José Carlos Fernandes
2011-04-18
Prenatal stress (PNS) during critical periods of brain development has been associated with numerous behavioral and/or mood disorders in later life. These outcomes may result from changes in the hypothalamic-pituitary-adrenal (HPA) axis activity, which, in turn, can be modulated by environmental factors, such as nutritional status. In this study, the adult male offspring of dams exposed to restraint stress during the last semester of pregnancy and fed different diets were evaluated for depressive-like behavior in the forced swimming test and for the corticosterone response to the test. Female Wistar rats were allocated to one of three groups: regular diet, diet supplemented with coconut fat or with fish oil, offered during pregnancy and lactation. When pregnancy was confirmed, they were distributed into control or stress groups. Stress consisted of restraint and bright light for 45 min, three times per day, in the last week of pregnancy. The body weight of the adult offspring submitted to PNS was lower than that of controls. In the forced swimming test, time of immobility was reduced and swimming was increased in PNS rats fed fish oil and plasma corticosterone levels immediately after the forced swimming test were lower in PNS rats fed regular diet than their control counterparts; this response was reduced in control rats whose mothers were fed fish oil and coconut fat. The present results indicate that coconut fat and fish oil influenced behavioral and hormonal responses to the forced swimming test in both control and PNS adult male rats. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR Table 9 to Part 455 - Group 2 Mixtures
Code of Federal Regulations, 2011 CFR
2011-07-01
... fatty acids of coconut oil (coded 079). 505200 Isoparaffinic hydrocarbons. 1 Shaughnessey codes and.... 016601 2 Dry ice. 022003 Coal tar. 025001 Coal tar neutral oils. 025003 Creosote oil (Note: Derived from... BNOA. 063501 Kerosene. 063502 Mineral oil—includes paraffin oil from 063503. 063503 Petroleum...
40 CFR Table 9 to Part 455 - Group 2 Mixtures
Code of Federal Regulations, 2012 CFR
2012-07-01
... the fatty acids of coconut oil (coded 079). 505200 Isoparaffinic hydrocarbons. 1 Shaughnessey codes... aromatic naphtha. 016601 2 Dry ice. 022003 Coal tar. 025001 Coal tar neutral oils. 025003 Creosote oil... acids. 055601 BNOA. 063501 Kerosene. 063502 Mineral oil—includes paraffin oil from 063503. 063503...
40 CFR Table 9 to Part 455 - Group 2 Mixtures
Code of Federal Regulations, 2013 CFR
2013-07-01
... the fatty acids of coconut oil (coded 079). 505200 Isoparaffinic hydrocarbons. 1 Shaughnessey codes... aromatic naphtha. 016601 2 Dry ice. 022003 Coal tar. 025001 Coal tar neutral oils. 025003 Creosote oil... acids. 055601 BNOA. 063501 Kerosene. 063502 Mineral oil—includes paraffin oil from 063503. 063503...
40 CFR Table 9 to Part 455 - Group 2 Mixtures
Code of Federal Regulations, 2014 CFR
2014-07-01
... the fatty acids of coconut oil (coded 079). 505200 Isoparaffinic hydrocarbons. 1 Shaughnessey codes... aromatic naphtha. 016601 2 Dry ice. 022003 Coal tar. 025001 Coal tar neutral oils. 025003 Creosote oil... acids. 055601 BNOA. 063501 Kerosene. 063502 Mineral oil—includes paraffin oil from 063503. 063503...
Melguizo-Rodríguez, Lucía; Ramos-Torrecillas, Javier; Manzano-Moreno, Francisco Javier; Illescas-Montes, Rebeca; Rivas, Ana; Ruiz, Concepción; De Luna-Bertos, Elvira; García-Martínez, Olga
2018-01-01
The reported incidence of osteoporosis is lower in countries in which the Mediterranean diet predominates, and this apparent relationship may be mediated by the phenolic compounds present in olive oil. The objective of this study was to determine the effect of phenolic extracts from different varieties of extra-virgin olive oil (Picual, Arbequina, Picudo, and Hojiblanca) on the differentiation, antigenic expression, and phagocytic capacity of osteoblast-like MG-63 cells. At 24 h of treatment a significant increase in phosphatase alkaline activity and significant reductions in CD54, CD80, and HLA-DR expression and in phagocytic activity were observed in comparison to untreated controls. The in vitro study performed has demonstrated that phenolic compounds from different extra virgin olive oil varieties can modulate different parameters related to osteoblast differentiation and function.
Buratti, Susanna; Malegori, Cristina; Benedetti, Simona; Oliveri, Paolo; Giovanelli, Gabriella
2018-05-15
The aim of this work was to investigate the applicability of e-senses (electronic nose, electronic tongue and electronic eye) for the characterization of edible olive oils (extra virgin, olive and pomace) and for the assessment of extra virgin olive oil and olive oil quality decay during storage at different temperatures. In order to obtain a complete description of oil samples, physico-chemical analyses on quality and nutritional parameters were also performed. Data were processed by PCA and a targeted data processing flow-sheet has been applied to physico-chemical and e-senses dataset starting from data pre-processing introducing an innovative normalization method, called t0 centering. On e-senses data a powerful mid-level data fusion approach has been employed to extract relevant information from different analytical sources combining their individual contributions. On physico-chemical data, an alternative approach for grouping extra virgin olive oil and olive oil samples on the basis of their freshness was applied and two classes were identified: fresh and oxidized. A k-NN classification rule was developed to test the performance of e-senses to classify samples in the two classes of freshness and the average value of correctly classified samples was 94%. Results demonstrated that the combined application of e-senses and the innovative data processing strategy allows to characterize edible olive oils of different categories on the basis of their sensorial properties and also to follow the evolution during storage of extra-virgin olive oil and olive oil sensorial properties thus assessing the quality decay of oils. Copyright © 2018 Elsevier B.V. All rights reserved.
Thanarajoo, Sathis Sri; Kong, Lih Ling; Kadir, Jugah; Lau, Wei Hongi; Vadamalai, Ganesan
2014-06-01
A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd. Copyright © 2014 Elsevier B.V. All rights reserved.
Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.
2007-06-01
A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.
Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.
2007-07-01
A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.
Virgin olive oil yeasts: A review.
Ciafardini, Gino; Zullo, Biagi Angelo
2018-04-01
This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
An In Vitro Evaluation of Ozonized Organic Extra-Virgin Olive Oil on Giardia Lamblia Cysts.
Boland-Nazar, Najmeh Sadat; Eslamirad, Zahra; Sarmadian, Hossein; Ghasemikhah, Reza
2016-11-01
Giardia lamblia is a common intestinal parasite that has been reported all over the world. This study was conducted to evaluate the effect of ozonized organic extra-virgin olive oil on the cyst of G. lamblia . The olive oil was ozonized based on international standards and confirmed by the world health organization (WHO) at various times in a generator. The ozone concentration of olive oil was adjusted at 32, 64, 96, 128, 160 mg/g based on ozone absorption. Giardia lamblia cysts were isolated from heavily infected stool samples and the sucrose gradient flotation technique. Five groups of triple tubes containing Giardia cysts were exposed to olive oil with 32, 64, 96, 128, 160 ozone concentrations, and the sixth and seventh groups were exposed to non-ozonized olive oil and normal saline, respectively. The tubes were placed at room temperature, and every four hours, the mortality of the Giardia cysts was assessed. The results showed that the first five groups' mortality rate of Giardia cysts reached 100% in 100 hours. An increasing concentration of ozone in olive oil leads to an increase in the mortality rate of Giardia cysts. The results showed a significant difference in the mean time of the mortality in all the groups (P ≤ 0.05). Furthermore, the higher fatality effect of ozonized organic extra-virgin olive oil (Ozonized Olive Oil = OZO) was proved in comparison with metronidazole in vitro. We concluded that ozonized organic extra-virgin olive oil was a growth inhibitor of Giardia cysts, and concerning its compatibility with a biological system, it is recommended for further clinical trials.
Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Gaswirth, Stephanie B.; Pitman, Janet K.; Brownfield, Michael E.; Mercier, Tracey J.; Wandrey, Craig J.; Weaver, Jean N.
2013-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 19 million barrels of undiscovered, technically recoverable oil and 244 billion cubic feet of undiscovered natural gas in the Puerto Rico–U.S. Virgin Islands Exclusive Economic Zone.
Cavallo, Carla; Caracciolo, Francesco; Cicia, Gianni; Del Giudice, Teresa
2018-03-01
Over the years, niche-differentiation strategies and food policies have pushed quality standards of European extra-virgin olive oil towards a product that has a sensory profile consisting of fruity, bitter and pungent notes, with such oils having excellent healthy features. However, it is unclear whether typical consumers are ready for a richer and more complex sensory profile than the neutral one historically found on the market. This potential discrepancy is investigated in the present study aiiming to determine whether current demand is able to appreciate this path of quality enhancement. Implicit prices for each and every attribute of extra-virgin olive oil with a focus on sensory characteristics were investigated using a hedonic price model. Although confirming the importance of origin and terroir for extra-virgin olive oil, the results of the present study strongly confirm the discrepancy between what is currently valued on the market and what novel supply trends are trying to achieve in terms of the sensory properties of such products. Increasing consumer awareness about the direct link between the health quality of oils and their sensory profile appears to be necessary to make quality enhancement programs more successful on the market and hence more effective for companies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sato, M; Yoshida, S; Nagao, K; Imaizumi, K
2000-06-01
The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p < 0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.
Ben Hammouda, Ibtissem; Triki, Mehdi; Matthäus, Bertrand; Bouaziz, Mohamed
2018-04-04
The frying performance of pure refined olive-pomace oil (ROPO) and blended with refined coconut oil (RCO) (80:20) was compared during a frying operation of French fries at 180 °C. Blending polyunsaturated oils with highly saturated or monounsaturated oils has been studied extensively, however in literature there is no study has been reported so far on blending ROPO (rich in monounsaturated fatty acids) with RCO (rich in saturated fatty acids) to formulate new frying oils. At the end of the frying process, the blend of ROPO/RCO exhibited a higher chemical stability than the pure ROPO based on total polar compounds (TPC), and polymers. The rate of TPC formation was achieved 23.3% and 30.6% for the blend and the pure oil, respectively. Trans and free fatty acids content, as well as anisidine value were also observed to be the highest in the pure ROPO. This study evaluated the frying performance in the search for appropriate frying oils to deliver healthy fried products with optimized nutritional qualities.
Armero, Alix; Bocs, Stéphanie; This, Dominique
2017-01-01
The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/). PMID:28334050
Razquin, C; Martinez, J A; Martinez-Gonzalez, M A; Mitjavila, M T; Estruch, R; Marti, A
2009-12-01
The aim of this study was to analyze the influence of a Mediterranean dietary pattern on plasma total antioxidant capacity (TAC) after 3 years of intervention and the associations with adiposity indexes in a randomized dietary trial (PREDIMED trial) with high cardiovascular risk patients. 187 subjects were randomly selected from the PREDIMED-UNAV center after they completed 3-year intervention program. Participants were following a Mediterranean-style diet with high intake of virgin olive oil or high intake of nuts, or a conventional low-fat diet. Adiposity indexes were measured at baseline and at year 3. Plasma TAC was evaluated using a commercially available colorimetric assay kit. Plasma TAC in the control, olive oil and nuts groups was 2.01+/-0.15, 3.51+/-0.14 and 3.02+/-0.14 mM Trolox, respectively after adjusting for age and sex. The differences between the Mediterranean diet and control groups were statistically significant (P<0.001). Moreover higher levels of TAC were significantly associated with a reduction in body weight after 3 years of intervention among subjects allocated to the virgin olive oil group (B=-1.306; 95% CI=-2.439 to -0.173; P=0.025, after adjusting for age, sex and baseline body mass index). Mediterranean diet, especially rich in virgin olive oil, is associated with higher levels of plasma antioxidant capacity. Plasma TAC is related to a reduction in body weight after 3 years of intervention in a high cardiovascular risk population with a Mediterranean-style diet rich in virgin olive oil.
Arvanitoyannis, Ioannis S; Vlachos, Antonios
2007-01-01
The authenticity of products labeled as olive oils, and in particular as virgin olive oils, stands for a very important issue both in terms of its health and commercial aspects. In view of the continuously increasing interest in virgin olive oil therapeutic properties, the traditional methods of characterization and physical and sensory analysis were further enriched with more advanced and sophisticated methods such as HPLC-MS, HPLC-GC/C/IRMS, RPLC-GC, DEPT, and CSIA among others. The results of both traditional and "novel" methods were treated both by means of classical multivariate analysis (cluster, principal component, correspondence, canonical, and discriminant) and artificial intelligence methods showing that nowadays the adulteration of virgin olive oil with seed oil is detectable at very low percentages, sometimes even at less than 1%. Furthermore, the detection of geographical origin of olive oil is equally feasible and much more accurate in countries like Italy and Spain where databases of physical/chemical properties exist. However, this geographical origin classification can also be accomplished in the absence of such databases provided that an adequate number of oil samples are used and the parameters studied have "discriminating power."
