Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.
Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A
2011-01-01
Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, W; Rao, A; Wendt, R
Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less
Liu Bejarano, Humberto
2011-01-01
Due to the poor agreement between endoscopy and histology, the gastric biopsy continues being the gold standard for the diagnosis of atrophic chronic gastritis. The Virtual chromoendoscopy system allows better observation of the gastric mucosa. Evaluate the agreement between the Kimura-Takemoto ´s endoscopic system classification and the histological system of OLGA (Operative for Link Assessment Gastritis), as well as to evaluate the application of the virtual chromoendoscopy. A prospective and longitudinal study of cohorts, 138 patients was include, using endoscopic system of atrophy by Kimura and Takemoto (K-T), with conventional optical and with the use of seventh filter of virtual chromoendoscopy ,then comparing with the histological findings of the OLGA pathology system, also were determinated injuries associated with respect to stage OLGA. The kappa index of agreement between conventional endoscopy and the system OLGA was 0.859 and with the system of virtual chromoendoscopy was 0.822, the preneoplasic and neoplastic gastric lesions were associate to stages III and IV of atrophy. The endoscopic and histological correlation with both systems isvery good, with or without the use of virtual chromoendoscopy. chronic atrophic gastritis, virtual chromoendoscopy, olga system, , kimuratakemoto system.
[Virtual bronchoscopy: the correlation between endoscopic simulation and bronchoscopic findings].
Salvolini, L; Gasparini, S; Baldelli, S; Bichi Secchi, E; Amici, F
1997-11-01
We carried out a preliminary clinical validation of 3D spiral CT virtual endoscopic reconstructions of the tracheobronchial tree, by comparing virtual bronchoscopic images with actual endoscopic findings. Twenty-two patients with tracheobronchial disease suspected at preliminary clinical, cytopathological and plain chest film findings were submitted to spiral CT of the chest and bronchoscopy. CT was repeated after endobronchial therapy in 2 cases. Virtual endoscopic shaded-surface-display views of the tracheobronchial tree were reconstructed from reformatted CT data with an Advantage Navigator software. Virtual bronchoscopic images were preliminarily evaluated with a semi-quantitative quality score (excellent/good/fair/poor). The depiction of consecutive airway branches was then considered. Virtual bronchoscopies were finally submitted to double-blind comparison with actual endoscopies. Virtual image quality was considered excellent in 8 cases, good in 14 and fair in 2. Virtual exploration was stopped at the lobar bronchi in one case only; the origin of segmental bronchi was depicted in 23 cases and that of some subsegmental branches in 2 cases. Agreement between actual and virtual bronchoscopic findings was good in all cases but 3 where it was nevertheless considered satisfactory. The yield of clinically useful information differed in 8/24 cases: virtual reconstructions provided more information than bronchoscopy in 5 cases and vice versa in 3. Virtual reconstructions are limited in that the procedure is long and difficult and needing a strictly standardized threshold value not to alter virtual findings. Moreover, the reconstructed surface lacks transparency, there is the partial volume effect and the branches < or = 4 pixels phi and/or meandering ones are difficult to explore. Our preliminary data are encouraging. Segmental bronchi were depicted in nearly all cases, except for the branches involved by disease. Obstructing lesions could be bypassed in some cases, making an indication for endoscopic laser therapy. Future didactic perspectives and applications to minimally invasive or virtual reality-assisted therapy seem promising, even though actual clinical applications require further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, W; Yang, J; Beadle, B
Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less
NASA Astrophysics Data System (ADS)
Inoue, Masahito; Miyake, Yoichi; Odaka, Takeo; Sato, Toru; Watanabe, Yoshiyuki; Sakama, Atsunori; Zenbutsu, Satoki; Yokosuka, Osamu
2010-09-01
Computed virtual chromoendoscopy with flexible spectral imaging color enhancement (FICE) is a new dyeless imaging technique that enhances mucosal and vascular patterns. However, a method for selecting a suitable wavelength for a particular condition has not been established. The aim of this study is to evaluate the color difference method for quality assessment of FICE images of the intrapapillary capillary loop in magnifying endoscopy for esophageal squamous cell carcinoma. The color difference between 60 microvessels and background mucosa observed using the magnifying endoscope was 8.31+/-2.84 SD under white light and 12.26+/-3.14 (p=0.0031), 11.70+/-4.49 (p=0.0106), and 17.49+/-5.40 (p<0.0001) in FICE modes A, B, and C, respectively. The visibility scores for microvessels observed by medical students were 6.00+/-1.12 points under white light and 11.1+/-2.25 (p<0.0001), 8.65+/-2.06 (p=0.0001), and 12.55+/-2.56 (p<0.0001) in FICE modes A, B, and C, respectively. Furthermore, the measurement of color difference was correlated with the visibility score assigned by medical students (Pearson's correlation coefficient=0.583, p<0.0001) In conclusion, the color difference method corresponds to human vision and is an appropriate method for evaluation of endoscopic images.
Evaluation of a novel multi-articulated endoscope: proof of concept through a virtual simulation.
Karvonen, Tuukka; Muranishi, Yusuke; Yamamoto, Goshiro; Kuroda, Tomohiro; Sato, Toshihiko
2017-07-01
In endoscopic surgery such as video-assisted thoracoscopic surgery and laparoscopic surgery, providing the surgeon a good view of the target is important. Rigid endoscope has for years been the go-to tool for this purpose, but it has certain limitations like the inability to work around obstacles. To improve on current tools, a novel multi-articulated endoscope (MAE) is currently under development. To investigate its feasibility and possible value, we performed a user test using virtual prototype of the MAE with the intent to show that it outperforms the conventional endoscope while bringing minimal additional burden to the operator. To evaluate the prototype, we built a virtual model of the MAE and a rigid oblique-viewing endoscope. Through a comparative user study we evaluate the ability of each device to visualize certain targets placed inside the virtual chest cavity by the angle between the visual axis of the scope and the normal of the plane of the target, while accounting for the usability of each endoscope by recording the time taken for each task. In addition, we collected a questionnaire from each participant to obtain feedback. The angles obtained using the MAE were smaller on average ([Formula: see text]), indicating that better visualization can be achieved through the proposed method. A nonsignificant difference in mean time taken for each task in favor of the rigid endoscope was also found ([Formula: see text]). We have demonstrated that better visualization for endoscopic surgery can be achieved through our novel MAE. The scope may bring about a paradigm shift in the field of minimally invasive surgery by providing more freedom in viewpoint selection, enabling surgeons to perform more elaborate procedures in minimally invasive settings.
Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu
2014-01-01
The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.
Virtual endoscopy in neurosurgery: a review.
Neubauer, André; Wolfsberger, Stefan
2013-01-01
Virtual endoscopy is the computerized creation of images depicting the inside of patient anatomy reconstructed in a virtual reality environment. It permits interactive, noninvasive, 3-dimensional visual inspection of anatomical cavities or vessels. This can aid in diagnostics, potentially replacing an actual endoscopic procedure, and help in the preparation of a surgical intervention by bridging the gap between plain 2-dimensional radiologic images and the 3-dimensional depiction of anatomy during actual endoscopy. If not only the endoscopic vision but also endoscopic handling, including realistic haptic feedback, is simulated, virtual endoscopy can be an effective training tool for novice surgeons. In neurosurgery, the main fields of the application of virtual endoscopy are third ventriculostomy, endonasal surgery, and the evaluation of pathologies in cerebral blood vessels. Progress in this very active field of research is achieved through cooperation between the technical and the medical communities. While the technology advances and new methods for modeling, reconstruction, and simulation are being developed, clinicians evaluate existing simulators, steer the development of new ones, and explore new fields of application. This review introduces some of the most interesting virtual reality systems for endoscopic neurosurgery developed in recent years and presents clinical studies conducted either on areas of application or specific systems. In addition, benefits and limitations of single products and simulated neuroendoscopy in general are pointed out.
White, Ian; Buchberg, Brian; Tsikitis, V Liana; Herzig, Daniel O; Vetto, John T; Lu, Kim C
2014-06-01
Colorectal cancer is the second most common cause of death in the USA. The need for screening colonoscopies, and thus adequately trained endoscopists, particularly in rural areas, is on the rise. Recent increases in required endoscopic cases for surgical resident graduation by the Surgery Residency Review Committee (RRC) further emphasize the need for more effective endoscopic training during residency to determine if a virtual reality colonoscopy simulator enhances surgical resident endoscopic education by detecting improvement in colonoscopy skills before and after 6 weeks of formal clinical endoscopic training. We conducted a retrospective review of prospectively collected surgery resident data on an endoscopy simulator. Residents performed four different clinical scenarios on the endoscopic simulator before and after a 6-week endoscopic training course. Data were collected over a 5-year period from 94 different residents performing a total of 795 colonoscopic simulation scenarios. Main outcome measures included time to cecal intubation, "red out" time, and severity of simulated patient discomfort (mild, moderate, severe, extreme) during colonoscopy scenarios. Average time to intubation of the cecum was 6.8 min for those residents who had not undergone endoscopic training versus 4.4 min for those who had undergone endoscopic training (p < 0.001). Residents who could be compared against themselves (pre vs. post-training), cecal intubation times decreased from 7.1 to 4.3 min (p < 0.001). Post-endoscopy rotation residents caused less severe discomfort during simulated colonoscopy than pre-endoscopy rotation residents (4 vs. 10%; p = 0.004). Virtual reality endoscopic simulation is an effective tool for both augmenting surgical resident endoscopy cancer education and measuring improvement in resident performance after formal clinical endoscopic training.
Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.
Wolfsberger, Stefan; Neubauer, André; Bühler, Katja; Wegenkittl, Rainer; Czech, Thomas; Gentzsch, Stephan; Böcher-Schwarz, Hans-Gerd; Knosp, Engelbert
2006-11-01
Virtual endoscopy (vE) is the navigation of a camera through a virtual anatomical space that is computationally reconstructed from radiological image data. Inside this three-dimensional space, arbitrary movements and adaptations of viewing parameters are possible. Thereby, vE can be used for noninvasive diagnostic purposes and for simulation of surgical tasks. This article describes the development of an advanced system of vE for endoscopic transsphenoidal pituitary surgery and its application to teaching, training, and in the routine clinical setting. The vE system was applied to a series of 35 patients with pituitary pathology (32 adenomas, three Rathke's cleft cysts) operated endoscopically via the transsphenoidal route at the Department of Neurosurgery of the Medical University Vienna between 2004 and 2006. The virtual endoscopic images correlated well with the intraoperative view. For the transsphenoidal approach, vE improved intraoperative orientation by depicting anatomical landmarks and variations. For planning a safe and tailored opening of the sellar floor, transparent visualization of the pituitary adenoma and the normal gland in relation to the internal carotid arteries was useful. According to our experience, vE can be a valuable tool for endoscopic transsphenoidal pituitary surgery for training purposes and preoperative planning. For the novice, it can act as a simulator for endoscopic anatomy and for training surgical tasks. For the experienced pituitary surgeon, vE can depict the individual patient's anatomy, and may, therefore, improve intraoperative orientation. By prospectively visualizing unpredictable anatomical variations, vE may increase the safety of this surgical procedure.
Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A
2014-01-01
The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.
Evaluation of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope
NASA Astrophysics Data System (ADS)
Yoshimoto, Kayo; Watabe, Kenji; Fujinaga, Tetsuji; Iijima, Hideki; Tsujii, Masahiko; Takahashi, Hideya; Takehara, Tetsuo; Yamada, Kenji
2017-02-01
Because the view angle of the endoscope is narrow, it is difficult to get the whole image of the digestive tract at once. If there are more than two lesions in the digestive tract, it is hard to understand the 3D positional relationship among the lesions. Virtual endoscopy using CT is a present standard method to get the whole view of the digestive tract. Because the virtual endoscopy is designed to detect the irregularity of the surface, it cannot detect lesions that lack irregularity including early cancer. In this study, we propose a method of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope. The method is as follows: 1) capture sequential images of the digestive tract by moving the endoscope, 2) reconstruct 3D surface pattern for each frame by stereo images, 3) estimate the position of the endoscope by image analysis, 4) reconstitute the entire image of the digestive tract by combining the 3D surface pattern. To confirm the validity of this method, we experimented with a straight tube inside of which circles were allocated at equal distance of 20 mm. We captured sequential images and the reconstituted image of the tube revealed that the distance between each circle was 20.2 +/- 0.3 mm (n=7). The results suggest that this method of endoscopic entire 3D image acquisition may help us understand 3D positional relationship among the lesions such as early esophageal cancer that cannot be detected by virtual endoscopy using CT.
NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator.
Korzeniowski, Przemyslaw; Barrow, Alastair; Sodergren, Mikael H; Hald, Niels; Bello, Fernando
2016-12-01
Natural orifice transluminal endoscopic surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. We developed NOViSE-the first force-feedback-enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom-built, and the behaviour of the virtual flexible endoscope is based on an established theoretical framework-the Cosserat theory of elastic rods. We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES. VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype, and the initial results indicate that it provides promising foundations for further development.
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.
Virtual reality based surgery simulation for endoscopic gynaecology.
Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G
1999-01-01
Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
NASA Astrophysics Data System (ADS)
Wagner, Martin G.; Strother, Charles M.; Schafer, Sebastian; Mistretta, Charles A.
2016-03-01
Biplane fluoroscopic imaging is an important tool for minimally invasive procedures for the treatment of cerebrovascular diseases. However, finding a good working angle for the C-arms of the angiography system as well as navigating based on the 2D projection images can be a difficult task. The purpose of this work is to propose a novel 4D reconstruction algorithm for interventional devices from biplane fluoroscopy images and to propose new techniques for a better visualization of the results. The proposed reconstruction methods binarizes the fluoroscopic images using a dedicated noise reduction algorithm for curvilinear structures and a global thresholding approach. A topology preserving thinning algorithm is then applied and a path search algorithm minimizing the curvature of the device is used to extract the 2D device centerlines. Finally, the 3D device path is reconstructed using epipolar geometry. The point correspondences are determined by a monotonic mapping function that minimizes the reconstruction error. The three dimensional reconstruction of the device path allows the rendering of virtual fluoroscopy images from arbitrary angles as well as 3D visualizations like virtual endoscopic views or glass pipe renderings, where the vessel wall is rendered with a semi-transparent material. This work also proposes a combination of different visualization techniques in order to increase the usability and spatial orientation for the user. A combination of synchronized endoscopic and glass pipe views is proposed, where the virtual endoscopic camera position is determined based on the device tip location as well as the previous camera position using a Kalman filter in order to create a smooth path. Additionally, vessel centerlines are displayed and the path to the target is highlighted. Finally, the virtual endoscopic camera position is also visualized in the glass pipe view to further improve the spatial orientation. The proposed techniques could considerably improve the workflow of minimally invasive procedures for the treatment of cerebrovascular diseases.
Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.
2015-03-01
The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.
A haptic interface for virtual simulation of endoscopic surgery.
Rosenberg, L B; Stredney, D
1996-01-01
Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.
Raque, Jessica; Goble, Adam; Jones, Veronica M; Waldman, Lindsey E; Sutton, Erica
2015-07-01
With the introduction of Fundamentals of Endoscopic Surgery, training methods in flexible endoscopy are being augmented with simulation-based curricula. The investment for virtual reality simulators warrants further research into its training advantage. Trainees were randomized into bedside or simulator training groups (BED vs SIM). SIM participated in a proficiency-based virtual reality curriculum. Trainees' endoscopic skills were rated using the Global Assessment of Gastrointestinal Endoscopic Skills (GAGES) in the patient care setting. The number of cases to reach 90 per cent of the maximum GAGES score and calculated costs of training were compared. Nineteen residents participated in the study. There was no difference in the average number of cases required to achieve 90 per cent of the maximum GAGES score for esophagogastroduodenoscopy, 13 (SIM) versus11 (BED) (P = 0.63), or colonoscopy 21 (SIM) versus 4 (BED) (P = 0.34). The average per case cost of training for esophagogastroduodenoscopy was $35.98 (SIM) versus $39.71 (BED) (P = 0.50), not including the depreciation costs associated with the simulator ($715.00 per resident over six years). Use of a simulator appeared to increase the cost of training without accelerating the learning curve or decreasing faculty time spent in instruction. The importance of simulation in endoscopy training will be predicated on more cost-effective simulators.
A wireless narrowband imaging chip for capsule endoscope.
Lan-Rong Dung; Yin-Yi Wu
2010-12-01
This paper presents a dual-mode capsule gastrointestinal endoscope device. An endoscope combined with a narrowband image (NBI), has been shown to be a superior diagnostic tool for early stage tissue neoplasms detection. Nevertheless, a wireless capsule endoscope with the narrowband imaging technology has not been presented in the market up to now. The narrowband image acquisition and power dissipation reduction are the main challenges of NBI capsule endoscope. In this paper, we present the first narrowband imaging capsule endoscope that can assist clinical doctors to effectively diagnose early gastrointestinal cancers, profited from our dedicated dual-mode complementary metal-oxide semiconductor (CMOS) sensor. The dedicated dual-mode CMOS sensor can offer white-light and narrowband images. Implementation results show that the proposed 512 × 512 CMOS sensor consumes only 2 mA at a 3-V power supply. The average current of the NBI capsule with an 8-Mb/s RF transmitter is nearly 7 ~ 8 mA that can continuously work for 6 ~ 8 h with two 1.5-V 80-mAh button batteries while the frame rate is 2 fps. Experimental results on backside mucosa of a human tongue and pig's small intestine showed that the wireless NBI capsule endoscope can significantly improve the image quality, compared with a commercial-of-the-shelf capsule endoscope for gastrointestinal tract diagnosis.
Miyasaka, M; Hirakawa, M; Nakamura, K; Tanaka, F; Mimori, K; Mori, M; Honda, H
2011-08-01
Nonerosive reflux disease (NERD) is classified into grade M (minimal change, endoscopically; erythema without sharp demarcation, whitish turbidity, and/or invisibility of vessels due to these findings) and grade N (normal) in the modified Los Angeles classification system in Japan. However, the classification of grades M and N NERD is not included in the original Los Angeles system because interobserver agreement for the conventional endoscopic diagnosis of grades M or N NERD is poor. Flexible spectral imaging color enhancement (FICE) is a virtual chromoendoscopy technique that enhances mucosal and vascular visibility. The aim of this study is to evaluate whether the endoscopic diagnosis of grades M or N NERD using FICE images is feasible. Between April 2006 and May 2008, 26 NERD patients and 31 controls were enrolled in the present study. First, an experienced endoscopist assessed the color pattern of minimal change in FICE images using conventional endoscopic images and FICE images side-by-side and comparing the proportion of minimal change between the two groups. Second, three blinded endoscopists assessed the presence or absence of minimal change in both groups using conventional endoscopic images and FICE images separately. Intraobserver variability was compared using McNemar's test, and interobserver agreement was described using the kappa value. Minimal changes, such as erythema and whitish turbidity, which were detected using conventional endoscopic images, showed up as navy blue and pink-white, respectively, in color using FICE images in the present FICE mode. The NERD group had a higher proportion of minimal change, compared with the control group (77% and 48%, respectively) (P= 0.033). In all three readers, the detection rates of minimal change using FICE images were greater than those using conventional endoscopic images (P= 0.025, <0.0001, and 0.034 for readers A, B, and C, respectively). The kappa values for all pairs of three readers using FICE images were between 0.683 and 0.812, while those using conventional endoscopic images were between 0.364 and 0.624. Thus, the endoscopic diagnosis of grades M or N NERD using FICE images is feasible and may improve interobserver agreement. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Hirayama, Ryuichi; Fujimoto, Yasunori; Umegaki, Masao; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Yoshimine, Toshiki
2013-05-01
Existing training methods for neuroendoscopic surgery have mainly emphasized the acquisition of anatomical knowledge and procedures for operating an endoscope and instruments. For laparoscopic surgery, various training systems have been developed to teach handling of an endoscope as well as the manipulation of instruments for speedy and precise endoscopic performance using both hands. In endoscopic endonasal surgery (EES), especially using a binostril approach to the skull base and intradural lesions, the learning of more meticulous manipulation of instruments is mandatory, and it may be necessary to develop another type of training method for acquiring psychomotor skills for EES. Authors of the present study developed an inexpensive, portable personal trainer using a webcam and objectively evaluated its utility. Twenty-five neurosurgeons volunteered for this study and were divided into 2 groups, a novice group (19 neurosurgeons) and an experienced group (6 neurosurgeons). Before and after the exercises of set tasks with a webcam box trainer, the basic endoscopic skills of each participant were objectively assessed using the virtual reality simulator (LapSim) while executing 2 virtual tasks: grasping and instrument navigation. Scores for the following 11 performance variables were recorded: instrument time, instrument misses, instrument path length, and instrument angular path (all of which were measured in both hands), as well as tissue damage, max damage, and finally overall score. Instrument time was indicated as movement speed; instrument path length and instrument angular path as movement efficiency; and instrument misses, tissue damage, and max damage as movement precision. In the novice group, movement speed and efficiency were significantly improved after the training. In the experienced group, significant improvement was not shown in the majority of virtual tasks. Before the training, significantly greater movement speed and efficiency were demonstrated in the experienced group, but no difference in movement precision was shown between the 2 groups. After the training, no significant differences were shown between the 2 groups in the majority of the virtual tasks. Analysis revealed that the webcam trainer improved the basic skills of the novices, increasing movement speed and efficiency without sacrificing movement precision. Novices using this unique webcam trainer showed improvement in psychomotor skills for EES. The authors believe that training in terms of basic endoscopic skills is meaningful and that the webcam training system can play a role in daily off-the-job training for EES.
Automated flight path planning for virtual endoscopy.
Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S
1998-05-01
In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.
van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J
2011-01-01
Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.
Schwaitzberg, Steven D; Dorozhkin, Denis; Sankaranarayanan, Ganesh; Matthes, Kai; Jones, Daniel B; De, Suvranu
2016-01-01
A virtual translumenal endoscopic surgical trainer (VTEST) is being developed to accelerate the development of natural orifice translumenal endoscopic surgery (NOTES) procedures and devices in a safe and risk-free environment. For a rapidly developing field such as NOTES, a needs analysis must be conducted regularly to discover emerging research trends and areas of potential high impact for a virtual simulator. This paper presents a survey-based study which follows a similar study conducted by this group in 2011 (Sankaranarayanan et al. in Surg Endosc 27:1607-1616, 2013). A 32-point questionnaire was distributed at the 2012 Natural Orifice Surgery Consortium for Assessment and Research annual meeting. These data were subsequently augmented by an identical online survey, targeted at the members of the American Society for Gastrointestinal Endoscopy and the Society of American Gastrointestinal and Endoscopic Surgeons, and analyzed. Twenty-eight NOTES experts participated in the 2012 study. Cholecystectomy (CE) procedure remained the most commonly performed NOTES technique, with 18 positive responses (64%). In contrast to 2011, the popularity of the NOTES appendectomy (AE) was significantly lower, with only 2 (7%) instances (CE vs. AE, p < 0.001), while the number of peroral endoscopic myotomy (POEM, PE) cases had increased significantly, with 11 (39%) positive responses, respectively (PE vs. AE, p = 0.013). Strong preference toward hybrid rather than pure NOTES techniques (82 vs. 11%, p < 0.001) was also expressed. Other responses were similar to those in the 2011 study, with the VTEST™ utility in developing and testing new techniques and instruments ranked particularly high. Based on the results of this study, a decision was made to focus exclusively on the transvaginal hybrid NOTES cholecystectomy procedure, including both rigid and flexible scope techniques. The importance of developing a virtual NOTES simulator was reaffirmed, with POEM identified as a promising candidate for future simulator development.
Advanced endoscopic imaging to improve adenoma detection
Neumann, Helmut; Nägel, Andreas; Buda, Andrea
2015-01-01
Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092
Intra-operative registration for image enhanced endoscopic sinus surgery using photo-consistency.
Chen, Min Si; Gonzalez, Gerardo; Lapeer, Rudy
2007-01-01
The purpose of this paper is to present an intensity based algorithm for aligning 2D endoscopic images with virtual images generated from pre-operative 3D data. The proposed algorithm uses photo-consistency as the measurement of similarity between images, provided the illumination is independent from the viewing direction.
Design of the computerized 3D endoscopic imaging system for delicate endoscopic surgery.
Song, Chul-Gyu; Kang, Jin U
2011-02-01
This paper describes a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and conventional electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for suturing and for the loop pass test. Among the groups performing loop passing and suturing, there was no significant difference in the task performance between the 2D and 3D modes, however, suturing was performed 15% (p < 0.05) faster in 3D mode by both groups. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing.
Abdi, Elahe; Bouri, Mohamed; Burdet, Etienne; Himidan, Sharifa; Bleuler, Hannes
2017-07-01
We have investigated how surgeons can use the foot to position a laparoscopic endoscope, a task that normally requires an extra assistant. Surgeons need to train in order to exploit the possibilities offered by this new technique and safely manipulate the endoscope together with the hands movements. A realistic abdominal cavity has been developed as training simulator to investigate this multi-arm manipulation. In this virtual environment, the surgeon's biological hands are modelled as laparoscopic graspers while the viewpoint is controlled by the dominant foot. 23 surgeons and medical students performed single-handed and bimanual manipulation in this environment. The results show that residents had superior performance compared to both medical students and more experienced surgeons, suggesting that residency is an ideal period for this training. Performing the single-handed task improves the performance in the bimanual task, whereas the converse was not true.
Virtual reality simulators for gastrointestinal endoscopy training
Triantafyllou, Konstantinos; Lazaridis, Lazaros Dimitrios; Dimitriadis, George D
2014-01-01
The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees’ learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-the-art simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application. PMID:24527175
Hassan, I; Bin Dayne, K; Kappus, C; Gerdes, B; Rothmund, M; Hellwig, D
2007-04-01
The increasing use of minimally invasive surgery, which has a longer learning curve compared to open surgery lets the necessity to develop training programs to improve endoscopic skills of trainees become ever clearer. The aim of this study was to compare the endoscopic skills of neurosurgeons versus general surgeons at first exposure to a virtual reality simulator. 72 general surgeons who visited the 122nd Conference of the German Surgeons Society (DGCH in Munich 2005) and 35 neuroendoscopic surgeons, who visited the Third World Conference of the International Study Group of Neuroendoscopy (ISGNE in Marburg 2005) participated in this study. Each participant performed the basic module "clip application" on the virtual reality simulator (LapSim). All participants were given the same pretest instructions. Time to complete the task, error score and economy of motion were recorded. The general surgeons performed the clip application faster, but with more errors than neuroendoscopic surgeons. However, the difference of both parameters was not significant. Both surgeon groups have a similar score for economy of motion. Although neuroendoscopic surgeons were exposed to a foreign procedure and unfamiliar equipment, they were able to perform virtual endoscopy with similar accuracy as general surgeons, who are adapted to these endoscopic instruments and procedures and do these daily.
Verdaasdonk, E G G; Stassen, L P S; van Wijk, R P J; Dankelman, J
2007-02-01
Psychomotor skills for endoscopic surgery can be trained with virtual reality simulators. Distributed training is more effective than massed training, but it is unclear whether distributed training over several days is more effective than distributed training within 1 day. This study aimed to determine which of these two options is the most effective for training endoscopic psychomotor skills. Students with no endoscopic experience were randomly assigned either to distributed training on 3 consecutive days (group A, n = 10) or distributed training within 1 day (group B, n = 10). For this study the SIMENDO virtual reality simulator for endoscopic skills was used. The training involved 12 repetitions of three different exercises (drop balls, needle manipulation, 30 degree endoscope) in differently distributed training schedules. All the participants performed a posttraining test (posttest) for the trained tasks 7 days after the training. The parameters measured were time, nontarget environment collisions, and instrument path length. There were no significant differences between the groups in the first training session for all the parameters. In the posttest, group A (training over several days) performed 18.7% faster than group B (training on 1 day) (p = 0.013). The collision and path length scores for group A did not differ significantly from the scores for group B. The distributed group trained over several days was faster, with the same number of errors and the same instrument path length used. Psychomotor skill training for endoscopic surgery distributed over several days is superior to training on 1 day.
Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M
2005-09-01
Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.
Yunus, Mahira
2012-11-01
To study the use of helical computed tomography 2-D and 3-D images, and virtual endoscopy in the evaluation of airway disease in neonates, infants and children and its value in lesion detection, characterisation and extension. Conducted at Al-Noor Hospital, Makkah, Saudi Arabia, from January 1 to June 30, 2006, the study comprised of 40 patients with strider, having various causes of airway obstruction. They were examined by helical CT scan with 2-D and 3-D reconstructions and virtual endoscopy. The level and characterisation of lesions were carried out and results were compared with actual endoscopic findings. Conventional endoscopy was chosen as the gold standard, and the evaluation of endoscopy was done in terms of sensitivity and specificity of the procedure. For statistical purposes, SPSS version 10 was used. All CT methods detected airway stenosis or obstruction. Accuracy was 98% (n=40) for virtual endoscopy, 96% (n=48) for 3-D external rendering, 90% (n=45) for multiplanar reconstructions and 86% (n=43) for axial images. Comparing the results of 3-D internal and external volume rendering images with conventional endoscopy for detection and grading of stenosis were closer than with 2-D minimum intensity multiplanar reconstruction and axial CT slices. Even high-grade stenosis could be evaluated with virtual endoscope through which conventional endoscope cannot be passed. A case of 4-year-old patient with tracheomalacia could not be diagnosed by helical CT scan and virtual bronchoscopy which was diagriosed on conventional endoscopy and needed CT scan in inspiration and expiration. Virtual endoscopy [VE] enabled better assessment of stenosis compared to the reading of 3-D external rendering, 2-D multiplanar reconstruction [MPR] or axial slices. It can replace conventional endoscopy in the assessment of airway disease without any additional risk.
Hysteroscopic simulator for training and educational purposes.
Lim, Fabian; Brown, Ian; McColl, Ryan; Seligman, Cory; Alsaraira, Amer
2006-01-01
Hysteroscopy is an extensively popular option in evaluating and treating women with infertility. The procedure utilizes an endoscope, inserted through the vagina and cervix to examine the intra-uterine cavity via a monitor. The difficulty of hysteroscopy from the surgeon's perspective is the visual spatial perception of interpreting 3D images on a 2D monitor, and the associated psychomotor skills in overcoming the fulcrum-effect. Despite the widespread use of this procedure, current qualified hysteroscopy surgeons have not been trained the fundamentals through an organized curriculum. The emergence of virtual reality as an educational tool for this procedure, and for other endoscopic procedures, has undoubtedly raised interests. The ultimate objective is for the inclusion of virtual reality training as a mandatory component for gynecological endoscopic training. Part of this process involves the design of a simulator, encompassing the technical difficulties and complications associated with the procedure. The proposed research examines fundamental hysteroscopic factors as well as current training and accreditation norms, and proposes a hysteroscopic simulator design that is suitable for educating and training.
Control devices and steering strategies in pathway surgery.
Fan, Chunman; Jelínek, Filip; Dodou, Dimitra; Breedveld, Paul
2015-02-01
For pathway surgery, that is, minimally invasive procedures carried out transluminally or through instrument-created pathways, handheld maneuverable instruments are being developed. As the accompanying control interfaces of such instruments have not been optimized for intuitive manipulation, we investigated the effect of control mode (1DoF or 2DoF), and control device (joystick or handgrip) on human performance in a navigation task. The experiments were conducted using the Endo-PaC (Endoscopic-Path Controller), a simulator that emulates the shaft and handle of a maneuverable instrument, combined with custom-developed software animating pathway surgical scenarios. Participants were asked to guide a virtual instrument without collisions toward a target located at the end of a virtual curved tunnel. The performance was assessed in terms of task completion time, path length traveled by the virtual instrument, motion smoothness, collision metrics, subjective workload, and personal preference. The results indicate that 2DoF control leads to faster task completion and fewer collisions with the tunnel wall combined with a strong subjective preference compared with 1DoF control. Handgrip control appeared to be more intuitive to master than joystick control. However, the participants experienced greater physical demand and had longer path lengths with handgrip than joystick control. Copyright © 2015 Elsevier Inc. All rights reserved.
Archavlis, Eleftherios; Schwandt, Eike; Kosterhon, Michael; Gutenberg, Angelika; Ulrich, Peter; Nimer, Amr; Giese, Alf; Kantelhardt, Sven Rainer
2016-07-01
The main difficulties of transpedicular corpectomies are lack of space for vertebral body replacement in the neighborhood of critical structures, the necessity for sacrifice of nerve roots in the thoracic spine. and the extent of hemorrhage due to venous epidural bleeding. We present a modified technique of transpedicular corpectomy by using an endoscopic-assisted microsurgical technique performed through a single posterior approach. A 3-dimensional (3D) preoperative reconstruction could be helpful in the planning for this complex anatomic region. Surface and volume 3D reconstruction were performed by Amira or the Dextroscope. The clinical experience of this study includes 7 cases, 2 with an unstable burst fracture and 5 with metastatic destructive vertebral body disease, all with significant retropulsion and obstruction of the spinal canal. We performed a comparison with a conventional cohort of transpedicular thoracic corpectomies. Qualitative parameters of the 3D virtual reality planning included degree of bone removal and distance from critical structures such as myelon and implant diameter. Parameters were met in each case, with demonstration of optimal positioning of the implant without neurological complications. In all patients, the endoscope was a significant help in identifying the origins of active bleeding, residual tumor, extent of bone removal, facilitating cage insertion in a minimally invasive way, and helping to avoid root sacrifice on both sides. Microsurgical endoscopic-assisted transpedicular corpectomy may prove valuable in enhancing the safety of corpectomy in destructive vertebral body disease. The 3D virtual anatomic model greatly facilitated the preoperative planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Virtual surgical planning in endoscopic skull base surgery.
Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C
2013-12-01
Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Method for radiometric calibration of an endoscope's camera and light source
NASA Astrophysics Data System (ADS)
Rai, Lav; Higgins, William E.
2008-03-01
An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.
Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos
2013-12-01
Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.
A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.
King, Neil; Kunac, Anastasia; Merchant, Aziz M
2016-01-01
Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Prisman, Eitan; Daly, Michael J; Chan, Harley; Siewerdsen, Jeffrey H; Vescan, Allan; Irish, Jonathan C
2011-01-01
Custom software was developed to integrate intraoperative cone-beam computed tomography (CBCT) images with endoscopic video for surgical navigation and guidance. A cadaveric head was used to assess the accuracy and potential clinical utility of the following functionality: (1) real-time tracking of the endoscope in intraoperative 3-dimensional (3D) CBCT; (2) projecting an orthogonal reconstructed CBCT image, at or beyond the endoscope, which is parallel to the tip of the endoscope corresponding to the surgical plane; (3) virtual reality fusion of endoscopic video and 3D CBCT surface rendering; and (4) overlay of preoperatively defined contours of anatomical structures of interest. Anatomical landmarks were contoured in CBCT of a cadaveric head. An experienced endoscopic surgeon was oriented to the software and asked to rate the utility of the navigation software in carrying out predefined surgical tasks. Utility was evaluated using a rating scale for: (1) safely completing the task; and (2) potential for surgical training. Surgical tasks included: (1) uncinectomy; (2) ethmoidectomy; (3) sphenoidectomy/pituitary resection; and (4) clival resection. CBCT images were updated following each ablative task. As a teaching tool, the software was evaluated as "very useful" for all surgical tasks. Regarding safety and task completion, the software was evaluated as "no advantage" for task (1), "minimal" for task (2), and "very useful" for tasks (3) and (4). Landmark identification for structures behind bone was "very useful" for both categories. The software increased surgical confidence in safely completing challenging ablative tasks by presenting real-time image guidance for highly complex ablative procedures. In addition, such technology offers a valuable teaching aid to surgeons in training. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.
2018-02-01
We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others the delivery of short laser pulses to the distal end of the endoscope. To this avail, we present imaging results using an all-fibre dispersion management scheme in a TPEFM setup. The scheme has been conceived by Jespersen et al. in 20101 and relies on the combination of a single mode fibre with normal and a higher order mode fibre with anomalous dispersion properties, fused in series using a long period grating. We show that using this fibre assembly, a simple and robust pulsed laser delivery system without any free-space optics, which is thus suitable for clinical use, can be realised.
Virtual reality training for endoscopic surgery: voluntary or obligatory?
van Dongen, K W; van der Wal, W A; Rinkes, I H M Borel; Schijven, M P; Broeders, I A M J
2008-03-01
Virtual reality (VR) simulators have been developed to train basic endoscopic surgical skills outside of the operating room. An important issue is how to create optimal conditions for integration of these types of simulators into the surgical training curriculum. The willingness of surgical residents to train these skills on a voluntary basis was surveyed. Twenty-one surgical residents were given unrestricted access to a VR simulator for a period of four months. After this period, a competitive element was introduced to enhance individual training time spent on the simulator. The overall end-scores for individual residents were announced periodically to the full surgical department, and the winner was awarded a prize. In the first four months of study, only two of the 21 residents (10%) trained on the simulator, for a total time span of 163 minutes. After introducing the competitive element the number of trainees increased to seven residents (33%). The amount of training time spent on the simulator increased to 738 minutes. Free unlimited access to a VR simulator for training basic endoscopic skills, without any form of obligation or assessment, did not motivate surgical residents to use the simulator. Introducing a competitive element for enhancing training time had only a marginal effect. The acquisition of expensive devices to train basic psychomotor skills for endoscopic surgery is probably only effective when it is an integrated and mandatory part of the surgical curriculum.
Virtual endoscopy using spherical QuickTime-VR panorama views.
Tiede, Ulf; von Sternberg-Gospos, Norman; Steiner, Paul; Höhne, Karl Heinz
2002-01-01
Virtual endoscopy needs some precomputation of the data (segmentation, path finding) before the diagnostic process can take place. We propose a method that precomputes multinode spherical panorama movies using Quick-Time VR. This technique allows almost the same navigation and visualization capabilities as a real endoscopic procedure, a significant reduction of interaction input is achieved and the movie represents a document of the procedure.
Bao, Guanqun; Mi, Liang; Geng, Yishuang; Zhou, Mingda; Pahlavan, Kaveh
2014-01-01
Wireless Capsule Endoscopy (WCE) is progressively emerging as one of the most popular non-invasive imaging tools for gastrointestinal (GI) tract inspection. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease. For the WCE, the position of the capsule is defined as the linear distance it is away from certain fixed anatomical landmarks. In order to measure the distance the capsule has traveled, a precise knowledge of how fast the capsule moves is urgently needed. In this paper, we present a novel computer vision based speed estimation technique that is able to extract the speed of the endoscopic capsule by analyzing the displacements between consecutive frames. The proposed approach is validated using a virtual testbed as well as the real endoscopic images. Results show that the proposed method is able to precisely estimate the speed of the endoscopic capsule with 93% accuracy on average, which enhances the localization accuracy of the WCE to less than 2.49 cm.
Renal surgery in the new millennium.
Delvecchio, F C; Preminger, G M
2000-11-01
In the not too distant future, the minimally invasive renal surgeon will be able to practice an operation on a difficult case on a three-dimensional virtual reality simulator, providing all attributes of the real procedure. The patient's imaging studies will be imported into the simulator to better mimic particular anatomy. When confident enough of his or her skills, the surgeon will start operating on the patient using the same virtual reality simulator/telepresence surgery console system, which will permit the live surgery to be conducted by robots hundreds of miles away. The robots will manipulate miniature endoscopes or control minimally or noninvasive ablative technologies. Endoscopic/laparoscopic footage of the surgical procedure will be stored digitally in optical disks to be used later in telementoring of a surgery resident. All this and more will be possible in the not so distant third millennium.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Virtual reality: new method of teaching anorectal and pelvic floor anatomy.
Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand
2003-03-01
A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.
Yanagiya, Masahiro; Matsumoto, Jun; Nagano, Masaaki; Kusakabe, Masashi; Matsumoto, Yoko; Furukawa, Ryutaro; Ohara, Sayaka; Usui, Kazuhiro
2018-01-01
Abstract Rationale: The development of postoperative bronchopleural fistula (BPF) remains a challenge in thoracic surgery. We herein report a case of BPF successfully treated with endoscopic bronchial occlusion under computed tomography (CT) fluoroscopy and virtual bronchoscopic navigation (VBN). Patient concerns: A 63-year-old man underwent right upper lobectomy with concomitant S6a subsegmentectomy for lung adenocarcinoma. On postoperative day 24, he complained of shaking chills with high fever. Diagnoses: BPF with subsequent pneumonia and empyema. Interventions: Despite aggressive surgical interventions for the BPF, air leakage persisted postoperatively. On days 26 and 34 after the final operation, endobronchial occlusions were performed under CT fluoroscopy and VBN. Outcomes: The air leaks greatly decreased and the patient was discharged. Lessons: CT fluoroscopy and VBN can be useful techniques for endobronchial occlusion in the treatment of BPF. PMID:29443771
NASA Technical Reports Server (NTRS)
Henriksen, Mina D.
1995-01-01
The research performed was a small portion of the patent to be submitted by Dr. Alan T. Pope entitled 'A Method of Providing Veridical Non-Invasive Endoscopic Feedback for Learning of Voluntary Control of Physiological Functioning'. The focus of this study is to incorporate the emerging technology of virtual reality with the forms of biofeedback already in existance producing a life-like, real-time model of the body's functioning without using invasive procedures, yet still producing the equivalent of a picture from an invasive endoscopic procedure in the region of interest. The portion of the project designated to me was to research and report as many possible uses for such technology as possible.
Visuospatial skills and computer game experience influence the performance of virtual endoscopy.
Enochsson, Lars; Isaksson, Bengt; Tour, René; Kjellin, Ann; Hedman, Leif; Wredmark, Torsten; Tsai-Felländer, Li
2004-11-01
Advanced medical simulators have been introduced to facilitate surgical and endoscopic training and thereby improve patient safety. Residents trained in the Procedicus Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) laparoscopic simulator perform laparoscopic cholecystectomy safer and faster than a control group. Little has been reported regarding whether factors like gender, computer experience, and visuospatial tests can predict the performance with a medical simulator. Our aim was to investigate whether such factors influence the performance of simulated gastroscopy. Seventeen medical students were asked about computer gaming experiences. Before virtual endoscopy, they performed the visuospatial test PicCOr, which discriminates the ability of the tested person to create a three-dimensional image from a two-dimensional presentation. Each student performed one gastroscopy (level 1, case 1) in the GI Mentor II, Simbionix, and several variables related to performance were registered. Percentage of time spent with a clear view in the endoscope correlated well with the performance on the PicSOr test (r = 0.56, P < 0.001). Efficiency of screening also correlated with PicSOr (r = 0.23, P < 0.05). In students with computer gaming experience, the efficiency of screening increased (33.6% +/- 3.1% versus 22.6% +/- 2.8%, P < 0.05) and the duration of the examination decreased by 1.5 minutes (P < 0.05). A similar trend was seen in men compared with women. The visuospatial test PicSOr predicts the results with the endoscopic simulator GI Mentor II. Two-dimensional image experience, as in computer games, also seems to affect the outcome.
Endoscopic management of pancreatic fluid collections-revisited
Nabi, Zaheer; Basha, Jahangeer; Reddy, D Nageshwar
2017-01-01
The development of pancreatic fluid collections (PFC) is one of the most common complications of acute severe pancreatitis. Most of the acute pancreatic fluid collections resolve and do not require endoscopic drainage. However, a substantial proportion of acute necrotic collections get walled off and may require drainage. Endoscopic drainage of PFC is now the preferred mode of drainage due to reduced morbidity and mortality as compared to surgical or percutaneous drainage. With the introduction of new metal stents, the efficiency of endoscopic drainage has improved and the task of direct endoscopic necrosectomy has become easier. The requirement of re-intervention is less with new metal stents as compared to plastic stents. However, endoscopic drainage is not free of adverse events. Severe complications including bleeding, perforation, sepsis and embolism have been described with endoscopic approach to PFC. Therefore, the endoscopic management of PFC is a multidisciplinary affair and involves interventional radiologists as well as GI surgeons to deal with unplanned adverse events and failures. In this review we discuss the recent advances and controversies in the endoscopic management of PFC. PMID:28487603
[Virtual CT-pneumocystoscopy: indications, advantages and limitations. Our experience].
Regine, Giovanni; Atzori, Maurizio; Buffa, Vitaliano; Miele, Vittorio; Ialongo, Pasquale; Adami, Loredana
2003-09-01
The use of CT volume-rendering techniques allows the evaluation of visceral organs without the need for endoscopy. Conventional endoscopic evaluation of the bladder is limited by the invasiveness of the technique and the difficulty exploring the entire bladder. Virtual evaluation of the bladder by three-dimensional CT reconstruction offers potential advantages and can be used in place of endoscopy. This study investigates the sensitivity of virtual CT in assessing lesion of the bladder wall to compare it with that of conventional endoscopy, and outlines the indications, advantages and disadvantages of virtual CT-pneumocystography. Between September 2001 and May 2002, 21 patients with haematuria and positive cystoscopic findings were studied. After an initial assessment by ultrasound, the patients underwent pelvic CT as a single volumetric scan after preliminary air distension of the bladder by means of 12 F Foley catheter. The images were processed on an independent workstation (Advantage 3.0 GE) running dedicated software for endoluminal navigation. The lesions detected by endoscopy were classified as sessile or pedunculated, and according to size (more or less than 5 mm). Finally, the results obtained at virtual cystoscopy were evaluated by two radiologists blinded to the conventional cystoscopy results. Thirty lesions (24 pedunculated, 6 sessile) were detected at conventional cystoscopy in 16 patients (multiple polyposis in 3 cases). Virtual cystoscopy identified 23 lesions (19 pedunculated and 4 sessile). The undetected lesions were pedunculated <5 mm (5 cases) and sessile (2 cases). One correctly identified pedunculated lesion was associated with a bladder stone. Good quality virtual images were obtained in all of the patients. In only one patient with multiple polyposis the quality of the virtual endoscopic evaluation was limited by the patient's intolerance to bladder distension, although identification of the lesions was not compromised. The overall sensitivity was 77%; this was higher for pedunculated lesions (79%) than for sessile lesions (50%). The virtual technique is less invasive and tends to be associated with fewer complications than is conventional cystoscopy. It also demonstrated a good sensitivity for evaluating pedunculated lesions, allowing evaluation of the bladder base and anterior wall, sites that are commonly poorly accessible at conventional cystoscopy. Further advantages of the virtual technique include the possibility of accurately measuring the extent of the lesion and obtaining virtual images even in patients with severe urethral obstruction and active bleeding. The limitations include the inability to obtain tissue for histologic examination or to perform endoscopic resection of pedunculated lesions. The technique is less sensitive than conventional cystoscopy in the detection of sessile lesions or very small polyps (<5 mm). Furthermore, diffuse wall thickening reduces bladder distension thereby preventing optimal evaluation. The most valuable indication appears to be the follow-up of treated wall lesions. Virtual CT-pneumocystoscopy can replace conventional cystoscopy in cases with pedunculated lesions when there is no need for biopsy, when the lesions are located at the bladder base or when cystoscopic instrumentation cannot be introduced into the bladder due to stenosis. Virtual pneumocystoscopy can also be used in the follow-up of treated polypoid lesions in association with pelvic CT-angiography.
Implementation of real-time digital endoscopic image processing system
NASA Astrophysics Data System (ADS)
Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho
1997-10-01
Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.
Chen, Xiaojun; Cheng, Jun; Gu, Xin; Sun, Yi; Politis, Constantinus
2016-04-01
Preoperative planning is of great importance for transforaminal endoscopic techniques applied in percutaneous endoscopic lumbar discectomy. In this study, a modular preoperative planning software for transforaminal endoscopic surgery was developed and demonstrated. The path searching method is based on collision detection, and the oriented bounding box was constructed for the anatomical models. Then, image reformatting algorithms were developed for multiplanar reconstruction which provides detailed anatomical information surrounding the virtual planned path. Finally, multithread technique was implemented to realize the steady-state condition of the software. A preoperative planning software for transforaminal endoscopic surgery (TE-Guider) was developed; seven cases of patients with symptomatic lumbar disc herniations were planned preoperatively using TE-Guider. The distances to the midlines and the direction of the optimal paths were exported, and each result was in line with the empirical value. TE-Guider provides an efficient and cost-effective way to search the ideal path and entry point for the puncture. However, more clinical cases will be conducted to demonstrate its feasibility and reliability.
Virtual reality simulation training in Otolaryngology.
Arora, Asit; Lau, Loretta Y M; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil
2014-01-01
To conduct a systematic review of the validity data for the virtual reality surgical simulator platforms available in Otolaryngology. Ovid and Embase databases searched July 13, 2013. Four hundred and nine abstracts were independently reviewed by 2 authors. Thirty-six articles which fulfilled the search criteria were retrieved and viewed in full text. These articles were assessed for quantitative data on at least one aspect of face, content, construct or predictive validity. Papers were stratified by simulator, sub-specialty and further classified by the validation method used. There were 21 articles reporting applications for temporal bone surgery (n = 12), endoscopic sinus surgery (n = 6) and myringotomy (n = 3). Four different simulator platforms were validated for temporal bone surgery and two for each of the other surgical applications. Face/content validation represented the most frequent study type (9/21). Construct validation studies performed on temporal bone and endoscopic sinus surgery simulators showed that performance measures reliably discriminated between different experience levels. Simulation training improved cadaver temporal bone dissection skills and operating room performance in sinus surgery. Several simulator platforms particularly in temporal bone surgery and endoscopic sinus surgery are worthy of incorporation into training programmes. Standardised metrics are necessary to guide curriculum development in Otolaryngology. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tran, Peter H.; Mukai, David S.; Brenner, Matthew; Chen, Zhongping
2004-06-01
A novel endoscopic optical coherence tomography probe was designed and constructed with a 1.9-mm microelectromechanical system (MEMS) motor. The new MEMS endoscopic probe design eliminates the need to couple the rotational energy from the proximal to the distal end of the probe. Furthermore, the endoscopic probe's sheath and fiber have the advantages of having a much smaller diameter and being more flexible than traditional endoscopes since no reinforcement is needed to couple the rotational torque. At the distal end, a prism mounted on a micromotor deflects the light rays to create a transverse circular-scanning pathway. Because our MEMS scanner does not require the coupling of a rotational single-mode fiber, a high scanning speed is possible while eliminating unstable optical signals caused by nonuniform coupling.
Snyder, Christopher W; Vandromme, Marianne J; Tyra, Sharon L; Hawn, Mary T
2009-01-01
Virtual reality (VR) simulators for laparoscopy and endoscopy may be valuable tools for resident education. However, the cost of such training in terms of trainee and instructor time may vary depending upon whether an independent or proctored approach is employed. We performed a randomized controlled trial to compare independent and proctored methods of proficiency-based VR simulator training. Medical students were randomized to independent or proctored training groups. Groups were compared with respect to the number of training hours and task repetitions required to achieve expert level proficiency on laparoscopic and endoscopic simulators. Cox regression modeling was used to compare time to proficiency between groups, with adjustment for appropriate covariates. Thirty-six medical students (18 independent, 18 proctored) were enrolled. Achievement of overall simulator proficiency required a median of 11 hours of training (range, 6-21 hours). Laparoscopic and endoscopic proficiency were achieved after a median of 11 (range, 6-32) and 10 (range, 5-27) task repetitions, respectively. The number of repetitions required to achieve proficiency was similar between groups. After adjustment for covariates, trainees in the independent group achieved simulator proficiency with significantly fewer hours of training (hazard ratio, 2.62; 95% confidence interval, 1.01-6.85; p = 0.048). Our study quantifies the cost, in instructor and trainee hours, of proficiency-based laparoscopic and endoscopic VR simulator training, and suggests that proctored instruction does not offer any advantages to trainees. The independent approach may be preferable for surgical residency programs desiring to implement VR simulator training.
Virtual surgical telesimulations in otolaryngology.
Navarro Newball, Andrés A; Hernández, Carlos J; Velez, Jorge A; Munera, Luis E; García, Gregorio B; Gamboa, Carlos A; Reyes, Antonio J
2005-01-01
Distance learning can be enhanced with the use of virtual reality; this paper describes the design and initial validation of a Web Environment for Surgery Skills Training on Otolaryngology (WESST-OT). WESST-OT was created aimed to help trainees to gain the skills required in order to perform the Functional Endoscopic Sinus Surgery procedure (FESS), since training centers and specialist in this knowledge are scarce in Colombia; also, it is part of a web based educational cycle which simulates the stages of a real procedure. WESST-OT is one from the WESST family of telesimulators which started to be developed from an architecture proposed at the Medicine Meets Virtual Reality conference 2002; also, it is a step towards the use of virtual reality technologies in Latin America.
Innovative research on the group teaching mode based on the LabVIEW virtual environment
NASA Astrophysics Data System (ADS)
Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia
2017-08-01
This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.
Lachkar, Samy; Baste, Jean-Marc; Thiberville, Luc; Peillon, Christophe; Rinieri, Philippe; Piton, Nicolas; Guisier, Florian; Salaun, Mathieu
2018-01-01
Minimally invasive surgery of pulmonary nodules allows suboptimal palpation of the lung compared to open thoracotomy. The objective of this study was to assess endoscopic pleural dye marking using radial endobronchial ultrasound (r-EBUS) and virtual bronchoscopy to localize small peripheral lung nodules immediately before minimally invasive resection. The endoscopic procedure was performed without fluoroscopy, under general anesthesia in the operating room immediately before minimally invasive surgery. Then, 1 mL of methylene blue (0.5%) was instilled into the guide sheath, wedged in the subpleural space. Wedge resection or segmentectomy were guided by visualization of the dye on the pleural surface. Contribution of dye marking to the surgical procedure was rated by the surgeon. Twenty-five nodules, including 6 ground glass opacities, were resected in 22 patients by video-assisted thoracoscopic wedge resection (n = 11) or robotic-assisted thoracoscopic surgery (10 segmentectomies and 1 wedge resection). The median greatest diameter of nodules was 8 mm. No conversion to open thoracotomy was needed. The endoscopic procedure added an average 10 min to surgical resection. The dye was visible on the pleural surface in 24 cases. Histological diagnosis and free margin resection were obtained in all cases. Median skin-to-skin operating time was 90 min for robotic segmentectomy and 40 min for video-assisted wedge resection. The same operative precision was considered impossible by the surgeon without dye marking in 21 cases. Dye marking using r-EBUS and virtual bronchoscopy can be easily and safely performed to localize small pulmonary nodules immediately before minimally invasive resection. © 2018 S. Karger AG, Basel.
Endoscopic probe optics for spectrally encoded confocal microscopy.
Kang, Dongkyun; Carruth, Robert W; Kim, Minkyu; Schlachter, Simon C; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J
2013-01-01
Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.
A visual graphic/haptic rendering model for hysteroscopic procedures.
Lim, Fabian; Brown, Ian; McColl, Ryan; Seligman, Cory; Alsaraira, Amer
2006-03-01
Hysteroscopy is an extensively popular option in evaluating and treating women with infertility. The procedure utilises an endoscope, inserted through the vagina and cervix to examine the intra-uterine cavity via a monitor. The difficulty of hysteroscopy from the surgeon's perspective is the visual spatial perception of interpreting 3D images on a 2D monitor, and the associated psychomotor skills in overcoming the fulcrum-effect. Despite the widespread use of this procedure, current qualified hysteroscopy surgeons have not been trained the fundamentals through an organised curriculum. The emergence of virtual reality as an educational tool for this procedure, and for other endoscopic procedures, has undoubtedly raised interests. The ultimate objective is for the inclusion of virtual reality training as a mandatory component for gynaecologic endoscopy training. Part of this process involves the design of a simulator, encompassing the technical difficulties and complications associated with the procedure. The proposed research examines fundamental hysteroscopy factors, current training and accreditation, and proposes a hysteroscopic simulator design that is suitable for educating and training.
Current state and future development of intracranial neuroendoscopic surgery.
Cinalli, Giuseppe; Cappabianca, Paolo; de Falco, Raffaele; Spennato, Pietro; Cianciulli, Emilio; Cavallo, Luigi Maria; Esposito, Felice; Ruggiero, Claudio; Maggi, Giuseppe; de Divitiis, Enrico
2005-05-01
Since the introduction of the modern, smaller endoscopes in the 1960s, neuroendoscopy has become an expanding field of neurosurgery. Neuroendoscopy reflects the tendency of modern neurosurgery to aim towards minimalism; that is, access and visualization through the narrowest practical corridor and maximum effective action at the target point with minimal disruption of normal tissue. Transventricular neuroendoscopy allows the treatment of several pathologies inside the ventricular system, such as obstructive hydrocephalus and intra-/paraventricular tumors or cysts, often avoiding the implantation of extracranial shunts or more invasive craniotomic approaches. Endoscopic endonasal transphenoidal surgery allows the treatment of pathologies of the sellar and parasellar region, with the advantage of a wider vision of the surgical field, less traumatism of the nasal structures, greater facility in the treatment of possible recurrences and reduced complications. However, an endoscope may be used to assist microsurgery in virtually any kind of neurosurgical procedures (endoscope-assisted microsurgery), particularly in aneurysm and tumor surgery. Basic principles of optical imaging and the physics of optic fibers are discussed, focusing on the neuroendoscope. The three main chapters of neuroendoscopy (transventricular, endonasal transphenoidal and endoscope-assisted microsurgery) are reviewed, concerning operative instruments, surgical procedures, main indications and results.
Virtual endoscopic imaging of the spine.
Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei
2012-05-20
Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.
Simulation-Based Training for Colonoscopy
Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars
2015-01-01
Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177
Hamamoto, Shuzo; Unno, Rei; Taguchi, Kazumi; Ando, Ryosuke; Hamakawa, Takashi; Naiki, Taku; Okada, Shinsuke; Inoue, Takaaki; Okada, Atsushi; Kohri, Kenjiro; Yasui, Takahiro
2017-11-01
To evaluate the clinical utility of a new navigation technique for percutaneous renal puncture using real-time virtual sonography (RVS) during endoscopic combined intrarenal surgery. Thirty consecutive patients who underwent endoscopic combined intrarenal surgery for renal calculi, between April 2014 and July 2015, were divided into the RVS-guided puncture (RVS; n = 15) group and the ultrasonography-guided puncture (US; n = 15) group. In the RVS group, renal puncture was repeated until precise piercing of a papilla was achieved under direct endoscopic vision, using the RVS system to synchronize the real-time US image with the preoperative computed tomography image. In the US group, renal puncture was performed under US guidance only. In both groups, 2 urologists worked simultaneously to fragment the renal calculi after inserting the miniature percutaneous tract. The mean sizes of the renal calculi in the RVS and the US group were 33.5 and 30.5 mm, respectively. A lower mean number of puncture attempts until renal access through the calyx was needed for the RVS compared with the US group (1.6 vs 3.4 times, respectively; P = .001). The RVS group had a lower mean postoperative hemoglobin decrease (0.93 vs 1.39 g/dL, respectively; P = .04), but with no between-group differences with regard to operative time, tubeless rate, and stone-free rate. None of the patients in the RVS group experienced postoperative complications of a Clavien score ≥2, with 3 patients experiencing such complications in the US group. RVS-guided renal puncture was effective, with a lower incidence of bleeding-related complications compared with US-guided puncture. Copyright © 2017 Elsevier Inc. All rights reserved.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Ivekovic, Hrvoje; Radulovic, Bojana; Jankovic, Suzana; Markos, Pave; Rustemovic, Nadan
2014-01-01
Mallory-Weiss syndrome (MWS) accounts for 6-14% of all cases of upper gastrointestinal bleeding. Prognosis of patients with MWS is generally good, with a benign course and rare recurrence of bleeding. However, no strict recommendations exist in regard to the mode of action after a failure of primary endoscopic hemostasis. We report a case of an 83-year-old male with MWS and rebleeding after the initial endoscopic treatment with epinephrine and clips. The final endoscopic control of bleeding was achieved by a combined application of clips and a nylon snare in a "tulip-bundle" fashion. The patient had an uneventful postprocedural clinical course and was discharged from the hospital five days later. To the best of our knowledge, this is the first case report showing the "tulip-bundle" technique as a rescue endoscopic bleeding control in the esophagus.
Wang, Ming-Fang; Xu, Yingshun; Prem, C S; Chen, Kelvin Wei Sheng; Xie, Jin; Mu, Xiaojing; Tan, Chee Wei; Yu, Aibin; Feng, Hanhua
2010-01-01
In this paper, we present a miniaturized endoscopic probe, consisted of MEMS micromirror, silicon optical bench (SiOB), grade index (GRIN) lens, single mode optical fiber (SMF) and transparent housing, for optical coherence tomography (OCT) bioimaging. Due to the use of the MEMS micromirror, the endoscopic OCT system is highly suitable for non-invasive imaging diagnosis of a wide variety of inner organs. The probe engineering and proof of concept were demonstrated by obtaining the two-dimensional OCT images with a cover slide and an onion used as standard samples and the axial resolution was around 10µm.
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures. PMID:25295187
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.
Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope
NASA Astrophysics Data System (ADS)
Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh
2014-03-01
Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.
Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
Walsh, Catharine M; Sherlock, Mary E; Ling, Simon C; Carnahan, Heather
2012-06-13
Traditionally, training in gastrointestinal endoscopy has been based upon an apprenticeship model, with novice endoscopists learning basic skills under the supervision of experienced preceptors in the clinical setting. Over the last two decades, however, the growing awareness of the need for patient safety has brought the issue of simulation-based training to the forefront. While the use of simulation-based training may have important educational and societal advantages, the effectiveness of virtual reality gastrointestinal endoscopy simulators has yet to be clearly demonstrated. To determine whether virtual reality simulation training can supplement and/or replace early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. Health professions, educational and computer databases were searched until November 2011 including The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Scopus, Web of Science, Biosis Previews, CINAHL, Allied and Complementary Medicine Database, ERIC, Education Full Text, CBCA Education, Career and Technical Education @ Scholars Portal, Education Abstracts @ Scholars Portal, Expanded Academic ASAP @ Scholars Portal, ACM Digital Library, IEEE Xplore, Abstracts in New Technologies and Engineering and Computer & Information Systems Abstracts. The grey literature until November 2011 was also searched. Randomised and quasi-randomised clinical trials comparing virtual reality endoscopy (oesophagogastroduodenoscopy, colonoscopy and sigmoidoscopy) simulation training versus any other method of endoscopy training including conventional patient-based training, in-job training, training using another form of endoscopy simulation (e.g. low-fidelity simulator), or no training (however defined by authors) were included. Trials comparing one method of virtual reality training versus another method of virtual reality training (e.g. comparison of two different virtual reality simulators) were also included. Only trials measuring outcomes on humans in the clinical setting (as opposed to animals or simulators) were included. Two authors (CMS, MES) independently assessed the eligibility and methodological quality of trials, and extracted data on the trial characteristics and outcomes. Due to significant clinical and methodological heterogeneity it was not possible to pool study data in order to perform a meta-analysis. Where data were available for each continuous outcome we calculated standardized mean difference with 95% confidence intervals based on intention-to-treat analysis. Where data were available for dichotomous outcomes we calculated relative risk with 95% confidence intervals based on intention-to-treat-analysis. Thirteen trials, with 278 participants, met the inclusion criteria. Four trials compared simulation-based training with conventional patient-based endoscopy training (apprenticeship model) whereas nine trials compared simulation-based training with no training. Only three trials were at low risk of bias. Simulation-based training, as compared with no training, generally appears to provide participants with some advantage over their untrained peers as measured by composite score of competency, independent procedure completion, performance time, independent insertion depth, overall rating of performance or competency error rate and mucosal visualization. Alternatively, there was no conclusive evidence that simulation-based training was superior to conventional patient-based training, although data were limited. The results of this systematic review indicate that virtual reality endoscopy training can be used to effectively supplement early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. However, there remains insufficient evidence to advise for or against the use of virtual reality simulation-based training as a replacement for early conventional endoscopy training (apprenticeship model) for health professions trainees with limited or no prior endoscopic experience. There is a great need for the development of a reliable and valid measure of endoscopic performance prior to the completion of further randomised clinical trials with high methodological quality.
Endoscopic ultrasound: Elastographic lymph node evaluation.
Dietrich, Christoph F; Jenssen, Christian; Arcidiacono, Paolo G; Cui, Xin-Wu; Giovannini, Marc; Hocke, Michael; Iglesias-Garcia, Julio; Saftoiu, Adrian; Sun, Siyu; Chiorean, Liliana
2015-01-01
Different imaging techniques can bring different information which will contribute to the final diagnosis and further management of the patients. Even from the time of Hippocrates, palpation has been used in order to detect and characterize a body mass. The so-called virtual palpation has now become a reality due to elastography, which is a recently developed technique. Elastography has already been proving its added value as a complementary imaging method, helpful to better characterize and differentiate between benign and malignant masses. The current applications of elastography in lymph nodes (LNs) assessment by endoscopic ultrasonography will be further discussed in this paper, with a review of the literature and future perspectives.
Needs analysis for developing a virtual-reality NOTES simulator.
Sankaranarayanan, Ganesh; Matthes, Kai; Nemani, Arun; Ahn, Woojin; Kato, Masayuki; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu
2013-05-01
INTRODUCTION AND STUDY AIM: Natural orifice translumenal endoscopic surgery (NOTES) is an emerging surgical technique that requires a cautious adoption approach to ensure patient safety. High-fidelity virtual-reality-based simulators allow development of new surgical procedures and tools and train medical personnel without risk to human patients. As part of a project funded by the National Institutes of Health, we are developing the virtual transluminal endoscopic surgery trainer (VTEST) for this purpose. The objective of this study is to conduct a structured needs analysis to identify the design parameters for such a virtual-reality-based simulator for NOTES. A 30-point questionnaire was distributed at the 2011 National Orifice Surgery Consortium for Assessment and Research meeting to obtain responses from experts. Ordinal logistic regression and the Wilcoxon rank-sum test were used for analysis. A total of 22 NOTES experts participated in the study. Cholecystectomy (CE, 68 %) followed by appendectomy (AE, 63 %) (CE vs AE, p = 0.0521) was selected as the first choice for simulation. Flexible (FL, 47 %) and hybrid (HY, 47 %) approaches were equally favorable compared with rigid (RI, 6 %) with p < 0.001 for both FL versus RI and HY versus RI. The transvaginal approach was preferred 3 to 1 to the transgastric. Most participants preferred two-channel (2C) scopes (65 %) compared with single (1C) or three (3C) or more channels with p < 0.001 for both 2C versus 1C and 2C versus 3C. The importance of force feedback and the utility of a virtual NOTES simulator in training and testing new tools for NOTES were rated very high by the participants. Our study reinforces the importance of developing a virtual NOTES simulator and clearly presents expert preferences. The results of this analysis will direct our initial development of the VTEST platform.
Lang, Alon; Melzer, Ehud; Bar-Meir, Simon; Eliakim, Rami; Ziv, Amitai
2006-11-01
The continuing development in computer-based medical simulators provides an ideal platform for simulator-assisted training programs for medical trainees. Computer-based endoscopic simulators provide a virtual reality environment for training endoscopic procedures. This study illustrates the use of a comprehensive training model combining the use of endoscopic simulators with simulated (actor) patients (SP). To evaluate the effectiveness of a comprehensive simulation workshop from the trainee perspective. Four case studies were developed with emphasis on communication skills. Three workshops with 10 fellows in each were conducted. During each workshop the trainees spent half of the time in SP case studies and the remaining half working with computerized endoscopic simulators with continuous guidance by an expert endoscopist. Questionnaires were completed by the fellows at the end of the workshop. Seventy percent of the fellows felt that the endoscopic simulator was close or very close to reality for gastroscopy and 63% for colonoscopy. Eighty eight percent thought the close guidance was important for the learning process with the simulator. Eighty percent felt that the case studies were an important learning experience for risk management. Further evaluation of multi-modality simulation workshops in gastroenterologist training is needed to identify how best to incorporate this form of instruction into training for gastroenterologists.
Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung
2017-02-01
A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.
NASA Astrophysics Data System (ADS)
Ludwig, Hans C.; Kruschat, Thomas; Knobloch, Torsten; Rostasy, Kevin; Buchfelder, Michael
2005-04-01
Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. Although Nd:YAG- and diode-lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects. We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 μm (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until June 2004 fourteen endoscopic procedures in 12 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts. We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany; a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 μm core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope"s working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz. All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. The authors conclude that the use of the new RevolixTM laser enables safe and effective procedures in neuroendoscopy.
Advances in engineering of high contrast CARS imaging endoscopes
Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.
2014-01-01
The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538
Radiofrequency ablation for hepatocellular carcinoma: assistant techniques for difficult cases.
Inoue, Tatsuo; Minami, Yasunori; Chung, Hobyung; Hayaishi, Sousuke; Ueda, Taisuke; Tatsumi, Chie; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Ishikawa, Emi; Yada, Norihisa; Hagiwara, Satoru; Ueshima, Kazuomi; Kudo, Masatoshi
2010-07-01
To confirm the safety and effectiveness of techniques to assist radiofrequency ablation (RFA) for difficult cases, we retrospectively evaluated successful treatment rates, early complications and local tumor progressions. Between June 1999 and April 2009, a total of 341 patients with 535 nodules were treated as difficult cases. Artificial pleural effusion assisted ablation was performed on 64 patients with 82 nodules. Artificial ascites-assisted ablation was performed on 11 patients with 13 nodules. Cooling by endoscopic nasobiliary drainage (ENBD) tube-assisted ablation was performed on 6 patients with 8 nodules. When the tumors were not well visualized with conventional B-mode ultrasonography (US), contrast-enhanced US-assisted ablation with Levovist or Sonazoid or virtual CT sonography-assisted ablation was performed. Contrast-enhanced US-assisted ablation was performed on 139 patients with 224 nodules and virtual CT sonography-assisted ablation was performed on 121 patients with 209 nodules. In total, complete ablation was achieved in 514 of 535 (96%) nodules in difficult cases. For RFA with artificial pleural effusion, artificial ascites and ENBD, complete response was confirmed in all cases. For contrast-enhanced US- and CT sonography-assisted ablation, complete response was 95%. Early complications were recognized in 24 cases (4.5%). All cases recovered with no invasive treatment. Local tumor recurrence was investigated in 377 nodules of 245 patients, and 69 (18%) nodules were positive. Tumor recurrences in each assisted technique were 14.7% in artificial pleural effusion cases, 7% in artificial ascites, 12.5% in ENBD tube cases, 31% in virtual CT sonography, and 8.5% in contrast-enhanced US. Although local tumor progression needs to be carefully monitored, assisted techniques of RFA for difficult cases are well tolerated and expand the indications of RFA. Copyright (c) 2010 S. Karger AG, Basel.
Endoscopic training in gastroenterology fellowship: adherence to core curriculum guidelines.
Jirapinyo, Pichamol; Imaeda, Avlin B; Thompson, Christopher C
2015-12-01
The Gastroenterology Core Curriculum and American Society of Gastrointestinal Endoscopy provide guidelines for endoscopic training. Program adherence to these recommendations is unclear. This study aims to assess endoscopic training experience during fellowship. Questionnaire study. The questionnaire was circulated to US fellowship programs, with the assistance of the American Gastroenterological Association. Graduating third-year fellows. Seventy-three fellows returned the questionnaire. Nearly all fellows met the required numbers for esophagoduodenoscopy (98%) and colonoscopy (100%), with fewer meeting requirements for PEG (73%) and non-variceal hemorrhage (75%). The majority of fellows did not meet minimum numbers for variceal banding (40%), esophageal dilation (43%), capsule endoscopy (42%). Fellows rated training in cognitive aspects of endoscopy as 3.86 [1 (inadequate), 5 (excellent)] and reported greatest emphasis on interpreting endoscopic findings and least on virtual colonography. Quality indicators of endoscopy received little emphasis (rating of 3.04; p = 0.00001), with adenoma detection rate being least emphasized. Fifty-six percent of fellows reported having routine endoscopy conferences. Half of the programs have endoscopic simulators, with 15% of fellows being required to use simulation. Following direct hands-on experience, fellows rated external endoscopy courses (64%) as the next most useful experience. Many fellows do not meet required numbers for several endoscopic procedures, and quality indicators receive little emphasis during training. Most programs do not provide simulation training or hold regular endoscopy conferences. Fellowship programs should perform internal audits and make feasible adjustments. Furthermore, it may be time for professional societies to revisit training guidelines.
Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics
Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R
2017-01-01
Background Virtual focus groups—such as online chat and video groups—are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. Objective To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. Methods We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Results Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Conclusions Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. PMID:28330832
Transurethral Resection of Bladder Tumors: Next-generation Virtual Reality Training for Surgeons.
Neumann, Eva; Mayer, Julian; Russo, Giorgio Ivan; Amend, Bastian; Rausch, Steffen; Deininger, Susanne; Harland, Niklas; da Costa, Inês Anselmo; Hennenlotter, Jörg; Stenzl, Arnulf; Kruck, Stephan; Bedke, Jens
2018-05-22
The number of virtual reality (VR) simulators is increasing. The aim of this prospective trial was to determine the benefit of VR cystoscopy (UC) and transurethral bladder tumor resection (TURBT) training in students. Medical students without endoscopic experience (n=51, median age=25 yr, median 4th academic year) were prospectively randomized into groups A and B. After an initial VR-UC and VR-TURBT task, group A (n=25) underwent a video-based tutorial by a skilled expert. Group B (n=26) was trained using a VR training program (Uro-Trainer). Following the training, every participant performed a final VR-UC and VR-TURBT task. Performance indicators were recorded via the simulator. Data was analyzed by Mann-Whitney U test. VR cystoscopy and TURBT. No baseline and post-training differences were found for VR-UC between groups. During baseline, VR-TURBT group A showed higher inspected bladder surface than group B (56% vs 73%, p=0.03). Subgroup analysis detected differences related to sex before training (male: 31.2% decreased procedure time; 38.1% decreased resectoscope movement; p=0.02). After training, significant differences in procedure time (3.9min vs 2.7min, p=0.007), resectoscope movement (857mm vs 529mm, p=0.005), and accidental bladder injury (n=3.0 vs n=0.88, p=0.003) were found. Male participants showed reduced blood loss (males: 3.92ml vs females: 10.12ml; p=0.03) after training. Measuring endoscopic skills within a virtual environment can be done easily. Short training improved efficacy and safety of VR-TURBT. Nevertheless, transfer of improved VR performance into real world surgery needs further clarification. We investigated how students without endoscopic experience profit from simulation-based training. The safe environment and repeated simulations can improve the surgical training. It may be possible to enhance patient's safety and the training of surgeons in long term. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Stray energy transfer during endoscopy.
Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N
2017-10-01
Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p < 0.001 vs. all others), 2.1 ± 0.8 °C nearest the light lens, and 1.7 ± 0.4 °C nearest the working channel. Measuring temperature at the camera lens, reducing power to 30 W (9.5 ± 0.8 °C) and 15 W (8.0 ± 0.8 °C) decreased stray energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p < 0.001). An impedance-monitoring generator significantly decreased the energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p < 0.001). Stray energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.
NASA Astrophysics Data System (ADS)
Gao, Lingli; Pan, Yudi
2018-05-01
The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
Technological advances in robotic-assisted laparoscopic surgery.
Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K
2009-05-01
In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.
Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract.
De Palma, Giovanni D
2009-12-14
Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.
Pre-clinical Training for New Notes Procedures: From Ex-vivo Models to Virtual Reality Simulators.
Gromski, Mark A; Ahn, Woojin; Matthes, Kai; De, Suvranu
2016-04-01
Natural orifice transluminal endoscopic surgery (NOTES) is a newer field of endoscopic surgery that allows for scarless treatment of pathologic entities, using novel transluminal approaches. There has been a shift of focus from a clinical and research standpoint from the development and dissemination of "first-generation" NOTES procedures to "new NOTES" procedures that traverse the mucosa of luminal structures, yet do not stray far into the peritoneal cavity. It has been a challenge to find appropriate and effective ways to train gastroenterologists and surgeons in these novel approaches. We review the importance of simulation in training and discuss available simulation options. Copyright © 2016 Elsevier Inc. All rights reserved.
Image-guided intervention in the human bile duct using scanning fiber endoscope system
NASA Astrophysics Data System (ADS)
Seibel, Eric J.; Jo, Javier A.; Melville, C. David; Johnston, Richard S.; Naumann, Christopher R.; Saunders, Michael D.
2012-01-01
Bile duct cancers are increasing in frequency while being difficult to diagnose. Currently available endoscopic imaging devices used in the biliary tree are low resolution with poor image quality, leading to inadequate evaluation of indeterminate biliary strictures. However, a new ultrathin and flexible cholangioscope system has been successfully demonstrated in a human subject. This mini-cholangioscope system uses a scanning fiber endoscope (SFE) as a forward-imaging guidewire, dimensions of 1.2-mm diameter and 3-m length. Full color video (500-line resolution at 30Hz) is the standard SFE imaging mode using spiral scanning of red, green, and blue laser light at low power. Image-guided operation of the biopsy forceps was demonstrated in healthy human bile ducts with and without saline flushing. The laser-based video imaging can be switched to various modes to enhance tissue markers of disease, such as widefield fluorescence and enhanced spectral imaging. In parallel work, biochemical discrimination of tissue health in pig bile duct has been accomplished using fiberoptic delivery of pulsed UV illumination and time-resolved autofluorescence spectroscopic measurements. Implementation of time-resolved fluorescence spectroscopy for biochemical assessment of the bile duct wall is being done through a secondary endoscopic channel. Preliminary results indicate that adequate SNR levels (> 30 dB) can be achieved through a 50 micron fiber, which could serve as an optical biopsy probe. The SFE is an ideal mini-cholangioscope for integration of both tissue and molecular specific image contrast in the future. This will provide the physician with unprecedented abilities to target biopsy locations and perform endoscopically-guided therapies.
Indications and Outcomes of Endoscopic CO2 Laser Cricopharyngeal Myotomy
Bergeron, Jennifer L.; Chhetri, Dinesh K.
2015-01-01
Objectives/Hypothesis To describe indications, management, and outcomes of endoscopic CO2 laser cricopharyngeal myotomy (CPM). Study Design Case series with chart review. Methods All patients treated with endoscopic CO2 laser CPM over a 6-year period were identified. A retrospective chart review was performed for surgical indication, history and physical examinations, and swallow evaluations. Swallowing outcomes were assessed using the Functional Outcome Swallowing Scale (FOSS); findings were compared across groups. Results Eighty-seven patients underwent endoscopic CO2 laser CPM during the study period for cricopharyngeal dysfunction. Indications included Zenker’s diverticulum (ZD) (39), DiGeorge syndrome (two), stroke (five), nerve injury (two), radiation for head and neck cancer (15), idiopathic (16), hyperfunctional tracheoesophageal speech (five) and dysphagia from cricopharyngeus stricture after laryngectomy (three). Mean, median, and mode time to feeding postoperatively were 1.4, 1, and 0 days respectively. Mean, median, and mode hospital stays were 1.8, 1, and 1 day respectively. Overall, FOSS scores improved from 2.6 to 1.6 (P < .001). Improvement was greatest for patients with ZD (2.4 to 1.0) and cricopharyngeal dysfunction from nerve injury (3.3 to 1.8) and least for those with prior radiation (3.9 to 3.2). All patients undergoing CPM for poor tracheoesophageal speech regained speech postoperatively. No patients developed mediastinitis, abscess, or fistula. Conclusions Endoscopic CO2 laser CPM is a safe treatment for cricopharyngeal dysfunction of various causes, though swallowing outcomes may vary depending on the surgical indication. Early feeding postoperatively after CPM is safe and facilitates early hospital discharge. PMID:24114581
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
Recurrent neck lesions secondary to pyriform sinus fistula.
Zhang, Peijun; Tian, Xiufen
2016-03-01
Recurrent neck lesions associated with third or fourth branchial arch fistula are much less common than those of second arch and usually present with acute suppurative thyroiditis or neck abscess. Our aim is to describe clinical features, management and treatment outcomes of 64 cases of congenital pyriform sinus fistula (PSF). Medical record of these 64 patients (33 males, 31 females) treated at the First Affiliated Hospital of Zhengzhou University from 2011 to 2014 were reviewed. The patients comprised 33 males and 31 females, and their ages ranged from 18 months to 47 years (median 10 years, mean 12.7 years). Neck abscess and recurrent infection was the mode of presentation in 37 cases (57.8 %), 4 patients (6.3 %) presented with acute suppurative thyroiditis, neck mass was the mode of presentation in 17 cases (26.6 %), 2 patients (3.1 %) presented with neck mass with respiratory distress, and cutaneous discharging fistula was the mode of presentation in 1 cases (1.6 %). The remaining 3 patients (4.7 %) presented with cutaneous discharging fistula with neck infection. Investigations performed include barium swallow, CT scan, and ultrasound which were useful in delineating PSF tract preoperatively. Barium swallow was taken as the gold standard for diagnosis. Our patients were treated by fistulectomy with hemithyroidectomy, fistulectomy, fistulectomy with endoscopic electric cauterization, endoscopic electric cauterization or endoscopic coblation cauterization, respectively. Histopathologic examination of the surgical specimens revealed that they were lined with ciliated epithelium, stratified cuboid epithelium with chronic inflammatory cell infiltration and fibrosis. Voice hoarseness occurred after operation in seven patients, but disappeared 1 week later. PSF recurred in 6 patients, 4 of them were cured by a successful re-excision. One patient was cured by successful endoscopic electric cauterization. The other 1 has remained asymptomatic for 5 months. In our series, mean follow-up period was 13.3 months and median follow-up period was 12.5 months (range 2-40 months). Presence of congenital PSF should be suspected when intra-thyroidal abscess formation occurs as the gland is resistant to infection. Strong clinical suspicion, barium swallow study, CT scan and ultrasound are the key to diagnosis. Both fistulectomy with hemithyroidectomy and endoscopic treatment have comparable success rate. Endoscopic coblation cauterization may prove a useful and equally effective method of treatment for PSF in future.
Endoscopic management of gastrointestinal perforations, leaks and fistulas
Rogalski, Pawel; Daniluk, Jaroslaw; Baniukiewicz, Andrzej; Wroblewski, Eugeniusz; Dabrowski, Andrzej
2015-01-01
Gastrointestinal perforations, leaks and fistulas may be serious and life-threatening. The increasing number of endoscopic procedures with a high risk of perforation and the increasing incidence of leakage associated with bariatric operations call for a minimally invasive treatment for these complications. The therapeutic approach can vary greatly depending on the size, location, and timing of gastrointestinal wall defect recognition. Some asymptomatic patients can be treated conservatively, while patients with septic symptoms or cardio-pulmonary insufficiency may require intensive care and urgent surgical treatment. However, most gastrointestinal wall defects can be satisfactorily treated by endoscopy. Although the initial endoscopic closure rates of chronic fistulas is very high, the long-term results of these treatments remain a clinical problem. The efficacy of endoscopic therapy depends on several factors and the best mode of treatment will depend on a precise localization of the site, the extent of the leak and the endoscopic appearance of the lesion. Many endoscopic tools for effective closure of gastrointestinal wall defects are currently available. In this review, we summarized the basic principles of the management of acute iatrogenic perforations, as well as of postoperative leaks and chronic fistulas of the gastrointestinal tract. We also described the effectiveness of various endoscopic methods based on current research and our experience. PMID:26457014
Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics.
Rupert, Douglas J; Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R
2017-03-22
Virtual focus groups-such as online chat and video groups-are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. ©Douglas J Rupert, Jon A Poehlman, Jennifer J Hayes, Sarah E Ray, Rebecca R Moultrie. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.03.2017.
Will the Playstation generation become better endoscopic surgeons?
van Dongen, Koen W; Verleisdonk, Egbert-Jan M M; Schijven, Marlies P; Broeders, Ivo A M J
2011-07-01
A frequently heard comment is that the current "Playstation generation" will have superior baseline psychomotor skills. However, research has provided inconsistent results on this matter. The purpose of this study was to investigate whether the "Playstation generation" shows superior baseline psychomotor skills for endoscopic surgery on a virtual reality simulator. The 46 study participants were interns (mean age 24 years) of the department of surgery and schoolchildren (mean age 12.5 years) of the first year of a secondary school. Participants were divided into four groups: 10 interns with videogame experience and 10 without, 13 schoolchildren with videogame experience and 13 without. They performed four tasks twice on a virtual reality simulator for basic endoscopic skills. The one-way analysis of variance (ANOVA) with post hoc test Tukey-Bonferroni and the independent Student's t test were used to determine differences in mean scores. Interns with videogame experience scored significantly higher on total score (93 vs. 74.5; p=0.014) compared with interns without this experience. There was a nonsignificant difference in mean total scores between the group of schoolchildren with and those without videogame experience (61.69 vs. 55.46; p=0.411). The same accounts for interns with regard to mean scores on efficiency (50.7 vs. 38.9; p=0.011) and speed (18.8 vs. 14.3; p=0.023). In the group of schoolchildren, there was no statistical difference for efficiency (32.69 vs. 27.31; p=0.218) or speed (13.92 vs. 13.15; p=0.54). The scores concerning precision parameters did not differ for interns (23.5 vs. 21.3; p=0.79) or for schoolchildren (mean 15.08 vs. 15; p=0.979). Our study results did not predict an advantage of videogame experience in children with regard to superior psychomotor skills for endoscopic surgery. However, at adult age, a difference in favor of gaming is present. The next generation of surgeons might benefit from videogame experience during their childhood.
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2014-06-01
A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.
An automatic detection method for the boiler pipe header based on real-time image acquisition
NASA Astrophysics Data System (ADS)
Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie
2017-06-01
Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.
Ahn, Dohyun; Seo, Youngnam; Kim, Minkyung; Kwon, Joung Huem; Jung, Younbo; Ahn, Jungsun
2014-01-01
Abstract This study examined the role of display size and mode in increasing users' sense of being together with and of their psychological immersion in a virtual character. Using a high-resolution three-dimensional virtual character, this study employed a 2×2 (stereoscopic mode vs. monoscopic mode×actual human size vs. small size display) factorial design in an experiment with 144 participants randomly assigned to each condition. Findings showed that stereoscopic mode had a significant effect on both users' sense of being together and psychological immersion. However, display size affected only the sense of being together. Furthermore, display size was not found to moderate the effect of stereoscopic mode. PMID:24606057
Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.
Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C
2015-01-01
Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Agbetoba, Abib; Luong, Amber; Siow, Jin Keat; Senior, Brent; Callejas, Claudio; Szczygielski, Kornel; Citardi, Martin J
2017-02-01
Endoscopic sinus surgery represents a cornerstone in the professional development of otorhinolaryngology trainees. Mastery of these surgical skills requires an understanding of paranasal sinus and skull-base anatomy. The frontal sinus is associated with a wide range of variation and complex anatomical configuration, and thus represents an important challenge for all trainees performing endoscopic sinus surgery. Forty-five otorhinolaryngology trainees and 20 medical school students from 5 academic institutions were enrolled and randomized into 1 of 2 groups. Each subject underwent learning of frontal recess anatomy with both traditional 2-dimensional (2D) learning methods using a standard Digital Imaging and Communications in Medicine (DICOM) viewing software (RadiAnt Dicom Viewer Version 1.9.16) and 3-dimensional (3D) learning utilizing a novel preoperative virtual planning software (Scopis Building Blocks), with one half learning with the 2D method first and the other half learning with the 3D method first. Four questionnaires that included a total of 20 items were scored for subjects' self-assessment on knowledge of frontal recess and frontal sinus drainage pathway anatomy following each learned modality. A 2-sample Wilcoxon rank-sum test was used in the statistical analysis comparing the 2 groups. Most trainees (89%) believed that the virtual 3D planning software significantly improved their understanding of the spatial orientation of the frontal sinus drainage pathway. Incorporation of virtual 3D planning surgical software may help augment trainees' understanding and spatial orientation of the frontal recess and sinus anatomy. The potential increase in trainee proficiency and comprehension theoretically may translate to improved surgical skill and patient outcomes and in reduced surgical time. © 2016 ARS-AAOA, LLC.
Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes
Wroblewski, Dariusz; Francis, Brian A.; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4–6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode. PMID:25050326
Surgical navigation in urology: European perspective.
Rassweiler, Jens; Rassweiler, Marie-Claire; Müller, Michael; Kenngott, Hannes; Meinzer, Hans-Peter; Teber, Dogu
2014-01-01
Use of virtual reality to navigate open and endoscopic surgery has significantly evolved during the last decade. Current status of seven most interesting projects inside the European Association of Urology section of uro-technology is summarized with review of literature. Marker-based endoscopic tracking during laparoscopic radical prostatectomy using high-definition technology reduces positive margins. Marker-based endoscopic tracking during laparoscopic partial nephrectomy by mechanical overlay of three-dimensional-segmented virtual anatomy is helpful during planning of trocar placement and dissection of renal hilum. Marker-based, iPAD-assisted puncture of renal collecting system shows more benefit for trainees with reduction of radiation exposure. Three-dimensional laser-assisted puncture of renal collecting system using Uro-Dyna-CT realized in an ex-vivo model enables minimal radiation time. Electromagnetic tracking for puncture of renal collecting system using a sensor at the tip of ureteral catheter worked in an in-vivo model of porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces the puncture error from 4.7 to 1.8 mm. Feasibility of electromagnetic and optical tracking with the da Vinci telemanipulator was shown in vitro as well as using in-vivo model of oesophagectomy. Target registration error was 11.2 mm because of soft-tissue deformation. Intraoperative navigation is helpful during percutaneous puncture collecting system and biopsy of renal tumour using various tracking techniques. Early clinical studies demonstrate advantages of marker-based navigation during laparoscopic radical prostatectomy and partial nephrectomy. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.
Sakamoto, Takashi; Mitsuzaki, Katsuhiko; Utsunomiya, Daisuke; Matsuda, Katsuhiko; Yamamura, Sadahiro; Urata, Joji; Kawakami, Megumi; Yamashita, Yasuyuki
2012-09-01
Although the screening of small, flat polyps is clinically important, the role of CT colonography (CTC) screening in their detection has not been thoroughly investigated. To evaluate the detection capability and usefulness of CTC in the screening of flat and polypoid lesions by comparing CTC with optic colonoscopy findings as the gold standard. We evaluated the CTC detection capability for flat colorectal polyps with a flat surface and a height not exceeding 3 mm (n = 42) by comparing to conventional polypoid lesions (n = 418) according to the polyp diameter. Four types of reconstruction images including multiplanar reconstruction, volume rendering, virtual gross pathology, and virtual endoscopic images were used for visual analysis. We compared the abilities of the four reconstructions for polyp visualization. Detection sensitivity for flat polyps was 31.3%, 44.4%, and 87.5% for lesions measuring 2-3 mm, 4-5 mm, and ≥6 mm, respectively; the corresponding sensitivity for polypoid lesions was 47.6%, 79.0%, and 91.7%. The overall sensitivity for flat lesions (47.6%) was significantly lower than polypoid lesions (64.1%). Virtual endoscopic imaging showed best visualization among the four reconstructions. Colon cancers were detected in eight patients by optic colonoscopy, and CTC detected colon cancers in all eight patients. CTC using 64-row multidetector CT is useful for colon cancer screening to detect colorectal polyps while the detection of small, flat lesions is still challenging.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2014-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander Wong
2013-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
Validation and learning in the Procedicus KSA virtual reality surgical simulator.
Ström, P; Kjellin, A; Hedman, L; Johnson, E; Wredmark, T; Felländer-Tsai, L
2003-02-01
Advanced simulator training within medicine is a rapidly growing field. Virtual reality simulators are being introduced as cost-saving educational tools, which also lead to increased patient safety. Fifteen medical students were included in the study. For 10 medical students performance was monitored, before and after 1 h of training, in two endoscopic simulators (the Procedicus KSA with haptic feedback and anatomical graphics and the established MIST simulator without this haptic feedback and graphics). Five medical students performed 50 tests in the Procedicus KSA in order to analyze learning curves. One of these five medical students performed multiple training sessions during 2 weeks and performed more than 300 tests. There was a significant improvement after 1 h of training regarding time, movement economy, and total score. The results in the two simulators were highly correlated. Our results show that the use of surgical simulators as a pedagogical tool in medical student training is encouraging. It shows rapid learning curves and our suggestion is to introduce endoscopic simulator training in undergraduate medical education during the course in surgery when motivation is high and before the development of "negative stereotypes" and incorrect practices.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Monopolar soft-mode coagulation using hemostatic forceps for peptic ulcer bleeding.
Yamasaki, Yasushi; Takenaka, Ryuta; Nunoue, Tomokazu; Kono, Yoshiyasu; Takemoto, Koji; Taira, Akihiko; Tsugeno, Hirofumi; Fujiki, Shigeatsu
2014-01-01
Upper gastrointestinal hemorrhage from bleeding peptic ulcer is sometimes difficult to treat by conventional endoscopic methods. Recently, monopolar electrocoagulation using a soft-coagulation system and hemostatic forceps (soft coagulation) has been used to prevent bleeding during endoscopic submucosal dissection. The aim of this study was to assess the safety and efficacy of soft coagulation in the treatment of bleeding peptic ulcer. A total of 39 patients with peptic ulcers were treated using soft coagulation at our hospital between January 2005 and March 2010. Emergency treatment employed an ERBE soft-mode coagulation system using hemostatic forceps. Second-look endoscopy was performed to evaluate the efficacy of prior therapy. Initial hemostasis was defined as accomplished by soft coagulation, with or without other endoscopic therapy prior to soft coagulation. The rate of initial hemostasis, rebleeding, and ultimate hemostasis were retrospectively analyzed. The study subjects were 31 men and 8 women with a mean age of 68.3±13.7 years, with 29 gastric ulcers and 10 duodenal ulcers. Initial hemostasis was achieved in 37 patients (95%). During follow-up, bleeding recurred in two patients, who were retreated with soft coagulation. The monopolar soft coagulation is feasible and safe for treating bleeding peptic ulcers.
Ni, X-G; Zhang, Q-Q; Wang, G-Q
2016-11-01
This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.
Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil
2016-01-01
Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215
Different Operating Modes of the Rosetta's Ion Composition Analyzer and Its Virtual Counterpart
NASA Astrophysics Data System (ADS)
Pospieszyński, R.
2009-12-01
The Ion Composition Analyzer (ICA) is a part of the Rosetta Plasma Consortium (RPC) which is on board the Rosetta space probe heading for the comet 67/P Churyumov-Gerasimenko. It is scheduled to reach the comet in year 2014. In order to reduce telemetry the ICA instrument has a number of data reduction modes (sampling modes). The effects of these different modes are investigated and a plan on how to best operate the instrument when in orbit around the comet will be prepared. In order to investigate all of the cases a virtual instrument is being prepared. The virtual instrument can be operated in different modes just as the ``real'' one. The work with sampling will be to calculate what particles are coming from each direction we are looking in, based on the ISSI Comet Model, and then see how much information we loose by too sparse sampling and incomplete spatial coverage.
A VM-shared desktop virtualization system based on OpenStack
NASA Astrophysics Data System (ADS)
Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie
2018-04-01
With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.
A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes* #
Yi, Ying; Hao, Li-mei; Ma, Shu-ren; Wu, Jin-hui; Wang, Tao; Lin, Song; Zhang, Zong-xing; Qi, Jian-cheng
2016-01-01
Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disinfectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the sporicidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: RH, exposure dosage, organic burden, and the FR through the channel significantly (P<0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% RH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes. PMID:27381729
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-02-01
A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.
Test of a virtual cylindrical acoustic resonator for determining the Boltzmann constant
NASA Astrophysics Data System (ADS)
Feng, X. J.; Lin, H.; Gillis, K. A.; Moldover, M. R.; Zhang, J. T.
2015-10-01
We report progress toward determining the Boltzmann constant kB using the concept of a virtual acoustic resonator, a hypothetical resonator that is mathematically equivalent to a cylindrical cavity with periodic boundary conditions. We derived the virtual resonator by combining the measured frequencies of the longitudinal acoustic modes of two argon-filled, cylindrical cavity resonators in such a way to minimize the effects of the cavities’ ends, including transducers and ducts attached to the ends. The cavities had lengths of 80 mm and 160 mm and were operated in their longitudinal (ℓ,0,0) modes. We explored virtual resonators that combine modes of the two resonators that have nearly the same frequencies. The virtual resonator formed from the (2,0,0) mode of the 80 mm resonator combined with the (4,0,0) mode of the 160 mm resonator yielded a value for kB that is, fractionally, only (0.2 ± 1.5) × 10-6 larger than the 2010 CODATA-recommended value of kB. (The estimated uncertainty is one standard uncertainty corresponding to a 68% confidence level.) The same virtual resonator yielded values of the pressure derivatives of the speed of sound c in argon, (∂c2/∂p)T and (∂c2/∂p2)T, that differed from literature values by 1% and 2%, respectively. By comparison, when each cavity was considered separately, the values of kB, (∂c2/∂p)T, and (∂c2/∂p2)T differed from literature values by up to 7 ppm, 10%, and 5%, respectively. However, combining the results from the (3,0,0) or (4,0,0) modes of shorter resonator with the results from the (6,0,0) or (8,0,0) modes of the longer resonator yielded incorrect values of kB that varied from run-to-run. We speculate that these puzzling results originated in an unmodeled coupling, either between the two cavities (that resonated at nearly identical resonance frequencies in the same pressure vessel) or between the cavities and modes of the pressure vessel.
Advanced Imaging Technologies for the Detection of Dysplasia and Early Cancer in Barrett Esophagus
Espino, Alberto; Cirocco, Maria; DaCosta, Ralph
2014-01-01
Advanced esophageal adenocarcinomas arising from Barrett esophagus (BE) are tumors with an increasing incidence and poor prognosis. The aim of endoscopic surveillance of BE is to detect dysplasia, particularly high-grade dysplasia and intramucosal cancers that can subsequently be treated endoscopically before progression to invasive cancer with lymph node metastases. Current surveillance practice standards require the collection of random 4-quadrant biopsy specimens over every 1 to 2 cm of BE (Seattle protocol) to detect dysplasia with the assistance of white light endoscopy, in addition to performing targeted biopsies of recognizable lesions. This approach is labor-intensive but should currently be considered state of the art. Chromoendoscopy, virtual chromoendoscopy (e.g., narrow band imaging), and confocal laser endomicroscopy, in addition to high-definition standard endoscopy, might increase the diagnostic yield for the detection of dysplastic lesions. Until these modalities have been demonstrated to enhance efficiency or cost effectiveness, the standard protocol will remain careful examination using conventional off the shelf high-resolution endoscopes, combined with as longer inspection time which is associated with increased detection of dysplasia. PMID:24570883
Breimer, Gerben E; Haji, Faizal A; Bodani, Vivek; Cunningham, Melissa S; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M
2017-02-01
The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." To compare and identify the relative utility of a physical and VR ETV simulation model for use in neurosurgical training. Twenty-three neurosurgical residents and 3 fellows performed an ETV on both a physical and VR simulation model. Trainees rated the models using 5-point Likert scales evaluating the domains of anatomy, instrument handling, procedural content, and the overall fidelity of the simulation. Paired t tests were performed for each domain's mean overall score and individual items. The VR model has relative benefits compared with the physical model with respect to realistic representation of intraventricular anatomy at the foramen of Monro (4.5, standard deviation [SD] = 0.7 vs 4.1, SD = 0.6; P = .04) and the third ventricle floor (4.4, SD = 0.6 vs 4.0, SD = 0.9; P = .03), although the overall anatomy score was similar (4.2, SD = 0.6 vs 4.0, SD = 0.6; P = .11). For overall instrument handling and procedural content, the physical simulator outperformed the VR model (3.7, SD = 0.8 vs 4.5; SD = 0.5, P < .001 and 3.9; SD = 0.8 vs 4.2, SD = 0.6; P = .02, respectively). Overall task fidelity across the 2 simulators was not perceived as significantly different. Simulation model selection should be based on educational objectives. Training focused on learning anatomy or decision-making for anatomic cues may be aided with the VR simulation model. A focus on developing manual dexterity and technical skills using endoscopic equipment in the operating room may be better learned on the physical simulation model. Copyright © 2016 by the Congress of Neurological Surgeons
Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-04-01
Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
A tutorial platform suitable for surgical simulator training (SimMentor).
Røtnes, Jan Sigurd; Kaasa, Johannes; Westgaard, Geir; Eriksen, Eivind Myrold; Hvidsten, Per Oyvind; Strøm, Kyrre; Sørhus, Vidar; Halbwachs, Yvon; Haug, Einar; Grimnes, Morten; Fontenelle, Hugues; Ekeberg, Tom; Thomassen, Jan B; Elle, Ole Jakob; Fosse, Erik
2002-01-01
The introduction of simulators in surgical training entails the need to develop pedagogic platforms adapted to the potentials and limitations provided by the information technology. As a solution to the technical challenges in treating all possible interaction events and to obtain a suitable pedagogic approach, we have developed a pedagogic platform for surgical training, SimMentor. In SimMentor the procedure to be practiced is divided into a number of natural phases. The trainee will practice on one phase at a time, however he can select the sequence of phases arbitrarily. A phase is taught by letting the trainee alternate freely between 2 modes: 1: A 3-dimensional animated guidance designed for learning the objectives and challenges in a procedure. 2: An interactive training session through the instrument manipulator device designed for training motoric responses based on visual and tactile responses produced by the simulator. The two modes are interfaced with the same virtual reality platform, thus SimMentor allows a seamless transition between the modes. We have developed a prototype simulator for robotic assisted endoscopic CABG (Coronary Artery Bypass Grafting) procedure by first focusing on the anastomosis part of the operation. Tissue, suture and instrument models have been developed and integrated with a simulated model of a beating heart comprises the elements in the simulator engine that is used in construction a training platform for learning different methods for performing a coronary anastomosis procedure. The platform is designed for integrating the following features: 1) practical approach to handle interactivity events with flexible-objects 3D simulators, 2) methods for quantitative evaluations of performance, 3) didactic presentations, 4) effective ways of producing diversity of clinical and pathological training scenarios.
Routes for virtually guided endoscopic liver resection of subdiaphragmatic liver tumors.
Aoki, Takeshi; Murakami, Masahiko; Fujimori, Akira; Koizumi, Tomotake; Enami, Yuta; Kusano, Tomokazu; Matsuda, Kazuhiro; Yamada, Kosuke; Nogaki, Koji; Wada, Yusuke; Hakozaki, Tomoki; Goto, Satoru; Watanabe, Makoto; Otsuka, Koji
2016-03-01
Laparoscopic and thoracoscopic/laparoscopic hepatectomy is a safe procedure that has potential advantages over open surgery. However, deeply positioned liver tumors require expert laparoscopic and thoracoscopic/laparoscopic hepatectomy techniques. Using simulated preoperative three-dimensional virtual endoscopy (P3DVE) guidance, we demonstrate herein that a thoracoscopic approach (TA), thoracoscopic-laparoscopic approach (TLA), and laparoscopic approach (LA) are all feasible and safe routes for performing pure laparoscopic and thoracoscopic/laparoscopic resection of liver tumors located in the 4a, 7, and 8 liver subdiaphragmatic areas. Thirty-eight patients underwent laparoscopic and thoracoscopic/laparoscopic partial liver resection (TA 13 cases, TLA two cases, and LA 23 cases) of the subdiaphragmatic area at Showa University Hospital. All surgical approaches were preoperatively determined based on preoperative 3D virtual endoscopic simulation (P3DVES) visualization and findings using the image processing software SYNAPSE VINCENT(®). Laparoscopic and thoracoscopic/laparoscopic liver resection was successfully performed for all cases under P3DVE instruction. The mean operative times using TA, TLA, and LA approaches were 193, 185, and 190 min, respectively. Mean blood loss during TA, TLA, and LA was 179, 138, and 73 g, respectively. No patients required conversion to open surgery, and there were no deaths, although there were three cases of Clavien-Dindo grade I in TA along with three cases of grade I and one case of grade II in LA. TA, TLA, and LA routes performed under P3DVE instruction are feasible and safe to perform for pure laparoscopic and thoracoscopic/laparoscopic liver resection in selected patients with lesions located in the hepatic subdiaphragmatic area.
NASA Astrophysics Data System (ADS)
Ludwig, Hans C.; Kruschat, Thomas; Knobloch, Torsten; Rostasy, Kevin M.; Teichmann, Heinrich O.; Buchfelder, Michael
2005-08-01
Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. In occlusive hydrocephalus caused by aquaeductal stenosis 3rd ventriculostomy is the primary choice of the operative procedures. Although Nd:YAG and diode lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects. We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 micron (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until May 2005 22 endoscopic procedures in 20 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts. We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany) and a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 micron core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope's working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz. All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. All 3rd ventriculostomies were sufficient for therapy of hydrocephalus, postoperatively MRI scans showed a bright flow void signal. The authors conclude that the use of the new Revolix laser enables safe and effective procedures in neuroendoscopy.
Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion.
Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russel H; Hager, Gregory D
2016-01-01
Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.
Image-based navigation for functional endoscopic sinus surgery using structure from motion
NASA Astrophysics Data System (ADS)
Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russell H.; Hager, Gregory D.
2016-03-01
Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.
Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick
2018-05-01
This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.
NASA Astrophysics Data System (ADS)
Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo
2017-12-01
Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.
van der Meijden, O A J; Schijven, M P
2009-06-01
Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisition.
A spiral motion piezoelectric micromotor for autofocus and auto zoom in a medical endoscope
NASA Astrophysics Data System (ADS)
Chen, Xi; Chen, Zhijiang; Li, Xiaotian; Shan, Liang; Sun, Wanchen; Wang, Xiguang; Xie, Tianyu; Dong, Shuxiang
2016-02-01
We report a hollow type piezoelectric micromotor made of a PZT ceramic/metal composite cylinder with sizes of only 3.6 mm in diameter and 3.0 mm in length aiming at medical endoscope application. The hollow piezoelectric stator of the micromotor, acting as a nut, can excite E02-mode traveling wave along its circumferential direction, and a hollow rotor with a fine lens inside, acting as a screw, is driven to produce a spiral motion along its axis direction inside the hollow stator via the traveling wave. The features of the developed micromotors are its hollow, fine structure and submicrometer step resolution, ensuring that the optical path passes in a narrow and limited space and that the optical focal length is tuned precisely inside the endoscope, which is meaningful in medical diagnosis.
Simulation System for Training in Laparoscopic Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay; Ho, Chih-Hao
2003-01-01
A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set up to simulate the insertion of a flexible catheter in a bile duct. [As thus configured, the system can also be used to simulate other endoscopic procedures (e.g., bronchoscopy and colonoscopy) that include the insertion of flexible tubes into flexible ducts.] A hybrid approach has been followed in developing the software for real-time simulation of the visual and haptic interactions (1) between forceps and the catheter, (2) between the forceps and the duct, and (3) between the catheter and the duct. The deformations of the duct are simulated by finite-element and modalanalysis procedures, using only the most significant vibration modes of the duct for computing deformations and interaction forces. The catheter is modeled as a set of virtual particles uniformly distributed along the center line of the catheter and connected to each other via linear and torsional springs and damping elements. The interactions between the forceps and the duct as well as the catheter are simulated by use of a ray-based haptic-interaction- simulating technique in which the forceps are modeled as connected line segments.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-08-01
A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
Wall, R. Andrew
2012-01-01
Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190
Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Yeow, Yen Ling; Hamzah, Juliana; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Ganss, Ruth; Kim, Jun Ki; Lee, Woei M.; Kennedy, Brendan F.
2017-01-01
In this paper, we describe a technique capable of visualizing mechanical properties at the cellular scale deep in living tissue, by incorporating a gradient-index (GRIN)-lens micro-endoscope into an ultrahigh-resolution optical coherence elastography system. The optical system, after the endoscope, has a lateral resolution of 1.6 µm and an axial resolution of 2.2 µm. Bessel beam illumination and Gaussian mode detection are used to provide an extended depth-of-field of 80 µm, which is a 4-fold improvement over a fully Gaussian beam case with the same lateral resolution. Using this system, we demonstrate quantitative elasticity imaging of a soft silicone phantom containing a stiff inclusion and a freshly excised malignant murine pancreatic tumor. We also demonstrate qualitative strain imaging below the tissue surface on in situ murine muscle. The approach we introduce here can provide high-quality extended-focus images through a micro-endoscope with potential to measure cellular-scale mechanics deep in tissue. We believe this tool is promising for studying biological processes and disease progression in vivo. PMID:29188108
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
ERIC Educational Resources Information Center
Lockwood, Nicholas S.
2011-01-01
Geographically dispersed teams rely on information and communication technologies (ICTs) to communicate and collaborate. Three ICTs that have received attention are audio conferencing (AC), video conferencing (VC), and, recently, 3D virtual environments (3D VEs). These ICTs offer modes of communication that differ primarily in the number and type…
Davis, Matthew Christopher; Can, Dang D; Pindrik, Jonathan; Rocque, Brandon G; Johnston, James M
2016-02-01
Technology allowing a remote, experienced surgeon to provide real-time guidance to local surgeons has great potential for training and capacity building in medical centers worldwide. Virtual interactive presence and augmented reality (VIPAR), an iPad-based tool, allows surgeons to provide long-distance, virtual assistance wherever a wireless internet connection is available. Local and remote surgeons view a composite image of video feeds at each station, allowing for intraoperative telecollaboration in real time. Local and remote stations were established in Ho Chi Minh City, Vietnam, and Birmingham, Alabama, as part of ongoing neurosurgical collaboration. Endoscopic third ventriculostomy with choroid plexus coagulation with VIPAR was used for subjective and objective evaluation of system performance. VIPAR allowed both surgeons to engage in complex visual and verbal communication during the procedure. Analysis of 5 video clips revealed video delay of 237 milliseconds (range, 93-391 milliseconds) relative to the audio signal. Excellent image resolution allowed the remote neurosurgeon to visualize all critical anatomy. The remote neurosurgeon could gesture to structures with no detectable difference in accuracy between stations, allowing for submillimeter precision. Fifteen endoscopic third ventriculostomy with choroid plexus coagulation procedures have been performed with the use of VIPAR between Vietnam and the United States, with no significant complications. 80% of these patients remain shunt-free. Evolving technologies that allow long-distance, intraoperative guidance, and knowledge transfer hold great potential for highly efficient international neurosurgical education. VIPAR is one example of an inexpensive, scalable platform for increasing global neurosurgical capacity. Efforts to create a network of Vietnamese neurosurgeons who use VIPAR for collaboration are underway. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S
2018-06-15
Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
The 2014 study, "Conceptualizing Astronomical Scale: Virtual Simulations on Handheld Tablet Computers Reverse Misconceptions," examined the effects of using the true-to-scale (TTS) display mode versus the orrery display mode in the iPad's Solar Walk software application on students' knowledge of the Earth's place in the solar system. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, MM; University of California San Diego, La Jolla, California; Long, T
Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes canmore » be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for large-scale radiation therapy optimization research.« less
Korzeniowski, Przemyslaw; Brown, Daniel C; Sodergren, Mikael H; Barrow, Alastair; Bello, Fernando
2017-02-01
The goal of this study was to establish face, content, and construct validity of NOViSE-the first force-feedback enabled virtual reality (VR) simulator for natural orifice transluminal endoscopic surgery (NOTES). Fourteen surgeons and surgical trainees performed 3 simulated hybrid transgastric cholecystectomies using a flexible endoscope on NOViSE. Four of them were classified as "NOTES experts" who had independently performed 10 or more simulated or human NOTES procedures. Seven participants were classified as "Novices" and 3 as "Gastroenterologists" with no or minimal NOTES experience. A standardized 5-point Likert-type scale questionnaire was administered to assess the face and content validity. NOViSE showed good overall face and content validity. In 14 out of 15 statements pertaining to face validity (graphical appearance, endoscope and tissue behavior, overall realism), ≥50% of responses were "agree" or "strongly agree." In terms of content validity, 85.7% of participants agreed or strongly agreed that NOViSE is a useful training tool for NOTES and 71.4% that they would recommend it to others. Construct validity was established by comparing a number of performance metrics such as task completion times, path lengths, applied forces, and so on. NOViSE demonstrated early signs of construct validity. Experts were faster and used a shorter endoscopic path length than novices in all but one task. The results indicate that NOViSE authentically recreates a transgastric hybrid cholecystectomy and sets promising foundations for the further development of a VR training curriculum for NOTES without compromising patient safety or requiring expensive animal facilities.
[Laparoscopic technique--which developments are possible?].
Voges, U
1996-05-01
The progress of laparoscopy is influenced by both the medical and technical aspects. The development of endoscopes and various rigid instruments has increased the indication options. Nevertheless, several drawbacks remain, e.g. the limited spatial view, the missing sense of touch, and reduced mobility in the operation area. New 3D visual systems now introduce spatial view. Flexible instruments are being developed that allow thorough examination of organs. While these enhancements are now becoming available, research and development are making progress and preparing the next steps. One vision is the development of a telepresence and telemanipulation system. With it, at the patient's side we will have an endoscope guidance system and several instrument guidance systems, which will be telemanipulated from a control station. At the control station, a 3D picture from the operation scene, together with virtual reality simulation pictures will be available. Force reflection as well as palpatory sensing information will be readily available to the telesurgeon. These new developments will improve the quality of the surgery for the benefit of both the patient and surgeon. Furthermore, the training of new surgeons will be eased by the use of sophisticated simulators using virtual reality techniques. These and further technical developments will not only lead to an improvement in current laparoscopy procedures, but it can be expected that additional procedures will be developed that are not yet possible and accessible to laparoscopy.
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
Virtual Learning: Possibilities and Realization
ERIC Educational Resources Information Center
Kerimbayev, Nurassyl
2016-01-01
In the article it was important to consider two basic moments i.e., impact mode of using virtual environment at training process within one faculty of the University, directly at training quality and what outcomes can be reached therewith. The work significance consists of studying the virtual environment effect instead of traditional educational…
Holographic high-resolution endoscopic image recording
NASA Astrophysics Data System (ADS)
Bjelkhagen, Hans I.
1991-03-01
Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help
Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug
2011-05-01
Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.
Playing in or out of character: user role differences in the experience of interactive storytelling.
Roth, Christian; Vermeulen, Ivar; Vorderer, Peter; Klimmt, Christoph; Pizzi, David; Lugrin, Jean-Luc; Cavazza, Marc
2012-11-01
Interactive storytelling (IS) is a promising new entertainment technology synthesizing preauthored narrative with dynamic user interaction. Existing IS prototypes employ different modes to involve users in a story, ranging from individual avatar control to comprehensive control over the virtual environment. The current experiment tested whether different player modes (exerting local vs. global influence) yield different user experiences (e.g., senses of immersion vs. control). A within-subject design involved 34 participants playing the cinematic IS drama "Emo Emma"( 1 ) both in the local (actor) and in global (ghost) mode. The latter mode allowed free movement in the virtual environment and hidden influence on characters, objects, and story development. As expected, control-related experiential qualities (effectance, autonomy, flow, and pride) were more intense for players in the global (ghost) mode. Immersion-related experiences did not differ over modes. Additionally, men preferred the sense of command facilitated by the ghost mode, whereas women preferred the sense of involvement facilitated by the actor mode.
Comparison of Middle Ear Visualization With Endoscopy and Microscopy.
Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F; Noble, Jack H
2016-04-01
The primary goal of chronic ear surgery is the creation of a safe, clean dry ear. For cholesteatomas, complete removal of disease is dependent on visualization. Conventional microscopy is adequate for most dissection, but various subregions of the middle ear are better visualized with endoscopy. The purpose of the present study was to quantitatively assess the improved visualization that endoscopes afford as compared with operating microscopes. Microscopic and endoscopic views were simulated using a three-dimensional model developed from temporal bone scans. Surface renderings of the ear canal and middle ear subsegments were defined and the percentage of visualization of each middle ear subsegment, both with and without ossicles, was then determined for the microscope as well as for 0-, 30-, and 45-degree endoscopes. Using this information, we analyzed which mode of visualization is best suited for dissection within a particular anatomical region. Using a 0-degree scope provides significantly more visualization of every subregion, except the antrum, compared with a microscope. In addition, angled scopes permit visualizing significantly more surface area of every subregion of the middle ear than straight scopes or microscopes. Endoscopes offer advantages for cholesteatoma dissection in difficult-to-visualize areas including the sinus tympani and epitympanum.
Three-Dimensional Photoacoustic Endoscopic Imaging of the Rabbit Esophagus
Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.
2015-01-01
We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy. PMID:25874640
Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.
Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V
2015-01-01
We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.
Variable field-of-view visible and near-infrared polarization compound-eye endoscope.
Kagawa, K; Shogenji, R; Tanaka, E; Yamada, K; Kawahito, S; Tanida, J
2012-01-01
A multi-functional compound-eye endoscope enabling variable field-of-view and polarization imaging as well as extremely deep focus is presented, which is based on a compact compound-eye camera called TOMBO (thin observation module by bound optics). Fixed and movable mirrors are introduced to control the field of view. Metal-wire-grid polarizer thin film applicable to both of visible and near-infrared lights is attached to the lenses in TOMBO and light sources. Control of the field-of-view, polarization and wavelength of the illumination realizes several observation modes such as three-dimensional shape measurement, wide field-of-view, and close-up observation of the superficial tissues and structures beneath the skin.
NASA Astrophysics Data System (ADS)
Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex
2003-09-01
We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.
NASA Astrophysics Data System (ADS)
Tang, Yubo; Carns, Jennifer; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.
2016-08-01
A modular video endoscope is developed to enable both white light imaging (WLI) and vital-dye fluorescence imaging (VFI) in a single-endoscopic insertion for the early detection of cancer in Barrett's esophagus (BE). We demonstrate that VFI can be achieved in conjunction with white light endoscopy, where appropriate white balance is used to correct for the presence of the emission filter. In VFI mode, a contrast enhancement feature is implemented in real time to further highlight glandular patterns in BE and related malignancies without introducing artifacts. In a pilot study, we demonstrate accurate correlation of images in two widefield modalities, with representative images showing the disruption and effacement of glandular architecture associated with cancer development in BE. VFI images of these alterations exhibit enhanced contrast when compared to WLI. Results suggest that the usefulness of VFI in the detection of BE-related neoplasia should be further evaluated in future in vivo studies.
Gingold-Belfer, Rachel; Niv, Yaron; Horev, Nehama; Gross, Shuli; Sahar, Nadav; Dickman, Ram
2017-04-01
Failure modes and effects analysis (FMEA) is used for the identification of potential risks in health care processes. We used a specific FMEA - based form for direct referral for colonoscopy and assessed it for procedurerelated perforations. Ten experts in endoscopy evaluated and computed the entire referral process, modes of preparation for the endoscopic procedure, the endoscopic procedure itself and the discharge process. We used FMEA assessing for likelihood of occurrence, detection and severity and calculated the risk profile number (RPN) for each of the above points. According to the highest RPN results we designed a specific open access referral form and then compared the occurrence of colonic perforations (between 2010 and 2013) in patients who were referred through the open access arm (Group 1) to those who had a prior clinical consultation (non-open access, Group 2). Our experts in endoscopy (5 physicians and 5 nurses) identified 3 categories of failure modes that, on average, reached the highest RPNs. We identified 9,558 colonoscopies in group 1, and 12,567 in group 2. Perforations were identified in three patients from the open access group (1:3186, 0.03%) and in 10 from group 2 (1:1256, 0.07%) (p = 0.024). Direct referral for colonoscopy saved 9,558 pre-procedure consultations and the sum of $850,000. The FMEA tool-based specific referral form facilitates a safe, time and money saving open access colonoscopy service. Our form may be adopted by other gastroenterological clinics in Israel.
Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng
2012-12-01
Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.
Implementation of a virtual laryngoscope system using efficient reconstruction algorithms.
Luo, Shouhua; Yan, Yuling
2009-08-01
Conventional fiberoptic laryngoscope may cause discomfort to the patient and in some cases it can lead to side effects that include perforation, infection and hemorrhage. Virtual laryngoscopy (VL) can overcome this problem and further it may lower the risk of operation failures. Very few virtual endoscope (VE) based investigations of the larynx have been described in the literature. CT data sets from a healthy subject were used for the VL studies. An algorithm of preprocessing and region-growing for 3-D image segmentation is developed. An octree based approach is applied in our VL system which facilitates a rapid construction of iso-surfaces. Some locating techniques are used for fast rendering and navigation (fly-through). Our VL visualization system provides for real time and efficient 'fly-through' navigation. The virtual camera can be arranged so that it moves along the airway in either direction. Snap shots were taken during fly-throughs. The system can automatically adjust the direction of the virtual camera and prevent collisions of the camera and the wall of the airway. A virtual laryngoscope (VL) system using OpenGL (Open Graphics Library) platform for interactive rendering and 3D visualization of the laryngeal framework and upper airway is established. OpenGL is supported on major operating systems and works with every major windowing system. The VL system runs on regular PC workstations and was successfully tested and evaluated using CT data from a normal subject.
Dual energy CT kidney stone differentiation in photon counting computed tomography
NASA Astrophysics Data System (ADS)
Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.
2017-03-01
This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.
High-resolution imaging using endoscopic holography
NASA Astrophysics Data System (ADS)
Bjelkhagen, Hans I.
1990-08-01
Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.
Fundamentals of endoscopic surgery: creation and validation of the hands-on test.
Vassiliou, Melina C; Dunkin, Brian J; Fried, Gerald M; Mellinger, John D; Trus, Thadeus; Kaneva, Pepa; Lyons, Calvin; Korndorffer, James R; Ujiki, Michael; Velanovich, Vic; Kochman, Michael L; Tsuda, Shawn; Martinez, Jose; Scott, Daniel J; Korus, Gary; Park, Adrian; Marks, Jeffrey M
2014-03-01
The Fundamentals of Endoscopic Surgery™ (FES) program consists of online materials and didactic and skills-based tests. All components were designed to measure the skills and knowledge required to perform safe flexible endoscopy. The purpose of this multicenter study was to evaluate the reliability and validity of the hands-on component of the FES examination, and to establish the pass score. Expert endoscopists identified the critical skill set required for flexible endoscopy. They were then modeled in a virtual reality simulator (GI Mentor™ II, Simbionix™ Ltd., Airport City, Israel) to create five tasks and metrics. Scores were designed to measure both speed and precision. Validity evidence was assessed by correlating performance with self-reported endoscopic experience (surgeons and gastroenterologists [GIs]). Internal consistency of each test task was assessed using Cronbach's alpha. Test-retest reliability was determined by having the same participant perform the test a second time and comparing their scores. Passing scores were determined by a contrasting groups methodology and use of receiver operating characteristic curves. A total of 160 participants (17 % GIs) performed the simulator test. Scores on the five tasks showed good internal consistency reliability and all had significant correlations with endoscopic experience. Total FES scores correlated 0.73, with participants' level of endoscopic experience providing evidence of their validity, and their internal consistency reliability (Cronbach's alpha) was 0.82. Test-retest reliability was assessed in 11 participants, and the intraclass correlation was 0.85. The passing score was determined and is estimated to have a sensitivity (true positive rate) of 0.81 and a 1-specificity (false positive rate) of 0.21. The FES hands-on skills test examines the basic procedural components required to perform safe flexible endoscopy. It meets rigorous standards of reliability and validity required for high-stakes examinations, and, together with the knowledge component, may help contribute to the definition and determination of competence in endoscopy.
Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.
Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha
2018-04-01
Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.
Endoscopic Sinus Surgery Simulator as a teaching tool for anatomy education.
Solyar, Alla; Cuellar, Hernando; Sadoughi, Babak; Olson, Todd R; Fried, Marvin P
2008-07-01
Virtual reality simulators provide an effective learning environment and are widely used. This study evaluated the Endoscopic Sinus Surgery Simulator (ES3; Lockheed Martin) as a tool for anatomic education. Two medical student groups (experimental, n = 8; control, n = 7) studied paranasal sinus anatomy using either the simulator or textbooks. Their knowledge was then tested on the identification of anatomic structures on a view of the nasal cavities. The mean scores were 9.4 +/- 0.5 and 5.1 +/- 3.0 out of 10 for the simulator and textbook groups, respectively (P = .009). Moreover, the simulator group completed the test in a significantly shorter time, 5.9 +/- 1.1 versus 8.3 +/- 2.0 minutes (P = .021). A survey asking the students to rate their respective study modality did not materialize significant differences. The ES3 can be an effective tool in teaching sinonasal anatomy. This study may help shape the future of anatomic education and the development of modern educational tools.
LAHYSTOTRAIN development and evaluation of a complex training system for hysteroscopy.
Müller-Wittig, W K; Bisler, A; Bockholt, U; Los Arcos, J L; Oppelt, P; Stähler, J; Voss, G
2001-01-01
Hysteroscopy has already become an irreplaceable method in gynaecoloic diagnosis and therapy. In the diagnostic case the hysteroscope with a 30 degrees optic is insert transvaginally, in the therapeutic case the resectoscope with a 12 degrees optic is used. The endoscopic intervention requires special surgical skills for endoscope handling and remote instrument control. To acquire these skills currently hands-on training in clinical praxis has become standard, which is linked with higher danger for the women. To overcome current drawbacks of traditional training methods the European project LAHYSTOTRAIN was set up, that tries to combine Virtual Reality (VR), Multimedia (MM) technology, and Intelligent Tutoring Systems (ITS) to develop an alternative training system for hysteroscopic interventions. The first prototype of the LAHYSTOTRAIN demonstrator has been shown on several European conferences. An evaluation of the system was performed, with the idea, to collect feedback and impressions, that should be considered in further developments. This paper presents the LAHYSTOTRAIN prototype and the results of these evaluations.
Customizing G Protein-coupled receptor models for structure-based virtual screening.
de Graaf, Chris; Rognan, Didier
2009-01-01
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.
von Dadelszen, Peter; Allaire, Catherine
2011-01-01
Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726
Two methods of Haustral fold detection from computed tomographic virtual colonoscopy images
NASA Astrophysics Data System (ADS)
Chowdhury, Ananda S.; Tan, Sovira; Yao, Jianhua; Linguraru, Marius G.; Summers, Ronald M.
2009-02-01
Virtual colonoscopy (VC) has gained popularity as a new colon diagnostic method over the last decade. VC is a new, less invasive alternative to the usually practiced optical colonoscopy for colorectal polyp and cancer screening, the second major cause of cancer related deaths in industrial nations. Haustral (colonic) folds serve as important landmarks for virtual endoscopic navigation in the existing computer-aided-diagnosis (CAD) system. In this paper, we propose and compare two different methods of haustral fold detection from volumetric computed tomographic virtual colonoscopy images. The colon lumen is segmented from the input using modified region growing and fuzzy connectedness. The first method for fold detection uses a level set that evolves on a mesh representation of the colon surface. The colon surface is obtained from the segmented colon lumen using the Marching Cubes algorithm. The second method for fold detection, based on a combination of heat diffusion and fuzzy c-means algorithm, is employed on the segmented colon volume. Folds obtained on the colon volume using this method are then transferred to the corresponding colon surface. After experimentation with different datasets, results are found to be promising. The results also demonstrate that the first method has a tendency of slight under-segmentation while the second method tends to slightly over-segment the folds.
OR fire virtual training simulator: design and face validity.
Dorozhkin, Denis; Olasky, Jaisa; Jones, Daniel B; Schwaitzberg, Steven D; Jones, Stephanie B; Cao, Caroline G L; Molina, Marcos; Henriques, Steven; Wang, Jinling; Flinn, Jeff; De, Suvranu
2017-09-01
The Virtual Electrosurgical Skill Trainer is a tool for training surgeons the safe operation of electrosurgery tools in both open and minimally invasive surgery. This training includes a dedicated team-training module that focuses on operating room (OR) fire prevention and response. The module was developed to allow trainees, practicing surgeons, anesthesiologist, and nurses to interact with a virtual OR environment, which includes anesthesia apparatus, electrosurgical equipment, a virtual patient, and a fire extinguisher. Wearing a head-mounted display, participants must correctly identify the "fire triangle" elements and then successfully contain an OR fire. Within these virtual reality scenarios, trainees learn to react appropriately to the simulated emergency. A study targeted at establishing the face validity of the virtual OR fire simulator was undertaken at the 2015 Society of American Gastrointestinal and Endoscopic Surgeons conference. Forty-nine subjects with varying experience participated in this Institutional Review Board-approved study. The subjects were asked to complete the OR fire training/prevention sequence in the VEST simulator. Subjects were then asked to answer a subjective preference questionnaire consisting of sixteen questions, focused on the usefulness and fidelity of the simulator. On a 5-point scale, 12 of 13 questions were rated at a mean of 3 or greater (92%). Five questions were rated above 4 (38%), particularly those focusing on the simulator effectiveness and its usefulness in OR fire safety training. A total of 33 of the 49 participants (67%) chose the virtual OR fire trainer over the traditional training methods such as a textbook or an animal model. Training for OR fire emergencies in fully immersive VR environments, such as the VEST trainer, may be the ideal training modality. The face validity of the OR fire training module of the VEST simulator was successfully established on many aspects of the simulation.
Clinical applications of virtual navigation bronchial intervention.
Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko
2018-01-01
In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments are helpful for bronchial intervention procedures, and are also excellent devices for educational training.
Trust Building in Virtual Communities
NASA Astrophysics Data System (ADS)
Mezgár, István
By using different types of communication networks various groups of people can come together according to their private or business interest forming a Virtual Community. In these communities cooperation and collaboration plays an important role. As trust is the base of all human interactions this fact is even more valid in case of virtual communities. According to different experiments the level of trust in virtual communities is highly influenced by the way/mode of communication and by the duration of contact. The paper discusses the ways of trust building focusing on communication technologies and security aspects in virtual communities.