Dietary triacylglycerol structure and saturated fat alter plasma and tissue fatty acids in piglets.
Innis, S M; Dyer, R; Quinlan, P T; Diersen-Schade, D
1996-05-01
Human and pig milk triacylglycerols contain a large proportion of palmitic acid (16:0) which is predominately esterified in the 2-position. Other dietary fats contain variable amounts of 16:0, with unsaturated fatty acids predominantly esterified in the 2-position. These studies determined if the amount or position of 16:0 in dietary fat influences the composition or distribution of liver, adipose tissue, lung, or plasma fatty acids in developing piglets. Piglets were fed to 18 d with sow milk or formula with saturated fat from medium-chain triglyceride (MCT), coconut or palm oil, or synthesized triacylglycerols (synthesized to specifically direct 16:0 to the 2-position) with, in total fatty acids, 30.7, 4.3, 6.5, 27.0, and 29.6% 16:0, and in 2-position fatty acids, 55.3, 0.4, 1.3, 4.4, and 69.9% 16:0, respectively. The percentage of 16:0 in the 2-position of adipose fat from piglets fed sow milk, palm oil, and synthesized triacylglycerols were similar and higher than in piglets fed MCT or coconut oil. Thus, the amount, not the position, of dietary 16:0 determines piglet adipose tissue 16:0 content. The effects of the diets on the plasma and liver triacylglycerols were similar, with significantly lower 16:0 in total and 2-position fatty acids of the MCT and coconut oil groups, and significantly higher 16:0 in the plasma and liver triacylglycerol 2-position of piglets fed the synthesized triacylglycerols rather than sow milk or palm oil. The lung phospholipid total and 2-position 16:0 was significantly lower in the MCT, coconut, and palm oil groups, but similar in the synthesized triacylglycerol group and sow milk group. The lung phospholipid total and 2-position percentage of arachidonic acid (20:4n-6) was significantly lower in all of the formula-fed piglets than in milk-fed piglets. The physiological significance of this is not known.
Patrikios, Ioannis S; Mavromoustakos, Thomas M
2014-01-29
The present work focuses on the characterization of molecules formed when virgin olive oil is heated at 130 °C for 24 h open in air, which are found to be strong agglutinins. The hemagglutinating activity of the newly formed molecule isolated from the heated virgin olive oil sample was estimated against human red blood cells (RBCs). Dimers and polymers (high molecular weight molecules) were identified through thin layer chromatography (TLC) of the oil mixture. (1)H and (13)C nuclear magnetic resonance (NMR) and gas chromatography-mass spectroscopy (GC-MS) were the methods used for structural characterization. Among others, oligomerization of at least two monounsaturated fatty acids (FA) by an ether linkage between the hydrocarbon chains is involved. Light microscopy was used to characterize and visualize the agglutination process. Agglutination without fusion or lysis was observed. It was concluded that the heating of virgin olive oil open in air, among other effects, produces oligomerization as well as polymerization of unsaturated FA, possibly of monohydroxy, monounsaturated FA that is associated with strong hemagglutinating activity against human RBCs. The nutritional value and the effects on human health of such oligomers are not discussed in the literature and remain to be investigated.
Collado-González, Jacinta; Pérez-López, David; Memmi, Houssem; Gijón, M Carmen; Medina, Sonia; Durand, Thierry; Guy, Alexandre; Galano, Jean-Marie; Ferreres, Federico; Torrecillas, Arturo; Gil-Izquierdo, Angel
2015-04-15
No previous information exists on the effects of water deficit on the phytoprostanes (PhytoPs) content in extra virgin olive oil from fruits of mature olive (Olea europaea L. cv. Cornicabra) trees during pit hardening. PhytoPs profile in extra virgin olive oil was characterized by the presence of 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP + ent-16-B1-PhytoP, and 9-L1-PhytoP + ent-9-L1-PhytoP. The qualitative and quantitative differences in PhytoPs content with respect to those reported by other authors indicate a decisive effect of cultivar, oil extraction technology, and/or storage conditions prone to autoxidation. The pit hardening period was critical for extra virgin olive oil composition because water deficit enhanced the PhytoPs content, with the concomitant potential beneficial aspects on human health. From a physiological and agronomical point of view, 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, and 16-B1-PhytoP + ent-16-B1-PhytoP could be considered as early candidate biomarkers of water stress in olive tree.
Dais, Photis; Spyros, Apostolos
2007-05-01
This review is a brief account on the application of a novel methodology to the quality control and authentication of extra-virgin olive oil. This methodology is based on the derivatization of the labile hydrogens of functional groups, such as hydroxyl and carboxyl groups, of olive oil constituents with the phosphorus reagent 2-chloro-4,4,5,5-tetramethyldioxaphospholane, and the use of the (31)P chemical shifts to identify the phosphitylated compounds. Various experimental aspects such as pertinent instrumentation, sample preparation, acquisition parameters and properties of the phosphorus reagent are reviewed. The strategy to assign the (31)P signals of the phosphitylated model compounds and olive oil constituents by employing 1D and 2D NMR experiments is presented. Finally, the capability of this technique to assess the quality and the genuineness of extra-virgin olive oil and to detect fraud is discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.
Borges, Thays H; Pereira, José Alberto; Cabrera-Vique, Carmen; Lara, Luis; Oliveira, Adelson F; Seiquer, Isabel
2017-01-15
Production of virgin olive oil is beginning in Brazil. This paper analyzes the characteristics of the EVOO Arbequina from Brazil in comparison with Spanish Arbequina from different regions. Quality parameters, oxidative stability, pigments, colour and fatty acid profile were assessed, and relationships with geographic and climatic conditions were studied. All the samples presented good quality and met EU standards for extra-virgin olive oil, but there were significant differences between regions and countries for many of the parameters evaluated. Major differences between Brazilian and Spanish samples were observed for free acidity and colour of the oils, as well as minor variations in the fatty acid profile. The colour differences were related to rainfall, whereas the fatty acid content was strongly influenced by altitude and temperature. These results highlight the fact that geographic area and environmental factors influence the characteristics of Arbequina oil and play an important role in newly introduced cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús
2017-04-01
Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production of phytase by Mucor racemosus in solid-state fermentation.
Bogar, Barbara; Szakacs, George; Pandey, Ashok; Abdulhameed, Sabu; Linden, James C; Tengerdy, Robert P
2003-01-01
Phytase production was studied by three Mucor and eight Rhizopus strains by solid-state fermentation (SSF) on three commonly used natural feed ingredients (canola meal, coconut oil cake, wheat bran). Mucor racemosus NRRL 1994 (ATCC 46129) gave the highest yield (14.5 IU/g dry matter phytase activity) on coconut oil cake. Optimizing the supplementation of coconut oil cake with glucose, casein and (NH(4))(2)SO(4), phytase production in solid-state fermentation was increased to 26 IU/g dry matter (DM). Optimization was carried out by Plackett-Burman and central composite experimental designs. Using the optimized medium phytase, alpha-amylase and lipase production of Mucor racemosus NRRL 1994 was compared in solid-state fermentation and in shake flask (SF) fermentation. SSF yielded higher phytase activity than did SF based on mass of initial substrate. Because this particular isolate is a food-grade fungus that has been used for sufu fermentation in China, the whole SSF material (crude enzyme, in situ enzyme) may be used directly in animal feed rations with enhanced cost efficiency.
Knutzon, Deborah S.; Hayes, Thomas R.; Wyrick, Annette; Xiong, Hui; Maelor Davies, H.; Voelker, Toni A.
1999-01-01
Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229–241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999–1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels. PMID:10398708
Can rapeseed oil replace olive oil as part of a Mediterranean-style diet?
Hoffman, Richard; Gerber, Mariette
2014-12-14
The present narrative review compares evidence from experimental, epidemiological and clinical studies of the health benefits of rapeseed oil (RO) (known as canola oil) and olive oil (OO) in order to assess whether rapeseed oil is suitable as a sustainable alternative to OO as part of a Mediterranean-style diet in countries where olive trees do not grow. From epidemiological studies, the evidence for cardiovascular protection afforded by extra-virgin OO is 'convincing', and for cancers 'limited-suggestive', especially oestrogen receptor-negative breast cancer, but more studies are required in relation to cognitive impairment. Evidence for RO is limited to short-term studies on the biomarkers of risk factors for CVD. Any benefits of RO are likely to be due to α-linolenic acid; however, it is prone to oxidation during frying. We conclude that due to a lack of evidence from observational or intervention studies indicating that RO has comparable health benefits to extra-virgin OO, RO cannot currently be recommended as a suitable substitute for extra-virgin OO as part of a Mediterranean-style diet.
Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L
2015-02-15
The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.
Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar
2012-01-01
The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139
Hydroxytyrosol disposition in humans.
Miro-Casas, Elisabet; Covas, Maria-Isabel; Farre, Magi; Fito, Montserrat; Ortuño, Jordi; Weinbrenner, Tanja; Roset, Pere; de la Torre, Rafael
2003-06-01
Animal and in vitro studies suggest that phenolic compounds in virgin olive oil are effective antioxidants. In animal and in vitro studies, hydroxytyrosol and its metabolites have been shown to be strong antioxidants. One of the prerequisites to assess their in vivo physiologic significance is to determine their presence in human plasma. We developed an analytical method for both hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma. The administered dose of phenolic compounds was estimated from methanolic extracts of virgin olive oil after subjecting them to different hydrolytic treatments. Plasma and urine samples were collected from 0 to 12 h before and after 25 mL of virgin olive oil intake, a dose close to that used as daily intake in Mediterranean countries. Samples were analyzed by capillary gas chromatography-mass spectrometry before and after being subjected to acidic and enzymatic hydrolytic treatments. Calibration curves were linear (r >0.99). Analytical recoveries were 42-60%. Limits of quantification were <1.5 mg/L. Plasma hydroxytyrosol and 3-O-methyl-hydroxytyrosol increased as a response to virgin olive oil administration, reaching maximum concentrations at 32 and 53 min, respectively (P <0.001 for quadratic trend). The estimated hydroxytyrosol elimination half-life was 2.43 h. Free forms of these phenolic compounds were not detected in plasma samples. The proposed analytical method permits quantification of hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma after real-life doses of virgin olive oil. From our results, approximately 98% of hydroxytyrosol appears to be present in plasma and urine in conjugated forms, mainly glucuronoconjugates, suggesting extensive first-pass intestinal/hepatic metabolism of the ingested hydroxytyrosol.
Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects
Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...
Raman detection of extra virgin olive oil adulterated with cheaper oils
NASA Astrophysics Data System (ADS)
Farley, Carlton; Kassu, Aschalew; Mills, Jonathan; Kenney, Brianna; Ruffin, Paul; Sharma, Anup
2016-09-01
Pure extra virgin olive oil (EVOO) is mixed with cheaper edible oils and samples are kept inside clear glass containers, while a 785nm Raman system is used to take measurements as Raman probe is placed against glass container. Several types of oils at various concentrations of adulteration are used. Ratios of peak intensities are used to analyze raw data, which allows for quick, easy, and accurate analysis. While conventional Raman measurements of EVOO may take as long as 2 minutes, all measurements reported here are for integration times of 15s. It is found that adulteration of EVOO with cheaper oils is detectable at concentrations as low as 5% for all oils used in this study.
Sensory properties of Californian and imported extra virgin olive oils.
Delgado, Claudia; Guinard, Jean-Xavier
2011-04-01
Production and consumption of extra-virgin olive has been increasing in the United States, particularly in California. The objective of this study was to compare the sensory characteristics of 22 extra virgin olive oils (EVOO) from California, Italy, Spain, Chile, and Australia using a generic descriptive analysis. A total of 22 sensory attributes were identified and defined by the descriptive panel. With the exception of thick and citrus, all sensory attributes were significantly different among the oils. Canonical Variate Analysis (CVA) showed that California oils differed from some imported EVOOs, mainly by their absence of defects. A second analysis, of only those attributes included in the International Olive Council (IOC) official scorecard, provided a less detailed description of the samples and did not allow for a full characterization of the oils. While the IOC attributes allowed for faster classification in terms of clean versus defective EVOOs, the more comprehensive descriptive analysis provided both more information and a more refined classification of the samples. Variety and region of origin were important factors in the classification of both Californian and imported EVOOs. Measuring olive oil sensory quality using the IOC method-positive attributes of fruitiness, bitterness, and pungency, and defects including fusty, musty, winey, and rancid-allows for the certification of oils as extra virgin but it provides limited information on the sensory characteristics of the oils. A full descriptive profile, on the other hand, provides information that can be used by producers in the processing and marketing of their oils, and is a useful tool in the education of consumers about the wide range of (positive) sensory attributes in EVOO and the various sensory styles of EVOO.