Roeth, Anjali A; Slabu, Ioana; Baumann, Martin; Alizai, Patrick H; Schmeding, Maximilian; Guentherodt, Gernot; Schmitz-Rode, Thomas; Neumann, Ulf P
2017-01-01
Superparamagnetic iron oxide nanoparticles (SPION) may be used for local tumor treatment by coupling them to a drug and accumulating them locally with magnetic field traps, that is, a combination of permanent magnets and coils. Thereafter, an alternating magnetic field generates heat which may be used to release the thermosensitively bound drug and for hyperthermia. Until today, only superficial tumors can be treated with this method. Our aim was to transfer this method into an endoscopic setting to also reach the majority of tumors located inside the body. To find the ideal endoscopic magnetic field trap, which accumulates the most SPION, we first developed a biophysical model considering anatomical as well as physical conditions. Entities of choice were esophageal and prostate cancer. The magnetic susceptibilities of different porcine and rat tissues were measured with a superconducting quantum interference device. All tissues showed diamagnetic behavior. The evaluation of clinical data (computed tomography scan, endosonography, surgical reports, pathological evaluation) of patients gave insight into the topographical relationship between the tumor and its surroundings. Both were used to establish the biophysical model of the tumors and their surroundings, closely mirroring the clinical situation, in which we could virtually design, place and evaluate different electromagnetic coil configurations to find optimized magnetic field traps for each tumor entity. By simulation, we could show that the efficiency of the magnetic field traps can be enhanced by 38-fold for prostate and 8-fold for esophageal cancer. Therefore, our approach of endoscopic targeting is an improvement of the magnetic drug-targeting setups for SPION tumor therapy as it holds the possibility of reaching tumors inside the body in a minimal-invasive way. Future animal experiments must prove these findings in vivo.
Sánchez-Gómez, Serafín; Herrero-Salado, Tomás F; Maza-Solano, Juan M; Ropero-Romero, Francisco; González-García, Jaime; Ambrosiani-Fernández, Jesús
2015-01-01
The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. Osirix® was used as a viewer and Digital Imaging and Communications in Medicine (DICOM) 3D imaging manager to improve planning for 114 sinonasal endoscopic operations with polyposis (86) and chronic rhinosinusitis (CRS) (28). Stereolithography rapid prototyping was used for 7 frontoethmoidal mucoceles. Using Osirix® and stereolithography, a greater number of anatomical structures were identified and this was done faster, with a statistically-significant clinical-radiological correlation (P<.01) compared with 2D CT plates. With a share of more than 75% of surgery performed by residents, surgical time was reduced by 38±12.3min in CRS and 42±27.9 in sinonasal polyposis. The fourth-year residents reached 100% surgical competence in critical surgical milestones with 16 surgeries (CI 12-19). The systematic use of Osirix® for visualisation and treatment of 3D sinonasal images from DICOM data files, along with the surgical team's ability to manipulate them as virtual reality, allows surgeons to perform endoscopic sinonasal surgery with greater confidence and in less time than using 2D images. Residents also achieve surgical competence faster, more safely and with fewer complications. This beneficial impact is increased when the surgical team has stereolithography rapid prototyping in more complex cases. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
HDlive rendering images of the fetal stomach: a preliminary report.
Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro
2015-01-01
This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.
2017-01-01
Most gastrointestinal endoscopic procedures are now performed with sedation. Moderate sedation using benzodiazepines and opioids continue to be widely used, but propofol sedation is becoming more popular because its unique pharmacokinetic properties make endoscopy almost painless, with a very predictable and rapid recovery process. There is controversy as to whether propofol should be administered only by anesthesia professionals (monitored anesthesia care) or whether properly trained non-anesthesia personnel can use propofol safely via the modalities of nurse-administered propofol sedation, computer-assisted propofol sedation or nurse-administered continuous propofol sedation. The deployment of non-anesthesia administered propofol sedation for low-risk procedures allows for optimal allocation of scarce anesthesia resources, which can be more appropriately used for more complex cases. This can address some of the current shortages in anesthesia provider supply, and can potentially reduce overall health care costs without sacrificing sedation quality. This review will discuss efficacy, safety, efficiency, cost and satisfaction issues with various modes of sedation for non-advanced, non-emergent endoscopic procedures, mainly esophagogastroduodenoscopy and colonoscopy. PMID:29142513
Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging
Ohayon, Shay; Caravaca-Aguirre, Antonio; Piestun, Rafael; DiCarlo, James J.
2018-01-01
A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from well defined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive multi-photon approaches for deep (>2mm) structures, while gradient refractive index (GRIN) endoscopes are relatively thick and can cause significant damage upon insertion. Here, we present a novel micro-endoscope design to image neural activity at arbitrary depths via an ultra-thin multi-mode optical fiber (MMF) probe that has 5–10X thinner diameter than commercially available micro-endoscopes. We demonstrate micron-scale resolution, multi-spectral and volumetric imaging. In contrast to previous approaches, we show that this method has an improved acquisition speed that is sufficient to capture rapid neuronal dynamics in-vivo in rodents expressing a genetically encoded calcium indicator (GCaMP). Our results emphasize the potential of this technology in neuroscience applications and open up possibilities for cellular resolution imaging in previously unreachable brain regions. PMID:29675297
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Constantinou, Constantinos P.
2008-04-01
We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.
The Effect of Perspective on Presence and Space Perception
Ling, Yun; Nefs, Harold T.; Brinkman, Willem-Paul; Qu, Chao; Heynderickx, Ingrid
2013-01-01
In this paper we report two experiments in which the effect of perspective projection on presence and space perception was investigated. In Experiment 1, participants were asked to score a presence questionnaire when looking at a virtual classroom. We manipulated the vantage point, the viewing mode (binocular versus monocular viewing), the display device/screen size (projector versus TV) and the center of projection. At the end of each session of Experiment 1, participants were asked to set their preferred center of projection such that the image seemed most natural to them. In Experiment 2, participants were asked to draw a floor plan of the virtual classroom. The results show that field of view, viewing mode, the center of projection and display all significantly affect presence and the perceived layout of the virtual environment. We found a significant linear relationship between presence and perceived layout of the virtual classroom, and between the preferred center of projection and perceived layout. The results indicate that the way in which virtual worlds are presented is critical for the level of experienced presence. The results also suggest that people ignore veridicality and they experience a higher level of presence while viewing elongated virtual environments compared to viewing the original intended shape. PMID:24223156
Development of CAD prototype system for Crohn's disease
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku
2010-03-01
The purpose of this paper is to present a CAD prototype system for Crohn's disease. Crohn's disease causes inflammation or ulcers of the gastrointestinal tract. The number of patients of Crohn's disease is increasing in Japan. Symptoms of Crohn's disease include intestinal stenosis, longitudinal ulcers, and fistulae. Optical endoscope cannot pass through intestinal stenosis in some cases. We propose a new CAD system using abdominal fecal tagging CT images for efficient diagnosis of Crohn's disease. The system displays virtual unfolded (VU), virtual endoscopic, curved planar reconstruction, multi planar reconstruction, and outside views of both small and large intestines. To generate the VU views, we employ a small and large intestines extraction method followed by a simple electronic cleansing method. The intestine extraction is based on the region growing process, which uses a characteristic that tagged fluid neighbor air in the intestine. The electronic cleansing enables observation of intestinal wall under tagged fluid. We change the height of the VU views according to the perimeter of the intestine. In addition, we developed a method to enhance the longitudinal ulcer on views of the system. We enhance concave parts on the intestinal wall, which are caused by the longitudinal ulcer, based on local intensity structure analysis. We examined the small and the large intestines of eleven CT images by the proposed system. The VU views enabled efficient observation of the intestinal wall. The height change of the VU views helps finding intestinal stenosis on the VU views. The concave region enhancement made longitudinal ulcers clear on the views.
A low-cost multimodal head-mounted display system for neuroendoscopic surgery.
Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei
2018-01-01
With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.
[Virtual endoscopy with a volumetric reconstruction technic: the technical aspects].
Pavone, P; Laghi, A; Panebianco, V; Catalano, C; Giura, R; Passariello, R
1998-06-01
We analyze the peculiar technical features of virtual endoscopy obtained with volume rendering. Our preliminary experience is based on virtual endoscopy images from volumetric data acquired with spiral CT (Siemens, Somatom Plus 4) using acquisition protocols standardized for different anatomic areas. Images are reformatted at the CT console, to obtain 1 mm thick contiguous slices, and transferred in DICOM format to an O2 workstation (Silicon Graphics, Mountain View CA, USA) with processor speed of 180 Mhz, 256 Mbyte RAM memory and 4.1 Gbyte hard disk. The software is Vitrea 1.0 (Vital Images, Fairfield, Iowa), running on a Unix platform. Image output is obtained through the Ethernet network to a Macintosh computer and a thermic printer (Kodak 8600 XLS). Diagnostic quality images were obtained in all the cases. Fly-through in the airways allowed correct evaluation of the main bronchi and of the origin of segmentary bronchi. In the vascular district, both carotid strictures and abdominal aortic aneurysms were depicted, with the same accuracy as with conventional reconstruction techniques. In the colon studies, polypoid lesions were correctly depicted in all the cases, with good correlation with endoscopic and double-contrast barium enema findings. In a case of lipoma of the ascending colon, virtual endoscopy allowed to study the colon both cranially and caudally to the lesion. The simultaneous evaluation of axial CT images permitted to characterize the lesion correctly on the basis of its density values. The peculiar feature of volume rendering is the use of the whole information inside the imaging volume to reconstruct three-dimensional images; no threshold values are used and no data are lost as opposite to conventional image reconstruction techniques. The different anatomic structures are visualized modifying the reciprocal opacities, showing the structures of no interest as translucent. The modulation of different opacities is obtained modifying the shape of the opacity curve, either using pre-set curves or in a completely independent way. Other technical features of volume rendering are the perspective evaluation of the objects, color and lighting. In conclusion, volume rendering is a promising technique to elaborate three-dimensional images, offering very realistic endoscopic views. At present, the main limitation is represented by the need of powerful and high-cost workstations.
The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model
ERIC Educational Resources Information Center
Abdulwahed, Mahmoud; Nagy, Zoltan K.
2011-01-01
This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…
Augmented Virtual Reality: How to Improve Education Systems
ERIC Educational Resources Information Center
Fernandez, Manuel
2017-01-01
This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…
Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
Tal, Andrea Oliver; Vermehren, Johannes; Friedrich-Rust, Mireen; Bojunga, Jörg; Sarrazin, Christoph; Zeuzem, Stefan; Trojan, Jörg; Albert, Jörg Gerhard
2014-01-01
AIM: To evaluate the safety and technical success of endoscopic radiofrequency ablation (RFA) for palliative treatment of malignant hilar bile duct obstruction. METHODS: In this study, a recently CE and FDA-approved endoscopic RFA catheter was first tested in an ex vivo pig liver model to study the effect of electrosurgical variables on the extent of the area of induced necrosis. Subsequently, a retrospective analysis was conducted of all patients treated with endoscopic RFA for malignant biliary obstruction at our center between February 2012 and April 2013. All patients received an additional plastic stent implantation into the biliary tree following RFA. RESULTS: In the pig model, ablation time of 60-90 seconds using the bipolar soft coagulation mode at 8-10 watts with an effect of 8 was found to be the most feasible setting. Twelve patients (5 females, 7 males; mean age, 70 years) underwent 19 endoscopic RFA (range, 1-5) sessions. Deployment of RFA was successful in all patients. Systemic chemotherapy was administered in four patients. We observed biliary bleeding 4-6 wk after the intervention in three cases and two of these patients died: in one patient, spontaneous hemobilia occurred, whereas bleeding started during stent extraction in the other. In the third patient, bleeding was stopped by insertion of a non-covered self-expanding metal stent. Another three patients developed cholangitis during follow-up. Seven patients died during follow-up and median survival was 6.4 mo (95%CI: 0.05-12.7) from the time of the first RFA. CONCLUSION: Endoscopic RFA is an easy to perform and technically highly successful procedure. However, hemobilia possibly associated with RFA occurred in three of our patients. Therefore, larger prospective studies are needed to further evaluate the safety and efficacy of this promising new method. PMID:24527176
Are Spatial Visualization Abilities Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…
Gender Differences within Perceptions of Virtual Communities
ERIC Educational Resources Information Center
Harper, Vernon, Jr.
2007-01-01
Virtual communities are quickly becoming the standard mode of interaction in educational and professional contexts. However, the literature fails to accurately address the possibility of differences in the perceptions of these communities related to sex. Two-hundred and twenty-six students from a medium-sized university in the Mid-Atlantic United…
Xia, Kelin
2017-12-20
In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.
The role of virtual reality in surgical training in otorhinolaryngology.
Fried, Marvin P; Uribe, José I; Sadoughi, Babak
2007-06-01
This article reviews the rationale, current status and future directions for the development and implementation of virtual reality surgical simulators as training tools. The complexity of modern surgical techniques, which utilize advanced technology, presents a dilemma for surgical training. Hands-on patient experience - the traditional apprenticeship method for teaching operations - may not apply because of the learning curve for skill acquisition and patient safety expectation. The paranasal sinuses and temporal bone have intricate anatomy with a significant amount of vital structures either within the surgical field or in close proximity. The current standard of surgical care in these areas involves the use of endoscopes, cameras and microscopes, requiring additional hand-eye coordination, an accurate command of fine motor skills, and a thorough knowledge of the anatomy under magnified vision. A surgeon's disorientation or loss of perspective can lead to complications, often catastrophic and occasionally lethal. These considerations define the ideal environment for surgical simulation; not surprisingly, significant research and validation of simulators in these areas have occurred. Virtual reality simulators are demonstrating validity as training and skills assessment tools. Future prototypes will find application for routine use in teaching, surgical planning and the development of new instruments and computer-assisted devices.
Ping Gong; Pengfei Song; Shigao Chen
2017-06-01
The development of ultrafast ultrasound imaging offers great opportunities to improve imaging technologies, such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, there are tradeoffs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Various approaches have been proposed to solve this tradeoff, such as multiplane wave imaging or the attempts of implementing synthetic transmit aperture imaging. In this paper, we propose an ultrafast synthetic transmit aperture (USTA) imaging technique using Hadamard-encoded virtual sources with overlapping sub-apertures to enhance both image SNR and resolution without sacrificing frame rate. This method includes three steps: 1) create virtual sources using sub-apertures; 2) encode virtual sources using Hadamard matrix; and 3) add short time intervals (a few microseconds) between transmissions of different virtual sources to allow overlapping sub-apertures. The USTA was tested experimentally with a point target, a B-mode phantom, and in vivo human kidney micro-vessel imaging. Compared with standard coherent diverging wave compounding with the same frame rate, improvements on image SNR, lateral resolution (+33%, with B-mode phantom imaging), and contrast ratio (+3.8 dB, with in vivo human kidney micro-vessel imaging) have been achieved. The f-number of virtual sources, the number of virtual sources used, and the number of elements used in each sub-aperture can be flexibly adjusted to enhance resolution and SNR. This allows very flexible optimization of USTA for different applications.
[Laparoscopic training--the guarantee of a future in pediatric surgery].
Drăghici, I; Drăghici, L; Popescu, M; Copăescu, C; Mitoiu, D; Dragomirescu, C
2009-01-01
Laparoscopy is considered today the highlight of modern surgery, the forerunner of the fascinating world of video and robotic surgery, both of them derived from the sophisticated areas of aeronautic industry. Remarkably, Romanian specialists keep up with the pace of worldwide technological developments, assimilating one by one each and every video endoscopic procedure. In the early 90s, the Romanian laparos-copic school was founded with the contribution of many important personalities; their activities and achievements have been an inspiration for the following generation of laparoscopic surgeons. In this last decade, the newest branch of laparoscopic surgery in our country, pediatric laparoscopy, managed to evolve from its "shy" beginnings to become an important method of improving the quality of surgical procedures, to the benefit of our "small patients". The purpose of this article is to encourage and promote minimally invasive video endoscopic surgery training, emphasizing its crucial role in the education and professional development of the next generation of pediatric surgeons, and not only. The modem concept of laparoscopic training includes experimental scientific practices, as well as the newest technical acquisitions such as virtual reality video-electronic simulation.
Reijnen, Michel M P J; Zeebregts, Clark J; Meijerink, Wilhelmus J H J
2005-01-01
Operating-room design has not changed significantly since the modern era of surgery began. Minimal invasive, endoscopic, procedures, and evolution of technology will affect operating-room design in the near future. Poor ergonomics has always been one of the major drawbacks of endoscopic surgery. Use of retractable arms and monitors will improve ergonomics of the operating team. Developments in telecommunication will allow surgeons to communicate with colleagues and experts during the procedure in virtually any location around the world, which increases teaching possibilities and procedural safety. Introduction and further development of intraoperative imaging, including real-time, three-dimensional (3-D) reconstructions of patient, and computer-aided surgery offer surgeons the opportunity to train the planned surgical procedure. Moreover, they will improve control and supervision of the procedure in learning situations. The last decade's robotics have made their introduction into the operating rooms. They improve control over the operating-room environment and will facilitate the performance of more complex procedures. However, high costs and lack of force feedback remain its major drawbacks. Improvements of robotic techniques and its implementation into the operating rooms will further guide their design into highly specialized operating units.
Virtual Universities: Current Models and Future Trends.
ERIC Educational Resources Information Center
Guri-Rosenblit, Sarah
2001-01-01
Describes current models of distance education (single-mode distance teaching universities, dual- and mixed-mode universities, extension services, consortia-type ventures, and new technology-based universities), including their merits and problems. Discusses future trends in potential student constituencies, faculty roles, forms of knowledge…
ERIC Educational Resources Information Center
Grenfell, Janette
2013-01-01
Selected ubiquitous technologies encourage collaborative participation between higher education students and educators within a virtual socially networked e-learning landscape. Multiple modes of teaching and learning, ranging from real world experiences, to text and digital images accessed within the Deakin studies online learning management…
Pre-Service Teachers' Preconceptions, Misconceptions, and Concerns about Virtual Schooling
ERIC Educational Resources Information Center
Compton, Lily; Davis, Niki; Correia, Ana-Paula
2010-01-01
Over the last decade, online distance education has become a common mode of study in most states in the USA, where it is known as virtual schooling (VS), but many people have misconceptions about it. Pre-service teachers' personal histories as students and their preconceptions, misconceptions, and concerns influence pre-service teacher training…
Interactive Character as a Virtual Tour Guide to an Online Museum Exhibition.
ERIC Educational Resources Information Center
de Almeida, Pilar; Yokoi, Shigeki
Online museums could benefit from digital "lifelike" characters in order to guide users to virtual tours and to customize the tour information to users' interests. Digital characters have been explored in online museum web sites with different degrees of interaction and modes of communication. Such research, however, does not explore…
Potholes in the Road to Virtual Schooling
ERIC Educational Resources Information Center
Glass, Gene V.
2010-01-01
Virtual schooling is a rapidly growing and, to many, an increasingly troubling phenomenon. In a decade, online education has grown from being a novelty act to an established mode of education, consisting of asynchronous, computer-mediated interaction between a teacher and students over the Internet. Although exact figures are hard to come by,…
Are Learning Styles Relevant to Virtual Reality?
ERIC Educational Resources Information Center
Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan
2005-01-01
This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…
Influence of gait mode and body orientation on following a walking avatar.
Meerhoff, L Rens A; de Poel, Harjo J; Jowett, Tim W D; Button, Chris
2017-08-01
Regulating distance with a moving object or person is a key component of human movement and of skillful interpersonal coordination. The current set of experiments aimed to assess the role of gait mode and body orientation on distance regulation using a cyclical locomotor tracking task in which participants followed a virtual leader. In the first experiment, participants moved in the backward-forward direction while the body orientation of the virtual leader was manipulated (i.e., facing towards, or away from the follower), hence imposing an incongruence in gait mode between leader and follower. Distance regulation was spatially less accurate when followers walked backwards. Additionally, a clear trade-off was found between spatial leader-follower accuracy and temporal synchrony. Any perceptual effects were overshadowed by the effect of one's gait mode. In the second experiment we examined lateral following. The results suggested that lateral following was also constrained strongly by perceptual information presented by the leader. Together, these findings demonstrated how locomotor tracking depends on gait mode, but also on the body orientation of whoever is being followed. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
This study examined how using two different ways of displaying the solar system--a true-to-scale mode vs. an orrery mode--affected students' knowledge of astronomical concepts. Solar system displays were presented in a software application on a handheld tablet computer. In the true-to-scale mode, users navigated a simulated three-dimensional solar…
MODeLeR: A Virtual Constructivist Learning Environment and Methodology for Object-Oriented Design
ERIC Educational Resources Information Center
Coffey, John W.; Koonce, Robert
2008-01-01
This article contains a description of the organization and method of use of an active learning environment named MODeLeR, (Multimedia Object Design Learning Resource), a tool designed to facilitate the learning of concepts pertaining to object modeling with the Unified Modeling Language (UML). MODeLeR was created to provide an authentic,…
Ethmoidectomy combined with superior meatus enlargement increases olfactory airflow
Kondo, Kenji; Nomura, Tsutomu; Yamasoba, Tatsuya
2017-01-01
Objectives The relationship between a particular surgical technique in endoscopic sinus surgery (ESS) and airflow changes in the post‐operative olfactory region has not been assessed. The present study aimed to compare olfactory airflow after ESS between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement, using virtual ESS and computational fluid dynamics (CFD) analysis. Study Design Prospective computational study. Materials and Methods Nasal computed tomography images of four adult subjects were used to generate models of the nasal airway. The original preoperative model was digitally edited as virtual ESS by performing uncinectomy, ethmoidectomy, antrostomy, and frontal sinusotomy. The following two post‐operative models were prepared: conventional ethmoidectomy with normal superior meatus (ESS model) and ethmoidectomy with superior meatus enlargement (ESS‐SM model). The calculated three‐dimensional nasal geometries were confirmed using virtual endoscopy to ensure that they corresponded to the post‐operative anatomy observed in the clinical setting. Steady‐state, laminar, inspiratory airflow was simulated, and the velocity, streamline, and mass flow rate in the olfactory region were compared among the preoperative and two postoperative models. Results The mean velocity in the olfactory region, number of streamlines bound to the olfactory region, and mass flow rate were higher in the ESS‐SM model than in the other models. Conclusion We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS. It is hypothesized that the increased airflow to the olfactory fossa achieved with ESS‐SM may lead to improved olfactory function; however, further studies are required. Level of Evidence NA. PMID:28894833
Foreman, Nigel; Sandamas, George; Newson, David
2004-08-01
Four groups of undergraduates (half of each gender) experienced a movement along a corridor containing three distinctive objects, in a virtual environment (VE) with wide-screen projection. One group simulated walking along the virtual corridor using a proprietary step-exercise device. A second group moved along the corridor in conventional flying mode, depressing a keyboard key to initiate continuous forward motion. Two further groups observed the walking and flying participants, by viewing their progress on the screen. Participants then had to walk along a real equivalent but empty corridor, and indicate the positions of the three objects. All groups underestimated distances in the real corridor, the greatest underestimates occurring for the middle distance object. Males' underestimations were significantly lower than females' at all distances. However, there was no difference between the active participants and passive observers, nor between walking and flying conditions.
Endoscopic laser-urethroplasty
NASA Astrophysics Data System (ADS)
Gilbert, Peter
2006-02-01
The objective was to prove the advantage of endoscopic laser-urethroplasty over internal urethrotomy in acquired urethral strictures. Patients and Method: From January, 1996 to June, 2005, 35 patients with a mean age of 66 years were submitted to endoscopic laser-urethroplasty for strictures of either the bulbar (30) or membranous (5) urethra. The operations were carried out under general anesthesia. First of all, the strictures were incised at the 4, 8 and 12 o'clock position by means of a Sachse-urethrotom. Then the scar flap between the 4 and 8 o'clock position was vaporized using a Nd:YAG laser, wavelength 1060 nm and a 600 pm bare fiber, the latter always being in contact with the tissue. The laser worked at 40W power in continuous mode. The total energy averaged 2574 J. An indwelling catheter was kept in place overnight and the patients were discharged the following day. Urinalysis, uroflowmetry and clinical examination were performed at two months after surgery and from then on every six months. Results: No serious complications were encountered. Considering a mean follow-up of 18 months, the average peak flow improved from 7.3 ml/s preoperatively to 18.7 mVs postoperatively. The treatment faded in 5 patients ( 14.3% ) who finally underwent open urethroplasty. Conclusions: Endoscopic laser-urethroplasty yields better short-term results than internal visual urethrotomy. Long-term follow-up has yet to confirm its superiority in the treatment of acquired urethral strictures.
Evaluation of a 'virtual' approach to commissioning health research.
McCourt, Christine A; Morgan, Philip A; Youll, Penny
2006-10-18
The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme--the 'Health of Londoners Programme'--in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium.
Evaluation of a 'virtual' approach to commissioning health research
McCourt, Christine A; Morgan, Philip A; Youll, Penny
2006-01-01
Background The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme – the 'Health of Londoners Programme' – in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. Methods A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. Results The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. Conclusion There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium. PMID:17049079
Hashimoto, Daniel A; Petrusa, Emil; Phitayakorn, Roy; Valle, Christina; Casey, Brenna; Gee, Denise
2018-03-01
The fundamentals of endoscopic surgery (FES) examination is a national test of knowledge and skill in flexible gastrointestinal endoscopy. The skill portion of the examination involves five tasks that assesses the following skills: scope navigation, loop reduction, mucosal inspection, retroflexion, and targeting. This project aimed to assess the efficacy of a proficiency-based virtual reality (VR) curriculum in preparing residents for the FES skills exam. Experienced (>100 career colonoscopies) and inexperienced endoscopists (<50 career colonoscopies) were recruited to participate. Six VR modules were identified as reflecting the skills tested in the exam. All participants were asked to perform each of the selected modules twice, and median performance was compared between the two groups. Inexperienced endoscopists were subsequently randomized in matched pairs into a repetition (10 repetitions of each task) or proficiency curriculum. After completion of the respective curriculum, FES scores and pass rates were compared to national data and historical institutional control data (endoscopy-rotation training alone). Five experienced endoscopists and twenty-three inexperienced endoscopists participated. Construct valid metrics were identified for six modules and proficiency benchmarks were set at the median performance of experienced endoscopists. FES scores of inexperienced endoscopists in the proficiency group had significantly higher FES scores (530 ± 86) versus historical control (386.7 ± 92.2, p = 0.0003) and higher pass rate (proficiency: 100%, historical control 61.5%, p = 0.01). Trainee engagement in a VR curriculum yields superior FES performance compared to an endoscopy rotation alone. Compared to the 2012-2016 national resident pass rate of 80, 100% of trainees in a proficiency-based curriculum passed the FES manual skills examination.
Iacucci, Marietta; Kaplan, Gilaad G; Panaccione, Remo; Akinola, Oluseyi; Lethebe, Brendan Cord; Lowerison, Mark; Leung, Yvette; Novak, Kerri L; Seow, Cynthia H; Urbanski, Stefan; Minoo, Parham; Gui, Xianyong; Ghosh, Subrata
2018-02-01
Dye spraying chromoendoscopy (DCE) is recommended for the detection of colonic neoplastic lesions in inflammatory bowel disease (IBD). The majority of neoplastic lesions are visible endoscopically and therefore targeted biopsies are appropriate for surveillance colonoscopy. To compare three different techniques for surveillance colonoscopy to detect colonic neoplastic lesions in IBD patients: high definition (HD), (DCE), or virtual chromoendoscopy (VCE) using iSCAN image enhanced colonoscopy. A randomized non-inferiority trial was conducted to determine the detection rates of neoplastic lesions in IBD patients with longstanding colitis. Patients with inactive disease were enrolled into three arms of the study. Endoscopic neoplastic lesions were classified by the Paris classification and Kudo pit pattern, then histologically classified by the Vienna classification. A total of 270 patients (55% men; age range 20-77 years, median age 49 years) were assessed by HD (n=90), VCE (n=90), or DCE (n=90). Neoplastic lesion detection rates in the VCE arm was non-inferior to the DCE arm. HD was non-inferior to either DCE or VCE for detection of all neoplastic lesions. In the lesions detected, location at right colon and the Kudo pit pattern were predictive of neoplastic lesions (OR 6.52 (1.98-22.5 and OR 21.50 (8.65-60.10), respectively). In this randomized trial, VCE or HD-WLE is not inferior to dye spraying colonoscopy for detection of colonic neoplastic lesions during surveillance colonoscopy. In fact, in this study HD-WLE alone was sufficient for detection of dysplasia, adenocarcinoma or all neoplastic lesions.
Rocinante, a virtual collaborative visualizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.J.; Ice, L.G.
1996-12-31
With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less
Coherent virtual absorption for discretized light
NASA Astrophysics Data System (ADS)
Longhi, S.
2018-05-01
Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Airlift Operation Modeling Using Discrete Event Simulation (DES)
2009-12-01
Java ......................................................................................................20 2. Simkit...JRE Java Runtime Environment JVM Java Virtual Machine lbs Pounds LAM Load Allocation Mode LRM Landing Spot Reassignment Mode LEGO Listener Event...SOFTWARE DEVELOPMENT ENVIRONMENT The following are the software tools and development environment used for constructing the models. 1. Java Java
The Realities of K-12 Virtual Education
ERIC Educational Resources Information Center
Glass, Gene V.
2009-01-01
In a decade, virtual education in its contemporary form of asynchronous, computer-mediated interaction between a teacher and students over the Internet has grown from a novelty to an established mode of education that may provide all or part of formal schooling for nearly one in every 50 students in the US. In a non-random 2007 survey of school…
Comparing Physical, Virtual, and Hybrid Flipped Labs for General Education Biology
ERIC Educational Resources Information Center
Son, Ji Y.
2016-01-01
The purpose of this study was to examine the impact on learning, attitudes, and costs in a redesigned general education undergraduate biology course that implemented web-based virtual labs (VLs) to replace traditional physical labs (PLs). Over an academic year, two new modes of VL instruction were compared to the traditional PL offering: (1) all…
The Effectiveness of Web-Based Multimedia Applications Simulation in Teaching and Learning
ERIC Educational Resources Information Center
Ziden, Azidah Abu; Rahman, Muhammad Faizal Abdul
2013-01-01
This study focuses on the effectiveness of using multimedia virtual simulation in Islamic Studies in Malaysia. Virtual simulation methods embedded in Microsoft PowerPoint was used in this study to determine the effectiveness of these modes to motivate students on the topic of pilgrimage in the Islamic Studies subject. Pilgrimage topic has been…
Rosen, Jacob; Brown, Jeffrey D; Barreca, Marco; Chang, Lily; Hannaford, Blake; Sinanan, Mika
2002-01-01
Minimally invasive surgeiy (MIS) involves a multi-dimensional series of tasks requiring a synthesis between visual information and the kinematics and dynamics of the surgical tools. Analysis of these sources of information is a key step in mastering MIS surgery but may also be used to define objective criteria for characterizing surgical performance. The BIueDRAGON is a new system for acquiring the kinematics and the dynamics of two endoscopic tools along with the visual view of the surgical scene. It includes two four-bar mechanisms equipped with position and force torque sensors for measuring the positions and the orientations (P/O) of two endoscopic tools along with the forces and torques applied by the surgeons hands. The methodology of decomposing the surgical task is based on a fully connected, finite-states (28 states) Markov model where each states corresponded to a fundamental tool/tissue interaction based on the tool kinematics and associated with unique F/T signatures. The experimental protocol included seven MIS tasks performed on an animal model (pig) by 30 surgeons at different levels of their residency training. Preliminary analysis of these data showed that major differences between residents at different skill levels were: (i) the types of tool/tissue interactions being used, (ii) the transitions between tool/tissue interactions being applied by each hand, (iii) time spent while perfonning each tool/tissue interaction, (iv) the overall completion time, and (v) the variable F/T magnitudes being applied by the subjects through the endoscopic tools. Systems like surgical robots or virtual reality simulators that inherently measure the kinematics and the dynamics of the surgical tool may benefit from inclusion of the proposed methodology for analysis of efficacy and objective evaluation of surgical skills during training.
The McGill simulator for endoscopic sinus surgery (MSESS): a validation study.
Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Saad, Elias; Funnell, W Robert J; Tewfik, Marc A
2014-10-24
Endoscopic sinus surgery (ESS) is a technically challenging procedure, associated with a significant risk of complications. Virtual reality simulation has demonstrated benefit in many disciplines as an important educational tool for surgical training. Within the field of rhinology, there is a lack of ESS simulators with appropriate validity evidence supporting their integration into residency education. The objectives of this study are to evaluate the acceptability, perceived realism and benefit of the McGill Simulator for Endoscopic Sinus Surgery (MSESS) among medical students, otolaryngology residents and faculty, and to present evidence supporting its ability to differentiate users based on their level of training through the performance metrics. 10 medical students, 10 junior residents, 10 senior residents and 3 expert sinus surgeons performed anterior ethmoidectomies, posterior ethmoidectomies and wide sphenoidotomies on the MSESS. Performance metrics related to quality (e.g. percentage of tissue removed), efficiency (e.g. time, path length, bimanual dexterity, etc.) and safety (e.g. contact with no-go zones, maximum applied force, etc.) were calculated. All users completed a post-simulation questionnaire related to realism, usefulness and perceived benefits of training on the MSESS. The MSESS was found to be realistic and useful for training surgical skills with scores of 7.97 ± 0.29 and 8.57 ± 0.69, respectively on a 10-point rating scale. Most students and residents (29/30) believed that it should be incorporated into their curriculum. There were significant differences between novice surgeons (10 medical students and 10 junior residents) and senior surgeons (10 senior residents and 3 sinus surgeons) in performance metrics related to quality (p < 0.05), efficiency (p < 0.01) and safety (p < 0.05). The MSESS demonstrated initial evidence supporting its use for residency education. This simulator may be a potential resource to help fill the void in endoscopic sinus surgery training.
Travis, Simon P L; Schnell, Dan; Feagan, Brian G; Abreu, Maria T; Altman, Douglas G; Hanauer, Stephen B; Krzeski, Piotr; Lichtenstein, Gary R; Marteau, Philippe R; Mary, Jean-Yves; Reinisch, Walter; Sands, Bruce E; Schnell, Patrick; Yacyshyn, Bruce R; Colombel, Jean-Frédéric; Bernhardt, Christian A; Sandborn, William J
2015-08-01
To determine whether clinical information influences endoscopic scoring by central readers using the Ulcerative Colitis Endoscopic Index of Severity [UCEIS; comprising 'vascular pattern', 'bleeding', 'erosions and ulcers']. Forty central readers performed 28 evaluations, including 2 repeats, from a library of 44 video sigmoidoscopies stratified by Mayo Clinic Score. Following training, readers were randomised to scoring with ['unblinded', n = 20, including 4 control videos with misleading information] or without ['blinded', n 20] clinical information. A total of 21 virtual Central Reader Groups [CRGs], of three blinded readers, were created. Agreement criteria were pre-specified. Kappa [κ] statistics quantified intra- and inter-reader variability. Mean UCEIS scores did not differ between blinded and unblinded readers for any of the 40 main videos. UCEIS standard deviations [SD] were similar [median blinded 0.94, unblinded 0.93; p = 0.97]. Correlation between UCEIS and visual analogue scale [VAS] assessment of overall severity was high [r blinded = 0.90, unblinded = 0.93; p = 0.02]. Scores for control videos were similar [UCEIS: p ≥ 0.55; VAS: p ≥ 0.07]. Intra- [κ 0.47-0.74] and inter-reader [κ 0.40-0.53] variability for items and full UCEIS was 'moderate'-to-'substantial', with no significant differences except for intra-reader variability for erosions and ulcers [κ blinded: 0.47 vs unblinded: 0.74; p 0.047]. The SD of CRGs was lower than for individual central readers [0.54 vs 0.95; p < 0.001]. Correlation between blinded UCEIS and patient-reported symptoms was high [stool frequency: 0.76; rectal bleeding: 0.82; both: 0.81]. The UCEIS is minimally affected by knowledge of clinical details, strongly correlates with patient-reported symptoms, and is a suitable instrument for trials. CRGs performed better than individuals. © European Crohn’s and Colitis Organisation 2015.
Applying Leadership Theories to Distance Education Leadership
ERIC Educational Resources Information Center
Nworie, John
2012-01-01
The instructional delivery mode in distance education has been transitioning from the context of a physical classroom environment to a virtual learning environment or maintaining a hybrid of the two. However, most distance education programs in dual mode institutions are situated in traditional face-to-face instructional settings. Distance…
Angular motion equations for a satellite with hinged flexible solar panel
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Tkachev, S. S.; Roldugin, D. S.; Nuralieva, A. B.; Mashtakov, Y. V.
2016-11-01
Non-linear mathematical model for the satellite with hinged flexible solar panel is presented. Normal modes of flexible elements are used for motion description. Motion equations are derived using virtual work principle. A comparison of normal modes calculation between finite element method and developed model is presented.
Development of a patient-specific surgical simulator for pediatric laparoscopic procedures.
Saber, Nikoo R; Menon, Vinay; St-Pierre, Jean C; Looi, Thomas; Drake, James M; Cyril, Xavier
2014-01-01
The purpose of this study is to develop and evaluate a pediatric patient-specific surgical simulator for the planning, practice, and validation of laparoscopic surgical procedures prior to intervention, initially focusing on the choledochal cyst resection and reconstruction scenario. The simulator is comprised of software elements including a deformable body physics engine, virtual surgical tools, and abdominal organs. Hardware components such as haptics-enabled hand controllers and a representative endoscopic tool have also been integrated. The prototype is able to perform a number of surgical tasks and further development work is under way to simulate the complete procedure with acceptable fidelity and accuracy.
NASA Astrophysics Data System (ADS)
Yang, Yong-fa; Li, Qi
2014-12-01
In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.
Fundamentals of bipolar high-frequency surgery.
Reidenbach, H D
1993-04-01
In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.
Barhoum, Erek; Johnston, Richard; Seibel, Eric
2005-09-19
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.
ERIC Educational Resources Information Center
Connell, Michael; Abramovich, Sergei
2016-01-01
Today technology allows for the utilization of new classes of mathematical objects which are themselves subject to new modes of student interaction. A series of notable examples may be found in the National Library of Virtual Manipulatives. These virtual manipulatives draw much of their power from their physical embodiment in the form of hand-on…
The Impact of Audiovisual Feedback on the Learning Outcomes of a Remote and Virtual Laboratory Class
ERIC Educational Resources Information Center
Lindsay, E.; Good, M.
2009-01-01
Remote and virtual laboratory classes are an increasingly prevalent alternative to traditional hands-on laboratory experiences. One of the key issues with these modes of access is the provision of adequate audiovisual (AV) feedback to the user, which can be a complicated and resource-intensive challenge. This paper reports on a comparison of two…
New developments in digital pathology: from telepathology to virtual pathology laboratory.
Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander
2004-01-01
To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under development and does not completely fulfil the requirements of a conventional pathology institution at present. VIRTUAL PATHOLOGY AND E-LEARNING: At present, e-learning systems are "stand-alone" solutions distributed on CD or via internet. A characteristic example is the Digital Lung Pathology CD (www.pathology-online.org), which includes about 60 different rare and common lung diseases and internet access to scientific library systems (PubMed), distant measurement servers (EuroQuant), or electronic journals (Elec J Pathol Histol). A new and complete data base based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. Telepathology serves as promotor for a new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years.
Pericot-Valverde, Irene; Germeroth, Lisa J; Tiffany, Stephen T
2016-05-01
The cue-reactivity procedure has demonstrated that smokers respond with increases in subjective craving in the presence of smoking-related cues. Virtual reality is an emerging mode of cue presentation for cue-reactivity research. Despite the successful implementation of virtual reality during the last decade, no systematic review has investigated the magnitude of effects across studies. This research systematically reviewed findings from studies using virtual reality in cigarette craving assessment. Eligible studies assessed subjective craving for cigarettes in smokers exposed to smoking-related and neutral environments. Cohen's d was used to assess differences in craving between smoking-related and nonsmoking-related virtual environments. A random effects approach was used to combine effect sizes. A total of 18 studies involving 541 smokers was included in the final analyses. Environments with smoking-related cues produced significant increases in craving relative to environments without smoking-related cues. The mean overall effect size (Cohen's d) was 1.041 (SE = 0.12, 95% CI = 0.81 to 1.28, Z = 8.68, P < .001). The meta-analysis suggested that presentations of smoking cues through virtual reality can produce strong increases in craving among cigarette smokers. This strong cue-reactivity effect, which was comparable in magnitude to the craving effect sizes found with more conventional modes of cue presentation, supports the use of virtual reality for the generation of robust cue-specific craving in cue-reactivity research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2D-3D registration using gradient-based MI for image guided surgery systems
NASA Astrophysics Data System (ADS)
Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James
2011-03-01
Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.
2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
The effect of augmented real-time image guidance on task workload during endoscopic sinus surgery.
Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Vescan, Allan D; Witterick, Ian J; Irish, Jonathan C
2012-01-01
Due to proximity to critical structures, the need for spatial awareness during endoscopic sinus surgery (ESS) is essential. We have developed an augmented, real-time image-guided surgery (ART-IGS) system that provides live navigational data and proximity alerts to the operating surgeon during ablation. We wished to test the hypothesis that task workload would be reduced when using this technology. A trial involved 8 otolaryngology residents and fellows performing ESS on cadaveric specimens; 1 side in a conventional method (control) and 1 side with ART-IGS. After computed tomography scanning, anatomical contouring, and registration of the head, a three-dimensional (3D) virtual endoscopic view, ablative tool tracking, and proximity alerts were enabled. Each subject completed ESS tasks and rated their workload during and after the exercise using the National Aeronautics and Space Administration (NASA) Task Load Index (TLX). A questionnaire and open feedback interview were completed after the procedure. There was a significant reduction in mental demand, temporal demand, effort, and frustration when using the ART-IGS system in comparison to the control (p < 0.02). Perceived performance was increased (p = 0.02). Most subjects agreed that the system was sufficiently accurate, caused minimal interruption, and increased confidence. Optical tracking line-of-sight issues were frequently cited as the main limitation early in the study; however, this was largely resolved. ART-IGS reduces task workload for trainees performing ESS. Live navigation and alert zones may be a valuable intraoperative teaching aid. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.
NASA Astrophysics Data System (ADS)
Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.
2007-03-01
We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.
The impact of new technology on surgery for colorectal cancer
Makin, Gregory B; Breen, David J; Monson, John RT
2001-01-01
Advances in technology continue at a rapid pace and affect all aspects of life, including surgery. We have reviewed some of these advances and the impact they are having on the investigation and management of colorectal cancer. Modern endoscopes, with magnifying, variable stiffness and localisation capabilities are making the primary investigation of colonic cancer easier and more acceptable for patients. Imaging investigations looking at primary, metastatic and recurrent disease are shifting to digital data sets, which can be stored, reviewed remotely, potentially fused with other modalities and reconstructed as 3 dimensional (3D) images for the purposes of advanced diagnostic interpretation and computer assisted surgery. They include virtual colonoscopy, trans-rectal ultrasound, magnetic resonance imaging, positron emission tomography and radioimmunoscintigraphy. Once a colorectal carcinoma is diagnosed, the treatment options available are expanding. Colonic stents are being used to relieve large bowel obstruction, either as a palliative measure or to improve the patient’s overall condition before definitive surgery. Transanal endoscopic microsurgery and minimally invasive techniques are being used with similar outcomes and a lower mortality, morbidity and hospital stay than open trans-abdominal surgery. Transanal endoscopic microsurgery allows precise excision of both benign and early malignant lesions in the mid and upper rectum. Survival of patients with inoperable hepatic metastases following radiofrequency ablation is encouraging. Robotics and telemedicine are taking surgery well into the 21st century. Artificial neural networks are being developed to enable us to predict the outcome for individual patients. New technology has a major impact on the way we practice surgery for colorectal cancer. PMID:11819841
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
Virtual chromoendoscopy can be a useful software tool in capsule endoscopy.