NASA Astrophysics Data System (ADS)
Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof
2016-11-01
This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p<0.05). In contrast, G3, G4, G5 and G6 showed significant difference (p<0.05) with weight loss by 2.16 g, 10.71g, 7.27 g and 3.23 g respectively 7.27 g and 3.23 g respectively after the treatment. Biochemical analyses on the ratsplasma lipid revealed that the total blood cholesterol content of rats fed with either low dosage (1.39 ± 0.08 mmol/L), medium dosage (1.40 ± 0.08 mmol/L) or high dosage (1.42 ± 0.07 mmol/L) of SLs contains C8:0 for 56 days was significantly lower (p<0.05) than day 0. However, total cholesterol for G1 and G2 was also significantly different (p<0.05) when compared after the treatment. There were no significant differences (p>0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (p<0.05) than the baseline (day 0) and the total plasma LDL cholesterol levels of rats in G4, G5 and G6 were significantly lower (p<0.05) than the baseline (day 0). In conclusion, combination of medium-chain fatty acid (C8:0) which produced low calorie structured lipids effectively altered the plasma cholesterol levels of experimental rats.
USDA-ARS?s Scientific Manuscript database
The recent description of the presence of exogenous plant microRNAs from rice in human plasma had profound implications for the interpretation of microRNAs function in human health. If validated, these results suggest that food should not be considered only as a macronutrient and micronutrient suppl...
Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.
Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B
2013-07-17
This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact.
NASA Astrophysics Data System (ADS)
Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.
2016-03-01
Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.
21 CFR 184.1025 - Caprylic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...
21 CFR 184.1025 - Caprylic acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...
21 CFR 184.1025 - Caprylic acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...
Tufarelli, Vincenzo; Laudadio, Vito; Casalino, Elisabetta
2016-04-01
The aim of this study was to extend the knowledge on the antioxidant effect of extra-virgin olive oil (EVOO) in the liver of broiler chickens not subjected to any form of insult. A total of 120 male broiler chickens (Hubbard strain) were divided into three groups and fed ad libitum with three isoenergetic diets from hatching until slaughter age (49 days) on a completely randomized design. The dietary treatments consisted of 2.5% added oil or fat from three sources as follows: diet containing sunflower oil (SFO); diet containing lard (LRD), and diet containing extra-virgin olive oil (EVOO). The activity of the main antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GS-Px) and glutathione S-transferase (GST), and lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) content, was measured in the liver of chickens. The susceptibility to undergo lipid peroxidation was assessed by exposing liver homogenate to 30 °C or to an ascorbate/iron mixture as pro-oxidant system. Dietary oil or fat type improved significantly (P < 0.05) the body weight and gain as well as feed efficiency in birds fed EVOO compared to those fed with the other treatments. Supplementing EVOO in the diet significantly (P < 0.05) reduced lipid peroxidation by increasing antioxidant defense system. These findings, besides adding more results on the antioxidant effect of extra-virgin olive oil on liver of other experimental model other than rats and humans, could be significant for animal welfare, with consequent benefits for both producers and consumers.
USDA-ARS?s Scientific Manuscript database
Effects of Extra Virgin Olive Oil (EVOO) Oleocanthal and Oleacein Content on Platelet Reactivity in Healthy Adults. Roberta R Holt1, Karan Agarwal1, Xuequi Li2, Eleni Melliou3, Theresa Pedersen1, Selina Wang2, Dan Flynn2, Prokopios Magiatis3, John W Newman1,4 1Department of Nutrition, and 2UC Davis ...
Thermal In-Pouch Microwave Sterilization
2012-01-09
technologies. Annex TOPIC Page Overview & Summary 2 1 Quantification of Hexanal in Yogurt and Extra Virgin Olive Oil as an indicator of Photo Oxidation 8...reports addressing the above-mentioned five goals and incorporates them as annexes here. 1. Methods 1. Quantification ofHexanal in Yogurt and... yogurt and extra virgin olive oil) from light- catalyzed degradation of linoleic acid to hexanal. Several alternative opacifying tactics were evaluated
Experimental atherosclerosis in rabbits fed cholesterol-free diets.
Kritchevsky, D; Tepper, S A; Bises, G; Klurfeld, D M
1982-02-01
Rabbits were fed a semipurified, cholesterol-free atherogenic diet containing 40% sucrose, 25% casein, 14% fat, 15% fiber, 5% salt mix and 1% vitamin mix. The fats were corn oil (CO), palm kernel oil (PO), cocoa butter (CB), and coconut oil (CNO). The rabbits were bled at 3, 6, and 9 months and killed at 9 months. Serum lipids of rabbits fed CO were unaffected. Serum cholesterol levels (mg/dl) at 9 months were: CO -- 64; PO -- 436; CB -- 220; and CNO -- 474. HDL-cholesterol (%) was: CO -- 37; PO -- 8.6; CB -- 25.1; and CNO -- 7.0. Average atherosclerosis (arch + thoracic/2) was: CO -- 0.15; PO -- 1.28; CB -- 0.53; and CNO -- 1.60. Cocoa butter (iodine value 33) is significantly less cholesterolemic and atherogenic than palm oil (iodine value 17) or coconut oil (iodine value 6). The difference between the atherogenic effects of cocoa butter and palm oil may lie in the fact that about half of the fatty acids of palm oil are C 16 or shorter, whereas 76% of the fatty acids of cocoa butter are C 18 or longer.
Gambacorta, G; Faccia, M; Previtali, M A; Pati, S; La Notte, E; Baiano, A
2010-04-01
Quality indices, antioxidant compounds, and antioxidant activities of extra-virgin oils from Coratina olives were evaluated during a 12-mo storage. Whole and stoned olives, picked at 2 different maturation index (MI), were submitted to malaxation for 45 min and extracted by a 3-phase continuous system. A 90-min malaxation trial was also performed for the stoned olives. The following parameters were monitored: free acidity, peroxide value, K(232) and K(270) indices, sensory profile, total phenolic content (TPC), phenolic profiles, tocopherol compounds, and antioxidant activity (AA). The highest TPC, AA, and sensory score were found for the oils obtained by olives picked at low MI and by stoned olives. After 12 mo, all the oils were still included into the "extra-virgin" category, and those deriving from whole olives picked at the lowest MI showed the best sensory characteristics due to high fruity and well-balanced pungent and bitter tastes. This study could represent a helpful tool for oil-makers to improve the marketing of extra-virgin olive oils produced from cultivars with very high phenolic contents, such as Coratina, generally not adequately appreciated by consumers because of their excessive bitterness and pungent taste. These oils, when extracted from whole olives, are generally consumed after a certain period of time (at least 6 mo) during which a decrease in the phenolic content occurs. The results of the present work demonstrate that oils extracted from olives picked at low maturation index can be marketed immediately after production if subjected to stoning and malaxed for a short time. This procedure allows to adjust the phenolic content and to obtain a high flavor and a well-balanced taste.
Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata
2016-02-01
Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (P<0.05) reduced VEGF-induced intracellular reactive oxygen species by modulating NADPH oxidase activity, p47phox membrane translocation and the expression of Nox2 and Nox4. Moreover, the treatment of endothelial cells with serum obtained 4 h after acute intake of extra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Use of biomass sorbents for oil removal from gas station runoff.
Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux
2004-11-01
The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.
2017-01-01
The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process—crushing, malaxation and liquid-solid separation—is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties. PMID:28771173
Fregapane, Giuseppe; Salvador, M Desamparados
2017-08-03
The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.
21 CFR 184.1025 - Caprylic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... distillation of the volatile fatty acids present in coconut oil. (b) The ingredient meets the specifications of... fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts as defined in...
Musumeci, Giuseppe; Maria Trovato, Francesca; Imbesi, Rosa; Castrogiovanni, Paola
2014-01-01
Physical exercise induces oxidative stress through production of reactive oxygen species and can cause damage to muscle tissue. Oxidative stress, resulting from exhaustive exercise is high and improvement of antioxidant defenses of the body may ameliorate damage caused by free radicals. Extra-virgin olive oil is widely considered to possess anti-oxidative properties. The aim of this study was to determine if extra-virgin olive oil improved the adaptive responses in conditions of oxidative stress. Twenty-four 12-week-old male Sprague-Dawley rats were divided in three groups: (1) rats fed with standard chow and not subjected to physical exercise; (2) rats fed with standard chow and subjected to exhaustive exercise; (3) rats fed with a diet rich in oleic acid, the major component of extra-virgin olive oil, and subjected to exhaustive exercise. Exhaustive exercise consisted of forced running in a five-lane 10° inclined treadmill at a speed of 30 m/min for 70-75 min. We studied some biomarkers of oxidative stress and of antioxidant defenses, histology and ultrastructure of the Quadriceps femoris muscle (Rectus femoris). We observed that, in rats of group 3, parameters indicating oxidative stress such as hydroperoxides and thiobarbituric acid-reactive substances decreased, parameters indicating antioxidant defenses of the body such as non-enzymatic antioxidant capacity and Hsp70 expression increased, and R. femoris muscle did not show histological and ultrastructural alterations. Results of this study support the view that extra-virgin olive oil can improve the adaptive response of the body in conditions of oxidative stress. Copyright © 2013 Elsevier GmbH. All rights reserved.
Bartella, Lucia; Mazzotti, Fabio; Napoli, Anna; Sindona, Giovanni; Di Donna, Leonardo
2018-03-01
A rapid and reliable method to assay the total amount of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil has been developed. The methodology intends to establish the nutritional quality of this edible oil addressing recent international health claim legislations (the European Commission Regulation No. 432/2012) and changing the classification of extra virgin olive oil to the status of nutraceutical. The method is based on the use of high-performance liquid chromatography coupled with tandem mass spectrometry and labeled internal standards preceded by a fast hydrolysis reaction step performed through the aid of microwaves under acid conditions. The overall process is particularly time saving, much shorter than any methodology previously reported. The developed approach represents a mix of rapidity and accuracy whose values have been found near 100% on different fortified vegetable oils, while the RSD% values, calculated from repeatability and reproducibility experiments, are in all cases under 7%. Graphical abstract Schematic of the methodology applied to the determination of tyrosol and hydroxytyrosol ester conjugates.
Beltrán Ortega, Julio; Martínez Gila, Diego M; Aguilera Puerto, Daniel; Gámez García, Javier; Gómez Ortega, Juan
2016-11-01
The quality of virgin olive oil is related to the agronomic conditions of the olive fruits and the process variables of the production process. Nowadays, food markets demand better products in terms of safety, health and organoleptic properties with competitive prices. Innovative techniques for process control, inspection and classification have been developed in order to to achieve these requirements. This paper presents a review of the most significant sensing technologies which are increasingly used in the olive oil industry to supervise and control the virgin olive oil production process. Throughout the present work, the main research studies in the literature that employ non-invasive technologies such as infrared spectroscopy, computer vision, machine olfaction technology, electronic tongues and dielectric spectroscopy are analysed and their main results and conclusions are presented. These technologies are used on olive fruit, olive slurry and olive oil to determine parameters such as acidity, peroxide indexes, ripening indexes, organoleptic properties and minor components, among others. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.
Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P
2016-07-01
Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.
Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina
2003-01-24
The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-12-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
Jing, Chan Jer; Seman, Idris Abu; Zakaria, Latiffah
2015-01-01
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber. PMID:26868709
Rozati, Mitra; Barnett, Junaidah; Wu, Dayong; Handelman, Garry; Saltzman, Edward; Wilson, Thomas; Li, Lijun; Wang, Junpeng; Marcos, Ascensión; Ordovás, José M; Lee, Yu-Chi; Meydani, Mohsen; Meydani, Simin Nikbin
2015-01-01
Both aging and obesity are related to dysregulated immune function, which may be responsible for increased risk of infection and also chronic non-infectious diseases. Dietary lipids have been shown to impact immune and inflammatory responses and cardio-metabolic risk factors. No information on the impact of olive oil on immune responses of overweight and obese older adults is available. We aimed to determine the effect of replacing oils used in a typical American diet with extra virgin olive oil for 3 months on immune responses and cardio-metabolic risk factors in overweight and obese older adults. This was a randomized, single-blinded and placebo-controlled trial in 41 overweight or obese participants (aged ≥ 65) who consumed a typical American diet. Participants in the control (CON, n = 21) group were provided with a mixture of corn, soybean oil and butter, and those in the olive oil (OO, n = 20) group, with extra virgin olive oil, to replace substitutable oils in their diet. At baseline and 3 months, we measured blood pressure, biochemical and immunological parameters using fasting blood, and delayed-type hypersensitivity (DTH) skin response. Compared to the CON group, the OO group showed decreased systolic blood pressure (P < 0.05), a strong trend toward increased plasma HDL-C concentrations (P = 0.06), and increased anti-CD3/anti-CD28 -stimulated T cell proliferation (P < 0.05). No differences were found in T cell phenotype, cytokine production, and DTH response between the two groups. Our results indicate that substitution of oils used in a typical American diet with extra virgin olive oil in overweight and obese older adults may have cardio-metabolic and immunological health benefits. This trial was registered at clinicaltrials.gov as NCT01903304.
Kulkarni, Suhas; Madupu, Padma Reddy; Doshi, Dolar; Bandari, Srikanth Reddy; Srilatha, Adepu
2017-01-01
Introduction Oil pulling, has been extensively used as traditional Indian folk remedy since many years to prevent dental diseases and for strengthening teeth and gums. Aim To compare and evaluate antiplaque efficacy of coconut oil pulling with a placebo among dental students, in Hyderabad city of India. Materials and Methods A randomized controlled study was carried out among 40 dental students. Out of 40, 20 subjects were randomly assigned to study group and other 20 to control group. Subjects in the study group were given the coconut oil and control group a placebo, and advised to rinse for 10 minutes, once daily in the morning for a period of seven days. Plaque levels were assessed on day zero, third and seventh day using Turesky-Gilmore-Glickman Modification of the Quigley-Hein Plaque Index (1970) for both the groups. Results The mean plaque scores showed a significant difference at baseline, third day and seventh day among both study (p<0.001) and control groups (p<0.001). Group wise comparison revealed, though the mean plaque scores were low among study group on third day and seventh day on comparison with the control group, significant difference was noticed only on the seventh day. Furthermore, the mean percentage reduction of plaque scores were also significant only on the seventh day with a high mean plaque reduction among study groups (p<0.001). Conclusion Oil pulling is effective in controlling plaque levels. PMID:29207824
Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils.
Valli, Enrico; Bendini, Alessandra; Popp, Martin; Bongartz, Annette
2014-08-01
Sensory analysis is a crucial tool for evaluating the quality of extra virgin olive oils. One aim of such an investigation is to verify if the sensory attributes themselves - which are strictly related to volatile and phenolic compounds - may permit the discrimination of high-quality products obtained by olives of different cultivars and/or grown in various regions. Moreover, a crucial topic is to investigate the interdependency between relevant parameters determining consumer acceptance and objective sensory characteristics evaluated by the panel test. By statistically analysing the sensory results, a grouping - but not discriminatory - effect was shown for some cultivars and some producing areas. The preference map shows that the most appreciated samples by consumers were situated in the direction of the 'ripe fruity' and 'sweet' axis and opposite to the 'bitter' and 'other attributes' (pungent, green fruity, freshly cut grass, green tomato, harmony, persistency) axis. Extra virgin olive oils produced from olives of the same cultivars and grown in the same areas shared similar sensorial attributes. Some differences in terms of expectation and interpretation of sensory characteristics of extra virgin olive oils might be present for consumers and panellists: most of the consumers appear unfamiliar with positive sensorial attributes, such as bitterness and pungency. © 2013 Society of Chemical Industry.
Characterization of virgin olive oils produced with autochthonous Galician varieties.
Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Simal-Gandara, Jesus
2016-12-01
The interest of Galician oil producers (NW Spain) in recovering the ancient autochthonous olive varieties Brava and Mansa has increased substantially in recent years. Virgin olive oils produced by co-crushing both varieties in two different proportions, reflecting the usual and most common practice adopted in this region, have gradually emerged for the production of virgin olive oils. Herein, the sensory and chemical characteristics of such oils were characterized by quality and genuineness-related parameters. The results of chemical analysis are discussed in terms of their effective contribution to the sensory profile, which suggests useful recommendations for olive oil producers to improve the quality of oils. Antioxidant compounds, together with aromas and coloured pigments were determined, and their contribution in determining the functional value and the sensory properties of oils was investigated. In general, given the high levels of phenolic compounds (ranging between 254 and 375mg/kg oil), tocopherols (about 165mg/kg oil) and carotenoids (10-12mg/kg oil); these are oils with long stability, especially under dark storage conditions, because stability is reinforced with the contribution of chlorophylls (15-22mg/kg oil). A major content of phenolic compounds, as well as a predominance of trans-2-hexen-1-al within odor-active compounds (from 897 to 1645μg/kg oil), responsible for bitter sensory notes. This characterization allows to developing new antioxidant-rich and flavour-rich VOOs, when co-crushing with a higher proportion of Brava olives, satisfying the consumers' demand in having access to more healthy dishes and peculiar sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vichi, Stefania; Romero, Agustí; Tous, Joan; Caixach, Josep
2011-05-11
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.
NASA Astrophysics Data System (ADS)
Gholami, Ali; Golestaneh, Mahshid; Andalib, Zeinab
2018-03-01
Cocamidopropyl betaine (CAPB) is a zwitterionic surfactant that is synthesized using coconut oil and usually supplied in form of an aqueous solution with 25-37% w/w. In this study, a novel method based on UV-visible spectroscopy is developed for an accurate determination of CAPB synthesized from coconut oil. Eriochrome Black T (EBT) as a specific color indicator was added to CAPB and a red shift and color change were observed. This shift leads in increasing wavelength selectivity of the method. The change in the color intensity depends on the concentration of CAPB. By measuring the absorbance of a solution containing CAPB, its concentration was measured. After optimizing all the effective parameters, CAPB was detected in commercial real samples. Using the proposed approach, limit of quantification (LOQ) and relative standard deviation (RSD) were obtained about 4.30 × 10- 5 M and 4.8% respectively. None of unreacted materials or by-products, which were produced in the synthesis of CAPB, showed any interference in the determination of CAPB. This shows that the proposed method is specific and accurate, and can potentially be used for quantitative determination of CAPB in commercial samples with satisfactory results.
Effect of skin coatings on prolonging shelf life of kagzi lime fruits (Citrus aurantifolia Swingle).
Bisen, Abhay; Pandey, Sailendra Kumar; Patel, Neha
2012-12-01
An experiment was conducted to assess the influence of chemical and oil coatings on storage life of kagzi lime fruits. Fruits were harvested at physiological light green mature stage and treated with different concentrations of chemicals viz., Cacl2 and KMnO4 and edible coatings viz., (coconut oil, mustard oil, sesamum oil, castor oil and liquid paraffin wax). After treatment, fruits were kept at ambient condition (25-30 °C, 60-70% RH) till 18 days and analyzed for various physical and chemical parameters like PLW, marketable fruits retained, TSS, acidity, ascorbic acid, juice content and also organoleptic values. The results revealed that edible oil emulsion coating particularly coconut oil had significantly (p ≤ 0.05) effect on reduction of the physiological loss in weight (9.67%) and maximum marketable fruits retained (70%), total soluble solids (8.43%), ascorbic acid (49.93 mg/100 ml juice), acidity (1.52%) and juice content (42.34%) of fruits. Similarly, application of this oil emulsion coating acceptable for sensory quality parameters such as appearance, flavour, taste, external colour and no incidence of moulds & their growth up to 18 days of storage.
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Štefko, Tomáš
2017-06-01
The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.
Kunz, Matthew Ross; Ottaway, Joshua; Kalivas, John H; Georgiou, Constantinos A; Mousdis, George A
2011-02-23
Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many spectroscopic methods in conjunction with multivariate analysis have been used to solve these issues. However, successes to date are limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods (the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil. Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other agriculture products.
Pulmonary and systemic effects of ozone (O3) are mediated by hypothalamus pituitary adrenal (HPA)-axis activation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if these supplements can protect against t...
Rangel-Zuñiga, Oriol A; Haro, Carmen; Tormos, Carmen; Perez-Martinez, Pablo; Delgado-Lista, Javier; Marin, Carmen; Quintana-Navarro, Gracia M; Cerdá, Concha; Sáez, Guillermo T; Lopez-Segura, Fernando; Lopez-Miranda, Jose; Perez-Jimenez, Francisco; Camargo, Antonio
2017-06-01
Using sunflower oil as frying oil increases postprandial oxidative stress, which is considered the main endogenous source of DNA oxidative damage. We aimed to test whether the protective effect of virgin olive oil and oil models with added antioxidants against postprandial oxidative stress may also protect against DNA oxidative damage. Twenty obese people received four breakfasts following a randomized crossover design consisting of different oils [virgin olive oil (VOO), sunflower oil (SFO), and a mixed seed oil (SFO/canola oil) with added dimethylpolysiloxane (SOX) or natural antioxidants from olives (SOP)], which were subjected to 20 heating cycles. We observed the postprandial increase in the mRNA levels of p53, OGG1, POLB, and GADD45b after the intake of the breakfast prepared with SFO and SOX, and an increase in the expression of MDM2, APEX1, and XPC after the intake of the breakfast prepared with SFO, whereas no significant changes at the postprandial state were observed after the intake of the other breakfasts (all p values <0.05). We observed lower 8-OHdG postprandial levels after the intake of the breakfast prepared with VOO and SOP than after the intake of the breakfast prepared with SFO and SOX (all p values <0.05). Our results support the beneficial effect on DNA oxidation damage of virgin olive oil and the oil models with added antioxidants, as compared to the detrimental use of sunflower oil, which induces p53-dependent DNA repair pathway activation.
1987-04-01
such as palm oil and coconut oil . In 1985, for example, Malaysia alone exported 470,887 tonnes of palm oil and palm ker- nel oil to the EEC valued...SOUTHEAST ASIA REPORT CONTENTS INTER-ASIAN AFFAIRS ASEAN To Protest EEC Duties on Vegetable Oils , Fats (Hardev Kaur; BUSINESS TIMES, 18 Feb 87) 1...DAN (TAP CHI QUAN DOI NHAN DAN, Dec 86) 112 /12223 - f - ASEAN TO PROTEST EEC DUTIES ON VEGETABLE OILS , FATS Kuala Lumpur BUSINESS TIMES in
Wang, Shaopu; Kreuzer, Michael; Braun, Ueli; Schwarm, Angela
2017-08-01
Dietary supplementation with oilseeds can reduce methane emission in ruminants, but only a few common seeds have been tested so far. This study tested safflower (Carthamus tinctorius), poppy (Papaver somniferum), hemp (Cannabis sativa), and camelina (Camelina sativa) seeds in vitro using coconut (Cocos nucifera) oil and linseed (Linum usitatissimum) as positive controls. All the tested oilseeds suppressed methane yield (mL g -1 dry matter, up to 21%) compared to the non-supplemented control when provided at 70 g oil kg -1 dry matter, and they were as effective as coconut oil. Safflower and hemp were more effective than linseed (21% and 18% vs. 10%), whereas the effects of poppy and camelina were similar to linseed. When methane was related to digestible organic matter, only hemp and safflower seeds and coconut oil were effective compared to the non-supplemented control (up to 11%). The level of methanogenesis and the ratios of either the n-6:n-3 fatty acids or C 18 :2 :C 18 :3 in the seed lipids were not related. Unconventional oilseeds widen the spectrum of oilseeds that can be used in dietary methane mitigation. In vivo confirmation of their methane mitigating effect is still needed, and their effects on animal performance still must be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazeli, M.S.; Sathyanarayan, S.; Satish, P.N.
Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended oils of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy meals like Cu, Pb, Zn, Ni, Coo, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survivalmore » of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.« less
Dietary fish oil stimulates hepatic low density lipoprotein transport in the rat.
Ventura, M A; Woollett, L A; Spady, D K
1989-01-01
These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver. PMID:2760200
Badamaranahalli, Shivaram Shivakumar; Kopparam, Manjunath; Bhagawati, Siddalingappa Tippanna; Durg, Sharanbasappa
2015-08-30
Aim of the present study is to develop embelin lipid nanospheres (LNE) for better treatment of ulcerative colitis. Embelin LNs were developed using soya bean oil/virgin coconut oil as liquid lipid carrier and soya/egg lecithin as stabilizer by hot homogenization followed by ultrasonication technique. The particle size of LNEs ranged from 196.1±3.57 to 269.2±1.05nm with narrow polydispersity index values whereas zeta potential was from -36.6 to -62.0mV. Embelin was successfully incorporated into lipid nanospheres with entrapment efficiency about 99%. There was no interaction between embelin and selected liquid lipids which was confirmed by FTIR studies. In vitro drug release studies performed using Franz diffusion cell and results showed sustained release of embelin. Embelin LNs were stabilized with egg and soya lecithin, embelin release from these LNs followed Higuchi model and first order model, respectively, however mechanism of drug release in both LNs was non-Fickian. In vivo studies were carried out using acetic acid induced ulcerative colitis rat model and results revealed that treatment with embelin LNs significantly reduced clinical activity and macroscopic scores compared to embelin conventional suspension. Treatment with embelin LNs decreased MPO, LDH and LPO levels, increased reduced GSH levels which indicated better treatment of ulcerative colitis was achieved. This was also confirmed by improved histopathological conditions. Thus embelin LNs could be favourably used for treatment of ulcerative colitis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul
2018-02-01
Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Alamsyah, R. I.; Widiyani, T.; Artanti, A. N.
2018-03-01
Bay leaf (Eugenia polyantha) is widely used as an alternative therapy for diabetic and hypercholesterol. However, the administration of the extract has a low oral bioavailability, therefore it is prepared by Self Nanoemulsifying Drug Delivery Systems (SNEDDS) ethyl acetate extract of bay leaf. Therefore, acute and subchronic toxicity test is required. The toxicity test performed was an experimental study, including acute and subchronic toxicity tests. Animal experiments were used using Wistar strain rats. Acute toxicity test using 5 groups (n=5) consisted of 1 control group and 4 groups of SNEDDS dose with 48 mg/kgBW 240 mg/kg, 1200 mg/kg, and 6000 mg/kg, while for subchronic toxicity test with 1 group control and 3 groups of doses of SNEDDS with dose group variation 91.75 mg/kgBW, 183.5 mg/kg, and 367 mg/kg. Duration of observation at acute toxicity test for 14 days while for subcronic toxicity test for 28 days with continuous SNEDDS dosage. The results of the acute toxicity test showed toxic symptoms and obtained median lethal dose (LD50) values from SNEDDS from ethyl acetate extract of bay leaf 1409.30 mg/kgBW belonging to slightly toxic category. Subchronic toxicity studies show that the test drug has minor damage in liver and kidneys and moderate damage in pancreas.