Duque, Gabriela; Almeida, Nuno; Figueiredo, Pedro; Monsanto, Pedro; Lopes, Sandra; Freire, Paulo; Ferreira, Manuela; Carvalho, Rita; Gouveia, Hermano; Sofia, Carlos
2012-05-01
capsule endoscopy (CE) has revolutionized the study of small bowel. One major drawback of this technique is that we cannot interfere with image acquisition process. Therefore, the development of new software tools that could modify the images and increase both detection and diagnosis of small-bowel lesions would be very useful. The Flexible Spectral Imaging Color Enhancement (FICE) that allows for virtual chromoendoscopy is one of these software tools. to evaluate the reproducibility and diagnostic accuracy of the FICE system in CE. this prospective study involved 20 patients. First, four physicians interpreted 150 static FICE images and the overall agreement between them was determined using the Fleiss Kappa Test. Second, two experienced gastroenterologists, blinded to each other results, analyzed the complete 20 video streams. One interpreted conventional capsule videos and the other, the CE-FICE videos at setting 2. All findings were reported, regardless of their clinical value. Non-concordant findings between both interpretations were analyzed by a consensus panel of four gastroenterologists who reached a final result (positive or negative finding). in the first arm of the study the overall concordance between the four gastroenterologists was substantial (0.650). In the second arm, the conventional mode identified 75 findings and the CE-FICE mode 95. The CE-FICE mode did not miss any lesions identified by the conventional mode and allowed the identification of a higher number of angiodysplasias (35 vs 32), and erosions (41 vs. 24). there is reproducibility for the interpretation of CE-FICE images between different observers experienced in conventional CE. The use of virtual chromoendoscopy in CE seems to increase its diagnostic accuracy by highlighting small bowel erosions and angiodysplasias that weren´t identified by the conventional mode.
NASA Astrophysics Data System (ADS)
Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim
2016-08-01
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.
Ahnood, Dana; Souriti, Ahmad; Williams, Gwyn Samuel
2018-06-01
To explore the views of patients with diabetic retinopathy and maculopathy on their acceptance of virtual clinic review in place of face-to-face clinic appointments. A postal survey was mailed to all 813 patients under the care of the diabetic eye clinic at Singleton Hospital with 7 questions, explanatory information, and a stamped, addressed envelope available for returning completed questionnaires. Four hundred and ninety-eight questionnaires were returned indicating that 86.1% were supportive of the idea of virtual clinics, although only 56.9% were prepared for every visit to be virtual. Of respondents, 6.6% not happy to attend any virtual clinic. This is by far the largest survey of patients' attitudes regarding attending virtual clinics and confirms that the vast majority are supportive of this mode of health care delivery. Copyright © 2018 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Constructing spherical panoramas of a bladder phantom from endoscopic video using bundle adjustment
NASA Astrophysics Data System (ADS)
Soper, Timothy D.; Chandler, John E.; Porter, Michael P.; Seibel, Eric J.
2011-03-01
The high recurrence rate of bladder cancer requires patients to undergo frequent surveillance screenings over their lifetime following initial diagnosis and resection. Our laboratory is developing panoramic stitching software that would compile several minutes of cystoscopic video into a single panoramic image, covering the entire bladder, for review by an urolgist at a later time or remote location. Global alignment of video frames is achieved by using a bundle adjuster that simultaneously recovers both the 3D structure of the bladder as well as the scope motion using only the video frames as input. The result of the algorithm is a complete 360° spherical panorama of the outer surface. The details of the software algorithms are presented here along with results from both a virtual cystoscopy as well from real endoscopic imaging of a bladder phantom. The software successfully stitched several hundred video frames into a single panoramic with subpixel accuracy and with no knowledge of the intrinsic camera properties, such as focal length and radial distortion. In the discussion, we outline future work in development of the software as well as identifying factors pertinent to clinical translation of this technology.
CSI, optimal control, and accelerometers: Trials and tribulations
NASA Technical Reports Server (NTRS)
Benjamin, Brian J.; Sesak, John R.
1994-01-01
New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.
ERIC Educational Resources Information Center
Burris, Justin T.
2010-01-01
As one research priority for mathematics education is "to research how mathematical meanings are structured by tools available," the present study examined mathematical representations more closely by investigating instructional modes of representation (Noss, Healy & Hoyles, 1997). The study compared two modes of instruction of place value with…
The Development of CyberLearning in Dual-Mode: Higher Education Institutions in Taiwan.
ERIC Educational Resources Information Center
Chen, Yau Jane
2002-01-01
Open and distance education in Taiwan has evolved into cyberlearning. Over half (56 percent) of the conventional universities and colleges have been upgraded to dual-mode institutions offering real-time multicast instructional systems using videoconferencing, cable television, virtual classrooms, and curriculum-on-demand systems. The Ministry of…
Bergmann, J; Krewer, C; Müller, F; Koenig, A; Riener, R
2011-01-01
Virtual Reality (VR) provides a promising medium to enrich robot assisted rehabilitation. VR applications present the opportunity to engage patients in therapy and control participation. The aim of this study was to investigate two strategies to control active participation of a stroke patient focusing on the involvement of the paretic leg in task solution. A subacute stroke patient with a severe hemiparesis performed two experiments on the driven gait orthosis Lokomat. Patient activity was quantified by weighted interaction torques measured in both legs (experiment A) and the paretic leg only (experiment B). The patient was able to successfully implement both the bilateral and unilateral control modality. Both control modes increased the motor output of the paretic leg, however the paretic leg control mode resulted in a much more differentiated regulation of the activity in the leg. Both control modes are appropriate approaches to enhance active participation and increase motor output in the paretic leg. Further research should evaluate the therapeutic benefit of patients with hemiparesis using the unilateral control mode depending on the severity of their impairment. © 2011 IEEE
Generation of light-sheet at the end of multimode fibre (Conference Presentation)
NASA Astrophysics Data System (ADS)
Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡
2017-02-01
Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
Effects of whispering gallery mode in microsphere super-resolution imaging
NASA Astrophysics Data System (ADS)
Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui
2017-09-01
Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.
Virtual Reference Canada (VRC): A Canadian Service in a Multicultural Environment.
ERIC Educational Resources Information Center
Gaudet, Franceen; Savard, Nicolas
Virtual Reference Canada (VRC) is a digital reference service using World Wide Web technology. It was initiated by the National Library of Canada (NLC) in spring 2001 and went into test mode at the start of 2002. It draws on the contribution of a wide range of Canadian libraries and allied institutions. The development of VRC owes a great deal to…
Seemann, M D; Claussen, C D
2001-06-01
A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.
Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography
NASA Astrophysics Data System (ADS)
Risi, Matthew D.
Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.
Takahama, Kazuya; Tahara, Sayumi; Yoshida, Dai; Horiguchi, Noriyuki; Kawamura, Tomohiko; Okubo, Masaaki; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Urano, Makoto; Shibata, Tomoyuki; Tuskamoto, Tetsuya; Ieda, Hiro-o; Kuroda, Makoto; Ohmiya, Naoki
2017-01-01
Background/Aim In the colorectum, lymphoid follicles hyperplasia (LH) is sometimes observed as small, round, yellowish-white nodules. The novel image-enhanced endoscopy system named blue laser imaging (BLI) provides enhanced the contrast of surface vessels using lasers for light illumination. We investigated the endoscopic features of LH observed by using BLI endoscopy and its association with chronic bowel symptoms. Patients/Methods 300 participants undergoing colonoscopy for various indications were enrolled. Entire colorectum was observed by using BLI-bright mode with non-magnification view. LH was defined as well demarcated white nodules. Elevated LH with erythema was distinguished as LH severe. Results LHs were observed more clearly by using BLI-bright mode compared to conventional white light colonoscopy and were also histologically confirmed as intense infiltration of lymphocytes or plasmacytes. LH was observed in 134 subjects (44.6%) and 67 (22.3%) were LH severe. LH was associated younger age (Odds ratio (OR) = 1.05, 95%Confidence Interval (95%CI) = 1.03–1.07, P<0.0001) and chronic bowel symptoms including constipation, hard stools, diarrhea and loose stools (all LH: OR = 4.03, 95%CI = 2.36–6.89, P<0.0001, LH severe: OR = 5.31, 95%CI = 2.64–10.71, P<0.0001). LH severe was closely associated with both constipation associated symptoms (OR = 3.94, 95%CI = 1.79–8.66, P = 0.0007) and diarrhea associated symptoms (OR = 5.22, 95%CI = 2.09–13.05, P = 0.0004). In particular, LH severe in the ascending colon was strongly associated with bowel symptoms (P<0.0001). Conclusion LH, visualized by using BLI endoscopy was associated with bowel symptom, raising the possibility of pathogenic role of this endoscopic finding in the functional lower gastrointestinal disorders. PMID:28763491
Cognitive load of navigating without vision when guided by virtual sound versus spatial language.
Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M
2006-12-01
A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-03-01
The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America
Ingram, W Scott; Yang, Jinzhong; Wendt, Richard; Beadle, Beth M; Rao, Arvind; Wang, Xin A; Court, Laurence E
2017-08-01
To assess the influence of non-rigid anatomy and differences in patient positioning between CT acquisition and endoscopic examination on endoscopy-CT image registration in the head and neck. Radiotherapy planning CTs and 31-35 daily treatment-room CTs were acquired for nineteen patients. Diagnostic CTs were acquired for thirteen of the patients. The surfaces of the airways were segmented on all scans and triangular meshes were created to render virtual endoscopic images with a calibrated pinhole model of an endoscope. The virtual images were used to take projective measurements throughout the meshes, with reference measurements defined as those taken on the planning CTs and test measurements defined as those taken on the daily or diagnostic CTs. The influence of non-rigid anatomy was quantified by 3D distance errors between reference and test measurements on the daily CTs, and the influence of patient positioning was quantified by 3D distance errors between reference and test measurements on the diagnostic CTs. The daily CT measurements were also used to investigate the influences of camera-to-surface distance, surface angle, and the interval of time between scans. Average errors in the daily CTs were 0.36 ± 0.61 cm in the nasal cavity, 0.58 ± 0.83 cm in the naso- and oropharynx, and 0.47 ± 0.73 cm in the hypopharynx and larynx. Average errors in the diagnostic CTs in those regions were 0.52 ± 0.69 cm, 0.65 ± 0.84 cm, and 0.69 ± 0.90 cm, respectively. All CTs had errors heavily skewed towards 0, albeit with large outliers. Large camera-to-surface distances were found to increase the errors, but the angle at which the camera viewed the surface had no effect. The errors in the Day 1 and Day 15 CTs were found to be significantly smaller than those in the Day 30 CTs (P < 0.05). Inconsistencies of patient positioning have a larger influence than non-rigid anatomy on projective measurement errors. In general, these errors are largest when the camera is in the superior pharynx, where it sees large distances and a lot of muscle motion. The errors are larger when the interval of time between CT acquisitions is longer, which suggests that the interval of time between the CT acquisition and the endoscopic examination should be kept short. The median errors found in this study are comparable to acceptable levels of uncertainty in deformable CT registration. Large errors are possible even when image alignment is very good, indicating that projective measurements must be made carefully to avoid these outliers. © 2017 American Association of Physicists in Medicine.
Source imaging of drums in the APNEA system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.
1995-12-31
The APNea System is a neutron assay device utilizing both a passive mode and a differential-dieaway active mode. The total detection efficiency is not spatially uniform, even for an empty chamber, and a drum matrix in the chamber can severely distort this response. In order to achieve a response which is independent of the way the source material is distributed in a drum, an imaging procedure has been developed which treats the drum as a number of virtual (sub)volumes. Since each virtual volume of source material is weighted with the appropriate instrument parameters (detection efficiency and thermal flux), the finalmore » assay result is essentially independent of the actual distribution of the source material throughout the drum and its matrix.« less
Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria
NASA Technical Reports Server (NTRS)
Chow, W-T.; Wang, L.; Atluri, S. N.
1998-01-01
This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.
Teaching Mixed-Mode: A Case Study in Remote Delivery of Computer Science in Africa
ERIC Educational Resources Information Center
Howell, Sheila; Harris, Michael; Wilkinson, Simon; Zuluaga, Catherine; Voutier, Paul
2004-01-01
In February 2003, RMIT University in Melbourne, Australia, commenced delivery of a Computer Science diploma and degree programme using mixed mode delivery to 250 university students in sub-Saharan Africa, through a World Bank funded project designed for the African Virtual University (AVU). The project is a unique experience made possible by…
A Framework for Developing Competencies in Open and Distance Learning
ERIC Educational Resources Information Center
Arinto, Patricia B.
2013-01-01
Many open universities and distance education institutions have shifted from a predominantly print-based mode of delivery to an online mode characterised by the use of virtual learning environments and various web technologies. This paper describes the impact of the shift to open and distance e-learning (ODeL), as this trend might be called, on…
The Modeling of Virtual Environment Distance Education
NASA Astrophysics Data System (ADS)
Xueqin, Chang
This research presented a virtual environment that integrates in a virtual mockup services available in a university campus for students and teachers communication in different actual locations. Advantages of this system include: the remote access to a variety of services and educational tools, the representation of real structures and landscapes in an interactive 3D model that favors localization of services and preserves the administrative organization of the university. For that, the system was implemented a control access for users and an interface to allow the use of previous educational equipments and resources not designed for distance education mode.
Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming
2011-10-14
Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Virtual Presence and the Mind's Eye in 3-D Online Communities
NASA Astrophysics Data System (ADS)
Beacham, R. C.; Denard, H.; Baker, D.
2011-09-01
Digital technologies have introduced fundamental changes in the forms, content, and media of communication. Indeed, some have suggested we are in the early stages of a seismic shift comparable to that in antiquity with the transition from a primarily oral culture to one based upon writing. The digital transformation is rapidly displacing the long-standing hegemony of text, and restoring in part social, bodily, oral and spatial elements, but in radically reconfigured forms and formats. Contributing to and drawing upon such changes and possibilities, scholars and those responsible for sites preserving or displaying cultural heritage, have undertaken projects to explore the properties and potential of the online communities enabled by "Virtual Worlds" and related platforms for teaching, collaboration, publication, and new modes of disciplinary research. Others, keenly observing and evaluating such work, are poised to contribute to it. It is crucial that leadership be provided to ensure that serious and sustained investigation be undertaken by scholars who have experience, and achievements, in more traditional forms of research, and who perceive the emerging potential of Virtual World work to advance their investigations. The Virtual Museums Transnational Network will seek to engage such scholars and provide leadership in this emerging and immensely attractive new area of cultural heritage exploration and experience. This presentation reviews examples of the current "state of the art" in heritage based Virtual World initiatives, looking at the new modes of social interaction and experience enabled by such online communities, and some of the achievements and future aspirations of this work.
Sumitani, Daisuke; Egi, Hiroyuki; Tokunaga, Masakazu; Hattori, Minoru; Yoshimitsu, Masanori; Kawahara, Tomohiro; Okajima, Masazumi; Ohdan, Hideki
2013-06-01
The detailed influence of virtual reality training (VRT) and box training (BT) on laparoscopic performance is unknown; we aimed to determine the optimal order of imparting these training programs. This randomized controlled trial involved two groups, each with 20 participants without prior laparoscopic surgical experience: A BT-VRT group (60 min BT followed by 60 min VRT) and a VRT-BT group (60 min VRT followed by 60 min BT). We objectively assessed the laparoscopic skills with a motion-analysis system (Hiroshima University Endoscopic Surgical Assessment Device: HUESAD), which reliably assesses surgical dexterity. Skill assessment was performed before and after the training session. No inter-group differences were identified in the study measures at the pre-training assessment. In both groups, the performance on all tasks was significantly better at the post-training assessment than at the pre-training assessment. However, the outcome of the tests using the HUESAD was significantly better in the VRT-BT group than in the BT-VRT group at the post-training assessment. VRT followed by BT effectively improves the dexterity of novice surgeons during initial laparoscopic (combination) training.
Mendis, Rajind; Mittleman, Daniel M
2009-08-17
We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America
Treatment of pouch stones after augmentation ileocystoplasty in children: is it always bothersome?
Helmy, Tamer E; Elawdy, Mohammed M; AbdelHalim, Ahmed; Orban, Hesham; Nabeeh, Hossam; Dawaba, Mohammed; Hafez, Ashraf T
2015-01-01
To report our experience with different approaches for management of pouch stones in children with ileal-based urinary reservoir. Charts of children who underwent ileal-based urinary reservoirs between 2000 and 2009 were retrospectively reviewed. Patients who were diagnosed with reservoir calculi were identified; medical records were reviewed for patients' demographics, diversion details, stone criteria, mode of treatment, perioperative complications, and recurrence rate. We identified 26 children with pouch stones after urinary diversion. There were 11 boys (42%) and 15 girls (58%). Mean age was 11 years (range, 4-16 years). Mean time for diagnosis was 42 months (24-120 months). Pouch stones were asymptomatic in 10 patients (38%). Fifteen cases were postbladder augmentation and 11 cases postcontinent cutaneous diversion. The mean stone size was 4 cm (range, 1-10 cm), and mean Hounsfield Unit was 585 (205-1090). Seventeen children (65%) had positive urine culture result, whereas 9 children were sterile. Seven children (27%) required open poucholithotomy, whereas 19 patients (73%) were managed endoscopically. Percutaneous approach was done in 5 children, whereas urethral access was used in 7 children. Mechanical extraction was performed in 12 cases, and stone disintegration was required in 7 cases. Eight children developed stone recurrence. Mean time for recurrence was 11 months (range, 3-19 months). Six children were after endoscopic disintegration, and all required redo endoscopic extraction. Stone analysis was available in 15 patients (struvite stones in 10 cases and calcium phosphate in 5 cases). Pouch stones are established long-term complication of urinary diversion. Open and endoscopic approaches are valid treatment strategies. Copyright © 2015 Elsevier Inc. All rights reserved.
Management of third branchial pouch anomalies - an evolution of a minimally invasive technique.
Wong, Phui Yee; Moore, Andrew; Daya, Hamid
2014-03-01
The management of third branchial pouch anomalies has evolved in recent times with the popularisation of the endoscopic diathermy technique to sclerose the pyriform fossa sinus opening. We present our experience in managing 3 children with third branchial pouch anomalies and propose a minimally invasive management algorithm avoiding open neck surgery. Retrospective case review of 3 patients including demographics, mode of presentation, investigations, management and complications. Three children, two male and one female of mean age 9.6 years presented with painful left anterior neck swelling. Axial neck imaging showed a superficial abscess with air locules and a sinus tract leading towards the left pharynx. Diagnosis was confirmed by endoscopic examination of the pyriform fossa revealing a sinus opening. Two patients underwent open excision; one combined with diathermy to the sinus opening. The last patient was diagnosed at his initial presentation and managed with endoscopic diathermy of the sinus opening combined with percutaneous needle aspiration of the neck abscess at the same sitting. One patient had two recurrences, the first after initial open surgery and the second after the first cautery. Two patients developed temporary hoarseness after the procedure, which resolved within two weeks. All patients were free from recurrences at follow-up. Introduction of the technique of endoscopic diathermy to the pyriform fossa sinus opening in children with third branchial pouch anomalies has revolutionised their management avoiding open and potentially morbid surgery. Our algorithm takes this further by advocating percutaneous needle aspiration of the infective component and performing diathermy to the sinus opening at the first presentation. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Lai, Wen-Sen; Cheng, Sheng-Yao; Lin, Yuan-Yung; Yang, Pei-Lin; Lin, Hung-Che; Cheng, Li-Hsiang; Yang, Jinn-Moon; Lee, Jih-Chin
2017-12-01
For chronic rhinitis that is refractory to medical therapy, surgical intervention such as endoscopic vidian neurectomy (VN) can be used to control the intractable symptoms. Lasers can contribute to minimizing the invasiveness of ENT surgery. The aim of this retrospective study is to compare in patients who underwent diode laser-assisted versus traditional VN in terms of operative time, surgical field, quality of life, and postoperative complications. All patients had refractory rhinitis with a poor treatment response to a 6-month trial of corticosteroid nasal sprays and underwent endoscopic VN between November 2006 and September 2015. They were non-randomly allocated into either a cold instrument group or a diode laser-assisted group. Vidian nerve was excised with a 940-nm continuous wave diode laser through a 600-μm silica optical fiber, utilizing a contact mode with the power set at 5 W. A visual analog scale (VAS) was used to grade the severity of the rhinitis symptoms for quality of life assessment before the surgery and 6 months after. Of the 118 patients enrolled in the study, 75 patients underwent cold instrument VN and 43 patients underwent diode laser-assisted VN. Patients in the laser-assisted group had a significantly lower surgical field score and a lower postoperative bleeding rate than those in the cold instrument group. Changes in the VAS were significant in preoperative and postoperative nasal symptoms in each group. The application of diode lasers for vidian nerve transection showed a better surgical field and a lower incidence of postoperative hemorrhage. Recent advancements in laser application and endoscopic technique has made VN safer and more effective. We recommend this surgical approach as a reliable and effective treatment for patients with refractory rhinitis.
Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T
2010-07-01
Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.
Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun
2014-01-01
We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694
A virtual simulator designed for collision prevention in proton therapy.
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Hee Chul; Kim, Jin Sung; Choi, Doo Ho
2015-10-01
In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer's machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient's body contour was reconstructed. The accuracy of the image was confirmed against the CT image of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine's components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.
Tielman, Myrthe L.; Neerincx, Mark A.; van Meggelen, Marieke; Franken, Ingmar; Brinkman, Willem-Paul
2017-01-01
BACKGROUND AND OBJECTIVE: With the rise of autonomous e-mental health applications, virtual agents can play a major role in improving trustworthiness, therapy outcome and adherence. In these applications, it is important that patients adhere in the sense that they perform the tasks, but also that they adhere to the specific recommendations on how to do them well. One important construct in improving adherence is psychoeducation, information on the why and how of therapeutic interventions. In an e-mental health context, this can be delivered in two different ways: verbally by a (virtual) embodied conversational agent or just via text on the screen. The aim of this research is to study which presentation mode is preferable for improving adherence. METHODS : This study takes the approach of evaluating a specific part of a therapy, namely psychoeducation. This was done in a non-clinical sample, to first test the general constructs of the human-computer interaction. We performed an experimental study on the effect of presentation mode of psychoeducation on adherence. In this study, we took into account the moderating effects of attitude towards the virtual agent and recollection of the information. Within the paradigm of expressive writing, we asked participants (n= 46) to pick one of their worst memories to describe in a digital diary after receiving verbal or textual psychoeducation. RESULTS AND CONCLUSION: We found that both the attitude towards the virtual agent and how well the psychoeducation was recollected were positively related to adherence in the form of task execution. Moreover, after controlling for the attitude to the agent and recollection, presentation of psychoeducation via text resulted in higher adherence than verbal presentation by the virtual agent did. PMID:28800346
Analysis of virtual passive controllers for flexible space structures
NASA Technical Reports Server (NTRS)
Williams, Trevor W.
1992-01-01
The dynamics of flexible spacecraft are not usually well known before launch. This makes it important to develop controllers for such systems that can never be destabilized by perturbations in the structural model. Virtual passive controllers, or active vibration absorbers, possess this guaranteed stability property; they mimic a fictitious flexible structure attached to the true physical one. This report analyzes the properties of such controllers, and shows that disturbance absorption behavior can be naturally described in terms of a set of virtual zeros that they introduce into the closed-loop dynamics of the system. Based on this analysis, techniques are then derived for selecting the active vibration absorber internal parameters, i.e., the gain matrices of such controllers, so as to achieve specified control objectives. Finally, the effects on closed-loop stability of small delays in the feedback loop are investigated. Such delays would typically be introduced by a digital implementation of an active vibration absorber. It is shown that these delays only affect the real parts of the eigenvalues of a lightly-damped structure. Furthermore, it is only the high-frequency modes that are destabilized by delays; low-frequency modes are actually made more heavily damped. Eigenvalue perturbation methods are used to obtain accurate predictions of the critical delay at which a given system will become unstable; these methods also determine which mode is critical.
Kim, Dong Seong; Park, Jong Sou
2014-01-01
It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732
Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams
1987-07-30
The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines
Virtual cathode microwave generator having annular anode slit
Kwan, Thomas J. T.; Snell, Charles M.
1988-01-01
A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.
Lin, Chien-Huang; Sun, Ya-Chung; Lee, Yueh-Chiang; Wu, Shih-Chia
2007-01-01
Although Instant Messaging (IM) has established itself as one of the most popular modes of communication, little empirical research has explored how adolescents are affected by its use to satisfy their virtual interpersonal relationships. This research investigates cause and effect in the satisfaction of these relationships among adolescents in both their real and virtual life by using IM. Data were collected from 401 junior high school students via a questionnaire. Descriptive statistics, factor analysis, and SEM analysis methods were used to analyze the data. Primary findings indicate that (1) there is significant cause and effect on the adolescents' satisfaction with their interpersonal relationships between their real life and the virtual world (via IM); and (2) adolescents may enhance their interpersonal behavior by using IM, leading to an increase in satisfaction with their interpersonal relationships in the virtual world.
Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong
2017-08-01
We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.
The Virtual Environment for Rapid Prototyping of the Intelligent Environment
Bouzouane, Abdenour; Gaboury, Sébastien
2017-01-01
Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants’ behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs. PMID:29112175
The Virtual Environment for Rapid Prototyping of the Intelligent Environment.
Francillette, Yannick; Boucher, Eric; Bouzouane, Abdenour; Gaboury, Sébastien
2017-11-07
Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants' behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs.
Prospective analysis of percutaneous endoscopic colostomy at a tertiary referral centre.
Baraza, W; Brown, S; McAlindon, M; Hurlstone, P
2007-11-01
Percutaneous endoscopic colostomy (PEC) is an alternative to surgery in selected patients with recurrent sigmoid volvulus, recurrent pseudo-obstruction or severe slow-transit constipation. A percutaneous tube acts as an irrigation or decompressant channel, or as a mode of sigmoidopexy. This prospective study evaluated the safety and efficacy of this procedure at a single tertiary referral centre. Nineteen patients with recurrent sigmoid volvulus, ten with idiopathic slow-transit constipation and four with pseudo-obstruction underwent PEC. The tube was left in place indefinitely in those with recurrent sigmoid volvulus or constipation, whereas in patients with pseudo-obstruction it was left in place for a variable period of time, depending on symptoms. Thirty-five procedures were performed in 33 patients. Three patients developed peritonitis, of whom one died, and ten patients had minor complications. Symptoms resolved in 26 patients. This large prospective study has confirmed the value of PEC in the treatment of recurrent sigmoid volvulus and pseudo-obstruction in high-risk surgical patients. Copyright (c) 2007 British Journal of Surgery Society Ltd.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes
NASA Astrophysics Data System (ADS)
Gorantla, Pranay; Sensarma, Rajdeep
2018-05-01
Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.
Virtual pharmaceutical companies: collaborating flexibly in pharmaceutical development.
Forster, Simon P; Stegmaier, Julia; Spycher, Rene; Seeger, Stefan
2014-03-01
Research and development (R&D) collaborations represent one approach chosen by the pharmaceutical industry to tackle current challenges posed by declining internal R&D success rates and fading of the blockbuster model. In recent years, a flexible concept to collaborate in R&D has emerged: virtual pharmaceutical companies (VPCs). These differ from other R&D companies, such as biotech start-ups, collaborating with big pharmaceutical companies, because they solely comprise experienced teams of managers. VPCs have only been described anecdotally in literature. Thus, we present here the characteristics of a VPC and suggest how big pharma can leverage the concept of VPCs by introducing five possible modes of collaboration. We find that one mode, investing, is particularly promising for big pharma. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pulvirenti, Elia; Toro, Adriana; Di Carlo, Isidoro
2010-01-01
Natural Orifice Transluminal Endoscopic Surgery (NOTES) is an innovative approach in which a flexible endoscope enters the abdominal cavity via the transesophageal, transgastric, transcolonic, transvaginal or transvescical route, combining the technique of minimally invasive surgery with flexible endoscopy. Several groups have described different modifications by using flexible endoscopes with different levels of laparoscopic assistance. Transvaginal cholecystectomy (TVC) consists in accessing the abdominal cavity through a posterior colpotomy and using the vaginal incision as a visual or operative port. An increasing interest has arisen around the TVC; nevertheless, the most common and highlighted concern is about the lack of specific instruments dedicated to the vaginal access route. TVC should be distinguished between "pure", in which the entire operation is performed through the transvaginal route, and "hybrid", in which the colpotomy represents only a support to introduce instruments and the operation is performed mainly by the classic transabdominal-introduced instruments. Although this new technique seems very appealing for patients, on the other hand it is very challenging for the surgeon because of the difficulties related to the mode of access, the limited technology currently available and the risk of complications related to the organ utilized for access. In this brief review all the most recent advancements in the field of TVC's techniques and instrumentations are listed and discussed.
Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components
NASA Astrophysics Data System (ADS)
Dong, Z. H.; Ye, X.; Yang, F.
2018-05-01
Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.
Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold
2013-05-01
High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.
Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui
2017-06-07
A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids.
Development of a Haptic Interface for Natural Orifice Translumenal Endoscopic Surgery Simulation
Dargar, Saurabh; Sankaranarayanan, Ganesh
2016-01-01
Natural orifice translumenal endoscopic surgery (NOTES) is a minimally invasive procedure, which utilizes the body’s natural orifices to gain access to the peritoneal cavity. The NOTES procedure is designed to minimize external scarring and patient trauma, however flexible endoscopy based pure NOTES procedures require critical scope handling skills. The delicate nature of the NOTES procedure requires extensive training, thus to improve access to training while reducing risk to patients we have designed and developed the VTEST©, a virtual reality NOTES simulator. As part of the simulator, a novel decoupled 2-DOF haptic device was developed to provide realistic force feedback to the user in training. A series of experiments were performed to determine the behavioral characteristics of the device. The device was found capable of rendering up to 5.62N and 0.190Nm of continuous force and torque in the translational and rotational DOF, respectively. The device possesses 18.1Hz and 5.7Hz of force bandwidth in the translational and rotational DOF, respectively. A feedforward friction compensator was also successfully implemented to minimize the negative impact of friction during the interaction with the device. In this work we have presented the detailed development and evaluation of the haptic device for the VTEST©. PMID:27008674
Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui
2017-01-01
A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids. PMID:28638234
ERIC Educational Resources Information Center
Chang, Wen-Long; Lee, Chun-Yi
2013-01-01
The aim of this study was to investigate the influence of leadership style, whether transactional or transformational, and conflict management mode on the online learning performance of students in a business-planning course. Conflict management was performed using the following five approaches: (1) avoidance, (2) accommodation, (3) competition,…
Implementation of NASTRAN on the IBM/370 CMS operating system
NASA Technical Reports Server (NTRS)
Britten, S. S.; Schumacker, B.
1980-01-01
The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.
Marintcheva, Boriana
2017-05-01
Virtual virus is a semester-long interdisciplinary project offered as part of upper level elective course in virology. Students are challenged to apply key concepts from multiple biological sub-disciplines to 'synthesize' a plausible virtual virus. The project is executed as a scaffolded series of hands-on sessions and mini-projects that are integrated into continuous story leading to mock conference presentation and comprehensive report modeling article publication. It complements classroom instruction helping students to meet overarching learning targets traditionally associated undergraduate virology courses such as viral structure and function, mode of viral propagation and flow of genetic information and virus/host interactions on the cellular and organismal level. Formal instructor and informal peer feedback were used as tools to prompt reflection and guide revisions of the final report. Student learning gains and attitudes toward the approach were studied by evaluating project work product and end of the semester survey. Outcome analysis demonstrated that students exit the course with elaborated conceptual understanding of viruses and ownership of their work. The project can be viewed as an approach to model the process of scientific discovery in fast-forward mode by combining active learning, creativity and problem solving to assemble and communicate a virtual virus story. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
From telepathology to virtual pathology institution: the new world of digital pathology.
Kayser, K; Kayser, G; Radziszowski, D; Oehmann, A
Telepathology has left its childhood. Its technical development is mature, and its use for primary (frozen section) and secondary (expert consultation) diagnosis has been expanded to a great amount. This is in contrast to a virtual pathology laboratory, which is still under technical constraints. Similar to telepathology, which can also be used for e-learning and e-training in pathology, as exemplarily is demonstrated on Digital Lung Pathology (Klaus.Kayser@charite.de) at least two kinds of virtual pathology laboratories will be implemented in the near future: a) those with distributed pathologists and distributed (> or = 1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists (usually situated in one institution) and a centralized laboratory, which digitizes complete histological slides. Both scenarios are under intensive technical investigations. The features of virtual pathology comprise a virtual pathology institution (mode a) that accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The Internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size and number of transferred images have to be limited, and usual different magnifications have to be used. The sender needs to possess experiences in image sampling techniques, which present with the most significant information. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. The first experiences of a virtual pathology institution group working with the iPATH server working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalization of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalization is still under development. Virtual pathology can be combined with e-learning and e-training, that will serve for a powerful daily-work-integrated pathology system. At present, e-learning systems are "stand-alone" solutions distributed on CD or via Internet. A characteristic example is the Digital Lung Pathology CD, which includes about 60 different rare and common lung diseases with some features of electronic communication. These features include access to scientific library systems (PubMed), distant measurement servers (EuroQuant), automated immunohisto-chemistry measurements, or electronic journals (Elec J Pathol Histol, www.pathology-online.org). It combines e-learning and e-training with some acoustic support. A new and complete database based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. At present, telepathology serves as promoter for a complete new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years with exciting diagnostic and scientific perspectives.
NASA Astrophysics Data System (ADS)
Schellhas, Helmut F.; Barnes, Alfonso E.
1982-12-01
Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.
Foreign bodies in the urinary bladder and their management: a Pakistani experience.
Mannan, A; Anwar, S; Qayyum, A; Tasneem, R A
2011-01-01
This was a retrospective study conducted to assess the nature, presentation, mode of insertion, diagnosis and management of foreign bodies in the urinary bladder. Between January 1998 and December 2007, 20 patients with foreign bodies in their urinary bladder were treated at our centre. The records of these patients were reviewed and analysed for their symptoms, mode of insertion, diagnosis, management and complications. A total of 20 foreign bodies were recovered from the urinary bladders during the study period. These included JJ stents with calculi, intrauterine contraceptive devices with stones, a rubber stick, ribbon gauze, encrusted pieces of Foley catheter, proline thread with calculus, a suture needle, broken cold knives, the ceramic beak of a paediatric resectoscope, a knotted suprapubic tube, a hair clip, a nail, an electrical wire and a hairpin. The common presenting features were dysuria and haematuria. The diagnosis was established radiologically in most of the cases. The circumstances of insertion were variable; iatrogenic in 16 (80.0 percent) cases, sexual stimulation in two (10.0 percent), accidental insertion by a child in one (5.0 percent) and physical torture in one (5.0 percent). 17 (85.0 percent) foreign bodies were recovered endoscopically, and cystolithotomy was required in three (15.0 percent) patients. The instances of foreign bodies in the urinary bladder are uncommon. A diagnosis is usually made radiologically. Iatrogenic foreign bodies were found to be the most frequent type of insertion encountered. Endoscopic retrieval is usually successful, with minimal morbidity.
Kirschen, Gregory W.; Shen, Jia; Wang, Jia; Man, Guoming; Wu, Song
2017-01-01
The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs. SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition. PMID:28373391
[Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E
2002-05-01
In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the accuracy and efficacy of 4 dimensional imaging compared to conventional evaluations.
Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging
Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou
2017-01-01
Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201
The ALIVE Project: Astronomy Learning in Immersive Virtual Environments
NASA Astrophysics Data System (ADS)
Yu, K. C.; Sahami, K.; Denn, G.
2008-06-01
The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.
Discovery of novel human acrosin inhibitors by virtual screening
NASA Astrophysics Data System (ADS)
Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo
2011-10-01
Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
General technique for the integration of MIC/MMIC'S with waveguides
NASA Technical Reports Server (NTRS)
Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)
1987-01-01
A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.
Trust-based Access Control in Virtual Learning Community
NASA Astrophysics Data System (ADS)
Wang, Shujuan; Liu, Qingtang
The virtual learning community is an important application pattern of E-Learning. It emphasizes the cooperation of the members in the community, the members would like to share their learning resources, to exchange their experience and complete the study task together. This instructional mode has already been proved as an effective way to improve the quality and efficiency of instruction. At the present time, the virtual learning communities are mostly designed using static access control policy by which the access permission rights are authorized by the super administrator, the super administrator assigns different rights to different roles, but the virtual and social characteristics of virtual learning community make information sharing and collaboration a complex problem, the community realizes its instructional goal only if the members in it believe that others will offer the knowledge they owned and believe the knowledge others offered is well-meaning and worthy. This paper tries to constitute an effective trust mechanism, which could promise favorable interaction and lasting knowledge sharing.
Validation of virtual-reality-based simulations for endoscopic sinus surgery.
Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S
2015-12-01
Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.
Kruglikova, Irina; Grantcharov, Teodor P; Drewes, Asbjorn M; Funch-Jensen, Peter
2010-02-01
Recently, virtual reality computer simulators have been used to enhance traditional endoscopy teaching. Previous studies have demonstrated construct validity of these systems and transfer of virtual skills to the operating room. However, to date no simulator-training curricula have been designed and there is very little evidence on the impact of external feedback on acquisition of endoscopic skills. The aim of the present study was to assess the impact of external feedback on the learning curves on a VR colonoscopy simulator using inexperienced trainees. 22 trainees, without colonoscopy experience were randomised to a group which received structured feedback provided by an experienced supervisor and a controlled group. All participants performed 15 repetitions of task 3 from the Introduction colonoscopy module of the Accu Touch Endoscopy simulator. Retention/transfer tests on simulator were performed 4-6 weeks after the last repetition. The proficiency levels were based on the performance of eight experienced colonoscopists. All subjects were able to complete the procedure on the simulator. There were no perforations in the feedback group versus seven in the non-feedback group. Subjects in the feedback group reached expert proficiency levels in percentage of mucosa visualised and time to reach the caecum significantly faster compared with the control group. None of the groups demonstrated significant degradation of performance in simulator retention/transfer tests. Concurrent feedback given by supervisor concur an advantage in acquisition of basic colonoscopy skills and achieving of proficiency level as compared to independent training.
Wallet, Grégory; Sauzéon, Hélène; Pala, Prashant Arvind; Larrue, Florian; Zheng, Xia; N'Kaoua, Bernard
2011-01-01
The purpose of this study was to evaluate the effect the visual fidelity of a virtual environment (VE) (undetailed vs. detailed) has on the transfer of spatial knowledge based on the navigation mode (passive vs. active) for three different spatial recall tasks (wayfinding, sketch mapping, and picture sorting). Sixty-four subjects (32 men and 32 women) participated in the experiment. Spatial learning was evaluated by these three tasks in the context of the Bordeaux district. In the wayfinding task, the results indicated that the detailed VE helped subjects to transfer their spatial knowledge from the VE to the real world, irrespective of the navigation mode. In the sketch-mapping task, the detailed VE increased performances compared to the undetailed VE condition, and allowed subjects to benefit from the active navigation. In the sorting task, performances were better in the detailed VE; however, in the undetailed version of the VE, active learning either did not help the subjects or it even deteriorated their performances. These results are discussed in terms of appropriate perceptive-motor and/or spatial representations for each spatial recall task.
NASA Astrophysics Data System (ADS)
Mulatsari, E.; Mumpuni, E.; Herfian, A.
2017-05-01
Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.
Dănilă, R; Gerdes, B; Ulrike, H; Domínguez Fernández, E; Hassan, I
2009-01-01
The learning curve in laparoscopic surgery may be associated with higher patient risk, which is unacceptable in the setting of kidney donation. Virtual reality simulators may increase the safety and efficiency of training in laparoscopic surgery. The aim of this study was to investigate if the results of a training session reflect the actual skill level of transplantation surgeons and whether the simulator could differentiate laparoscopic experienced transplantation surgeon from advanced trainees. 16 subjects were assigned to one of two groups: 5 experienced transplantation surgeon and 11 advanced residents, with only assistant role during transplantation. The level of performance was measured by a relative scoring system that combines single parameters assessed by the computer. The higher the level of transplantation experience of a participant, the higher the laparoscopic performance. Experienced transplantation surgeons showed statistically significant better scores than the advanced group for time and precision parameters. Our results show that performance of the various tasks on the simulator corresponds to the respective level of experience in transplantation surgery in our research groups. This study confirms construct validity for the LapSim. It thus measures relevant skills and can be integrated in an endoscopic training and assessment curriculum for transplantations surgeons.
Cabanis, Emmanuel-Alain; Gombergh, Rodolphe; Castro, Albert; Gandjbakhch, Iradj; Iba-Zizen, Marie-Thérèse; Dubois, François
2011-06-01
Progress in HR-CTdata processing has led to lower X-ray exposure and to better diagnostic performance. We describe 19 adult patients (among 5000) examined by HR CT with 64 detectors, acquisition and exposure protocols in mSv, spiral, 0.6-mm slices, 5To PACS. After the two usual processing steps (60 gray values, 5122 and 10242 matrices, dedicated workstations for coronaroscopy and virtual coloscopy, 2D multiplanar reformation, surfacic, 3D volumes with dissection and navigation), a third original data processing step on additional workstations was added. Variable matrix extrapolated images, flexible colored curves (different from anatomical conventions), lighting (sources) and transparencies (unavailable with traditional endoscopy) were used. The digital film is a 16-minute "journey "consisting of 19 endo-body navigations in 5 regions, from the head to the bronchi, from the heart to the coronary arteries, and from the digestive tract to the abdomen and pelvis. One possible application is post-operative verification of an aortic graft. The movie is illustrated here with ten plates. This new approach is cost-effective and beneficial for the patient, in terms of early diagnosis and therapeutic follow-up. Ethical issues are also examined.
Design and evaluation of an augmented reality simulator using leap motion.
Wright, Trinette; de Ribaupierre, Sandrine; Eagleson, Roy
2017-10-01
Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system.
Endoscopic training: A nationwide survey of French fellows in gastroenterology.