Clodoveo, Maria Lisa; Moramarco, Vito; Paduano, Antonello; Sacchi, Raffaele; Di Palmo, Tiziana; Crupi, Pasquale; Corbo, Filomena; Pesce, Vito; Distaso, Elia; Tamburrano, Paolo; Amirante, Riccardo
2017-07-01
The aim of the virgin olive oil extraction process is mainly to obtain the best quality oil from fruits, by only applying mechanical actions while guaranteeing the highest overall efficiency. Currently, the mechanical methods used to extract virgin oils from olives are basically of two types: the discontinuous system (obsolete) and the continuous one. Anyway the system defined as "continuous" is composed of several steps which are not all completely continuous, due to the presence of the malaxer, a device that works in batch. The aim of the paper was to design, realize and test the first full scale sono-exchanger for the virgin olive oil industry, to be placed immediately after the crusher and before the malaxer. The innovative device is mainly composed of a triple concentric pipe heat exchanger combined with three ultrasound probes. This mechanical solution allows both the cell walls (which release the oil droplets) along with the minor compounds to be destroyed more effectively and the heat exchange between the olive paste and the process water to be accelerated. This strategy represents the first step towards the transformation of the malaxing step from a batch operation into a real continuous process, thus improving the working capacity of the industrial plants. Considering the heterogeneity of the olive paste, which is composed of different tissues, the design of the sono-exchanger required a thorough fluid dynamic analysis. The thermal effects of the sono-exchanger were monitored by measuring the temperature of the product at the inlet and the outlet of the device; in addition, the measurement of the pigments concentration in the product allowed monitoring the mechanical effects of the sono-exchanger. The effects of the innovative process were also evaluated in terms of extra virgin olive oil yields and quality, evaluating the main legal parameters, the polyphenol and tocopherol content. Moreover, the activity of the polyphenol oxidase enzyme in the olive paste was measured. Copyright © 2017 Elsevier B.V. All rights reserved.
Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.
Gowthami, Palanisamy; Muthukumar, Karuppan; Velan, Manickam
2015-01-01
The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.
Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.
Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J
2014-09-01
The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Musa, Siti Hajar; Basri, Mahiran; Fard Masoumi, Hamid Reza; Shamsudin, Norashikin; Salim, Norazlinaliza
2017-01-01
Psoriasis is a chronic autoimmune disease that cannot be cured. It can however be controlled by various forms of treatment, including topical, systemic agents, and phototherapy. Topical treatment is the first-line treatment and favored by most physicians, as this form of therapy has more patient compliance. Introducing a nanoemulsion for transporting cyclosporine as an anti-inflammatory drug to an itchy site of skin disease would enhance the effectiveness of topical treatment for psoriasis. The addition of nutmeg and virgin coconut-oil mixture, with their unique properties, could improve cyclosporine loading and solubility. A high-shear homogenizer was used in formulating a cyclosporine-loaded nanoemulsion. A D-optimal mixture experimental design was used in the optimization of nanoemulsion compositions, in order to understand the relationships behind the effect of independent variables (oil, surfactant, xanthan gum, and water content) on physicochemical response (particle size and polydispersity index) and rheological response (viscosity and k -value). Investigation of these variables suggests two optimized formulations with specific oil (15% and 20%), surfactant (15%), xanthan gum (0.75%), and water content (67.55% and 62.55%), which possessed intended responses and good stability against separation over 3 months' storage at different temperatures. Optimized nanoemulsions of pH 4.5 were further studied with all types of stability analysis: physical stability, coalescence-rate analysis, Ostwald ripening, and freeze-thaw cycles. In vitro release proved the efficacy of nanosize emulsions in carrying cyclosporine across rat skin and a synthetic membrane that best fit the Korsmeyer-Peppas kinetic model. In vivo skin analysis towards healthy volunteers showed a significant improvement in the stratum corneum in skin hydration.
Alkyl amine and vegetable oil mixture-a viable candidate for CO2 capture and utilization.
Uma Maheswari, A; Palanivelu, K
2017-02-01
In this present work, the absorption of CO 2 in alkyl amines and vegetable oil mixture has been evaluated. The results showed that the absorption is higher in alkyl amines and vegetable oil mixture compared with the aqueous alkyl amines. In addition to that, by employing the greener and non-toxic vegetable oil media, the CO 2 gas has been captured as well as converted into value-added products, such as carbamates of ethylenediamine, diethylenetriamine, and triethylenetetramine. The carbamates have been isolated and characterized by Fourier transform infrared and 1 H and 13 C nuclear magnetic resonance spectroscopic techniques. The formation of these products in precipitate form has not been observed in the case of aqueous medium. Among the various alkyl amine and vegetable oil combinations, triethylenetetramine in coconut oil medium showed the maximum CO 2 capture capacity of 72%. The coconut oil used for the process has been recovered, recycled, and reused for 3 cycles. Thus, this novel scheme seems to be a better alternative to conquer the drawback of aqueous amine-based CO 2 capture as well as for the capture and utilization of the CO 2 gas to gain the value-added products.
Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.
Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H
1997-10-01
A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.
Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier
2018-01-01
High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820
Biel, Sara; Mesa, Maria-Dolores; de la Torre, Rafael; Espejo, Juan-Antonio; Fernández-Navarro, Jose-Ramón; Fitó, Montserrat; Sánchez-Rodriguez, Estefanía; Rosa, Carmen; Marchal, Rosa; Alche, Juan de Dios; Expósito, Manuela; Brenes, Manuel; Gandul, Beatriz; Calleja, Miguel Angel; Covas, María-Isabel
2016-10-22
Virgin olive oil, a recognized healthy food, cannot be consumed in great quantities. We aim to assess in humans whether an optimized virgin olive oil with high phenolic content (OVOO, 429 mg/Kg) and a functional one (FOO), both rich in phenolic compounds (429 mg/Kg) and triterpenic acids (389 mg/kg), could provide health benefits additional to those supplied a by a standard virgin olive oil (VOO). A randomized, double-blind, crossover, controlled study will be conducted. Healthy volunteers (aged 20 to 50) will be randomized into one of three groups of daily raw olive oil consumption: VOO, OVOO, and FOO (30 mL/d). Olive oils will be administered over 3-week periods preceded by 2-week washout ones. The main outcomes will be markers of lipid and DNA oxidation, inflammation, and vascular damage. A bioavailability and dose-response study will be nested within this sustained- consumption one. It will be made up of 18 volunteers and be performed at two stages after a single dose of each olive oil. Endothelial function and nitric oxide will be assessed at baseline and at 4 h and 6 h after olive oil single dose ingestion. For the first time the NUTRAOLEUM Study will provide first level evidence on the health benefits in vivo in humans of olive oil triterpenes (oleanolic and maslinic acid) in addition to their bioavailability and disposition. The Trial has been registered in ClinicalTrials.gov ID: NCT02520739 .
Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens
NASA Astrophysics Data System (ADS)
Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.
2006-11-01
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.
Aroca-Santos, Regina; Cancilla, John C; Matute, Gemma; Torrecilla, José S
2015-06-17
In this research, the detection and quantification of adulterants in one of the most common varieties of extra virgin olive oil (EVOO) have been successfully carried out. Visible absorption information was collected from binary mixtures of Picual EVOO with one of four adulterants: refined olive oil, orujo olive oil, sunflower oil, and corn oil. The data gathered from the absorption spectra were used as input to create an artificial neural network (ANN) model. The designed mathematical tool was able to detect the type of adulterant with an identification rate of 96% and to quantify the volume percentage of EVOO in the samples with a low mean prediction error of 1.2%. These significant results make ANNs coupled with visible spectroscopy a reliable, inexpensive, user-friendly, and real-time method for difficult tasks, given that the matrices of the different adulterated oils are practically alike.
Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm
NASA Astrophysics Data System (ADS)
Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.
2011-07-01
In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently human health.
Gerson, T.; Shorland, F. B.; Dunckley, G. G.
1965-01-01
1. Intraperitoneal injection of β-sitosterol (5mg./rat/day for 25 days) into 1-year-old male Wistar rats fed on a low-fat diet supplemented with 10% of coconut oil resulted in a lowering of cholesterol and lipid concentrations in the tissues. 2. β-Sitosterol increased the rate of biosynthesis of cholesterol and lipids in the tissues, but to an even greater extent enhanced their oxidative degradation. 3. The present results are similar to those previously obtained on a low-fat diet, indicating that the presence of fat had no marked effect on the action of β-sitosterol. PMID:5891218
Mohd Zin, Nur Bainun; Mohamad Yusof, Busyra; Oslan, Siti Nurbaya; Wasoh, Helmi; Tan, Joo Shun; Ariff, Arbakariya B; Halim, Murni
2017-12-01
In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
Characterization of virgin walnut oils and their residual cakes produced from different varieties.
Ojeda-Amador, Rosa M; Salvador, María Desamparados; Gómez-Alonso, Sergio; Fregapane, Giuseppe
2018-06-01
This study addresses the composition and properties of different walnut varieties (Chandler, Hartley and Lara), in particular their virgin oils and residual cakes obtained by screw pressing employing different cultivars. Among nuts, walnut (Juglans regia L.) exhibits interesting nutritional value, mainly due to their high content in linoleic acid, phenolic and tocopherol compounds, which show antioxidant and other healthy properties. Valuable results related to fatty acid profile and minor components were observed. Virgin walnut oil is a rich source in linoleic acid (60-62%) and γ-tocopherol (517-554 mg/kg). Moreover, walnuts show a very high content in total phenolic compounds (10,045-12,474 mg/kg; as gallic acid), which contribute to a great antioxidant activity (105-170 mmol/kg for DPPH, and 260-393 mmol/kg for ORAC), being the hydrolysable tannins (2132-4204 mg/kg) and flavanols (796-2433 mg/kg) their main phenolic groups. Aldehydes account for the highest contribution to aromatic volatiles in virgin walnut oil (about 35% of total). As expected, polar phenolic compounds concentrate in the residual cake, after the separation of the oily phase, reaching a content of up to 19,869 mg/kg, leading to potential added value and applications as source of bioactive compounds to this by-product. Copyright © 2018 Elsevier Ltd. All rights reserved.
Velázquez-Palmero, David; Romero-Segura, Carmen; García-Rodríguez, Rosa; Hernández, María L.; Vaistij, Fabián E.; Graham, Ian A.; Pérez, Ana G.; Martínez-Rivas, José M.
2017-01-01
Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase activity plays a relevant role in the transformation of the phenolic glycosides present in the olive fruit, generating different secoiridoid derivatives. The main goal of the present study was to characterize olive fruit β-glucosidase genes and enzymes responsible for the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana leaves and purified its corresponding recombinant enzyme. Western blot analysis showed that recombinant OepGLU protein is detected by an antibody raised against the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on the major olive phenolic glycosides, with the highest levels with respect to oleuropein, followed by ligstroside and demethyloleuropein. In addition, expression analysis showed that olive GLU transcript level in olive fruit is spatially and temporally regulated in a cultivar-dependent manner. Furthermore, temperature, light and water regime regulate olive GLU gene expression in olive fruit mesocarp. All these data are consistent with the involvement of OepGLU enzyme in the formation of the major phenolic compounds present in virgin olive oil. PMID:29163620
Extra virgin olive oil bitterness evaluation by sensory and chemical analyses.
Favati, Fabio; Condelli, Nicola; Galgano, Fernanda; Caruso, Marisa Carmela
2013-08-15
An experimental investigation was performed on blend extra virgin olive oils (EVOOs) from different cultivars and EVOO from different olive monovarieties (Coratina, Leccino, Maiatica, Ogliarola) with the aim to evaluate the possibility of estimating the perceived bitterness intensity by using chemical indices, such as the total phenol content and the compounds responsible for oil bitterness measured spectrophotometrically at 225 nm (K225 value), as bitterness predictors in different EVOO. Therefore, a bitterness predictive model, based on the relationship between the perceived bitterness intensity of the selected stimuli and the chosen chemicals parameters has been built and validated. The results indicated that the oil bitterness intensity could be satisfactorily predicted by using the K225 values of oil samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gómez-Caravaca, Ana M; Maggio, Rubén M; Cerretani, Lorenzo
2016-03-24
Today virgin and extra-virgin olive oil (VOO and EVOO) are food with a large number of analytical tests planned to ensure its quality and genuineness. Almost all official methods demand high use of reagents and manpower. Because of that, analytical development in this area is continuously evolving. Therefore, this review focuses on analytical methods for EVOO/VOO which use fast and smart approaches based on chemometric techniques in order to reduce time of analysis, reagent consumption, high cost equipment and manpower. Experimental approaches of chemometrics coupled with fast analytical techniques such as UV-Vis spectroscopy, fluorescence, vibrational spectroscopies (NIR, MIR and Raman fluorescence), NMR spectroscopy, and other more complex techniques like chromatography, calorimetry and electrochemical techniques applied to EVOO/VOO production and analysis have been discussed throughout this work. The advantages and drawbacks of this association have also been highlighted. Chemometrics has been evidenced as a powerful tool for the oil industry. In fact, it has been shown how chemometrics can be implemented all along the different steps of EVOO/VOO production: raw material input control, monitoring during process and quality control of final product. Copyright © 2016 Elsevier B.V. All rights reserved.
Mousavi, Seyedeh Neda; Koohdani, Fariba; Eslaminejad, Mohamadreza Baghaban; Izadi, Pantea; Eshraghian, Mohamadreza; Sayahpour, Forough Azam; Neek, Leila Shafiei; Shidfar, Farzad
2016-12-01
Maternal high-fat diet has been shown to have deleterious effects on the offspring bones. However, there is no study to assess the effects of type and amount of maternal dietary oil in an isocaloric diet, with focus on extra virgin olive oil (EVOO). The objective of the current study was to test the hypothesis that type of maternal dietary oil has more effects than its amount in an isocaloric diet during gestation and lactation on bone genes expression in offspring in adolescence. Virgin female C57BL/6 mice were impregnated and fed either the AIN 93G diet (received 16% of calories as soybean oil, as a control diet, or EVOO) or a high fat AIN 93G diet (received 45% of calories as soybean oil or EVOO) from the time of vaginal plug confirmation until offspring's weaning. After adjusting for the amount of oils, osteoprotegerin/receptor activator of nuclear factor NF-κB ligand (OPG/RANK-L) and OPG expressions were 6.1- and 2.8-folds higher in offspring born to EVOO compared with soybean oil-fed mothers. OPG, beta-catenin, and OPG/RANK-L expression were 88%, 94%, and 70% lower in offspring born to the 45% oil-fed mothers compared with the 16% group. In contrast, peroxisome proliferator-activated receptor gamma-2 (PPARγ2) gene expression was higher in the 45% oil group, adjusted for the types of oil. Maternal EVOO consumption, but not soybean oil increased osteoblastic gene expression, and high amounts of both oils decreased osteoblastic and increased adipogenic genes expression in adolescent offspring.
USDA-ARS?s Scientific Manuscript database
Cuphea is a new crop of temperate regions that produces seed oil with medium-chain length fatty acids, which can substitute for imported coconut and palm kernels oils. Only four herbicides are known to be tolerated by cuphea to date. More herbicides, especially POST products, are needed for continue...
Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa
2018-07-30
Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pérez-Castaño, Estefanía; Sánchez-Viñas, Mercedes; Gázquez-Evangelista, Domingo; Bagur-González, M Gracia
2018-01-15
This paper describes and discusses the application of trimethylsilyl (TMS)-4,4'-desmethylsterols derivatives chromatographic fingerprints (obtained from an off-line HPLC-GC-FID system) for the quantification of extra virgin olive oil in commercial vinaigrettes, dressing salad and in-house reference materials (i-HRM) using two different Partial Least Square-Regression (PLS-R) multivariate quantification methods. Different data pre-processing strategies were carried out being the whole one: (i) internal normalization; (ii) sampling based on The Nyquist Theorem; (iii) internal correlation optimized shifting, icoshift; (iv) baseline correction (v) mean centering and (vi) selecting zones. The first model corresponds to a matrix of dimensions 'n×911' variables and the second one to a matrix of dimensions 'n×431' variables. It has to be highlighted that the proposed two PLS-R models allow the quantification of extra virgin olive oil in binary blends, foodstuffs, etc., when the provided percentage is greater than 25%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins.
Fernández-Ávila, C; Montes, R; Castellote, A I; Chisaguano, A M; Fitó, M; Covas, M I; Muñoz-Aguallo, D; Nyyssönen, K; Zunft, H J; López-Sabater, M C
2015-07-01
In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra-high-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high-density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20-60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC-MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r(2) = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Aisyah, L.; Wibowo, C. S.; Bethari, S. A.; Ufidian, D.; Anggarani, R.
2018-03-01
Monoglyceride is a by-product component of biodiesel process that relates to sedimentation problem at low temperature environment. To prevent the problem in using biodiesel-diesel fuel blends, it is necessary to limit of the monoglyceride content. The factor affecting monoglyceride content in biodiesel is the transesterification reaction and also the plant that is used. In this study, we investigate the monoglyceride content in biodiesel made from 4 plant oils; kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil. These oils are purified and checked for its critical properties then converted to biodiesel. The biodiesel tested refer to Standard National of Indonesia for biodiesel (SNI 7182:2015). The monoglyceride content of biodiesel from kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil, are 8.86%, 0.69%, 4.0%, and 2.69% consecutively. The low temperature properties represented by viscosity (@40 0C) for the 4 samples in the same order as before are 6.1 cSt, 2.7 cSt, 4.71 cSt, and 4.90 cSt. The cloud point is measured with the result of 30 °C, -20 °C, -60 °C and 30 °C respectively. The conclusions indicate that monoglyceride content can affect the low temperature properties of biodiesel.
Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.
Perestrelo, R; Silva, C; Silva, P; Câmara, J S
2017-07-15
The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silva, Simone Alves da; Torres, Elizabeth A F da Silva; Almeida, Adriana Palma de; Sampaio, Geni Rodrigues
2018-04-15
This study aimed at evaluating the polycyclic aromatic hydrocarbons (PAHs) contamination of commercial vegetable oils and examined the identity through the fatty acids profiles. Coconut, safflower, evening primrose, and linseed oils marketed in São Paulo (Brazil) were investigated totaling 69 samples. Four PAHs, benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were detected in 96% of the samples at individual levels ranging from not detected to 14.99 μg kg -1 . Chrysene was the abundant hydrocarbon found among all types of oils, with the highest median values. The results of the fatty acid profiles revealed that 43% showed different profiles according to the ones on their labels, with a higher incidence of adulteration of evening primrose oils. The maximum tolerable limits by European Regulation No. 835/2011 were exceeded for BaP in 12%, and for total 4 PAHs in 28%, with a greater contribution of adulterated samples. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.
Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, themore » released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.« less
Vongvanrungruang, A; Mongkolsiriwatana, C; Boonkaew, T; Sawatdichaikul, O; Srikulnath, K; Peyachoknagul, S
2016-09-19
The fragrance gene, betaine aldehyde dehydrogenase 2 (Badh2), has been well studied in many plant species. The objectives of this study were to clone Badh2 and compare the sequences between aromatic and non-aromatic coconuts. The complete coding region was cloned from cDNA of both aromatic and non-aromatic coconuts. The nucleotide sequences were highly homologous to Badh2 genes of other plants. Badh2 consisted of a 1512-bp open reading frame encoding 503 amino acids. A single nucleotide difference between aromatic and non-aromatic coconuts resulted in the conversion of alanine (non-aromatic) to proline (aromatic) at position 442, which was the substrate binding site of BADH2. The ring side chain of proline could destabilize the structure leading to a non-functional enzyme. Badh2 genomic DNA was cloned from exon 1 to 4, and from exon 5 to 15 from the two coconut types, except for intron 4 that was very long. The intron sequences of the two coconut groups were highly homologous. No differences in Badh2 expression were found among the tissues of aromatic coconut or between aromatic and non-aromatic coconuts. The amino acid sequences of BADH2 from coconut and other plants were compared and the genetic relationship was analyzed using MEGA 7.0. The phylogenetic tree reconstructed by the Bayesian information criterion consisted of two distinct groups of monocots and dicots. Among the monocots, coconut (Cocos nucifera) and oil palm (Elaeis guineensis) were the most closely related species. A marker for coconut differentiation was developed from one-base substitution site and could be successfully used.
SEPARATION AND CHARACTERIZATION OF HUMAN SERUM CHYLOMICRONS
Scanu, Angelo; Page, Irvine H.
1959-01-01
Chylomicrons were separated by low and high speed ultracentrifugation from lipemic sera of human subjects in the absorptive phase. The final chylomicron preparation was free from other serum components and contained a small constant amount of protein, approximately 2 per cent of the chylomicron fraction. Electrophoresis, immunochemical analysis, and absorption experiments identified the protein component as derived from a mixture of beta and alpha1 serum lipoproteins. Large aliquots of an emulsion of serum freed of chylomicrons and coconut oil were incubated at 37°C. for 2 hours and ultracentrifuged as in the preparation of chylomicrons. The fat particles now showed the presence of minute amounts of beta and alpha1 serum lipoproteins in almost the same proportion as found in chylomicrons. "Finger prints" of delipidized samples of chylomicrons and particles from serum-coconut oil emulsion gave similar, although not identical patterns. The data on "clearing factor" activity corroborated the finding that serum alpha1 lipoproteins are contained in chylomicrons and particles from serum-coconut oil emulsion. These two lipide particles, partially delipidized, were both able to activate a "clearing factor" system in vitro, a property exhibited only by intact or partially delipidized alpha1 serum lipoproteins. Clearing activity was satisfactorily determined by using an emulsion of coconut oil mixed in agar as a substrate to give an opaque gel, in which the diffusing enzyme showed its activity by areas of clearing. The results obtained by this technique were in agreement with those based on fall in optical density and non-esterified fatty acid production. Chemical analysis of serum chylomicrons showed a concentration of cholesterol and phospholipides higher than could be accounted for by the attached beta and alpha1 serum lipoproteins. On the basis of these results the assumption is made that in the blood stream small amounts of serum lipoproteins, by a process of adsorption, form a complex with the absorbed triglycerides, cholesterol, and phospholipides, to produce chylomicrons. PMID:13620852
Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H
2012-01-01
Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.
Military Geology of Saipan, Mariana Islands. Volume 1: Introduction and Engineering Aspects
1955-01-01
attempt inclusiveness or dis- tinction between endemic, indigenous, and introduced. In the past the coconut palm was important in the native economy...to replant the coconut more extensively. Bananas, taro, tapioca, yams, and sweet potatoes are extensively raised, and the breadfruit, pandanus, and...34 ’ ,’A Oil : 9 Punlan Tanks 19 -85- EXPLANATION 1685 69 sind Very compact limestone Massive, unweathered rock, overlain by none to as much
Portarena, S; Gavrichkova, O; Lauteri, M; Brugnoli, E
2014-12-01
Authentication of food origin is relevant to avoid food fraud. This work aimed to explore the variation of isotopic compositions (δ(13)C, δ(18)O) of extra-virgin olive oils from Italy growing in different environmental conditions. A total of 387 oil samples from nine different regions (from North to South), produced on 2009, 2010 and 2011, were analysed. Statistical analysis showed correlations among oil isotope compositions and latitude, mean annual temperature, mean annual precipitation and xerothermic index. No correlation was found comparing isotope compositions with elevation and longitude. An observed shift of the oil δ(18)O per centigrade degree of the mean annual temperature is congruent with literature. The year effect was significant for both δ(18)O and δ(13)C. Samples from Sicilia and Sardegna were higher in (13)C and (18)O than oils from northern regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-06-05
This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.
Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Fregapane, G; Salvador, M D; Simal-Gándara, J
2015-06-01
The current trend of the olive oil market is the production of high quality extra from traditional minor olive varieties with peculiar and differentiated characteristics (especially with respect to the aromatic and phenolic composition). In this way, the interest of Galician oil producers (NW Spain) in recovering old autochthonous Local olive fruits has increased substantially in recent years. In order to investigate the potential of the Local olives by either producing high quality monovarietal oils or mixing with the most widespread olives in Galicia (Arbequina and Picual cv.), quality indices, and fatty acid composition as well as volatile and phenolic profiles were determined and compared. All EVOOs studied in this work can be considered as "extra virgin olive oil" due to quality indices fell within the ranges established in legislation. Picual and Local olive oils as well as those resulting from their co-crushing reach values which are required by EU legislation to add the specific health claim on the oil label. Co-crushing Picual:Local (80:20) provided a significant enhancement of grass and apple nuances and a decrease of banana notes with respect to Picual oils. The co-crushing process improved sensory and health properties of Picual extra virgin olive oils. The effect of co-crushing on phenolics, ester volatiles and banana nuances cannot be easily modulated, contrary to quality indices and fatty acid composition, both changing linearly in strict correlation with the fruit mass ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthesis and physical properties of new coco-oleic estolide branched esters
USDA-ARS?s Scientific Manuscript database
Oils derived from vegetable oils tend to not meet the standards for industrial lubricants because of unacceptable low temperature properties, pour point (PP), and/or cloud point (CP). However, a catalytic amount of perchloric acid with oleic and coconut (coco) fatty acids produced a coco-oleic estol...