Amiot, Aurélien; Conroy, Guillaume; Le Baleur, Yann; Winkler, Jérôme; Palazzo, Maxime; Treton, Xavier
2018-04-01
During their 4 years of training, French fellows in gastroenterology should acquire theoretical and practical competency in gastrointestinal (GI) endoscopy. To evaluate the delivery of endoscopy training to French GI fellows and perception of learning. A nationwide electronic survey was carried out of French GI fellows using an anonymous, 17-item electronic questionnaire. A total of 291 out of 484 (60%) GI fellows responded to the survey. Only 40% of subjects had access to theoretical training and/or virtual simulators. Only 49% and 35% of fourth year fellows had reached the threshold numbers of EGD and colonoscopies recommended by the European section and Board of gastroenterology and hepatology. Sixty-two percent and 57% of trainees reported having insufficient knowledge in interpreting gastric and colic lesions. Access to dedicated endoscopy activity for at least 8 weeks during the year was the only independent factor associated with the achievement of the recommended annual threshold number of procedures. The access of fellows to theoretical training and to preclinical virtual simulators is still insufficient. Personalized support and regular assessment of cognitive and technical acquisition over the 4 years of training seems to be necessary. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Chen, Guan-Chun; Lin, Chia-Hung; Hsieh, Kai-Sheng; Du, Yi-Chun; Chen, Tainsong
2015-01-01
This study proposes virtual-reality (VR) simulator system for double interventional cardiac catheterization (ICC) using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery. It needs specific skills and experiences for young surgeons or postgraduate year (PGY) students to operate a Berman catheter and a pigtail catheter in the inside of the human body and requires avoiding damaging vessels. To improve the training in inserting catheters, a double-catheter mechanism is designed for the ICC procedures. A fractional-order vascular access tracker is used to trace the senior surgeons' consoled trajectories and transmit the frictional feedback and visual feedback during the insertion of catheters. Based on the clinical feeling through the aortic arch, vein into the ventricle, or tortuous blood vessels, haptic force producer is used to mock the elasticity of the vessel wall using voice coil motors (VCMs). The VR establishment with surgeons' consoled vessel trajectories and hand feeling is achieved, and the experimental results show the effectiveness for the double ICC procedures. PMID:26171419
Design and evaluation of an augmented reality simulator using leap motion
de Ribaupierre, Sandrine; Eagleson, Roy
2017-01-01
Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system. PMID:29184667
NASA Astrophysics Data System (ADS)
Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro
2003-05-01
This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.
21 CFR 876.1500 - Endoscope and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... within this generic type of device include cleaning accessories for endoscopes, photographic accessories for endoscopes, nonpowered anoscopes, binolcular attachments for endoscopes, pocket battery boxes... endoscope, smoke removal tube, rechargeable battery box, pocket battery box, bite block for endoscope, and...
21 CFR 876.1500 - Endoscope and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... within this generic type of device include cleaning accessories for endoscopes, photographic accessories for endoscopes, nonpowered anoscopes, binolcular attachments for endoscopes, pocket battery boxes... endoscope, smoke removal tube, rechargeable battery box, pocket battery box, bite block for endoscope, and...
21 CFR 876.1500 - Endoscope and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... within this generic type of device include cleaning accessories for endoscopes, photographic accessories for endoscopes, nonpowered anoscopes, binolcular attachments for endoscopes, pocket battery boxes... endoscope, smoke removal tube, rechargeable battery box, pocket battery box, bite block for endoscope, and...
21 CFR 876.1500 - Endoscope and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... within this generic type of device include cleaning accessories for endoscopes, photographic accessories for endoscopes, nonpowered anoscopes, binolcular attachments for endoscopes, pocket battery boxes... endoscope, smoke removal tube, rechargeable battery box, pocket battery box, bite block for endoscope, and...
21 CFR 876.1500 - Endoscope and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... within this generic type of device include cleaning accessories for endoscopes, photographic accessories for endoscopes, nonpowered anoscopes, binolcular attachments for endoscopes, pocket battery boxes... endoscope, smoke removal tube, rechargeable battery box, pocket battery box, bite block for endoscope, and...
Vasquez, Ciro A; Casey, Michael; Folzenlogen, Zach; Ormond, David R; Lillehei, Kevin; Youssef, A Samy
2017-07-01
Third ventricular cerebrospinal fluid (CSF) cysts of thalamic origin are rare. The objective of this study is to review their possible pathogenesis, clinical presentation, and management strategies with a case series describing management via an endoscopic approach with fenestration using a single burr-hole technique. A systematic literature review of reported cases of thalamic cysts was conducted with further meta-analysis of CSF cysts that involve the third ventricle. The mode of presentation, pathologic analysis, surgical management, and outcomes were analyzed. Twenty-two studies reported between 1990 and 2013 described 42 cases of thalamic cyst. Of those cases, 13 were consistent with CSF cyst that originated in the thalamus and involved the third ventricle. Eight cases (61.5%) were treated via endoscopic fenestration, 2 cases (15.4%) were surgically drained, 2 cases (15.4%) were stereotactically aspirated, and 1 case (7.69%) was observed. The most common presenting symptoms were gait disturbance (26.3%) and headaches (26.3%) followed by tremors (15.8%) and weakness (15.8%). In our series, a single burr-hole technique was a successful definitive treatment, with an average period of 23 months. Third ventricular CSF cysts of thalamic origin most commonly present with hydrocephalus. They can be safely definitively treated via endoscopic fenestration to the CSF circulation using a single burr-hole technique. Long-term follow-up shows lasting improvement in symptoms without reaccumulation of the cyst. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brinson, James R.
The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.
The CAVE (TM) automatic virtual environment: Characteristics and applications
NASA Technical Reports Server (NTRS)
Kenyon, Robert V.
1995-01-01
Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.
Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng
2017-06-20
The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.
Kwan, T.J.T.; Snell, C.M.
1987-03-31
A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.
Statham, Melissa McCarty; Willging, J Paul
2010-10-01
Guidelines issued by the Association of Operating Room Nurses and the Association of Professionals in Infection Control and Epidemiology recommend high-level disinfection (HLD) for semicritical instruments, such as flexible endoscopes. We aim to examine the durability of endoscopes to continued use and automated HLD. We report the number of duty cycles a flexible endoscope can withstand before repairs should be anticipated. Retrospective review. A total of 4,336 endoscopic exams and subsequent disinfection cycles were performed with 60 flexible endoscopes in an outpatient tertiary pediatric otolaryngology practice from 2005 to 2009. All endoscopes were systemically cleaned with mechanical cleansing followed by leak testing, enzymatic cleaning, and exposure to Orthophthaldehyde (0.55%) for 5 minutes at a temperature of at least 25°C, followed by rinsing for 3 minutes. A total of 77 repairs were performed, 48 major (average cost $3,815.97), and 29 minor (average cost $326.85). On average, the 2.2-mm flexible endoscopes were utilized for 61.9 examinations before major repair was needed, whereas the 3.6 mm endoscopes were utilized for 154.5 exams before needing minor repairs. No major repairs have been needed to date on the 3.6-mm endoscopes. Automated endoscope reprocessor use for HLD is an effective means to disinfect and process flexible endoscopes. This minimizes variability in the processing of the endoscopes and maximizes the rate of successful HLD. Even when utilizing standardized, automated HLD and limiting the number of personnel processing the endoscopes, smaller fiberoptic endoscopes demonstrate a shortened time interval between repairs than that seen with the larger endoscopes. Laryngoscope, 2010.
Venkatesan, Santhosh K.; Dubey, Vikash Kumar
2012-01-01
Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471
Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn
We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less
Sulfonylureas and Glinides as New PPARγ Agonists:. Virtual Screening and Biological Assays
NASA Astrophysics Data System (ADS)
Scarsi, Marco; Podvinec, Michael; Roth, Adrian; Hug, Hubert; Kersten, Sander; Albrecht, Hugo; Schwede, Torsten; Meyer, Urs A.; Rücker, Christoph
2007-12-01
This work combines the predictive power of computational drug discovery with experimental validation by means of biological assays. In this way, a new mode of action for type 2 diabetes drugs has been unvealed. Most drugs currently employed in the treatment of type 2 diabetes either target the sulfonylurea receptor stimulating insulin release (sulfonylureas, glinides), or target PPARγ improving insulin resistance (thiazolidinediones). Our work shows that sulfonylureas and glinides bind to PPARγ and exhibit PPARγ agonistic activity. This result was predicted in silico by virtual screening and confirmed in vitro by three biological assays. This dual mode of action of sulfonylureas and glinides may open new perspectives for the molecular pharmacology of antidiabetic drugs, since it provides evidence that drugs can be designed which target both the sulfonylurea receptor and PPARγ. Targeting both receptors could in principle allow to increase pancreatic insulin secretion, as well as to improve insulin resistance.
Virtual prototyping of a semi-active transfemoral prosthetic leg.
Lui, Zhen Wei; Awad, Mohammed I; Abouhossein, Alireza; Dehghani-Sanij, Abbas A; Messenger, Neil
2015-05-01
This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis-environment interaction for level ground walking. Articulated ankle-foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass. © IMechE 2015.
Amat, Beatriz; Esselmann, Albert; Reichle, Guenther; Rohde, Hans-Juergen; Westhoff, Michael; Freitag, Lutz
2012-01-01
The established endoscopic treatment of web-like tracheobronchial stenosis is laser vaporization, but the appearance on the market of a new cutting mode with a lower coagulation effect has been proposed as an alternative to laser due to less injury to the tissue. To study the clinical and functional consequences, as well as the side effects of this technique. Afterwards, we investigated whether the use of an electrosurgical knife with this technique is as effective and convenient as an ND-YAG-laser. Between March 2005 and July 2007, included for study were 22 patients who had undergone 34 interventional bronchoscopy procedures with the VIO-300-D radiofrequency system, using a mode of the Endo-cut I program in conjunction with the reusable knife electrode. All of the patients treated (100%) presented improvements in their symptoms, in the tracheobronchial lumen diameter and in lung function, which were statistically significant. Symptom-free time was 157 ± 93 days. There was an overall decrease observed in mean obstruction (P<.001). Improvements in FVC (P=.01), Raw (P=.0016) and RV/TLC (P=.01) were significantly significant. Less than 50% of the patients needed a second intervention. These patients were compared retrospectively with a similar group of 22 patients treated with Nd-YAG laser. The follow-up analysis showed that only 18% (4/22) of the patients treated with this new technique presented fibrin, compared with 41% (9/22) of those treated with laser therapy (P<.001). The use of this technique is effective for the treatment of benign web-like tracheobronchial stenosis as all the patients showed clinical and functional improvement, and less than 50% required a second intervention. In comparison with laser therapy, an advantage of this technique is that less fibrin is produced, probably due to the reduced anti-coagulation effect. Copyright © 2011 SEPAR. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.
2011-12-01
WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.
Mirror-image-induced magnetic modes.
Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco
2013-01-22
Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.
1992-03-01
This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
Variation in Quality of Urgent Health Care Provided During Commercial Virtual Visits.
Schoenfeld, Adam J; Davies, Jason M; Marafino, Ben J; Dean, Mitzi; DeJong, Colette; Bardach, Naomi S; Kazi, Dhruv S; Boscardin, W John; Lin, Grace A; Duseja, Reena; Mei, Y John; Mehrotra, Ateev; Dudley, R Adams
2016-05-01
Commercial virtual visits are an increasingly popular model of health care for the management of common acute illnesses. In commercial virtual visits, patients access a website to be connected synchronously-via videoconference, telephone, or webchat-to a physician with whom they have no prior relationship. To date, whether the care delivered through those websites is similar or quality varies among the sites has not been assessed. To assess the variation in the quality of urgent health care among virtual visit companies. This audit study used 67 trained standardized patients who presented to commercial virtual visit companies with the following 6 common acute illnesses: ankle pain, streptococcal pharyngitis, viral pharyngitis, acute rhinosinusitis, low back pain, and recurrent female urinary tract infection. The 8 commercial virtual visit websites with the highest web traffic were selected for audit, for a total of 599 visits. Data were collected from May 1, 2013, to July 30, 2014, and analyzed from July 1, 2014, to September 1, 2015. Completeness of histories and physical examinations, the correct diagnosis (vs an incorrect or no diagnosis), and adherence to guidelines of key management decisions. Sixty-seven standardized patients completed 599 commercial virtual visits during the study period. Histories and physical examinations were complete in 417 visits (69.6%; 95% CI, 67.7%-71.6%); diagnoses were correctly named in 458 visits (76.5%; 95% CI, 72.9%-79.9%), and key management decisions were adherent to guidelines in 325 visits (54.3%; 95% CI, 50.2%-58.3%). Rates of guideline-adherent care ranged from 206 visits (34.4%) to 396 visits (66.1%) across the 8 websites. Variation across websites was significantly greater for viral pharyngitis and acute rhinosinusitis (adjusted rates, 12.8% to 82.1%) than for streptococcal pharyngitis and low back pain (adjusted rates, 74.6% to 96.5%) or ankle pain and recurrent urinary tract infection (adjusted rates, 3.4% to 40.4%). No statistically significant variation in guideline adherence by mode of communication (videoconference vs telephone vs webchat) was found. Significant variation in quality was found among companies providing virtual visits for management of common acute illnesses. More variation was found in performance for some conditions than for others, but no variation by mode of communication.
Park, Soon Hong; Sung, Sang Hun; Lee, Seung Jun; Jung, Min Kyu; Kim, Sung Kook
2012-01-01
Purpose Gastric mucosal neoplastic lesions should have characteristic endoscopic features for successful endoscopic submucosal dissection. Materials and Methods Out of the 1,010 endoscopic submucosal dissection, we enrolled 62 patients that had the procedure cancelled. Retrospectively, whether the reasons for cancelling the endoscopic submucosal dissection were consistent with the indications for an endoscopic submucosal dissection were assessed by analyzing the clinical outcomes of the patients that had the surgery. Results The cases were divided into two groups; the under-diagnosed group (30 cases; unable to perform an endoscopic submucosal dissection) and the over-diagnosed group (32 cases; unnecessary to perform an endoscopic submucosal dissection), according to the second endoscopic findings, compared with the index conventional white light image. There were six cases in the under-diagnosed group with advanced gastric cancer on the second conventional white light image endoscopy, 17 cases with submucosal invasion on endoscopic ultrasonography findings, 5 cases with a size greater than 3 cm and ulcer, 1 case with diffuse infiltrative endoscopic features, and 1 case with lymph node involvement on computed tomography. A total of 25 patients underwent a gastrectomy to remove a gastric adenocarcinoma. The overall accuracy of the decision to cancel the endoscopic submucosal dissection was 40% (10/25) in the subgroup that had the surgery. Conclusions The accuracy of the decision to cancel the endoscopic submucosal dissection, after conventional white light image and endoscopic ultrasonography, was low in this study. Other diagnostic options are needed to arrive at an accurate decision on whether to perform a gastric endoscopic submucosal dissection. PMID:22792522
Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.
2014-01-01
Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071
Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery
Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo
2014-01-01
Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869
Endoscope field of view measurement.
Wang, Quanzeng; Khanicheh, Azadeh; Leiner, Dennis; Shafer, David; Zobel, Jurgen
2017-03-01
The current International Organization for Standardization (ISO) standard (ISO 8600-3: 1997 including Amendment 1: 2003) for determining endoscope field of view (FOV) does not accurately characterize some novel endoscopic technologies such as endoscopes with a close focus distance and capsule endoscopes. We evaluated the endoscope FOV measurement method (the FOV WS method) in the current ISO 8600-3 standard and proposed a new method (the FOV EP method). We compared the two methods by measuring the FOV of 18 models of endoscopes (one device for each model) from seven key international manufacturers. We also estimated the device to device variation of two models of colonoscopes by measuring several hundreds of devices. Our results showed that the FOV EP method was more accurate than the FOV WS method, and could be used for all endoscopes. We also found that the labelled FOV values of many commercial endoscopes are significantly overstated. Our study can help endoscope users understand endoscope FOV and identify a proper method for FOV measurement. This paper can be used as a reference to revise the current endoscope FOV measurement standard.
Endoscope field of view measurement
Wang, Quanzeng; Khanicheh, Azadeh; Leiner, Dennis; Shafer, David; Zobel, Jurgen
2017-01-01
The current International Organization for Standardization (ISO) standard (ISO 8600-3: 1997 including Amendment 1: 2003) for determining endoscope field of view (FOV) does not accurately characterize some novel endoscopic technologies such as endoscopes with a close focus distance and capsule endoscopes. We evaluated the endoscope FOV measurement method (the FOVWS method) in the current ISO 8600-3 standard and proposed a new method (the FOVEP method). We compared the two methods by measuring the FOV of 18 models of endoscopes (one device for each model) from seven key international manufacturers. We also estimated the device to device variation of two models of colonoscopes by measuring several hundreds of devices. Our results showed that the FOVEP method was more accurate than the FOVWS method, and could be used for all endoscopes. We also found that the labelled FOV values of many commercial endoscopes are significantly overstated. Our study can help endoscope users understand endoscope FOV and identify a proper method for FOV measurement. This paper can be used as a reference to revise the current endoscope FOV measurement standard. PMID:28663840
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
NASA Astrophysics Data System (ADS)
Han, Young-Min; Choi, Seung-Bok
2008-12-01
This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.
Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept
NASA Astrophysics Data System (ADS)
Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.
2016-10-01
This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.
High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign
NASA Astrophysics Data System (ADS)
Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.
2009-11-01
We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.
Novel Concept of Attaching Endoscope Holder to Microscope for Two Handed Endoscopic Tympanoplasty.
Khan, Mubarak M; Parab, Sapna R
2016-06-01
The well established techniques in tympanoplasty are routinely performed with operating microscopes for many decades now. Endoscopic ear surgeries provide minimally invasive approach to the middle ear and evolving new science in the field of otology. The disadvantage of endoscopic ear surgeries is that it is one-handed surgical technique as the non-dominant left hand of the surgeon is utilized for holding and manipulating the endoscope. This necessitated the need for development of the endoscope holder which would allow both hands of surgeon to be free for surgical manipulation and also allow alternate use of microscope during tympanoplasty. To report the preliminary utility of our designed and developed endoscope holder attachment gripping to microscope for two handed technique of endoscopic tympanoplasty. Prospective Non Randomized Clinical Study. Our endoscope holder attachment for microscope was designed and developed to aid in endoscopic ear surgery and to overcome the disadvantage of single handed endoscopic surgery. It was tested for endoscopic Tympanoplasty. The design of the endoscope holder attachment is described in detail along with its manipulation and manoeuvreing. A total of 78 endoholder assisted type 1 endoscopic cartilage tympanoplasties were operated to evaluate its feasibility for the two handed technique and to evaluate the results of endoscopic type 1 cartilage tympanoplasty. In early follow up period ranging from 6 to 20 months, the graft uptake was seen in 76 ears with one residual perforation and 1 recurrent perforations giving a success rate of 97.435 %. Our endocsope holder attachment for gripping microscope is a good option for two handed technique in endoscopic type 1 cartilage tympanoplasty. The study reports the successful application and use of our endoscope holder attachment for gripping microscope in two handed technique of endoscopic type 1 cartilage tympanoplasty and comparable results with microscopic techniques. IV.
Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study
Bae, Jung Kweon; Vavilin, Andrey; You, Joon S; Kim, Hyeongeun; Ryu, Seon Young; Jang, Jeong Hun
2017-01-01
Background Endoscopic technique is often applied for the diagnosis of diseases affecting internal organs and image-guidance of surgical procedures. Although the endoscope has become an indispensable tool in the clinic, its utility has been limited to medical offices or operating rooms because of the large size of its ancillary devices. In addition, the basic design and imaging capability of the system have remained relatively unchanged for decades. Objective The objective of this study was to develop a smartphone-based endoscope system capable of advanced endoscopic functionalities in a compact size and at an affordable cost and to demonstrate its feasibility of point-of-care through human subject imaging. Methods We developed and designed to set up a smartphone-based endoscope system, incorporating a portable light source, relay-lens, custom adapter, and homebuilt Android app. We attached three different types of existing rigid or flexible endoscopic probes to our system and captured the endoscopic images using the homebuilt app. Both smartphone-based endoscope system and commercialized clinical endoscope system were utilized to compare the imaging quality and performance. Connecting the head-mounted display (HMD) wirelessly, the smartphone-based endoscope system could superimpose an endoscopic image to real-world view. Results A total of 15 volunteers who were accepted into our study were captured using our smartphone-based endoscope system, as well as the commercialized clinical endoscope system. It was found that the imaging performance of our device had acceptable quality compared with that of the conventional endoscope system in the clinical setting. In addition, images captured from the HMD used in the smartphone-based endoscope system improved eye-hand coordination between the manipulating site and the smartphone screen, which in turn reduced spatial disorientation. Conclusions The performance of our endoscope system was evaluated against a commercial system in routine otolaryngology examinations. We also demonstrated and evaluated the feasibility of conducting endoscopic procedures through a custom HMD. PMID:28751302
Virtual reconstruction of the skeletal labyrinth of two lamnid sharks (Elasmobranchii, Lamniformes).
Schnetz, L; Kriwet, J; Pfaff, C
2017-03-01
The first virtual reconstruction of the skeletal labyrinth of the porbeagle shark Lamna nasus and the shortfin mako shark Isurus oxyrinchus is presented here using high-resolution micro-computed tomography. The results, in comparison with previously published information, suggest relationships between skeletal labyrinth morphology and locomotion mode in chondrichthyans, but also show that further studies are required to establish such connections. Nevertheless, this study adds to the knowledge of the skeletal labyrinth morphology in two apex elasmobranch species. © 2016 The Fisheries Society of the British Isles.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)
2006-01-01
Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.
Katiyar, Prashant; Nijhawan, Sandeep; Saradava, Vimal; Nagaich, Neeraj; Gupta, Gaurav; Mathur, Amit; Nepalia, Subhash
2013-11-01
Endoscopic balloon dilatation (EBD) is an effective therapy for caustic-induced gastric outlet obstruction (GOO). Gaining access to the stricture site is the most important step. It is sometimes difficult to negotiate a balloon through the stricture with a front-viewing endoscope due to deformed anatomy of stomach. To overcome this technical difficulty, a side-viewing endoscope can be used. There is limited data regarding the use of side-viewing endoscopes in EBD. We here report on the short-term efficacy and safety of EBD in caustic-induced GOO. In technically difficult cases, a side-viewing endoscope was used for EBD and its efficacy and safety were assessed. The study included 25 patients with caustic-induced GOO. Patients underwent EBD using a through-the-scope balloon. Initial balloon dilatation was performed with a front-viewing endoscope. A side-viewing endoscope was used where negotiation across the stricture failed with a front-viewing endoscope. Dilatation was started at 8 mm diameter and was performed at 1-week intervals. The end point of dilatation was 15 mm diameter. In 18 patients successful balloon dilatation was possible with a front-viewing endoscope. A side-viewing endoscope was used in six patients as negotiation across the stricture was not possible with a front-viewing endoscope. In all six patients negotiation across the stricture followed by successful dilatation was successful with a side-viewing endoscope. Of the 25 patients included in this study, 24 (96%) achieved procedural success (18 with a front-viewing endoscope and 6 with a side-viewing endoscope) in 3-9 sessions. Our results show that EBD is a safe and effective option for caustic-induced GOO and in difficult cases a side-viewing endoscope can be used to achieve technical success.
AOF LTAO mode: reconstruction strategy and first test results
NASA Astrophysics Data System (ADS)
Oberti, Sylvain; Kolb, Johann; Le Louarn, Miska; La Penna, Paolo; Madec, Pierre-Yves; Neichel, Benoit; Sauvage, Jean-François; Fusco, Thierry; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Arsenault, Robin
2016-07-01
GALACSI is the Adaptive Optics (AO) system serving the instrument MUSE in the framework of the Adaptive Optics Facility (AOF) project. Its Narrow Field Mode (NFM) is a Laser Tomography AO (LTAO) mode delivering high resolution in the visible across a small Field of View (FoV) of 7.5" diameter around the optical axis. From a reconstruction standpoint, GALACSI NFM intends to optimize the correction on axis by estimating the turbulence in volume via a tomographic process, then projecting the turbulence profile onto one single Deformable Mirror (DM) located in the pupil, close to the ground. In this paper, the laser tomographic reconstruction process is described. Several methods (virtual DM, virtual layer projection) are studied, under the constraint of a single matrix vector multiplication. The pseudo-synthetic interaction matrix model and the LTAO reconstructor design are analysed. Moreover, the reconstruction parameter space is explored, in particular the regularization terms. Furthermore, we present here the strategy to define the modal control basis and split the reconstruction between the Low Order (LO) loop and the High Order (HO) loop. Finally, closed loop performance obtained with a 3D turbulence generator will be analysed with respect to the most relevant system parameters to be tuned.
Potential capacity of endoscopic screening for gastric cancer in Japan.
Hamashima, Chisato; Goto, Rei
2017-01-01
In 2016, the Japanese government decided to introduce endoscopic screening for gastric cancer as a national program. To provide endoscopic screening nationwide, we estimated the proportion of increase in the number of endoscopic examinations with the introduction of endoscopic screening, based on a national survey. The total number of endoscopic examinations has increased, particularly in clinics. Based on the national survey, the total number of participants in gastric cancer screening was 3 784 967. If 30% of the participants are switched from radiographic screening to endoscopic screening, approximately 1 million additional endoscopic examinations are needed. In Japan, the participation rates in gastric cancer screening and the number of hospitals and clinics offering upper gastrointestinal endoscopy vary among the 47 prefectures. If the participation rates are high and the numbers of hospitals and clinics are small, the proportion of increase becomes larger. Based on the same assumption, 50% of big cities can provide endoscopic screening with a 5% increase in the total number of endoscopic examinations. However, 16.7% of the medical districts are available for endoscopic screening within a 5% increase in the total number of endoscopic examinations. Despite the Japanese government's decision to introduce endoscopic screening for gastric cancer nationwide, its immediate introduction remains difficult because of insufficient medical resources in rural areas. This implies that endoscopic screening will be initially introduced to big cities. To promote endoscopic screening for gastric cancer nationwide, the disparity of medical resources must first be resolved. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Borehole radar interferometry revisited
Liu, Lanbo; Ma, Chunguang; Lane, John W.; Joesten, Peter K.
2014-01-01
Single-hole, multi-offset borehole-radar reflection (SHMOR) is an effective technique for fracture detection. However, commercial radar system limitations hinder the acquisition of multi-offset reflection data in a single borehole. Transforming cross-hole transmission mode radar data to virtual single-hole, multi-offset reflection data using a wave interferometric virtual source (WIVS) approach has been proposed but not fully demonstrated. In this study, we compare WIVS-derived virtual single-hole, multi-offset reflection data to real SHMOR radar reflection profiles using cross-hole and single-hole radar data acquired in two boreholes located at the University of Connecticut (Storrs, CT USA). The field data results are similar to full-waveform numerical simulations developed for a two-borehole model. The reflection from the adjacent borehole is clearly imaged by both the real and WIVS-derived virtual reflection profiles. Reflector travel-time changes induced by deviation of the two boreholes from the vertical can also be observed on the real and virtual reflection profiles. The results of this study demonstrate the potential of the WIVS approach to improve bedrock fracture imaging for hydrogeological and petroleum reservoir development applications.
Programmable multimode quantum networks
Armstrong, Seiji; Morizur, Jean-François; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A.
2012-01-01
Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement. PMID:22929783
ATM LAN Emulation: Getting from Here to There.
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Discusses current LAN (local area network) configuration and explains ATM (asynchronous transfer mode) as the future telecommunications transport. Highlights include LAN emulation, which enables the interconnection of legacy LANs and the new ATM environment; virtual LANs; broadcast servers; and standards. (LRW)
DOT National Transportation Integrated Search
2015-02-01
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at : demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, inter...
Debond Analyses for Stitched Composite Structures
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.
1998-01-01
The effect of stitching on mode I and mode II strain energy release rates for debond configurations is studied using an analysis based on plate finite elements and the virtual crack closure technique. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered with both the compliances and failure loads assumed to be independent. The mode I strain energy release rate, G(sub I), was shown to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds, however, the mode II strain energy release rate, G(sub II), continued to be of significant magnitude over the range of debond lengths considered.
Exploration of multiple Sortase A protein conformations in virtual screening
NASA Astrophysics Data System (ADS)
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-02-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds.
Exploration of multiple Sortase A protein conformations in virtual screening
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-01-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds. PMID:26846342
Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.
Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M
2018-06-04
Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.
Eichhorn, Klaus Wolfgang; Westphal, Ralf; Rilk, Markus; Last, Carsten; Bootz, Friedrich; Wahl, Friedrich; Jakob, Mark; Send, Thorsten
2017-10-01
Having one hand occupied with the endoscope is the major disadvantage for the surgeon when it comes to functional endoscopic sinus surgery (FESS). Only the other hand is free to use the surgical instruments. Tiredness or frequent instrument changes can thus lead to shaky endoscopic images. We collected the pose data (position and orientation) of the rigid 0° endoscope and all the instruments used in 16 FESS procedures with manual endoscope guidance as well as robot-assisted endoscope guidance. In combination with the DICOM CT data, we tracked the endoscope poses and workspaces using self-developed tracking markers. All surgeries were performed once with the robot and once with the surgeon holding the endoscope. Looking at the durations required, we observed a decrease in the operating time because one surgeon doing all the procedures and so a learning curve occurred what we expected. The visual inspection of the specimens showed no damages to any of the structures outside the paranasal sinuses. Robot-assisted endoscope guidance in sinus surgery is possible. Further CT data, however, are desirable for the surgical analysis of a tracker-based navigation within the anatomic borders. Our marker-based tracking of the endoscope as well as the instruments makes an automated endoscope guidance feasible. On the subjective side, we see that RASS brings a relief for the surgeon.
Endoscopic root canal treatment.
Moshonov, Joshua; Michaeli, Eli; Nahlieli, Oded
2009-10-01
To describe an innovative endoscopic technique for root canal treatment. Root canal treatment was performed on 12 patients (15 teeth), using a newly developed endoscope (Sialotechnology), which combines an endoscope, irrigation, and a surgical microinstrument channel. Endoscopic root canal treatment of all 15 teeth was successful with complete resolution of all symptoms (6-month follow-up). The novel endoscope used in this study accurately identified all microstructures and simplified root canal treatment. The endoscope may be considered for use not only for preoperative observation and diagnosis but also for active endodontic treatment.
Endoscopic Rectus Abdominis and Prepubic Aponeurosis Repairs for Treatment of Athletic Pubalgia.
Matsuda, Dean K; Matsuda, Nicole A; Head, Rachel; Tivorsak, Tanya
2017-02-01
Review of the English orthopaedic literature reveals no prior report of endoscopic repair of rectus abdominis tears and/or prepubic aponeurosis detachment. This technical report describes endoscopic reattachment of an avulsed prepubic aponeurosis and endoscopic repair of a vertical rectus abdominis tear immediately after endoscopic pubic symphysectomy for coexistent recalcitrant osteitis pubis as a single-stage outpatient surgery. Endoscopic rectus abdominis repair and prepubic aponeurosis repair are feasible surgeries that complement endoscopic pubic symphysectomy for patients with concurrent osteitis pubis and expand the less invasive options for patients with athletic pubalgia.
Analysis of the color rendition of flexible endoscopes
NASA Astrophysics Data System (ADS)
Murphy, Edward M.; Hegarty, Francis J.; McMahon, Barry P.; Boyle, Gerard
2003-03-01
Endoscopes are imaging devices routinely used for the diagnosis of disease within the human digestive tract. Light is transmitted into the body cavity via incoherent fibreoptic bundles and is controlled by a light feedback system. Fibreoptic endoscopes use coherent fibreoptic bundles to provide the clinician with an image. It is also possible to couple fibreoptic endoscopes to a clip-on video camera. Video endoscopes consist of a small CCD camera, which is inserted into gastrointestinal tract, and associated image processor to convert the signal to analogue RGB video signals. Images from both types of endoscope are displayed on standard video monitors. Diagnosis is dependent upon being able to determine changes in the structure and colour of tissues and biological fluids, and therefore is dependent upon the ability of the endoscope to reproduce the colour of these tissues and fluids with fidelity. This study investigates the colour reproduction of flexible optical and video endoscopes. Fibreoptic and video endoscopes alter image colour characteristics in different ways. The colour rendition of fibreoptic endoscopes was assessed by coupling them to a video camera and applying video colorimetric techniques. These techniques were then used on video endoscopes to assess how the colour rendition of video endoscopes compared with that of optical endoscopes. In both cases results were obtained at fixed illumination settings. Video endoscopes were then assessed with varying levels of illumination. Initial results show that at constant luminance endoscopy systems introduce non-linear shifts in colour. Techniques for examining how this colour shift varies with illumination intensity were developed and both methodology and results will be presented. We conclude that more rigorous quality assurance is required to reduce colour error and are developing calibration procedures applicable to medical endoscopes.
Selva, Dinesh
2008-01-01
Minimally invasive ″keyhole″ surgery performed using endoscopic visualization is increasing in popularity and is being used by almost all surgical subspecialties. Within ophthalmology, however, endoscopic surgery is not commonly performed and there is little literature on the use of the endoscope in orbital surgery. Transorbital use of the endoscope can greatly aid in visualizing orbital roof lesions and minimizing the need for bone removal. The endoscope is also useful during decompression procedures and as a teaching aid to train orbital surgeons. In this article, we review the history of endoscopic orbital surgery and provide an overview of the technique and describe situations where the endoscope can act as a useful adjunct to orbital surgery. PMID:18158397
Endoscopic laser incision of the prostate
NASA Astrophysics Data System (ADS)
Gilbert, Peter T. O.
1998-07-01
To reduce morbidity and costs of transurethral incision of the prostate in cases with bladder neck obstruction and insignificant prostatic hyperplasia, a Nd:YAG laser, wavelength 1064 nm, was used for endoscopic tissue vaporization. Twenty seven patients suffering from severe urinary obstructive symptoms due to a high-riding vesical neck, were operated on under general anesthesia. Under endoscopic control and by means of a 600 micrometer lateral- firing quartz fiber two incisions were performed, starring at the 7 o'clock and 5 o'clock position, respectively, of the bladder neck and following the floor of the prostatic urethra to either side of the verumontanum. Vaporization was achieved with the fiber in permanent tissue contact and the laser working at 60 W power in continuous mode. Total energy averaged 10,000 J. No catheter was inserted and all patients were discharged on the same day after the first micturition. Anti-inflammatory agents were administered for two weeks. No serious complications were encountered postoperatively. Results were evaluated by means of clinical examination, uroflowmetry, sonographic measurement of residual urine and the International Prostate Symptom Score (IPSS) questionnaire. Considering a mean follow up of 15 months, all patients experienced considerable improvement of their obstruction, their urinary peak flow averaging 21 ml/s and their IPSS score 6.7 (preoperatively 12.2 ml/s and 21.8, respectively). As compared to the Collings knife, laser-incision of the prostate carries no risk of bleeding, thus obviating the need of catheterization. It can safely be done in an outpatient setting, probably as well under local as under general anesthesia.
Clinical and histologic studies of olfactory outcomes after nasoseptal flap harvesting.
Kim, Sang-Wook; Park, Kyung Bum; Khalmuratova, Roza; Lee, Hong-Kyoung; Jeon, Sea-Yuong; Kim, Dae Woo
2013-07-01
Since the introduction of an endonasal endoscopic approach in transsphenoidal pituitary surgery, reports of perioperative olfactory changes have presented conflicting results. We examined the incidence of olfactory loss in cases of endoscopic transsphenoidal pituitary surgery with skull base repair using the nasoseptal flap (NSF) and the effects of monopolar electrocautery commonly used in designing the NSF. Case-control study. Fifteen patients who underwent endoscopic transsphenoidal pituitary surgery with skull base reconstruction using the NSF were divided into cold knife (n = 8) and electrocautery (n = 7) groups according to the device used in the superior incision of the NSF. Patients were followed regularly to monitor the need for dressing or adhesiolysis around the olfactory cleft. All subjects received olfactory tests before and 6 months after surgery. Septal mucosa specimens obtained during posterior septectomy were incised with different devices, and the degree of mucosal damage was evaluated. One patient in the electrocautery group demonstrated olfactory dysfunction postoperatively, but the other 14 patients showed no decrease in olfaction. In histologic analyses, 55.8% and 76.9% of the mucosal surface showed total epithelial loss when the mucosa was cut with cutting- and coagulation-mode electrocautery, respectively. In contrast, only 20% of the mucosal surface exhibited total epithelial loss when the mucosa was cut with a cold knife (P < .01). Olfactory impairment is not common after use of the NSF. Use of the cold knife in making superior incision may reduce tissue damage with better olfactory outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
[The effect of parecoxib sodium for preemptive analgesia on nasal endoscopic surgery].
Kong, Yonggang; Yang, Xilin; Li, Xinchu
2015-08-01
To evaluate the perioperative analgesic effects of parecoxib sodium in patients undergoing nasal endoscopic surgery. In the randomized, double blind, controlled study, 120 patients undergoing septoplasty were divided into 3 groups (n = 40): A group received parecoxib at a dose of 40 mg by muscle injection 30 min before the operation followed by saline at the same volume every 24 h for 48 h; B group received parecoxib at a dose of 40 mg by muscle injection 30 min before the operation followed by 40 mg every 24 h for 48 h; C group received an equal volume of 0.9% saline at the same time points. Patients were assessed with respect to pain score (VAS), rescue analgesia requirement and the side effects during the operation as well as at 3, 24, 48 h after the surgery. Intra-operative as well as the postoperative pain scores were less in the A group and B group than in the.control group. Compared with group A, group B had significantly lower VAS score at 24 h after the operation, however there were no significant difference on other time points. Fewer participants of both the A and B groups required rescue medication after operation. Administration of parecoxib can provide ideal analgesic effects without serious adverse side effects at the perioperative period for patients who received nasal endoscopic operation. Intramuscular parecoxib (40 mg 30 min before the operation followed 40 mg qd for 48 h) designed as preoperative analgesia mode resulted in sufficient perioperative analgesia that deserves popularization in the clinical works.
Rische, Susanne; Riecken, Bettina; Degenkolb, Johannes; Kayser, Thomas; Caca, Karel
2013-02-01
Transmural endoscopic drainage and necrosectomy have become favored treatment modes for infected pancreatic pseudocysts and necroses. In this analysis, we summarize the outcome of 40 patients with complicated course of acute pancreatitis after endoscopic treatment. From January 2006 through May 2011, 40 patients of our department with complicated pancreatitis were included in this retrospective analysis. All patients underwent endosonographic transgastric puncture followed by wire-guided insertion of one or more double pigtail stents. Patients with extensive necroses were treated repeatedly with transgastric necrosectomy. Treatment success was determined by clinical, laboratory, and radiological parameters. Nine patients had interstitial pancreatitis (IP) with pancreatic pseudocysts. Thirty-one patients had necrotizing pancreatitis (NP) with acute pancreatic necroses (n = 4) or walled-off pancreatic necrosis (n = 27). All patients with IP and nine patients with NP had pseudocysts without solid material and underwent transgastric drainage only. In this group major complications occurred in 11.1% and no mortality was observed. Twenty-two NP patients were treated with additional repeated necrosectomy. In patients with localized peripancreatic necroses (n = 10) no need of surgery or mortality was observed, major complications occurred in 10%. In patients with extensive necroses reaching the lower abdomen (n = 12), three needed subsequent surgery and three died. Transgastric endoscopy is an effective minimally invasive procedure even in patients with advanced pancreatic necroses. Complication rate is low particularly in patients with sole pseudocysts or localized necroses. The extent of the fluid collections and necroses is a new predictive parameter for the outcome of the patients.
Open access gastroscopy: too much to swallow?
Kerrigan, D D; Brown, S R; Hutchinson, G H
1990-01-01
OBJECTIVES--To ascertain the proportion of endoscopic examinations with normal findings in patients referred for gastroscopy through hospital medical staff or directly by their general practitioner and to assess the likely effect of targeting endoscopy in older patients. DESIGN--Retrospective audit of the gastroscopy practice of one consultant from 1986 to 1988 from information recorded on a standard form completed at the time of the examination, which contained details of patients, their endoscopic findings, and mode of referral (open access or clinic). SETTING--One district general hospital. PATIENTS--1545 Consecutive patients from primary catchment area attending for their first gastroscopy; 454 were referred through the outpatient clinic or by hospital colleagues (clinic group) and 1091 were accepted for endoscopy solely on their general practitioner's clinical diagnosis (open access group). RESULTS--Similar numbers (about 40%) of examinations with normal findings were performed in each group, although in patients aged over 40 the proportion with normal findings was significantly higher in the clinic group (p less than 0.03). Endoscopic evidence of gastro-oesophageal reflux disease, peptic ulceration, and gastroduodenal inflammation was equally common in each group; upper gastrointestinal malignancy, however, was significantly more common in patients referred through hospital doctors (5%, 23/454 v 2%, 22/1091 respectively; p less than 0.005) (although many of these patients had already been extensively investigated). IMPLICATIONS--Open access gastroscopy does not increase the number of unnecessary examinations and should become more widely available. Targeting this service to patients aged over 40 would reduce the number of requests but increase the diagnostic yield. PMID:2106992
Lee, J H; Kim, B K; Seol, D C; Byun, S J; Park, K H; Sung, I K; Park, H S; Shim, C S
2013-06-01
Nonvariceal upper gastrointestinal (UGI) bleeding recurs after appropriate endoscopic therapy in 10 % - 15 % of cases. The mortality rate can be as high as 25 % when bleeding recurs, but there is no consensus about the best modality for endoscopic re-treatment. The aim of this study was to evaluate clipping and detachable snaring (CDS) for rescue endoscopic control of nonvariceal UGI hemorrhage. We report a case series of seven patients from a Korean tertiary center who underwent endoscopic hemostasis using the combined method of detachable snares with hemoclips. The success rate of endoscopic hemostasis with CDS was 86 %: six of the seven patients who had experienced primary endoscopic treatment failure or recurrent bleeding after endoscopic hemostasis were treated successfully. In conclusion, rescue endoscopic bleeding control by means of CDS is an option for controlling nonvariceal UGI bleeding when no other method of endoscopic treatment for recurrent bleeding and primary hemostatic failure is possible. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong
1993-01-01
The present paper describes a new explicit virtual-pulse time integral methodology for nonlinear structural dynamics problems. The purpose of the paper is to provide the theoretical basis of the methodology and to demonstrate applicability of the proposed formulations to nonlinear dynamic structures. Different from the existing numerical methods such as direct time integrations or mode superposition techniques, the proposed methodology offers new perspectives and methodology of development, and possesses several unique and attractive computational characteristics. The methodology is tested and compared with the implicit Newmark method (trapezoidal rule) through a nonlinear softening and hardening spring dynamic models. The numerical results indicate that the proposed explicit virtual-pulse time integral methodology is an excellent alternative for solving general nonlinear dynamic problems.
Implementing virtual microscopy improves outcomes in a hematology morphology course.
Brueggeman, Mauri S; Swinehart, Cheryl; Yue, Mary Jane; Conway-Klaassen, Janice M; Wiesner, Stephen M
2012-01-01
In this study, we evaluated the efficacy of virtual microscopy as the primary mode of laboratory instruction in undergraduate level clinical hematology teaching. Distance education (DE) has become a popular option for expanding education and optimizing expenses but continues to be controversial. The challenge of delivering an equitable curriculum to distant locations along with the need to preserve our slide collection directed our effort to digitize the slide sets used in our teaching laboratories. Students enrolled at two performance sites were randomly assigned to either traditional microscopy (TM) or virtual microscopy (VM) instruction. The VM group performed significantly better than the TM group. We anticipate that this approach will play a central role in the distributed delivery of hematology through distance education as new programs are initiated to address workforce shortage needs.
Combined optical coherence tomography and hyper-spectral imaging using a double clad fiber coupler
NASA Astrophysics Data System (ADS)
Guay-Lord, Robin; Lurie, Kristen L.; Attendu, Xavier; Mageau, Lucas; Godbout, Nicolas; Ellerbee Bowden, Audrey K.; Strupler, Mathias; Boudoux, Caroline
2016-03-01
This proceedings shows the combination of Optical Coherence Tomography (OCT) and Hyper-Spectral Imaging (HSI) using a double-clad optical fiber. The single mode core of the fiber is used to transmit OCT signals, while the cladding, with its large collection area, provides an efficient way to capture the reflectance spectrum of the sample. The combination of both methods enables three-dimensional acquisition of sample morphology with OCT, enhanced by the molecular information contained in its hyper-spectral image. We believe that the combination of these techniques could result in endoscopes with enhanced tissue identification capability.