Vallverdú-Queralt, Anna; Regueiro, Jorge; Rinaldi de Alvarenga, José Fernando; Torrado, Xavier; Lamuela-Raventos, Rosa M
2014-04-09
Tomato products are a key component of the Mediterranean diet, which is strongly related to a reduced risk of cardiovascular events. The effect of cooking time (15, 30, 45, and 60 min) and the addition of extra virgin olive oil (5 and 10%) on the phenolic content of tomato sauces was monitored using liquid chromatography coupled to tandem mass spectrometry. Concentration of phenolics in the tomato sauces decreased during the cooking process, with the exception of caffeic acid and tyrosol. The main degradation observed was the oxidation of quercetin, since the hydroxy-function at the C-ring of this flavonoid is not blocked by a sugar moiety, unlike rutin. Higher levels of virgin olive oil in tomato sauce seemed to enhance the extraction of phenolic compounds from the tomato, leading to higher phenolic contents in the sauces. Thus, the food matrix containing the phenolic compounds plays a crucial role in determining their accessibility.
Morrison, Martine C.; Mulder, Petra; Stavro, P. Mark; Suárez, Manuel; Arola-Arnal, Anna; van Duyvenvoorde, Wim; Kooistra, Teake; Wielinga, Peter Y.; Kleemann, Robert
2015-01-01
Background and Aims As dietary saturated fatty acids are associated with metabolic and cardiovascular disease, a potentially interesting strategy to reduce disease risk is modification of the quality of fat consumed. Vegetable oils represent an attractive target for intervention, as they largely determine the intake of dietary fats. Furthermore, besides potential health effects conferred by the type of fatty acids in a vegetable oil, other minor components (e.g. phytochemicals) may also have health benefits. Here, we investigated the potential long-term health effects of isocaloric substitution of dietary fat (i.e. partial replacement of saturated by unsaturated fats), as well as putative additional effects of phytochemicals present in unrefined (virgin) oil on development of non-alcoholic fatty liver disease (NAFLD) and associated atherosclerosis. For this, we used pumpkin seed oil, because it is high in unsaturated fatty acids and a rich source of phytochemicals. Methods ApoE*3Leiden mice were fed a Western-type diet (CON) containing cocoa butter (15% w/w) and cholesterol (1% w/w) for 20 weeks to induce risk factors and disease endpoints. In separate groups, cocoa butter was replaced by refined (REF) or virgin (VIR) pumpkin seed oil (comparable in fatty acid composition, but different in phytochemical content). Results Both oils improved dyslipidaemia, with decreased (V)LDL-cholesterol and triglyceride levels in comparison with CON, and additional cholesterol-lowering effects of VIR over REF. While REF did not affect plasma inflammatory markers, VIR reduced circulating serum amyloid A and soluble vascular adhesion molecule-1. NAFLD and atherosclerosis development was modestly reduced in REF, and VIR strongly decreased liver steatosis and inflammation as well as atherosclerotic lesion area and severity. Conclusions Overall, we show that an isocaloric switch from a diet rich in saturated fat to a diet rich in unsaturated fat can attenuate NAFLD and atherosclerosis development. Phytochemical-rich virgin pumpkin seed oil exerts additional anti-inflammatory effects resulting in more pronounced health effects. PMID:26405765
Morrison, Martine C; Mulder, Petra; Stavro, P Mark; Suárez, Manuel; Arola-Arnal, Anna; van Duyvenvoorde, Wim; Kooistra, Teake; Wielinga, Peter Y; Kleemann, Robert
2015-01-01
As dietary saturated fatty acids are associated with metabolic and cardiovascular disease, a potentially interesting strategy to reduce disease risk is modification of the quality of fat consumed. Vegetable oils represent an attractive target for intervention, as they largely determine the intake of dietary fats. Furthermore, besides potential health effects conferred by the type of fatty acids in a vegetable oil, other minor components (e.g. phytochemicals) may also have health benefits. Here, we investigated the potential long-term health effects of isocaloric substitution of dietary fat (i.e. partial replacement of saturated by unsaturated fats), as well as putative additional effects of phytochemicals present in unrefined (virgin) oil on development of non-alcoholic fatty liver disease (NAFLD) and associated atherosclerosis. For this, we used pumpkin seed oil, because it is high in unsaturated fatty acids and a rich source of phytochemicals. ApoE*3Leiden mice were fed a Western-type diet (CON) containing cocoa butter (15% w/w) and cholesterol (1% w/w) for 20 weeks to induce risk factors and disease endpoints. In separate groups, cocoa butter was replaced by refined (REF) or virgin (VIR) pumpkin seed oil (comparable in fatty acid composition, but different in phytochemical content). Both oils improved dyslipidaemia, with decreased (V)LDL-cholesterol and triglyceride levels in comparison with CON, and additional cholesterol-lowering effects of VIR over REF. While REF did not affect plasma inflammatory markers, VIR reduced circulating serum amyloid A and soluble vascular adhesion molecule-1. NAFLD and atherosclerosis development was modestly reduced in REF, and VIR strongly decreased liver steatosis and inflammation as well as atherosclerotic lesion area and severity. Overall, we show that an isocaloric switch from a diet rich in saturated fat to a diet rich in unsaturated fat can attenuate NAFLD and atherosclerosis development. Phytochemical-rich virgin pumpkin seed oil exerts additional anti-inflammatory effects resulting in more pronounced health effects.
Delgado-Adámez, Jonathan; Baltasar, M Nieves Franco; Yuste, María Concepción Ayuso; Martín-Vertedor, Daniel
2014-01-01
The aim of this research was to evaluate strategies for the development of a virgin olive oil (VOO) enriched with aqueous extracts of olive leaf and cake to increase the necessary dose in the diet of phenolic compounds with a natural product, as phenolic compounds are involved on the healthy properties of olive oil. Different extraction procedures were evaluated with the aim of increasing the phenol content and antioxidant potential of extracts of olive leaf and cake. As leaves extract presented a higher total phenolic content, it was characterized in order to determine its phenolic profile, and was employed to enrich VOO. Diverse procedures were used to prepare enriched VOO with the leaves extract, and finally the effects of phenol enrichment were evaluated based on the antioxidant potential and oxidative stability of the prepared phenol-enriched virgin olive oils. These enriched VOOs increased significantly the content in phenolic compounds, antioxidant potential and oxidative stability 40, 4 and 1.5 fold more, respectively, than the Control oil. Furthermore, the addition of lecithin had a positive effect both on the phenolic compounds content, and on the antioxidant potential of the oils. Besides, the use of the olive leaves extract, with and without lecithin respectively, supposes a strategy potential for reducing the harmful effects that inflicts long-term preservation of VOOs and its possible deterioration.
Carrasco-Pancorbo, Alegria; Gómez-Caravaca, Ana Maria; Cerretani, Lorenzo; Bendini, Alessandra; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2006-09-01
We have devised a simple and rapid capillary electrophoretic method which provides the analyst with a useful tool for the characterization of the polyphenolic fraction of extra-virgin olive oil. This method that uses a capillary with 50 microm id and a total length of 47 cm (40 cm to the detector) with a detection window of 100 x 200 microm, and a buffer solution containing 45 mM of sodium tetraborate pH 9.3 offers valuable information about all the families of compounds present in the polar fraction of the olive oil. The detection was carried out by UV absorption at 200, 240, 280, and 330 nm in order to facilitate the identification of the compounds. Concretely, the method permits the identification of simple phenols, lignans, complex phenols (isomeric forms of secoiridoids), phenolic acids, and flavonoids in the SPE-Diol extracts from extra-virgin olive oil in a short time (less than 10 min) and provides a satisfactory resolution. Peak identification was done by comparing both migration time and spectral data obtained from olive oil samples and standards (commercial or isolated (by HPLC-MS) standards), with spiked methanol-water extracts of olive oil with HPLC-collected compounds and commercially available standards at several concentration levels, studying the information of the electropherograms obtained at several wavelengths and also using the information previously reported.
Blasi, F; Rocchetti, G; Montesano, D; Lucini, L; Chiodelli, G; Ghisoni, S; Baccolo, G; Simonetti, M S; Cossignani, L
2018-03-01
In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ceci, Liliana N; Mattar, Susana B; Carelli, Amalia A
2017-10-01
This study provides information about the chemical quality (quality indices, fatty acid profile, total polyphenols (PPs), tocopherols and pigments) and oxidative stability index (OSI) of virgin olive oils of Arbequina, Changlot Real and Coratina cultivars (San Juan province, Argentina). The influence of the cultivar and the effect of earlier harvest dates on the yields (OY), quality and OSI of the oils were also evaluated. All the oils were classified as extra virgin. The OY (L/100kg) averaged: Arbequina=13.2, Changlot Real=21.3, Coratina=18.3. The oleic acid (O) percentage, oleic to linoleic plus linolenic ratio [O/(L+Ln)], PPs and OSI were highly dependent on cultivar (Arbequina
Neuroprotection of dietary virgin olive oil on brain lipidomics during stroke.
Rabiei, Zahra; Bigdeli, Mohammad Reza; Rasoulian, Bahram
2013-08-01
Recent studies suggest that dietary virgin olive oil reduces hypoxia-reoxygenation injury in rat brain. This study investigated the effect of pretreatment with different doses of dietary virgin olive oil on brain lipidomics during stroke. In this experimental trial, 60 male Wistar rats were studied in 5 groups of 12 each. The control group received distilled water while three treatment groups received oral virgin olive oil for 30 days (0.25, 0.5 and 0.75 ml/kg/day respectively). Also the sham group received distilled water. Two hours after the last dose, the animals divided two groups. The middle cerebral artery occlusion (MCAO) group subjected to 60 min of middle cerebral artery occlusion (MCAO) and intact groups for brain lipids analysis. The brain phosphatidylcholine, cholesterol ester and cholesterol levels increased significantly in doses of 0.5 and 0.75 ml/kg/day compare with control group. VOO in all three doses increased the brain triglyceride levels. VOO with dose 0.75 ml/kg increased the brain cerebroside levels when compared with control group. VOO pretreatment for 30 days decreased the brain ceramide levels in doses of 0.5 and 0.75 ml/kg/day (p<0.05). Although further studies are needed, the results indicate that the VOO pretreatment improved the injury of ischemia and reperfusion and might be beneficial in patients with these disorders and seems to partly exert their effects via change in brain lipid levels in rat.
Sureda, Antoni; Bibiloni, Maria Del Mar; Martorell, Miquel; Buil-Cosiales, Pilar; Marti, Amelia; Pons, Antoni; Tur, Josep A; Martinez-Gonzalez, Miguel Ángel
2016-12-01
This study assessed plasmatic antioxidant capabilities and xanthine oxidase (XOX) activity in metabolic syndrome patients after 5 years intervention with Mediterranean diet (MeDiet) supplemented with extra-virgin olive oil or with nuts or with low-fat diet (the PREDIMED [PREvención con Dieta MEDiterránea] study). Seventy-five participants were randomly selected. Daily energy and nutrient intake were assessed with a validated 137-item food frequency questionnaire, and adherence to the MeDiet was assessed using a 14-item questionnaire. Catalase, superoxide dismutase (SOD), myeloperoxidase, XOX activities and protein levels, and protein carbonyl derivatives, nitrotyrosine, nitrite and nitrate levels were determined in overnight fasting venous blood samples. The plasma activity and protein levels of SOD and catalase were significantly higher and XOX activity was lower in MeDiet supplemented with extra-virgin olive oil and MeDiet supplemented with nuts than in the control group. Participants in both MeDiet groups showed higher plasma nitrate levels than in the control group. Adherence to the MeDiet showed a positive correlation with SOD and catalase plasma antioxidant activities. A MeDiet enriched with either virgin olive oil or nuts enhances the plasma antioxidant capabilities and decreases XOX activity in patients with the metabolic syndrome but we did not observe changes in myeloperoxidase or markers of oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
González-Alonso, Adrián; Ramírez-Tortosa, César L.; Varela-López, Alfonso; Roche, Enrique; Arribas, María I.; Ramírez-Tortosa, M. Carmen; Giampieri, Francesca; Ochoa, Julio J.; Quiles, José L.
2015-01-01
An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources. PMID:26426013
Khalid Thebo, Nasreen; Ahmed Simair, Altaf; Sughra Mangrio, Ghulam; Ansari, Khalil Ahmed; Ali Bhutto, Aijaz; Lu, Changrui; Ali Sheikh, Wazir
2016-01-01
Background: Coconut is a tropical fruit well known for its essential oils that have been recognized for their biological activities since ancient times. There have been no previous investigations on the essential oils from coconut shells. Method: The shell extract of Cocos nucifera (L.) was prepared by the Soxhlet method and total phenolic content (TPC) in the extract was determined by Folin-Ciocalteu (FC) assay. The antioxidant potential of the coconut shell extract was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Minimum inhibitory concentration (MIC) of the extract was determined by the strip method against clinically isolated dermal mycosis of 20 infected patients. Result: Total antioxidant activity varied from 92.32% to 94.20% and total phenolic content was found at 5.33 ± 0.02 mg/g in the coconut shell extract. The extract was found to be most effective as an antifungal against human pathogenic fungi, including A. niger, A. flavus, T. rubrum, M. canis, M. gypseum, A. fumigates, T. mentagrophyte and T. vercossum. The crude shell extract was highly effective against all dermal mycosis tested with the MIC ranging from 62 mm to 90 mm, whereas all fungal samples showed good inhibitory effect. Conclusion: The results of the present study provide a potential cure for microbial infections. PMID:28930122
Development of Permeable Reactive Barriers (PRB) Using Edible Oils
2008-06-01
developed for the in-situ treatment of hazardous constituents including chlorinated solvents, perchlorate (ClO4-), chromate (CrO4-2) and oxidized... beef tallow, melted corn oil margarine, coconut oil and molasses supported the complete reductive dehalogenation of PCE to ethene in microcosms using...anaerobic bioremediation processes are being developed for the in-situ treatment of hazardous constituents including chlorinated solvents, perchlorate
Limón, Piedad; Malheiro, Ricardo; Casal, Susana; Acién-Fernández, F Gabriel; Fernández-Sevilla, José M; Rodrigues, Nuno; Cruz, Rebeca; Bermejo, Ruperto; Pereira, José Alberto
2015-05-15
Humans are not capable of synthesizing carotenoids de novo and thus, their presence in human tissues is entirely of dietary origin. Consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables. Microalgae are a good source of carotenoids that can be exploited. In the present work, carotenoids rich extracts from Scenedesmus almeriensis were added to extra-virgin olive oils at different concentrations (0.1 and 0.21 mg/mL) in order to enhance the consumption of these bioactives. Extracts brought changes in olive oils color, turning them orange-reddish. Quality of olive oils was improved, since peroxidation was inhibited. Olive oils fatty acids and tocopherols were not affected. β-carotene and lutein contents increase considerably, as well as oxidative stability, improving olive oils shelf-life and nutritional value. Inclusion of S. almeriensis extracts is a good strategy to improve and enhance the consumption of carotenoids, since olive oil consumption is increasing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline
2017-12-20
Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.
Estruch, Ramón; Ros, Emilio; Salas-Salvadó, Jordi; Covas, Maria-Isabel; Corella, Dolores; Arós, Fernando; Gómez-Gracia, Enrique; Ruiz-Gutiérrez, Valentina; Fiol, Miquel; Lapetra, José; Lamuela-Raventos, Rosa M; Serra-Majem, Lluís; Pintó, Xavier; Basora, Josep; Muñoz, Miguel A; Sorlí, José V; Martínez, J Alfredo; Fitó, Montserrat; Gea, Alfredo; Hernán, Miguel A; Martínez-González, Miguel A
2018-06-21
Observational cohort studies and a secondary prevention trial have shown inverse associations between adherence to the Mediterranean diet and cardiovascular risk. In a multicenter trial in Spain, we assigned 7447 participants (55 to 80 years of age, 57% women) who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was a major cardiovascular event (myocardial infarction, stroke, or death from cardiovascular causes). After a median follow-up of 4.8 years, the trial was stopped on the basis of a prespecified interim analysis. In 2013, we reported the results for the primary end point in the Journal. We subsequently identified protocol deviations, including enrollment of household members without randomization, assignment to a study group without randomization of some participants at 1 of 11 study sites, and apparent inconsistent use of randomization tables at another site. We have withdrawn our previously published report and now report revised effect estimates based on analyses that do not rely exclusively on the assumption that all the participants were randomly assigned. A primary end-point event occurred in 288 participants; there were 96 events in the group assigned to a Mediterranean diet with extra-virgin olive oil (3.8%), 83 in the group assigned to a Mediterranean diet with nuts (3.4%), and 109 in the control group (4.4%). In the intention-to-treat analysis including all the participants and adjusting for baseline characteristics and propensity scores, the hazard ratio was 0.69 (95% confidence interval [CI], 0.53 to 0.91) for a Mediterranean diet with extra-virgin olive oil and 0.72 (95% CI, 0.54 to 0.95) for a Mediterranean diet with nuts, as compared with the control diet. Results were similar after the omission of 1588 participants whose study-group assignments were known or suspected to have departed from the protocol. In this study involving persons at high cardiovascular risk, the incidence of major cardiovascular events was lower among those assigned to a Mediterranean diet supplemented with extra-virgin olive oil or nuts than among those assigned to a reduced-fat diet. (Funded by Instituto de Salud Carlos III, Spanish Ministry of Health, and others; Current Controlled Trials number, ISRCTN35739639 .).
Butinar, Bojan; Bucar-Miklavcic, Milena; Valencic, Vasilij; Raspor, Peter
2010-05-12
In Slovenia two superb vegetable oils with high added nutritional value are produced: "Ekstra devisko oljcno olje Slovenske Istre (extra virgin olive oil from Slovene Istra)" and "Stajersko prekmursko bucno olje (pumpkin seed oil from Slovenia)". Their quality and genuineness must be monitored as adulteration can easily be undertaken. Olive oil genuineness determination experiences can show how analyses following an experience data-driven decision tree gathering several chemical determinations (fatty acids, (E)-isomers of fatty acids, sterol and tocopherol determinations) may be helpful in assessing the pumpkin seed oil from Slovenia genuineness. In the present work a set of HPLC triacylglycerol determinations was performed, based on the nine main triacylglycerols (LLLn, LLL, PLL, LOO, PLO, OOO, POO, SPL, and SLS) on a limited number of different pumpkin seed oils from northeastern Slovenia. The performed determinations showed that stereospecific analyses of triacylglycerols together with other chemical determinations can be useful in building a protocol for the evaluation of the genuineness of pumpkin seed oil from Slovenia.
Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A
2012-10-01
Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mignani, Anna Grazia; García-Allende, Pilar Beatriz; Ciaccheri, Leonardo; Conde, Olga M.; Cimato, Antonio; Attilio, Cristina; Tura, Debora
2008-04-01
Italian extra virgin olive oils from four regions covering different latitudes of the country were considered. They were analyzed by means of absorption spectroscopy in the wide 200-2800 nm spectral range, and multivariate data processing was applied. These spectra were virtually a signature identification from which to extract information on the region of origin and on the most important quality indicators. A classification map was created which was able to group the 80 oils on the basis of their region of origin. Furthermore, a model for the prediction of quality parameters such as oleic acidity, peroxide number, K232, K270 and Delta K, was developed.
Sánchez-Hernández, Laura; Marina, Maria Luisa; Crego, Antonio L
2011-07-29
A new analytical methodology based on capillary electrophoresis-mass spectrometry (CE-MS(2)) is presented in this work, enabling the identification and determination of six non-protein amino acids (ornithine, β-alanine, GABA, alloisoleucine, citrulline and pyroglutamic acid) in vegetable oils. This methodology is based on a previous derivatization with butanol and subsequent separation using acidic conditions followed by on-line coupling to an ion trap analyzer for MS(2) detection established through an electrospray-coaxial sheath flow interface. The electrophoretic and interface parameters were optimized obtaining the separation of all compounds in less than 15 min and with resolutions higher than 5. The proposed method was validated by assessing its accuracy, precision (RSD<7% for corrected peak areas), LODs and LOQs (between 0.04-0.19 ng/g and 0.06-0.31 ng/g, respectively) and linearity range (R(2)>0.99), and it was used in order to identify the selected non-protein amino acids in soybean oils, sunflower oils, corn oils and extra virgin olive oils. MS(2) experiments performed the fingerprint fragmentation of these compounds allowing to corroborate ornithine and alloisoleucine in seed oils but not in olive oils. The method was applied to identify and quantify olive oil adulterations with soybean oil detecting in a single run the amino acids in mixtures up to 2% (w/w). The results showed a high potential in using these compounds as novel markers for the detection of adulterations of extra virgin olive oils with seed oils. Thus, the developed method could be considered a simple, rapid and reliable method for the quality evaluation of extra virgin olive oil permitting its authentication. Copyright © 2011 Elsevier B.V. All rights reserved.
Examination of marine and vegetable oil oxidation data from a multi-year, third-party database.
De Boer, Anna A; Ismail, Adam; Marshall, Keri; Bannenberg, Gerard; Yan, Kevin L; Rowe, William J
2018-07-15
Fish oil (FO) products constitute good sources of omega-3 fats. Oxidation data from a large third-party database of 1900 + globally-sourced FO samples were assessed. In FO products, for peroxide value (PV), 13.9% exceeded 5 mEq O 2 /kg (2.2% >10); for acid value (AcV) 2.1% exceeded 3 mg KOH/g, while for p-anisidine value (pAV) in unflavoured oils, 6.1% exceeded 20, (3.8% >30), and 8.8% exceeded TOTOX limits (26). Additionally, we compared FO with other dietary oils. The FO median PV was similar to those of algal and sunflower oils, 4.8-fold greater than krill oil, and 5.2-fold less than extra-virgin olive oil. The median pAV differed non-significantly among oils. The FO median AcV was similar to those of algal and extra-virgin olive oils, 3.4-fold greater than sunflower oil, and 11.9-fold less than krill oil. This study has provided new insight that retail FO products predominantly meet regulatory guidelines and are comparable in oxidative status to other dietary oils. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.
2009-01-01
Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.
Development and Validation of a Mathematical Model for Olive Oil Oxidation
NASA Astrophysics Data System (ADS)
Rahmouni, K.; Bouhafa, H.; Hamdi, S.
2009-03-01
A mathematical model describing the stability or the susceptibility to oxidation of extra virgin olive oil has been developed. The model has been resolved by an iterative method using differential finite method. It was validated by experimental data of extra virgin olive oil (EVOO) oxidation. EVOO stability was tested by using a Rancimat at four different temperatures 60, 70, 80 and 90° C until peroxide accumulation reached 20 [meq/kg]. Peroxide formation is speed relatively slow; fits zero order reaction with linear regression coefficients varying from 0, 98 to 0, 99. The mathematical model was used to predict the shelf life of bulk conditioned olive oil. This model described peroxide accumulation inside a container in excess of oxygen as a function of time at various positions from the interface air/oil. Good correlations were obtained between theoretical and experimental values.
Fruit quality and olive leaf and stone addition affect Picual virgin olive oil triterpenic content.
Allouche, Yosra; Uceda, Marino; Jiménez, Antonio; Aguilera, M Paz; Gaforio, José Juan; Beltrán, Gabriel
2009-10-14
The present research aimed to evaluate whether Picual virgin olive oil triterpenic compounds are affected by the addition of variable quantities of stones and leaves before processing or by fruit resting on the ground during 3 months. Results showed that stone addition did not influence triterpenic dialcohol content (uvaol and erythrodiol), whereas triterpenic acids (oleanolic and maslinic) increased significantly when 20 and 30% stones were added. Leaves added at 2% increased significantly oleanolic acid, maslinic acid, and erythrodiol content by 83, 41, and 36%, respectively. During fruit resting on the ground, olive oils showed no differences in uvaol content, a slight increase in erythrodiol, and a gradual increase in both oleanolic and maslinic acids, obtaining at the end of the experiment contents nearly 10- and 3-fold higher than control oils. These results confirm that olive oil triterpenic composition is modified by the factors analyzed.
Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong
2018-02-01
Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis of solid catalyst from egg shell waste and clay for biodiesel production
NASA Astrophysics Data System (ADS)
Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.
2018-05-01
Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.
Sutter, F; Casutt, M M; Ossowski, D A; Scheeder, M R; Kreuzer, M
2000-01-01
Growth performance, carcass and meat quality were determined in 36 fattening Brown Swiss bulls fed with maize silage-hay-concentrate based rations supplemented with fats and various oilseeds. The concentrate diet in the control group contained only barley and soybean meal, while the treated groups included, as partial replacement of the concentrate, rumen-protected crystalline fat, coconut oil, whole crushed rapeseed, sunflower seed or linseed, providing additional 3% fat of total ration dry matter. Animals were housed in groups of six with one representative of each treatment in a monofactorial design and feed was offered using transponder controlled equipment. Daily gains were similar for control, protected fat, rapeseed and linseed treatments (1240 g/d on average), but were lower (P < 0.05) with sunflower seed (1135 g/d) and coconut oil (1038 g/d). Corresponding differences (P < 0.05) in carcass weights were observed. All fat supplemented groups had reduced rumen fluid protozoa counts (P < 0.05). Carcasses tended to be leaner with the fat supplements. Mostly no significant effects on other carcass quality (dressing percentage, conformation score) and meat quality traits (final pH, cooking loss, shear forces) as well as composition (dry matter, fat, collagen) occurred. Consequently, rumen protected fat and some oilseeds can be recommended to be fed to growing cattle as energy sources.
The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M.J.C.
The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T{sub 4} levels and T{sub 4} treatment increased serum T{sub 3} levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T{sub 4}, the transition temperature disappeared due to a decoupling ofmore » succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T{sub 4} treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca{sup ++}Mg{sup ++}ATPase and Mg{sup ++}ATPase. T{sub 4} treatment had potentiated this effect. T{sub 4} increased the malate-aspartate shuttle and {alpha}-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-({sup 14}C-U)/(6-{sup 3}H)-glucose and gluconeogeneis from L-({sup 14}C-U)-alanine was examined. Dietary fat or T{sub 4} did not affect the glucose mass. T{sub 4} increased the irreversible fractional glucose turnover rate.« less