Mistry, N; Coulson, C; George, A
2017-11-01
Digital and mobile device technology in healthcare is a growing market. The introduction of the endoscope-i, the world's first endoscopic mobile imaging system, allows the acquisition of high definition images of the ear, nose and throat (ENT). The system combines the e-i Pro camera app with a bespoke engineered endoscope-i adaptor which fits securely onto the iPhone or iPod touch. Endoscopic examination forms a salient aspect of the ENT work-up. The endoscope-i therefore provides a mobile and compact alternative to the existing bulky endoscopic systems currently in use which often restrict the clinician to the clinic setting. Areas covered: This article gives a detailed overview of the endoscope-i system together with its applications. A review and comparison of alternative devices on the market offering smartphone adapted endoscopic viewing systems is also presented. Expert commentary: The endoscope-i fulfils unmet needs by providing a compact, highly portable, simple to use endoscopic viewing system which is cost-effective and which makes use of smartphone technology most clinicians have in their pocket. The system allows real-time feedback to the patient and has the potential to transform the way that healthcare is delivered in ENT as well as having applications further afield.
Raczynski, Susanne; Teich, Niels; Borte, Gudrun; Wittenburg, Henning; Mössner, Joachim; Caca, Karel
2006-09-01
Endoscopic drainage of pancreatic acute and chronic pseudocysts and pancreatic necrosectomy have been shown to be beneficial for critically ill patients, with complete endoscopic resolution rates of around 80%. Our purpose was to describe an improved endoscopic technique used to treat pancreatic necrosis. Case report. University hospital. Two patients with large retroperitoneal necroses were treated with percutaneous transgastric retroperitoneal flushing tubes and a percutaneous transgastric jejunal feeding tube by standard percutaneous endoscopic gastrostomy access in addition to endoscopic necrosectomy. Intensive percutaneous transgastric flushing in combination with percutaneous normocaloric enteral nutrition and repeated endoscopic necrosectomy led to excellent outcomes in both patients. Small number of patients. The "double percutaneous endoscopic gastrostomy" approach for simultaneous transgastric drainage and normocaloric enteral nutrition in severe cases of pancreatic necroses is safe and effective. It could be a promising improvement to endoscopic transgastric treatment options in necrotizing pancreatitis.
Trulson, Alexander; Küper, Markus Alexander; Trulson, Inga Maria; Minarski, Christian; Grünwald, Leonard; Hirt, Bernhard; Stöckle, Ulrich; Stuby, Fabian
2018-06-14
Dislocated pelvic fractures which require surgical repair are usually operated on via open surgery. Approach-related morbidity is reported with a frequency of up to 30%. The aim of this anatomical study was to prove the feasibility of endoscopic visualisation of the relevant anatomical structures in pelvic surgery and to perform completely endoscopic plate osteosynthesis of the acetabulum with available standard laparoscopic instruments. In four human cadavers, we established an endoscopic preparation of the complete pelvic ring, from the symphysis to the iliosacral joint, including the quadrilateral plate and the sciatic nerve, and performed endoscopic plate osteosynthesis along the iliopectineal line. The endoscopic preparation of the complete pelvic ring and the quadrilateral plate was demonstrated step-by-step, followed by completely endoscopic plate osteosynthesis along the pelvic brim. Endoscopic, radiographic, and schematic pictures are used to illustrate the technique. The completely endoscopic preparation of the pelvic brim and the quadrilateral plate is feasible with available standard laparoscopic instruments. Moreover, plate osteosynthesis could be performed endoscopically. Further research on reduction techniques is necessary when planning to implement this technique into a clinical scenario. Georg Thieme Verlag KG Stuttgart · New York.
Sphincterotomy in patients with gallstones, elevated LFTs and a normal CBD on ERCP.
Siddique, Iqbal; Mohan, Krishna; Khajah, Abdulkareem; Hasan, Fuad; Memon, Anjum; Kalaoui, Maher; al-Shamali, Mohammad; Patty, Istvan; al-Nakib, Basil
2003-01-01
To determine whether an endoscopic sphincterotomy affects outcome in patients with symptomatic gallstones, elevated liver function tests and a normal common bile duct on endoscopic retrograde cholangiopancreatogram. A total of 163 patients with symptomatic gallstones and elevated liver function tests, and found to have a normal common bile duct on endoscopic retrograde cholangiopancreatogram were included in the study. Endoscopic sphincterotomy was performed in 78 (47.8%) patients, while 85 (52.1%) patients did not have an endoscopic sphincterotomy. The two groups were compared for detection of small unseen common bile duct stones/debris, endoscopic retrograde cholangiopancreatogram related complications, and biliary complications after cholecystectomy. Small common bile duct stones/debris were recovered in 11/43 (25.5%) patients who had instrumentation of the common bile duct performed after endoscopic sphincterotomy. Common bile duct instrumentation was not performed in any of the patients without endoscopic sphincterotomy. No patient had any biliary complication after cholecystectomy, both in the immediate postoperative period and on a follow-up of 37.5 +/- 13.6 months (range 17-66). Endoscopic retrograde cholangiopancreatogram related complications occurred in 8 patients who had an endoscopic sphincterotomy and in 2 without endoscopic sphincterotomy (p < 0.05). Performing an endoscopic sphincterotomy in these patients increases the detection of small unseen common bile duct stones/debris without changing the clinical outcome after cholecystectomy. It also increases the endoscopic retrograde cholangiopancreatogram related complication rate, and therefore may not be necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih, E-mail: youngyih@skku.edu
Purpose: In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. Methods: Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer’s machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient’s body contour was reconstructed. The accuracy of the image was confirmed against the CT imagemore » of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine’s components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. Results: All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. Conclusions: The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.« less
The effectiveness of virtual and augmented reality in health sciences and medical anatomy.
Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan
2017-11-01
Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands-on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet-based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P < 0.05), dizziness (40% in VR, P < 0.001), or blurred vision (35% in VR, P < 0.01). Both VR and AR are as valuable for teaching anatomy as tablet devices, but also promote intrinsic benefits such as increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549-559. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The diffusion of virtual communities in health care: concepts and challenges.
Demiris, George
2006-08-01
This paper providers an overview and discussion of virtual communities in health care. Furthermore, we aim to discuss in this context ethical, legal and technical considerations and the current status of research in this domain. We searched medical and social science literature including survey studies, randomized and non-randomized controlled interventions and reviews. The literature indicates that a virtual community in health care as a group of people using telecommunication with the purposes of delivering health care and education, and/or providing support, covers a wide range of clinical specialties, technologies and stakeholders. Examples include peer-to-peer networks, virtual health care delivery and research teams. Ethical challenges including the concepts of identity and deception, privacy and confidentiality and technical issues, such as sociability and usability are discussed. Virtual communities may empower patients and enhance coordination of care services; however, there is not sufficient systematic evidence of the effectiveness of virtual communities on clinical outcomes or patient empowerment. Researchers need to address issues, such as sample sizes and experimental design to further the research field in this domain. When practitioners utilize virtual community tools to communicate with patients or colleagues they have to maximize sociability and usability of this mode of communication, while addressing concerns for privacy and the fear of de-humanizing practice, and the lack of clarity or relevance of current legislative frameworks.
Eyewitness Memory in Face-to-Face and Immersive Avatar-to-Avatar Contexts.
Taylor, Donna A; Dando, Coral J
2018-01-01
Technological advances offer possibilities for innovation in the way eyewitness testimony is elicited. Typically, this occurs face-to-face. We investigated whether a virtual environment, where interviewer and eyewitness communicate as avatars, might confer advantages by attenuating the social and situational demands of a face-to-face interview, releasing more cognitive resources for invoking episodic retrieval mode. In conditions of intentional encoding, eyewitnesses were interviewed 48 h later, either face-to-face or in a virtual environment ( N = 38). Participants in the virtual environment significantly outperformed those interviewed face-to-face on all episodic performance measures - improved correct reporting reduced errors, and increased accuracy. Participants reported finding it easier to admit not remembering event information to the avatar, and finding the avatar easier to talk to. These novel findings, and our pattern of retrieval results indicates the potential of avatar-to-avatar communication in virtual environments, and provide impetus for further research investigating eyewitness cognition in contemporary retrieval contexts.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.
Man, David W K
2018-05-08
Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
Scaffold-Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitors
2013-01-01
We describe and apply a scaffold-focused virtual screen based upon scaffold trees to the mitotic kinase TTK (MPS1). Using level 1 of the scaffold tree, we perform both 2D and 3D similarity searches between a query scaffold and a level 1 scaffold library derived from a 2 million compound library; 98 compounds from 27 unique top-ranked level 1 scaffolds are selected for biochemical screening. We show that this scaffold-focused virtual screen prospectively identifies eight confirmed active compounds that are structurally differentiated from the query compound. In comparison, 100 compounds were selected for biochemical screening using a virtual screen based upon whole molecule similarity resulting in 12 confirmed active compounds that are structurally similar to the query compound. We elucidated the binding mode for four of the eight confirmed scaffold hops to TTK by determining their protein–ligand crystal structures; each represents a ligand-efficient scaffold for inhibitor design. PMID:23672464
NASA Technical Reports Server (NTRS)
Masiulaniec, Konstanty C.; Wright, William B.
1994-01-01
A version of LEWICE has been developed that incorporates a recently developed electrothermal deicer code, developed at the University of Toledo by William B. Wright. This was accomplished, in essence, by replacing a subroutine in LEWICE, called EBAL, which balanced the energies at the ice surface, with a subroutine called UTICE. UTICE performs this same energy balance, as well as handles all the time-timperature transients below the ice surface, for all of the layers of a composite blade as well as the ice layer itself. This new addition is set up in such a fashion that a user may specify any number of heaters, any heater chordwise length, and any heater gap desired. The heaters may be fired in unison, or they may be cycled with periods independent of each other. The heater intensity may also be varied. In addition, the user may specify any number of layers and thicknesses depthwise into the blade. Thus, the new addition has maximum flexibility in modeling virtually any electrothermal deicer installed into any airfoil. It should be noted that the model simulates both shedding and runback. With the runback capability, it can simulate the anti-icing mode of heater performance, as well as detect icing downstream of the heaters due to runback in unprotected portions of the airfoil. This version of LEWICE can be run in three modes. In mode 1, no conduction heat transfer is modeled (which would be equivalent to the original version of LEWICE). In mode 2, all heat transfer is considered due to conduction but no heaters are firing. In mode 3, conduction heat transfer where the heaters are engaged is modeled, with subsequent ice shedding. When run in the first mode, there is virtually identical agreement with the original version of LEWICE in the prediction of accreted ice shapes. The code may be run in the second mode to determine the effects of conduction on the ice accretion process.
Gastric full-thickness suturing during EMR and for treatment of gastric-wall defects (with video).
von Renteln, Daniel; Schmidt, Arthur; Riecken, Bettina; Caca, Karel
2008-04-01
The endoscopic full-thickness Plicator device was initially developed to provide an endoscopic treatment option for patients with GERD. Because the endoscopic full-thickness Plicator enables rapid and easy placement of transmural sutures, comparable with surgical sutures, we used the Plicator device for endoscopic treatment or prevention of GI-wall defects. To describe the outcomes and complications of endoscopic full-thickness suturing during EMR and for the treatment of gastric-wall defects. A report of 4 cases treated with the endoscopic full-thickness suturing between June 2006 and April 2007. A large tertiary-referral center. Four subjects received endoscopic full-thickness suturing. The subjects were women, with a mean age of 67 years. Of the 4 subjects, 3 received endoscopic full-thickness suturing during or after an EMR. One subject received endoscopic full-thickness suturing for treatment of a fistula. Primary outcome measurements were clinical procedural success and procedure-related adverse events. The mean time for endoscopic full-thickness suturing was 15 minutes. In all cases, GI-wall patency was restored or ensured, and no procedure-related complications occurred. All subjects responded well to endoscopic full-thickness suturing. The resection of one GI stromal tumor was incomplete. Because of the Plicator's 60F distal-end diameter, endoscopic full-thickness suturing could only be performed with the patient under midazolam and propofol sedation. The durable Plicator suture might compromise the endoscopic follow-up after EMR. The endoscopic full-thickness Plicator permits rapid and easy placement of transmural sutures and seems to be a safe and effective alternative to surgical intervention to restore GI-wall defects or to ensure GI-wall patency during EMR procedures.
[Quality assurance of a virtual simulation software: application to IMAgo and SIMAgo (ISOgray)].
Isambert, A; Beaudré, A; Ferreira, I; Lefkopoulos, D
2007-06-01
Virtual simulation process is often used to prepare three dimensional conformal radiation therapy treatments. As the quality of the treatment is widely dependent on this step, it is mandatory to perform extensive controls on this software before clinical use. The tests presented in this work have been carried out on the treatment planning system ISOgray (DOSIsoft), including the delineation module IMAgo and the virtual simulation module SIMAgo. According to our experience, the most relevant controls of international protocols have been selected. These tests mainly focused on measuring and delineation tools, virtual simulation functionalities, and have been performed with three phantoms: the Quasar Multi-Purpose Body Phantom, the Quasar MLC Beam Geometry Phantom (Modus Medical Devices Inc.) and a phantom developed at Hospital Tenon. No major issues have been identified while performing the tests. These controls have emphasized the necessity for the user to consider with a critical eye the results displayed by a virtual simulation software. The contrast of visualisation, the slice thickness, the calculation and display mode of 3D structures used by the software are many factors of uncertainties. A virtual simulation software quality assurance procedure has been written and applied on a set of CT images. Similar tests have to be performed periodically and at minimum at each change of major version.
Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin
2010-01-01
Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345
Evaluating the Predictivity of Virtual Screening for Abl Kinase Inhibitors to Hinder Drug Resistance
Gani, Osman A B S M; Narayanan, Dilip; Engh, Richard A
2013-01-01
Virtual screening methods are now widely used in early stages of drug discovery, aiming to rank potential inhibitors. However, any practical ligand set (of active or inactive compounds) chosen for deriving new virtual screening approaches cannot fully represent all relevant chemical space for potential new compounds. In this study, we have taken a retrospective approach to evaluate virtual screening methods for the leukemia target kinase ABL1 and its drug-resistant mutant ABL1-T315I. ‘Dual active’ inhibitors against both targets were grouped together with inactive ligands chosen from different decoy sets and tested with virtual screening approaches with and without explicit use of target structures (docking). We show how various scoring functions and choice of inactive ligand sets influence overall and early enrichment of the libraries. Although ligand-based methods, for example principal component analyses of chemical properties, can distinguish some decoy sets from active compounds, the addition of target structural information via docking improves enrichment, and explicit consideration of multiple target conformations (i.e. types I and II) achieves best enrichment of active versus inactive ligands, even without assuming knowledge of the binding mode. We believe that this study can be extended to other therapeutically important kinases in prospective virtual screening studies. PMID:23746052
Import and visualization of clinical medical imagery into multiuser VR environments
NASA Astrophysics Data System (ADS)
Mehrle, Andreas H.; Freysinger, Wolfgang; Kikinis, Ron; Gunkel, Andreas; Kral, Florian
2005-03-01
The graphical representation of three-dimensional data obtained from tomographic imaging has been the central problem since this technology is available. Neither the representation as a set of two-dimensional slices nor the 2D projection of three-dimensional models yields satisfactory results. In this paper a way is outlined which permits the investigation of volumetric clinical data obtained from standard CT, MR, PET, SPECT or experimental very high resolution CT-scanners in a three dimensional environment within a few worksteps. Volumetric datasets are converted into surface data (segmentation process) using the 3D-Slicer software tool and saved as .vtk files and exported as a collection of primitives in any common file format (.iv, .pfb). Subsequently this files can be displayed and manipulated in the CAVE virtual reality center. The CAVE is a multiuser walkable virtual room consisting of several walls on which stereoscopic images are projected by rear panel beamers. Adequate tracking of the head position and separate image calculation for each eye yields a vivid impression for one or several users. With the use of a seperately tracked 6D joystick manipulations such as rotation, translation, zooming, decomposition or highlighting can be done intuitively. The usage of the CAVE technology opens new possibilities especially in surgical training ("hands-on-effect") and as an educational tool (availability of pathological data). Unlike concurring technologies the CAVE permits a walk-through into the virtual scene but preserves enough physical perception to allow interaction between multiple users, e.g. gestures and movements. By training in a virtual environment on one hand the learning process of students in complex anatomic findings may be improved considerably and on the other hand unaccustomed views such as the one through a microscope or endoscope can be trained in advance. The availability of low-cost PC based CAVE-like systems and the rapidly decreasing price of high-performance video beamers makes the CAVE an affordable alternative to conventional surgical training techniques and without limitations in handling cadavers.
The Esophagiome: concept, status, and future perspectives.
Gregersen, Hans; Liao, Donghua; Brasseur, James G
2016-09-01
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.
Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures.
Lefranc, M; Peltier, J
2016-10-01
The ROSA® robot (Medtech, Montpellier, France) is a new medical device designed to assist the surgeon during minimally invasive spine procedures. The device comprises a patient-side cart (bearing the robotic arm and a workstation) and an optical navigation camera. The ROSA® Spine robot enables accurate pedicle screw placement. Thanks to its robotic arm and navigation abilities, the robot monitors movements of the spine throughout the entire surgical procedure and thus enables accurate, safe arthrodesis for the treatment of degenerative lumbar disc diseases, exactly as planned by the surgeon. Development perspectives include (i) assistance at all levels of the spine, (ii) improved planning abilities (virtualization of the entire surgical procedure) and (iii) use for almost any percutaneous spinal procedures not limited in screw positioning such as percutaneous endoscopic lumbar discectomy, intracorporeal implant positioning, over te top laminectomy or radiofrequency ablation.
A full 3D-navigation system in a suitcase.
Freysinger, W; Truppe, M J; Gunkel, A R; Thumfart, W F
2001-01-01
To reduce the impact of contemporary 3D-navigation systems on the environment of typical otorhinolaryngologic operating rooms, we demonstrate that a transfer of navigation software to modern high-power notebook computers is feasible and results in a practicable way to provide positional information to a surgeon intraoperatively. The ARTMA Virtual Patient System has been implemented on a Macintosh PowerBook G3 and, in connection with the Polhemus FASTRAK digitizer, provides intraoperative positional information during endoscopic endonasal surgery. Satisfactory intraoperative navigation has been realized in two- and three-dimensional medical image data sets (i.e., X-ray, ultrasound images, CT, and MR) and live video. This proof-of-concept study demonstrates that acceptable ergonomics and excellent performance of the system can be achieved with contemporary high-end notebook computers. Copyright 2001 Wiley-Liss, Inc.
Shadow Mode Assessment Using Realistic Technologies for the National Airspace (SMART NAS)
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2014-01-01
Develop a simulation and modeling capability that includes: (a) Assessment of multiple parallel universes, (b) Accepts data feeds, (c) Allows for live virtual constructive distribute environment, (d) Enables integrated examinations of concepts, algorithms, technologies and National Airspace System (NAS) architectures.
Towards a Pragmatic Grammar of Teachers' Epistemic Networks.
ERIC Educational Resources Information Center
Tochon, Francois V.
Possibilities of conceptual and pragmatic analysis exist for identifying epistemological processing in teacher thinking. These modes of organizing thought condition classroom planning, shape meaning from a virtual didactic knowledge-store, and scaffold further pedagogical interactions. The semio-cognitive grammar proposed is adapted to the…
Management of a large mucosal defect after duodenal endoscopic resection
Fujihara, Shintaro; Mori, Hirohito; Kobara, Hideki; Nishiyama, Noriko; Matsunaga, Tae; Ayaki, Maki; Yachida, Tatsuo; Masaki, Tsutomu
2016-01-01
Duodenal endoscopic resection is the most difficult type of endoscopic treatment in the gastrointestinal tract (GI) and is technically challenging because of anatomical specificities. In addition to these technical difficulties, this procedure is associated with a significantly higher rate of complication than endoscopic treatment in other parts of the GI tract. Postoperative delayed perforation and bleeding are hazardous complications, and emergency surgical intervention is sometimes required. Therefore, it is urgently necessary to establish a management protocol for preventing serious complications. For instance, the prophylactic closure of large mucosal defects after endoscopic resection may reduce the risk of hazardous complications. However, the size of mucosal defects after endoscopic submucosal dissection (ESD) is relatively large compared with the size after endoscopic mucosal resection, making it impossible to achieve complete closure using only conventional clips. The over-the-scope clip and polyglycolic acid sheets with fibrin gel make it possible to close large mucosal defects after duodenal ESD. In addition to the combination of laparoscopic surgery and endoscopic resection, endoscopic full-thickness resection holds therapeutic potential for difficult duodenal lesions and may overcome the disadvantages of endoscopic resection in the near future. This review aims to summarize the complications and closure techniques of large mucosal defects and to highlight some directions for management after duodenal endoscopic treatment. PMID:27547003
Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J
2017-12-01
Objective Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.
Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y
2018-02-01
This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.
Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku
2014-01-01
Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.
[Current Status of Endoscopic Resection of Early Gastric Cancer in Korea].
Jung, Hwoon Yong
2017-09-25
Endoscopic resection (Endoscopic mucosal resection [EMR] and endoscopic submucosal dissection [ESD]) is already established as a first-line treatment modality for selected early gastric cancer (EGC). In Korea, the number of endoscopic resection of EGC was explosively increased because of a National Cancer Screening Program and development of devices and techniques. There were many reports on the short-term and long-term outcomes after endoscopic resection in patients with EGC. Long-term outcome in terms of recurrence and death is excellent in both absolute and selected expanded criteria. Furthermore, endoscopic resection might be positioned as primary treatment modality replacing surgical gastrectomy. To obtain these results, selection of patients, perfect en bloc procedure, thorough pathological examination of resected specimen, accurate interpretation of whole process of endoscopic resection, and rational strategy for follow-up is necessary.
Cho, Yu Kyung; Moon, Jeong Seop; Han, Dong Su; Lee, Yong Chan; Kim, Yeol; Park, Bo Young; Chung, Il-Kwun; Kim, Jin-Oh; Im, Jong Pil; Cha, Jae Myung; Kim, Hyun Gun; Lee, Sang Kil; Lee, Hang Lak; Jang, Jae Young; Kim, Eun Sun; Jung, Yunho; Moon, Chang Mo
2016-11-01
In Korea, the nationwide gastric cancer screening program recommends biennial screening for individuals aged 40 years or older by way of either an upper gastrointestinal series or endoscopy. The national endoscopic quality assessment (QA) program began recommending endoscopy in medical institutions in 2009. We aimed to assess the effect, burden, and cost of the QA program from the viewpoint of medical institutions. We surveyed the staff of institutional endoscopic units via e-mail. Staff members from 67 institutions replied. Most doctors were endoscopic specialists. They responded as to whether the QA program raised awareness for endoscopic quality (93%) or improved endoscopic practice (40%). The percentages of responders who reported improvements in the diagnosis of gastric cancer, the qualifications of endoscopists, the quality of facilities and equipment, endoscopic procedure, and endoscopic reprocessing were 69%, 60%, 66%, 82%, and 75%, respectively. Regarding reprocessing, many staff members reported that they had bought new automated endoscopic preprocessors (3%), used more disinfectants (34%), washed endoscopes longer (28%), reduced the number of endoscopies performed to adhere to reprocessing guidelines (9%), and created their own quality education programs (59%). Many responders said they felt that QA was associated with some degree of burden (48%), especially financial burden caused by purchasing new equipment. Reasonable quality standards (45%) and incentives (38%) were considered important to the success of the QA program. Endoscopic quality has improved after 5 years of the mandatory endoscopic QA program.
NASA Astrophysics Data System (ADS)
Ridley, B. K.; Al-Mudares, M.
1988-04-01
We have extended our Monte Carlo simulation of scattering-induced NDR in Al. 8Ga 2As/GaAs quantum wells by including (a) the effect of hot phonons (b) coupled phonon-plasmon modes (c) degeneracy. Hot phonons were modelled using a phenomenological lifetime which we ranged from 3ps to 10ps. Coupled modes were modelled in the antiscreening approximation. Bulk-like modes were assumed in both cases. NDR is quenched if the phonon lifetime exceeds 7ps, but is little affected if the lifetime is 3ps. The effect of coupled modes is appreciable at a doping density of 10 18cm -3, virtually eliminating NDR, but at 10 17cm -3 the effect is much smaller. Including degeneracy has only a small effect on the results. We conclude that NDR is still possible at electron densities around 10 17cm -3.
Fracture Mechanics Analysis of Stitched Stiffener-Skin Debonding
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.
1998-01-01
An analysis based on plate finite elements and the virtual crack closure technique has been implemented to study the effect of stitching on mode I and mode II strain energy release rates for debond configurations. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered, however, the two compliances and failure loads were assumed to be independent. Both a double cantilever beam (mode I) and a mixed mode skin-stiffener debond configuration were studied. In the double cantilever beam configurations, G(sub I) began to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds. In the mixed-mode skin-stiffener configurations, G(sub I) showed a similar behavior as in the double cantilever beam configurations, however, G(sub u), continued to increase with increasing debond length.
Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium
NASA Astrophysics Data System (ADS)
Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael
2018-03-01
Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.
Validation of Fujinon intelligent chromoendoscopy with high definition endoscopes in colonoscopy.
Parra-Blanco, Adolfo; Jiménez, Alejandro; Rembacken, Björn; González, Nicolás; Nicolás-Pérez, David; Gimeno-García, Antonio Z; Carrillo-Palau, Marta; Matsuda, Takahisa; Quintero, Enrique
2009-11-14
To validate high definition endoscopes with Fujinon intelligent chromoendoscopy (FICE) in colonoscopy. The image quality of normal white light endoscopy (WLE), that of the 10 available FICE filters and that of a gold standard (0.2% indigo carmine dye) were compared. FICE-filter 4 [red, green, and blue (RGB) wavelengths of 520, 500, and 405 nm, respectively] provided the best images for evaluating the vascular pattern compared to white light. The mucosal surface was best assessed using filter 4. However, the views obtained were not rated significantly better than those observed with white light. The "gold standard", indigo carmine (IC) dye, was found to be superior to both white light and filter 4. Filter 6 (RGB wavelengths of 580, 520, and 460 nm, respectively) allowed for exploration of the IC-stained mucosa. When assessing mucosal polyps, both FICE with magnification, and magnification following dye spraying were superior to the same techniques without magnification and to white light imaging. In the presence of suboptimal bowel preparation, observation with the FICE mode was possible, and endoscopists considered it to be superior to observation with white light. FICE-filter 4 with magnification improves the image quality of the colonic vascular patterns obtained with WLE.
Building an endoscopic ear surgery program.
Golub, Justin S
2016-10-01
This article discusses background, operative details, and outcomes of endoscopic ear surgery. This information will be helpful for those establishing a new program. Endoscopic ear surgery is growing in popularity. The ideal benefit is in totally transcanal access that would otherwise require a larger incision. The endoscope carries a number of advantages over the microscope, as well as some disadvantages. Several key maneuvers can minimize disadvantages. There is a paucity of studies directly comparing outcomes between endoscopic and microscopic approaches for the same procedure. The endoscope is gaining acceptance as a tool for treating otologic diseases. For interested surgeons, this article can help bridge the transition from microscopic to totally transcanal endoscopic ear surgery for appropriate disease.
Reliability modelling and analysis of thermal MEMS
NASA Astrophysics Data System (ADS)
Muratet, Sylvaine; Lavu, Srikanth; Fourniols, Jean-Yves; Bell, George; Desmulliez, Marc P. Y.
2006-04-01
This paper presents a MEMS reliability study methodology based on the novel concept of 'virtual prototyping'. This methodology can be used for the development of reliable sensors or actuators and also to characterize their behaviour in specific use conditions and applications. The methodology is demonstrated on the U-shaped micro electro thermal actuator used as test vehicle. To demonstrate this approach, a 'virtual prototype' has been developed with the modeling tools MatLab and VHDL-AMS. A best practice FMEA (Failure Mode and Effect Analysis) is applied on the thermal MEMS to investigate and assess the failure mechanisms. Reliability study is performed by injecting the identified defaults into the 'virtual prototype'. The reliability characterization methodology predicts the evolution of the behavior of these MEMS as a function of the number of cycles of operation and specific operational conditions.
Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Loewenstein, Johanna; Beall, Andrew C; Blascovich, Jim
2009-11-01
Applying genetic susceptibility information to improve health will likely require educating patients about abstract concepts, for which there is little existing research. This experimental study examined the effect of learning mode on comprehension of a genomic concept. 156 individuals aged 18-40 without specialized knowledge were randomly assigned to either a virtual reality active learning or didactic learning condition. The outcome was comprehension (recall, transfer, mental models). Change in recall was greater for didactic learning than for active learning (p<0.001). Mean transfer and change in mental models were also higher for didactic learning (p<0.0001 and p<0.05, respectively). Believability was higher for didactic learning (p<0.05), while ratings for motivation (p<0.05), interest (p<0.0001), and enjoyment (p<0.0001) were higher for active learning, but these variables did not mediate the association between learning mode and comprehension. These results show that learning mode affects comprehension, but additional research is needed regarding how and in what contexts different approaches are best for educating patients about abstract concepts. Didactic, interpersonal health education approaches may be more effective than interactive games in educating patients about abstract, unfamiliar concepts. These findings indicate the importance of traditional health education approaches in emerging areas like genomics.
Collaborative virtual environments art exhibition
NASA Astrophysics Data System (ADS)
Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria
2005-03-01
This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.
Endoscopic neurosurgery "around the corner" with a rigid endoscope. Technical note.
Hopf, N J
1999-03-01
Endoscopically "working around the corner" is presently restricted to the use of flexible endoscopes or an endoscope-assisted microneurosurgical (EAM) technique. In order to overcome the limitations of these solutions, endoscopic equipment and techniques were developed for "working around the corner" with rigid endoscopes. A steering insert with a 5 French working channel is capable of steering instruments around the corner by actively bending the guiding track and consecutively the instrument. A special fixation device enables strict axial rotation of the endoscope in the operating field. Endoscopic procedures "around the corner", including aqueductal stenting, pellucidotomy, third ventriculostomy and biopsy were performed in human cadavers. Special features of the used pediatric neuroendoscope system, i.e., reliable fixation, axial rotation, and controlled steering of instruments, increase the safety and reduce the surgical traumatization in selected cases, such as obstructive hydrocephalus due to a mass lesion in the posterior third ventricle, since endoscopic third ventriculostomy and biopsy can be performed through the same burr hole trephination. Limitations of this technique are given by the size of the foramen of Monro and the height of the third ventricle as well as by the bending angle of the instruments (40-50 degrees).
A beam-splitter-type 3-D endoscope for front view and front-diagonal view images.
Kamiuchi, Hiroki; Masamune, Ken; Kuwana, Kenta; Dohi, Takeyoshi; Kim, Keri; Yamashita, Hiromasa; Chiba, Toshio
2013-01-01
In endoscopic surgery, surgeons must manipulate an endoscope inside the body cavity to observe a large field-of-view while estimating the distance between surgical instruments and the affected area by reference to the size or motion of the surgical instruments in 2-D endoscopic images on a monitor. Therefore, there is a risk of the endoscope or surgical instruments physically damaging body tissues. To overcome this problem, we developed a Ø7- mm 3-D endoscope that can switch between providing front and front-diagonal view 3-D images by simply rotating its sleeves. This 3-D endoscope consists of a conventional 3-D endoscope and an outer and inner sleeve with a beam splitter and polarization plates. The beam splitter was used for visualizing both the front and front-diagonal view and was set at 25° to the outer sleeve's distal end in order to eliminate a blind spot common to both views. Polarization plates were used to avoid overlap of the two views. We measured signal-to-noise ratio (SNR), sharpness, chromatic aberration (CA), and viewing angle of this 3-D endoscope and evaluated its feasibility in vivo. Compared to the conventional 3-D endoscope, SNR and sharpness of this 3-D endoscope decreased by 20 and 7 %, respectively. No significant difference was found in CA. The viewing angle for both the front and front-diagonal views was about 50°. In the in vivo experiment, this 3-D endoscope can provide clear 3-D images of both views by simply rotating its inner sleeve. The developed 3-D endoscope can provide the front and front-diagonal view by simply rotating the inner sleeve, therefore the risk of damage to fragile body tissues can be significantly decreased.
Chagnon, Frédéric; Bourgouin, Alexandra; Lebel, Réjean; Bonin, Marc-André; Marsault, Eric; Lepage, Martin; Lesur, Olivier
2015-09-15
The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB. Copyright © 2015 the American Physiological Society.
Penny, Hugo A; Mooney, Peter D; Burden, Mitchell; Patel, Nisha; Johnston, Alexander J; Wong, Simon H; Teare, Julian; Sanders, David S
2016-06-01
Celiac disease remains underdiagnosed at endoscopy. We aimed to assess the utility of I-Scan (virtual chromo-endoscopy) to improve sensitivity of endoscopy to detect markers of villous atrophy in this condition. Patients from 2 UK hospitals were studied in 3 groups. Group 1: standard high definition, white light endoscopy (WLE); Group 2: WLE plus I-Scan; Group 3: non-high definition control group. The presence of endoscopic markers was recorded. At least 4 duodenal biopsies were taken from all patients. Serology was performed concurrently and observations were compared with histology. 758 patients (62% female, mean age 52) were recruited (Group 1: 230; Group 2: 228; Group 3: 300). 135 (17.8%) new diagnoses of coeliac disease were made (21 Group 1; 24 Group 2; 89 Group 3). The sensitivity for detection of endoscopic markers of villous atrophy was significantly higher in both Group 1 (85.7%, p=0.0004) and Group 2 (75%, p=0.005) compared to non-high definition controls (41.6%). There was no significant difference between high definition only and I-Scan groups (p=0.47). In non-high definition endoscopy a missed diagnosis was associated with lesser degrees of villous atrophy (p=0.019) and low tTG titre (p=0.007). High definition endoscopy with or without I-Scan increases the detection of celiac disease during routine endoscopy. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
2011-09-01
CHALLENGES ............................66 1. Radar Processing Gain ........................66 2. High Sensitivity Requirement .................68 B...Relationship Between Network Space and Challenges .....................................127 Figure 42. Maneuverability................................129...virtually any kind of terrain. It has five modes: Normal, Weather, ECCM, LPI, and Very Low Clearance ( VLC ). Pictures of the LANTIRN pod aboard and F-16
Holland, Pat; Shoop, Nancy M
2002-01-01
Flexible endoscopes are complex medical instruments that are easily damaged. In order to maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This is the fourth in a series of articles presenting an in-depth look at the care and handling of the flexible endoscope. The first three articles discussed the air-water system, the suction channel system, and the mechanical system. This article will focus specifically on the endoscopic retrograde cholangiopancreatography elevator system.
Interactive simulation system for artificial ventilation on the internet: virtual ventilator.
Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki
2004-12-01
To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.
Imaging of sub-wavelength structures radiating coherently near microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu
2016-02-01
Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolutionmore » quantification in recent experimental studies.« less
Nakajima, Kiyokazu; Takahashi, Tsuyoshi; Souma, Yoshihito; Shinzaki, Shinichiro; Yamada, Takuya; Yoshio, Toshiyuki; Nishida, Toshirou
2008-12-01
Transvaginal natural orifice translumenal endoscopic surgery (NOTES) gastrectomy is technically challenging, because wide perigastric dissection under appropriate tissue triangulation is unfeasible with current endoscopic instruments alone. The aim of this study was to investigate the feasibility of transvaginal NOTES gastrectomy with the use of an extra endoscope as a retracting device of the stomach. This acute in vivo feasibility study was performed under the approval of the Institutional Animal Care and Use Committee (IACUC). Four female 40-kg pigs received general anesthesia and underwent transvaginal endoscopic partial gastrectomy. Under laparoscopic guidance, the uterus was fixed anteriorly and transvaginal access was established in a standard fashion. The perigastric ligaments were dissected with needle knife/insulation-tipped electrosurgical knife (IT) via transvaginally placed double-channel endoscope. This step was assisted with the second, CO(2)-insufflating endoscope advanced in the stomach (i.e., so-called endoscopic gastric control). A linear stapling device with a flexible shaft was then passed transvaginally, and the anterior gastric wall was partially resected. The specimen was isolated and retrieved through the vagina. Concluding endoscopy was carried out to confirm the absence of mucosal damage due to endoscopic gastric control. This was further confirmed at necropsy immediately after sacrifice. All animals underwent successful transvaginal NOTES gastrectomy. Endoscopic gastric control greatly facilitated perigastric dissection by providing appropriate tissue countertraction on the ligaments. Use of transabdominal (laparoscopic) graspers was thus minimized. There were no intraoperative complications directly related to use of the primary (transvaginal) endoscope or the additional (gastric) endoscope. Distention of downstream bowel after gastric insufflation was minimal with CO(2). No major injuries were noted on gastric mucosa at postmortem investigations. Transvaginal NOTES partial gastrectomy is feasible in porcine models. Use of an extra endoscope to retract the stomach is effective to minimize transabdominal assistance. Further studies on human subjects are necessary to establish this as a safe and attractive ancillary technique in NOTES.
TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim
2015-04-01
In times of cloud computing and ubiquitous computing the use of concepts and paradigms introduced by information and communications technology (ICT) have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in research projects new technologies are exploited to implement a cloud-based and web-based platform - the TRIDEC Cloud - to open up new prospects for EWS. The platform in its current version addresses tsunami early warning and mitigation. It merges several complementary external and in-house cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The TRIDEC Cloud can be accessed in two different modes, the monitoring mode and the exercise-and-training mode. The monitoring mode provides important functionality required to act in a real event. So far, the monitoring mode integrates historic and real-time sea level data and latest earthquake information. The integration of sources is supported by a simple and secure interface. The exercise and training mode enables training and exercises with virtual scenarios. This mode disconnects real world systems and connects with a virtual environment that receives virtual earthquake information and virtual sea level data re-played by a scenario player. Thus operators and other stakeholders are able to train skills and prepare for real events and large exercises. The GFZ German Research Centre for Geosciences (GFZ), the Kandilli Observatory and Earthquake Research Institute (KOERI), and the Portuguese Institute for the Sea and Atmosphere (IPMA) have used the opportunity provided by NEAMWave14 to test the TRIDEC Cloud as a collaborative activity based on previous partnership and commitments at the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.
In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.
Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang
2016-01-01
Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes.
Yabe, Shuntaro; Kato, Hironari; Mizukawa, Sho; Akimoto, Yutaka; Uchida, Daisuke; Seki, Hiroyuki; Tomoda, Takeshi; Matsumoto, Kazuyuki; Yamamoto, Naoki; Horiguchi, Shigeru; Tsutsumi, Koichiro; Okada, Hiroyuki
2017-05-01
Endoscopic procedures are used as first-line treatment for bile leak after hepatobiliary surgery. Advances have been made in endoscopic techniques and devices, but few reports have described the effectiveness of endoscopic procedures and the management principles based on severity of bile leak. We evaluated the effectiveness of an endoscopic procedure for the treatment of bile leak after hepatobiliary surgery. Fifty-eight patients underwent an endoscopic procedure for suspected bile leak after hepatobiliary surgery; the presence of bile leak on endoscopic retrograde cholangiopancreatography (ERCP) was evaluated retrospectively. Two groups were created based on bile leak severity at ERCP. We defined success as follows: technical, successful placement of the plastic stent at the intended bile duct; clinical, improvement in symptoms of bile leak; and eventual, disappearance of bile leak at ERCP. We evaluated several factors that influenced the success of the endoscopic procedure and the differences between bile leak severity. Success rates were as follows: technical, 90%; clinical, 79%; and eventual, 71%. Median interval between first endoscopic procedure and achievement of eventual success was 135 days (IQR, 86-257 days). Bile leak severity was the only independent factor associated with eventual success (P = 0.01). Endoscopic therapy is safe and effective for postoperative bile leak. Bile leak severity is the most important factor influencing successful endoscopic therapy. © 2016 Japan Gastroenterological Endoscopy Society.
Sen-yo, Manabu; Kaino, Seiji; Suenaga, Shigeyuki; Uekitani, Toshiyuki; Yoshida, Kanako; Harano, Megumi; Sakaida, Isao
2012-01-01
Background/Purpose. The difficulties of endoscopic retrograde cholangiopancreatography in patients with Billroth II gastrectomy have been reported. We evaluated the usefulness of an anterior oblique-viewing endoscope and a double-balloon enteroscope for endoscopic retrograde cholangiopancreatography in such patients. Methods. From January 2003 to December 2011, 65 patients with Billroth II gastrectomy were enrolled in this study. An anterior oblique-viewing endoscope was used for all patients. From February 2007, a double-balloon enteroscope was used for the failed cases. The success rate of procedures was compared with those in 20 patients with Billroth II gastrectomy using forward-viewing endoscope or side-viewing endoscope from March 1996 to July 2002 as historical controls. Results. In all patients in whom the papilla was reached (60/65), selective cannulation was achieved. The success rate of selective cannulation and accomplishment of planned procedures in the anterior oblique-viewing endoscope group were both significantly higher than that in the control group (100% versus 70.1%, 100 versus 58.8%, resp.). A double-balloon enteroscope was used in 2 patients, and the papilla could be reached and the planned procedures completed. Conclusions. An anterior oblique-viewing endoscope and double-balloon enteroscope appear to be useful in performing endoscopic retrograde cholangiopancreatography in patients with Billroth II gastrectomy. PMID:23056039
Construct validity and expert benchmarking of the haptic virtual reality dental simulator.
Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon
2014-10-01
The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.
Geovisualisation of relief in a virtual reality system on the basis of low-level aerial imagery
NASA Astrophysics Data System (ADS)
Halik, Łukasz; Smaczyński, Maciej
2017-12-01
The aim of the following paper was to present the geomatic process of transforming low-level aerial imagery obtained with unmanned aerial vehicles (UAV) into a digital terrain model (DTM) and implementing the model into a virtual reality system (VR). The object of the study was a natural aggretage heap of an irregular shape and denivelations up to 11 m. Based on the obtained photos, three point clouds (varying in the level of detail) were generated for the 20,000-m2-area. For further analyses, the researchers selected the point cloud with the best ratio of accuracy to output file size. This choice was made based on seven control points of the heap surveyed in the field and the corresponding points in the generated 3D model. The obtained several-centimetre differences between the control points in the field and the ones from the model might testify to the usefulness of the described algorithm for creating large-scale DTMs for engineering purposes. Finally, the chosen model was implemented into the VR system, which enables the most lifelike exploration of 3D terrain plasticity in real time, thanks to the first person view mode (FPV). In this mode, the user observes an object with the aid of a Head- mounted display (HMD), experiencing the geovisualisation from the inside, and virtually analysing the terrain as a direct animator of the observations.
Principles of endoscopic ear surgery.
Tarabichi, Muaaz; Kapadia, Mustafa
2016-10-01
The aim of this review is to study the rationale, limitations, techniques, and long-term outcomes of endoscopic ear surgery. The article discusses the advantages of endoscopic ear surgery in treating cholesteatoma and how the hidden sites like facial recess, sinus tympani, and anterior epitympanum are easily accessed using the endoscope. Transcanal endoscopic approach allows minimally invasive removal of cholesteatoma with results that compare well to traditional postauricular tympanomastoidectomy.
Garcia-Planella, Esther; Mañosa, Míriam; Cabré, Eduard; Marín, Laura; Gordillo, Jordi; Zabana, Yamile; Boix, Jaume; Sáinz, Sergio; Domènech, Eugeni
2016-12-01
Fecal calprotectin (FC) is the best noninvasive biomarker of disease activity in inflammatory bowel disease. Its correlation with endoscopic mucosal lesions could save inconvenient, expensive, and repeated endoscopic examinations in particular clinical settings. To assess the correlation between FC and the existence and severity of endoscopic postoperative recurrence (POR), a group of clinically stable outpatients with Crohn's disease for whom an ileocolonoscopy was routinely planned to assess POR were invited to collect a stool sample before starting bowel cleansing to measure FC. POR was graded by means of Rutgeerts endoscopic score. One hundred nineteen ileocolonoscopies were included, 42% with endoscopic POR. FC was significantly lower in the absence of endoscopic POR and in the absence of any endoscopic lesion. The area under the receiver operating characteristic curve was 0.76 (95% confidence interval, 0.68-0.85) for the diagnosis of the absence of lesions and 0.75 (95% confidence interval, 0.66-0.84) for endoscopic POR. Better sensitivity and negative predictive value were observed when combining FC and serum C-reactive protein (CRP), leading to a sensitivity of 82%, a specificity of 53%, and negative and positive predictive values of 81% and 54%, respectively, for the prediction of endoscopic POR with a combination of FC 100 μg/g and CRP 5 mg/L cutoff values. FC correlates closely with endoscopic POR in clinically stable postoperative patients with Crohn's disease and, when used in combination with CRP, might save endoscopic examinations and allow for a high-grade suspicion of endoscopic POR in the long-term monitoring of these patients.
Endoscopic manometry of the sphincter of Oddi in sphincterotomized patients.
Ugljesić, M; Bulajić, M; Milosavljević, T; Stimec, B
1995-01-01
Endoscopic sphincterotomy (ES) of the sphincter of Oddi (SO) has been accepted as an effective method in extraction of common bile duct stones in postcholecystectomy patients. The purpose of this study was to examine the completeness of the performed ES and observe the post sphincterotomy pancreatic duct sphincter (PDS) activity using endoscopic manometry. Activity of the sphincter of Oddi was examined in 15 sphincterotomized patients using endoscopic manometry one to 2.5 years after endoscopic sphincterotomy for choledocholithiasis. In eight patients absence of choledochoduodenal gradient, baseline pressure and the sphincter of Oddi phasic activity up to 2.5 years after endoscopic sphincterotomy indicated a complete sphincterotomy. In seven patients with incomplete endoscopic sphincterotomy, manometry exhibited either a lower choledochoduodenal gradient and baseline pressure without phasic activity of the sphincter of Oddi (three patients), a sphincter of Oddi activity without choledochoduodenal gradient (one patient), or a complete restitution of the sphincter of Oddi activity 1 to 2 years after endoscopic sphincterotomy (three patients). In five patients, with complete endoscopic sphincterotomy, measurements of pancreatic sphincter activity showed lower values of the pancreatic ductal pressure and baseline pressure, while the pancreatic sphincter phasic activity was equal to that found in the control group. Endoscopic manometry is method which enables us to test the completeness of endoscopic sphincterotomy and to follow the restitution of the phasic contractile function of the sphincter. Manometric findings reveal pancreatic sphincter in most patients as a separate sphincteric entity, the function of which is reduced but not eliminated by a complete endoscopic sphincterotomy.
Quality assurance manual of endoscopic screening for gastric cancer in Japanese communities.
Hamashima, Chisato; Fukao, Akira
2016-09-02
The Japanese government introduced endoscopic screening for gastric cancer in 2015 as a public policy based on the Japanese guidelines on gastric cancer screening. To provide appropriate endoscopic screening for gastric cancer in Japanese communities, we developed a quality assurance manual of endoscopic screening and recommend 10 strategies with their brief descriptions as follows: (i) Formulation of a committee responsible for implementing and managing endoscopic screening, and for deciding the suitable implementation methods in consideration of the local context; (ii) Development of an interpretation system that leads to a final judgement to standardize endoscopic examination and improve its accuracy; (iii) Preparation of management and reporting systems for adverse effects by the committee for safety management; (iv) Obtaining informed consent before operation following adequate explanations regarding the benefits and harms of endoscopic screening; (v) Avoidance of frequent screenings to reduce false-positive results and overdiagnosis. As a reference, the target age group is ≥50 years, and the screening interval is 2 years; (vi) Keeping the biopsy rate within 10% as post-biopsy bleeding may occur. Before endoscopic screening, any history of antithrombotic drug usage should be checked; (vii) Nonadministration of sedation in endoscopic screening for safety management; (viii) Adherence to proper endoscopic cleaning and disinfection to reduce infection; (ix) Use of a checklist to achieve optimal program preparation when municipal governments introduce endoscopic screening; (x) Identification of the aims and roles by referring to a checklist if primary care physicians decide to participate in endoscopic screening. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Abdel Wahab, M; el-Ebiedy, G; Sultan, A; el-Ghawalby, N; Fathy, O; Gad el-Hak, N; Abo Elenin, A; Abo Zid, M; Ezzat, F
1996-01-01
In this study we present our experience in the management of iatrogenic biliary injuries. Forty-nine cases with iatrogenic biliary injuries were managed in our center during the period from 1984 to 1995. Forty patients were referred from other hospitals after cholecystectomy, and 9 cases underwent the original operation in our center. Four (0.3%) of our patients after 1300 conventional cholecystectomy, and 5 (0.9%) cases after 550 laparoscopic cholecystectomy. The injuries were recognized intraoperatively in 5 (10%) cases and were immediately repaired, 3 cases by axial anastomosis and T-tube drainage, 2 cases by hepatico-jejunostomy (Roux-en-Y). The injuries were detected in the remaining 44 patients postoperatively from one week up to 2 months, the mode of presentation was jaundice in 39 (89%) cases, biliary fistula with or without jaundice and biliary peritonitis were detected in 13 (30%) and in 4 (9%) cases respectively. Eleven (25%) cases were treated endoscopically by sphincterotomy, stent in 8 cases, dilatation and double stent in two cases, and dilatation using rigid dilators and stent in one case. The remaining 33 (75%) cases were treated surgically by hepatico-jejunostomy in 21 (64%) cases, and hepatico-duodenostomy in 12 (36%) cases. No hospital mortality occurred, but late mortality occurred in two (5%) patients after surgery due to biliary restricture with progressive cirrhosis in one case, and due to advanced colon cancer in the other case, an din one (9%) case after endoscopic treatment. We achieved 87% excellent surgical results during the period of follow-up (36 months), while 80% excellent results were achieved after endoscopic treatment. Good final results (95%, 83%) were achieved after hepatico-jejunostomy and after hepatico-duodenostomy respectively. Postcholecystectomy biliary injuries present a surgical problem needing extra efforts and careful management. Hepatico-jejunostomy appears to be the procedure of choice in repairing these injuries. Immediate surgical repair of bile duct injury offers excellent results with lower morbidity rates. Endoscopic treatment may be a less invasive technique and have a role in some types of injuries, but needs more time for accurate evaluation.
Endoscopic versus surgical drainage treatment of calcific chronic pancreatitis.
Jiang, Li; Ning, Deng; Cheng, Qi; Chen, Xiao-Ping
2018-04-21
Endoscopic therapy and surgery are both conventional treatments to remove pancreatic duct stones that developed during the natural course of chronic pancreatitis. However, few studies comparing the effect and safety between surgery drainage and endoscopic drainage (plus Extracorporeal Shock Wave Lithotripsy, ESWL).The aim of this study was to compare the benefits between endoscopic and surgical drainage of the pancreatic duct for patients with calcified chronic pancreatitis. A total of 86 patients were classified into endoscopic/ESWL (n = 40) or surgical (n = 46) treatment groups. The medical records of these patients were retrospectively analyzed. Pain recurrence and hospital stays were similar between the endoscopic/ESWL treatment and surgery group. However, endoscopic/ESWL treatment yielded significantly lower medical expense and less complications compared with the surgical treatment. In selective patients, endoscopic/ESWL treatment could achieve comparable efficacy to the surgical treatment. With lower medical expense and less complications, endoscopic/ESWL treatment would be much preferred to be the initial treatment of choice for patients with calcified chronic pancreatitis. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Age effect on components of episodic memory and feature binding: A virtual reality study.
Plancher, Gaën; Gyselinck, Valerie; Nicolas, Serge; Piolino, Pascale
2010-05-01
The aims were (1) to explore the effects of normal aging on the main aspects of episodic memory--what, where, and when,--and on feature binding in a virtual environment; (2) to explore the influence of the mode of learning, intentional versus incidental; and (3) to benchmark virtual environment findings collected with older adults against data recorded in classical neuropsychological tests. We tested a population of 82 young adults and 78 older adults without dementia (they participated in a short battery of neuropsychological tests). All the participants drove a car in an urban virtual environment composing of 9 turns and specific areas. Half of the participants were told to drive through the virtual town; the other half were asked to drive and to memorize the environment (itinerary, elements, etc.). All aspects of episodic memory were then assessed (what, where, when, and binding). The older participants had less recollection of the spatiotemporal context of events than the younger with intentional encoding (p < .001), but similar recollection with incidental encoding (except for verbal spatial aspect). The younger participants showed better binding than older ones regardless of the type of encoding (p < .001). For the older participants the virtual test was sensitive to mnesic complaints as well as general cognitive changes (p < .05 to p < .01). We view these results as an indication that virtual environments could provide helpful standard tools for assessing age effects on the main aspects of episodic memory.
NASA Astrophysics Data System (ADS)
Hou, Vivian W.; Davis, Calvin G.; Davis, Greg E.; Seibel, Eric J.
2016-03-01
Intrathecal fluorescein (ITF) enhances detection of cerebrospinal fluid rhinorrhea (CSFR). Clinically administered doses fall in the range of 0.1ml to 0.5ml of 5% to 10% fluorescein (1.3×10-3M to 1.3×10-2M). Though uncommon, significant morbidities associated with high doses of fluorescein have been reported. High concentrations are necessary for white light visual assessment; in contrast, fluorescent imaging enhances signal contrast and requires lower ITF concentrations for visualization. The ultrathin and flexible, multimodal scanning fiber endoscope (SFE) can visualize nanomolar concentrations of fluorescein as pseudocolor over reflectance, video-rate imaging. The application of the SFE for CSFR detection was assessed in a cadaver study. Briefly, 10μM (1×10-5M) fluorescein, 100X-1000X less than the standard clinical dose, was injected intra-cranially into the epidural space through an orbital roof puncture. The resulting rhinorrhea was assessed with a conventional, rigid ENT scope and second with the SFE in both video reflectance and multimodal fluorescent imaging modes. Neither system could visualize the 10μM ITF during white light imaging however the nanomolar sensitive SFE visualized the rhinorrhea during fluorescent imaging. Despite the low concentration used, a target-to-background ratio of 5.6 +/- 2.7 was achieved. To demonstrate SFE guidance of CSFR detection and repair, de-identified patient computed tomography (CT) scans were used to generate 3D printed phantoms. Cases were selected for unique anatomical features and overall clinical difficulty as determined by an experienced ENT clinician (GED). The sensitivity and minimally invasive nature of the SFE provide a unique platform for enhancing diagnosis and monitoring interventions in surgical endoscopic approaches into the sinuses.
Comparison of Student and Instructor Perceptions of Social Presence
ERIC Educational Resources Information Center
Mathieson, Kathleen; Leafman, Joan S.
2014-01-01
As enrollment in online courses continues to grow and online education is increasingly recognized as an established instructional mode, the unique challenges posed by this learning environment should be addressed. A primary challenge for virtual educators is developing social presence such that participants feel a sense of human connection with…
Students' Perceptions of Learning Mode in Mathematics
ERIC Educational Resources Information Center
Krishnan, Saras
2016-01-01
Blended courses or hybrid courses have gained popularity over the years because of their flexibility and convenience. Technology use in the online component of the blended/hybrid courses is another influence particularly to the younger generation of learners who enjoy learning interactively in a virtual environment. However, depending on the…
Why Universities Join Cross-Sector Social Partnerships: Theory and Evidence
ERIC Educational Resources Information Center
Siegel, David J.
2010-01-01
Cross-sector partnerships are an increasingly popular mode of organizing to address intractable social problems, yet theory and research have virtually ignored university involvement in such activity. This article attempts to ascertain the reasons universities join networks of other social actors to support a common cause. Theories on the…
Analyzing Multimodal Interaction within a Classroom Setting
ERIC Educational Resources Information Center
Moura, Heloisa
2006-01-01
Human interactions are multimodal in nature. From simple to complex forms of transferal of information, human beings draw on a multiplicity of communicative modes, such as intonation and gaze, to make sense of everyday experiences. Likewise, the learning process, either within traditional classrooms or Virtual Learning Environments, is shaped by…
Redefining the High-Technology Classroom.
ERIC Educational Resources Information Center
Dickson, Gary W.; Segars, Albert
1999-01-01
Defines the physical and virtual space of high-tech classrooms in terms of one-to-many, many-to-one, one-to-one, and many-to-many communications modes. Urges an active approach to using information technology that includes administrative and technical support, rewards for innovation, training, security, and good design. (SK)
Virtually Unknown: Teacher Engagement in an Online Conference
ERIC Educational Resources Information Center
Moore, Caroline; Fisher, Tony; Baber, Eric
2016-01-01
For several teacher associations, webinars and online conferences are an increasingly important mode of communication in a wide range of educational contexts. Yet, despite this growing popularity, relatively little is currently known about their inherent usefulness, what counts as successful participation, or how webinar sessions might best be…
Do Haptic Representations Help Complex Molecular Learning?
ERIC Educational Resources Information Center
Bivall, Petter; Ainsworth, Shaaron; Tibell, Lena A. E.
2011-01-01
This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest…
Conceptualising Self-Generating Online Teacher Professional Development
ERIC Educational Resources Information Center
Prestridge, Sarah
2017-01-01
In 2012, a research project was implemented to investigate the possibility and effectiveness of instituting a personalised and virtually networked mode of professional development to promote teacher confidence and competence with information and communications technology and its use as a key component of teachers' pedagogy. The aim of the project…
2014-11-01
understands commands) modes are supported. By default, Julius comes with the Japanese language support. English acoustic and language models are...GUI, natura atar represent gue managem s the activitie ystem to und ry that suppo the Dialogu der to call arning (ML) learning ca r and feedb
Endoscopic management of colorectal adenomas.
Meier, Benjamin; Caca, Karel; Fischer, Andreas; Schmidt, Arthur
2017-01-01
Colorectal adenomas are well known precursors of invasive adenocarcinoma. Colonoscopy is the gold standard for adenoma detection. Colonoscopy is far more than a diagnostic tool, as it allows effective treatment of colorectal adenomas. Endoscopic resection of colorectal adenomas has been shown to reduce the incidence and mortality of colorectal cancer. Difficult resection techniques are available, such as endoscopic mucosal resection, endoscopic submucosal dissection and endoscopic full-thickness resection. This review aims to provide an overview of the different endoscopic resection techniques and their indications, and summarizes the current recommendations in the recently published guideline of the European Society of Gastrointestinal Endoscopy.
Endoscopic management of colorectal adenomas
Meier, Benjamin; Caca, Karel; Fischer, Andreas; Schmidt, Arthur
2017-01-01
Colorectal adenomas are well known precursors of invasive adenocarcinoma. Colonoscopy is the gold standard for adenoma detection. Colonoscopy is far more than a diagnostic tool, as it allows effective treatment of colorectal adenomas. Endoscopic resection of colorectal adenomas has been shown to reduce the incidence and mortality of colorectal cancer. Difficult resection techniques are available, such as endoscopic mucosal resection, endoscopic submucosal dissection and endoscopic full-thickness resection. This review aims to provide an overview of the different endoscopic resection techniques and their indications, and summarizes the current recommendations in the recently published guideline of the European Society of Gastrointestinal Endoscopy. PMID:29118553
Kim, Hee Man; Choi, Ja Sung; Cho, Jae Hee
2014-04-30
The magnetic capsule endoscope has been modified to be fixed inside the stomach and to monitor the gastric motility. This pilot trial was designed to investigate the feasibility of the magnetic capsule endoscope for monitoring gastric motility. The magnetic capsule endoscope was swallowed by the healthy volunteer and maneuvered by the external magnet on his abdomen surface inside the stomach. The magnetic capsule endoscope transmitted image of gastric peristalsis. This simple trial suggested that the real-time ambulatory monitoring of gastric motility should be feasible by using the magnetic capsule endoscope.
SU-F-BRD-11: A Virtual Simulator Designed for Collision Prevention in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, H; Kum, O; Park, H
2015-06-15
Purpose: In proton therapy, collisions between patient and nozzle potentially occur in attaining minimal air gap due to the large nozzle structure. Thus, we developed software predicting the collisions of the nozzle and patient by simulating treatments. Methods: 3D modeling of a gantry inner-floor, nozzle and robotic-couch was done by using the SolidWorks based on the manufacturer’s machine data. To obtain patient body information, a 3D-scanner was utilized to scan a patient right before CT scanning. From the acquired images, a 3D-image of the patient’s body contour was reconstructed. The accuracy of the image was confirmed against the CT imagemore » for a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of gantry, nozzle and couch, in real scale. Collision, if any, was examined both in static mode and dynamic mode. The static mode checks only at fixed positions of the machine’s components while dynamic mode examines while one component is in motion. Collision was notified if any voxel of two components, for example a nozzle and a patient or couch, overlapped when calculating volume locations. The event and collision point are visualized and colliding volumes are reported. Results: All components were successfully assembled and the motions could be accurately controlled. The 3D-shape of a phantom agreed with CT images within a deviation of 2 mm. Collision situations can be simulated within minutes and the results are displayed and reported. Conclusion: The developed software will be useful in improving patient safety and clinical efficiency for proton therapy. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning (2012M3A9B6055201, 2013M2A2A7043507), and Samsung Medical Center grant (GFO1130081)« less
Krishnamoorthy, Bhuvaneswari; Critchley, William R; Nair, Janesh; Malagon, Ignacio; Carey, John; Barnard, James B; Waterworth, Paul D; Venkateswaran, Rajamiyer V; Fildes, James E; Caress, Ann L; Yonan, Nizar
The aim of the study was to assess whether the use of carbon dioxide insufflation has any impact on integrity of long saphenous vein comparing 2 types of endoscopic vein harvesting and traditional open vein harvesting. A total of 301 patients were prospectively randomized into 3 groups. Group 1 control arm of open vein harvesting (n = 101), group 2 closed tunnel (carbon dioxide) endoscopic vein harvesting (n = 100) and Group 3 open tunnel (carbon dioxide) endoscopic vein harvesting (open tunnel endoscopic vein harvesting) (n = 100). Each group was assessed to determine the systemic level of partial arterial carbon dioxide, end-tidal carbon dioxide, and pH. Three blood samples were obtained at baseline, 10 minutes after start of endoscopic vein harvesting, and 10 minutes after the vein was retrieved. Vein samples were taken immediately after vein harvesting without further surgical handling to measure the histological level of endothelial damage. A modified validated endothelial scoring system was used to compare the extent of endothelial stretching and detachment. The level of end-tidal carbon dioxide was maintained in the open tunnel endoscopic vein harvesting and open vein harvesting groups but increased significantly in the closed tunnel endoscopic vein harvesting group (P = 0.451, P = 0.385, and P < 0.001). Interestingly, partial arterial carbon dioxide also did not differ over time in the open tunnel endoscopic vein harvesting group (P = 0.241), whereas partial arterial carbon dioxide reduced significantly over time in the open vein harvesting group (P = 0.001). A profound increase in partial arterial carbon dioxide was observed in the closed tunnel endoscopic vein harvesting group (P < 0.001). Consistent with these patterns, only the closed tunnel endoscopic vein harvesting group demonstrated a sudden drop in pH over time (P < 0.001), whereas pH remained stable for both open tunnel endoscopic vein harvesting and open vein harvesting groups (P = 0.105 and P = 0.869, respectively). Endothelial integrity was better preserved in the open vein harvesting group compared with open tunnel endoscopic vein harvesting or closed tunnel endoscopic vein harvesting groups (P = 0.012) and was not affected by changes in carbon dioxide or low pH. Significantly greater stretching of the endothelium was observed in the open tunnel endoscopic open tunnel endoscopic vein harvesting group compared with the other groups (P = 0.003). This study demonstrated that the different vein harvesting techniques impact on endothelial integrity; however, this does not seem to be related to the increase in systemic absorption of carbon dioxide or to the pressurized endoscopic tunnel. The open tunnel endoscopic harvesting technique vein had more endothelial stretching compared with the closed tunnel endoscopic technique; this may be due to manual dissection of the vein. Further research is required to evaluate the long-term clinical outcome of these vein grafts.
Kato, Shin; Kuwatani, Masaki; Sugiura, Ryo; Sano, Itsuki; Kawakubo, Kazumichi; Ono, Kota; Sakamoto, Naoya
2017-01-01
Introduction The effect of endoscopic sphincterotomy prior to endoscopic biliary stenting to prevent post-endoscopic retrograde cholangiopancreatography pancreatitis remains to be fully elucidated. The aim of this study is to prospectively evaluate the non-inferiority of non-endoscopic sphincterotomy prior to stenting for naïve major duodenal papilla compared with endoscopic sphincterotomy prior to stenting in patients with biliary stricture. Methods and analysis We designed a multicentre randomised controlled trial, for which we will recruit 370 patients with biliary stricture requiring endoscopic biliary stenting from 26 high-volume institutions in Japan. Patients will be randomly allocated to the endoscopic sphincterotomy group or the non-endoscopic sphincterotomy group. The main outcome measure is the incidence of pancreatitis within 2 days of initial transpapillary biliary drainage. Data will be analysed on completion of the study. We will calculate the 95% confidence intervals (CIs) of the incidence of pancreatitis in each group and analyse weather the difference in both groups with 95% CIs is within the non-inferiority margin (6%) using the Wald method. Ethics and dissemination This study has been approved by the institutional review board of Hokkaido University Hospital (IRB: 016–0181). Results will be submitted for presentation at an international medical conference and published in a peer-reviewed journal. Trial registration number The University Hospital Medical Information Network ID: UMIN000025727 Pre-results. PMID:28801436
Toirac, Alexander; Giugale, Juan M; Fowler, John R
2017-05-01
Endoscopic cubital tunnel release has been proposed as an alternative to open in situ release. However, it is difficult to analyze outcomes after endoscopic release, as only a few small case series exist. The electronic databases of PubMed (1960-June 2014) were systematically screened for studies related to endoscopic cubital tunnel release or open in situ cubital tunnel release. Baseline characteristics, clinical scores, and complication rates were abstracted. The binary outcome was defined as rate of excellent/good response versus fair/poor. Complications were recorded into 3 categories: wound problems, persistent ulnar nerve symptoms, and other. We included 8 articles that reported the clinical outcomes after surgical intervention including a total of 494 patients (344 endoscopic, 150 open in situ). The pooled rate of excellent/good was 92.0% (88.8%-95.2%) for endoscopic and 82.7% (76.15%-89.2%) for open. We identified 18 articles that detailed complications including a total of 1108 patients (691 endoscopic, 417 open). The 4 articles that listed complication rates for both endoscopic and open techniques were analyzed and showed a pooled odds ratio of 0.280 (95% confidence interval, 0.125-0.625), indicating that endoscopic patients have reduced odds of complications. The results of this systematic review suggest that there is a difference in clinical outcomes between the open in situ and endoscopic cubital tunnel release, with the endoscopic technique being superior in regard to both complication rates along with patient satisfaction.
Singhi, Aditi
2009-01-01
Study Objectives: (a) To find out the actual incidence of complications during endoscopic surgeries. (b) Comparison of complication rate between an experienced laparoscopic surgeon (> 10 years of experience in endoscopic surgery) and a clinical assistant (> 3 years of experience in endoscopic surgery). (c) How to manage complications in endoscopic surgery. (d) Concrete suggestions to reduce the complication rate. Design: Retrospective study (Canadian Task Force classification ii-2). Setting: Tertiary gynecologic endoscopic unit. Patients: A total of 3204 cases of gynecologic endoscopic surgery out of which 2001 were laparoscopic and 1203 were hysteroscopic surgeries. Interventions: Laparoscopic and hysteroscopic gynecologic surgeries in indicated cases. Measurements and Main Results: The study was carried out between April 2003 and October 2007 at a referral center for endoscopic surgery. A total of 3204 cases of gynecologic endoscopic surgery were studied. There were five significant complications in laparoscopic surgeries and four significant complications in hysteroscopic surgeries seen in four years and six months. All the complications could be managed with no mortality. Conversion to laparotomy was needed in eight cases of laparoscopic surgeries and none in hysteroscopic surgeries. Conclusion: The risk of complication reduces with the experience in endoscopic surgery. However, the proper grooming of a novice in experienced hands, for a sufficient period of time, can minimize the complication rate in the initial learning phase. The complication may be utilized as a stepping-stone to overcome any given situation without panic, but with adequate safety. PMID:22442510
Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
Choudhury, Nusrat; Gélinas-Phaneuf, Nicholas; Delorme, Sébastien; Del Maestro, Rolando
2013-11-01
Technical skills training in neurosurgery is mostly done in the operating room. New educational paradigms are encouraging the development of novel training methods for surgical skills. Simulation could answer some of these needs. This article presents the development of a conceptual training framework for use on a virtual reality neurosurgical simulator. Appropriate tasks were identified by reviewing neurosurgical oncology curricula requirements and performing cognitive task analyses of basic techniques and representative surgeries. The tasks were then elaborated into training modules by including learning objectives, instructions, levels of difficulty, and performance metrics. Surveys and interviews were iteratively conducted with subject matter experts to delimitate, review, discuss, and approve each of the development stages. Five tasks were selected as representative of basic and advanced neurosurgical skill. These tasks were: 1) ventriculostomy, 2) endoscopic nasal navigation, 3) tumor debulking, 4) hemostasis, and 5) microdissection. The complete training modules were structured into easy, intermediate, and advanced settings. Performance metrics were also integrated to provide feedback on outcome, efficiency, and errors. The subject matter experts deemed the proposed modules as pertinent and useful for neurosurgical skills training. The conceptual framework presented here, the Fundamentals of Neurosurgery, represents a first attempt to develop standardized training modules for technical skills acquisition in neurosurgical oncology. The National Research Council Canada is currently developing NeuroTouch, a virtual reality simulator for cranial microneurosurgery. The simulator presently includes the five Fundamentals of Neurosurgery modules at varying stages of completion. A first pilot study has shown that neurosurgical residents obtained higher performance scores on the simulator than medical students. Further work will validate its components and use in a training curriculum. Copyright © 2013 N. Choudhury. Published by Elsevier Inc. All rights reserved.
Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.
Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy
2014-01-01
A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Tan, Yuyong; Huo, Jirong; Liu, Deliang
2017-11-01
Gastrointestinal submucosal tumors (SMTs) have been increasingly identified via the use of endoscopic ultrasonography, and removal is often recommended for SMTs that are >2 cm in diameter or symptomatic. Submucosal tunneling endoscopic resection (STER), also known as submucosal endoscopic tumor resection, endoscopic submucosal tunnel dissection or tunneling endoscopic muscularis dissection, is a novel endoscopic technique for treating gastrointestinal SMTs originating from the muscularis propria layer, and has been demonstrated to be effective in the removal of SMTs with a decreased rate of recurrence by clinical studies. STER may be performed for patients with esophageal or cardia SMTs, and its application has expanded beyond these types of SMTs due to modifications to the technique. The present study reviewed the applications, procedure, efficacy and complications associated with STER.
Endoscopic treatments for portal hypertension.
Lo, Gin-Ho
2018-02-01
Acute esophageal variceal hemorrhage is a dreaded complication of portal hypertension. Its management has evolved rapidly in recent years. Endoscopic therapy is often employed to arrest bleeding varices as well as to prevent early rebleeding. The combination of vasoconstrictor and endoscopic therapy is superior to vasoconstrictor or endoscopic therapy alone for control of acute esophageal variceal hemorrhage. After control of acute variceal bleeding, combination of banding ligation and beta-blockers is generally recommended to prevent variceal rebleeding. To prevent the catastrophic event of acute variceal bleeding, endoscopic banding ligation is an important tool in the prophylaxis of first bleeding. Endoscopic obturation with cyanoacrylate is usually utilized to arrest acute gastric variceal hemorrhage as well as to prevent rebleeding. It can be concluded that endoscopic therapies play a pivotal role in management of portal hypertensive bleeding.
Supraretinacular endoscopic carpal tunnel release: surgical technique with prospective case series.
Ecker, J; Perera, N; Ebert, J
2015-02-01
Current techniques for endoscopic carpal tunnel release use an infraretinacular approach, inserting the endoscope deep to the flexor retinaculum. We present a supraretinacular endoscopic carpal tunnel release technique in which a dissecting endoscope is inserted superficial to the flexor retinaculum, which improves vision and the ability to dissect and manipulate the median nerve and tendons during surgery. The motor branch of the median nerve and connections between the median and ulnar nerve can be identified and dissected. Because the endoscope is inserted superficial to the flexor retinaculum, the median nerve is not compressed before division of the retinaculum and, as a result, we have observed no cases of the transient median nerve deficits that have been reported using infraretinacular endoscopic techniques. © The Author(s) 2014.
Sugisawa, Koichi; Ichikawa, Katsuhiro; Minamishima, Kazuya; Hasegawa, Masakazu; Yamada, Yoshitake; Jinzaki, Masahiro
2017-01-01
The purpose of this study was to evaluate the effect of the virtual monochromatic spectral images (VMSI) and the model-based iterative reconstruction (MBIR) images, to evaluate the influence of the aperture size (40- and 20-mm beam) on renal pseudoenhancement (PE) compared with the filtered back projection (FBP) images. The renal compartment-CT phantom was filled with iodinated contrast material diluted to the attenuation of 180 Hounsfield units (HU) at 120 kV. The water-filled spherical structures, which simulate cyst, were inserted into the renal compartment. Those diameters were 7, 15 and 25 mm. These were scanned by conventional mode (helical scan, 120 kV-FBP) and dual energy mode. 70 keV-VMSI were reconstructed from the dual energy mode, and MBIR images were reconstructed from conventional mode at 40- and 20-mm aperture. Additionally, the phantom was scanned using non-helical mode with 20-mm aperture, and FBP images were reconstructed. The CT value of the PE for cyst areas was measured for these images. The CT values of the cysts were 20.0-14.3 HU on the FBP images, 12.8-12.7 HU on the 70 keV-VMSI (PE-inhibition ratio was 36.0-11.2%) and 16.2-14.0 HU on the MBIR images (19.0-2.1%), respectively, at 40-mm aperture. The PE-inhibition ratio scanned by 20-mm aperture was improved by 28.0% with FBP, 32.8% with 70 keV-VMSI and 29.6% with MBIR compared with 40-mm aperture. One of the FBP images with non-helical mode was 11.6 HU. The best CT technique to minimize PE was the combination of 70 keV-VMSI and 20-mm aperture.
Seewald, Stefan; Ang, Tiing Leong; Richter, Hugo; Teng, Karl Yu Kim; Zhong, Yan; Groth, Stefan; Omar, Salem; Soehendra, Nib
2012-01-01
To determine the immediate and long-term results of endoscopic drainage and necrosectomy for symptomatic pancreatic fluid collections. The data of 80 patients with symptomatic pancreatic fluid collections (mean diameter: 11.7 cm, range 3-20; pseudocysts: 24/80, abscess: 20/80, infected walled-off necrosis: 36/80) referred for endoscopic management from October 1997 to March 2008 were analyzed retrospectively. Endoscopic drainage techniques included endoscopic ultrasound (EUS)-guided aspiration (2/80), EUS-guided transenteric drainage (70/80) and non-EUS-guided drainage across a spontaneous transenteric fistula (8/80). Endoscopic necrosectomy was carried out in 49/80 (abscesses: 14/20; infected necrosis: 35/36). Procedural complications were bleeding (12/80), perforation (7/80), portal air embolism (1/80) and Ogilvie Syndrome (1/80). Initial technical success was achieved in 78/80 (97.5%) and clinical resolution of the collections was achieved endoscopically in 67/80 (83.8%), with surgery required in 13/80 (perforation: four; endoscopically inaccessible areas: two; inadequate drainage: seven). Within 6 months five patients required surgery due to recurrent fluid collections; over a mean follow up of 31 months, surgery was required in four more patients due to recurrent collections as a consequence of underlying pancreatic duct abnormalities that could not be treated endoscopically. The long-term success of endoscopic treatment was 58/80 (72.5%). Endoscopic drainage of symptomatic pancreatic fluid collections is safe and effective, with excellent immediate and long-term results. Endoscopic necrosectomy has a risk of serious complications. The underlying pancreatic duct abnormalities must be addressed to prevent recurrence of fluid collections. © 2011 The Authors. Digestive Endoscopy © 2011 Japan Gastroenterological Endoscopy Society.
Woo, Shanan; Walklin, Ryan; Ackermann, Travis; Lo, Sheng Wei; Shilton, Hamish; Pilgrim, Charles; Evans, Peter; Burnes, James; Croagh, Daniel
2018-05-10
Primary endoscopic and percutaneous drainage for pancreatic necrotic collections is increasingly used. We aim to compare the relative effectiveness of both modalities in reducing the duration and severity of illness by measuring their effects on systemic inflammatory response syndrome (SIRS). We retrospectively reviewed all cases of endoscopic and percutaneous drainage for pancreatic necrotic collections performed in 2011-2016 at two hospitals. We assessed the post-procedure length of hospital stay, reduction in C-reactive protein levels, resolution of SIRS, the complication rates, and the number of procedures required for resolution. Thirty-two patients were identified and 57 cases (36 endoscopic, 21 percutaneous) were included. There was no significant difference in C-reactive protein reduction between endoscopic and percutaneous drainage (69.5% vs 68.8%, P = 0.224). Resolution of SIRS was defined as the post-procedure normalization of white cell count (endoscopic vs percutaneous: 70.4% vs 64.3%, P = 0.477), temperature (endoscopic vs percutaneous: 93.3% vs 60.0%, P = 0.064), heart rate (endoscopic vs percutaneous: 56.0% vs 11.1%, P = 0.0234), and respiratory rate (endoscopic vs percutaneous: 83.3% vs 0.0%, P = 0.00339). Post-procedure length of hospital stay was 27 days with endoscopic drainage and 46 days with percutaneous drainage (P = 0.0183). Endoscopic drainage was associated with a shorter post-procedure length of hospital stay and a greater rate of normalization of SIRS parameters than percutaneous drainage, although only the effects on heart rate and respiratory rate reached statistical significance. Further studies are needed to establish which primary drainage modality is superior for pancreatic necrotic collections. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Leddy, Laura S.; Vanni, Alex J.; Wessells, Hunter; Voelzke, Bryan B.
2012-01-01
Purpose We examined the success of early endoscopic realignment of pelvic fracture associated urethral injury after blunt pelvic trauma. Materials and Methods A retrospective review was performed of patients with pelvic fracture associated urethral injury who underwent early endoscopic realignment using a retrograde or retrograde/antegrade approach from 2004 to 2010 at a Level 1 trauma center. Followup consisted of uroflowmetry, post-void residual and cystoscopic evaluation. Failure of early endoscopic realignment was defined as patients requiring urethral dilation, direct vision internal urethrotomy, posterior urethroplasty or self-catheterization after initial urethral catheter removal. Results A total of 19 consecutive patients (mean age 38 years) with blunt pelvic fracture associated urethral injury underwent early endoscopic realignment. Twelve cases of complete urethral disruption, 4 of incomplete disruption and 3 of indeterminate status were noted. Mean time to realignment was 2 days and mean duration of urethral catheterization after realignment was 53 days. One patient was lost to followup after early endoscopic realignment. Using an intent to treat analysis early endoscopic realignment failed in 15 of 19 patients (78.9%). Mean time to early endoscopic realignment failure after catheter removal was 79 days. The cases of early endoscopic realignment failure were managed with posterior urethroplasty (8), direct vision internal urethrotomy (3) and direct vision internal urethrotomy followed by posterior urethroplasty (3). Mean followup for the 4 patients considered to have undergone successful early endoscopic realignment was 2.1 years. Conclusions Early endoscopic realignment after blunt pelvic fracture associated urethral injury results in high rates of symptomatic urethral stricture requiring further operative treatment. Close followup after initial catheter removal is warranted, as the mean time to failure after early endoscopic realignment was 79 days in our cohort. PMID:22591965
Thota, Prashanthi N; Sada, Alaa; Sanaka, Madhusudhan R; Jang, Sunguk; Lopez, Rocio; Goldblum, John R; Liu, Xiuli; Dumot, John A; Vargo, John; Zuccarro, Gregory
2017-03-01
Patients with Barrett's esophagus (BE) and high-grade dysplasia (HGD) or intramucosal cancer (IMC) on endoscopic forceps biopsies are referred to endoscopic therapy even though forceps biopsies do not reflect the disease extent accurately. Endoscopic mucosal resection (EMR) and endoscopic ultrasound (EUS) are frequently used for staging prior to endoscopic therapy. Our aims were to evaluate: (1) if endoscopic forceps biopsies correlated with EMR histology in these patients; (2) the utility of EUS compared to EMR; and (3) if accuracy of EUS varied based on grade of differentiation of tumor. This is a retrospective review of patients referred to endoscopic therapy of BE with HGD or early esophageal adenocarcinoma (EAC) who underwent EMR from 2006 to 2011. Age, race, sex, length of Barrett's segment, hiatal hernia size, number of endoscopies and biopsy results and EUS findings were abstracted. A total of 151 patients underwent EMR. In 50 % (75/151) of patients, EMR histology was consistent with endoscopic forceps biopsy findings. EMR resulted in change in diagnosis with upstaging in 21 % (32/151) and downstaging in 29 % (44/151). In patients with HGD on EMR, EUS staging was T0 in 74.1 % (23/31) but upstaged in 25.8 % (8/31). In patients with IMC on EMR, EUS findings were T1a in 23.6 % (9/38), upstaged in 18.4 % (7/38) and downstaged in 57.8 % (22/38). EUS accurately identified EMR histology in all submucosal cancers. Grade of differentiation was reported in 24 cancers on EMR histology. There was no correlation between grade and EUS staging. EUS is of limited utility in accurate staging of BE patients with HGD or early EAC. Endoscopic forceps biopsy correlated with EMR findings in only 50 % of patients. Irrespective of the endoscopic forceps biopsy results, all BE patients with visible lesions should be referred to EMR.
Integration of the virtual 3D model of a control system with the virtual controller
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2015-11-01
Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.
Endoscopic approaches to treatment of achalasia
Friedel, David; Modayil, Rani; Iqbal, Shahzad; Grendell, James H.
2013-01-01
Endoscopic therapy for achalasia is directed at disrupting or weakening the lower esophageal sphincter (LES). The two most commonly utilized endoscopic interventions are large balloon pneumatic dilation (PD) and botulinum toxin injection (BTI). These interventions have been extensively scrutinized and compared with each other as well as with surgical disruption (myotomy) of the LES. PD is generally more effective in improving dysphagia in achalasia than BTI, with the latter reserved for infirm older people, and PD may approach treatment results attained with myotomy. However, PD may need to be repeated. Small balloon dilation and endoscopic stent placement for achalasia have only been used in select centers. Per oral endoscopic myotomy is a newer endoscopic modality that will likely change the treatment paradigm for achalasia. It arose from the field of natural orifice transluminal endoscopic surgery and represents a scarless endoscopic approach to Heller myotomy. This is a technique that requires extensive training and preparation and thus there should be rigorous accreditation and monitoring of outcomes to ensure safety and efficacy. PMID:23503707
Cooperative Lamb shift and superradiance in an optoelectronic device
NASA Astrophysics Data System (ADS)
Frucci, G.; Huppert, S.; Vasanelli, A.; Dailly, B.; Todorov, Y.; Beaudoin, G.; Sagnes, I.; Sirtori, C.
2017-04-01
When a single excitation is shared between a large number of two-level systems, a strong enhancement of the spontaneous emission appears. This phenomenon is known as superradiance. This enhanced rate can be accompanied by a shift of the emission frequency, the cooperative Lamb shift, issued from the exchange of virtual photons between the emitters. In this work we present a semiconductor optoelectronic device allowing the observation of these two phenomena at room temperature. We demonstrate experimentally and theoretically that plasma oscillations in spatially separated quantum wells interact through real and virtual photon exchange. This gives rise to a superradiant mode displaying a large cooperative Lamb shift.
Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries
Hochgürtel, Matthias; Kroth, Heiko; Piecha, Dorothea; Hofmann, Michael W.; Nicolau, Claude; Krause, Sonja; Schaaf, Otmar; Sonnenmoser, Gabriele; Eliseev, Alexey V.
2002-01-01
Neuraminidase, a key enzyme responsible for influenza virus propagation, has been used as a template for selective synthesis of small subsets of its own inhibitors from theoretically highly diverse dynamic combinatorial libraries. We show that the library building blocks, aldehydes and amines, form significant amounts of the library components resulting from their coupling by reductive amination only in the presence of the enzyme. The target amplifies the best hits at least 120-fold. The dynamic libraries synthesized and screened in such an in vitro virtual mode form the components that possess high inhibitory activity, as confirmed by enzyme assays with independently synthesized individual compounds. PMID:11891312
Bisleri, Gianluigi; Giroletti, Laura; Hrapkowicz, Tomasz; Bertuletti, Martina; Zembala, Marian; Arieti, Mario; Muneretto, Claudio
2016-10-01
Despite the popularity of less invasive approaches for conduits procurement in coronary artery bypass graft surgery, concerns have been raised about the potential detrimental effects of the endoscopic technique when compared with the conventional "open" technique. Among 470 patients undergoing coronary surgery with the use of a radial artery conduit, a propensity score analysis was performed among those patients assigned either to an open technique (n = 82) or to an endoscopic approach (n = 82). Endoscopic harvesting was performed with a nonsealed system. The primary endpoint was cardiac-related mortality, and secondary endpoint was survival free from major cardiac and cerebrovascular adverse events. Moreover, hand and forearm sensory discomfort and forearm wound healing were also assessed. No conversion to the open technique occurred in patients undergoing endoscopic harvesting. No patients in either group showed hand ischemia; wound infection occurred only in the open group (open 7.3% versus endoscopic 0%, p = 0.007). Wound healing (Hollander scale) was considerably better in the endoscopic group (open 3.3, endoscopic 4.7; p < 0.001) as well as paresthesia at the latest follow-up (open 19.5% versus endoscopic 3.6%, p < 0.001). Pain (visual analog scale score) was significantly reduced with the endoscopic technique (open 3.2, endoscopic 1.2; p = 0.003). At 5 years of follow-up, freedom from cardiac-related mortality (open 96.3% ± 2.1% versus endoscopic 98.1% ± 1.8%; p = 0.448) as well as survival free from major cardiac and cerebrovascular adverse events (open 93.9% ± 2.6% versus endoscopic 93% ± 3.4%; p = 0.996) were similar among the groups. Endoscopic radial artery harvesting allows for incremental benefits in the short term in terms of improved cosmesis and reduced wound and neurologic complications, without yielding detrimental effects in terms of graft-related events at 5 years of follow-up. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study
2017-01-01
Background Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Objective Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. Methods The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. Results During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was “very” or “somewhat” helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can –$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can –$8.68, P<.001). Conclusions Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. PMID:28550006
The application of percutaneous endoscopic colostomy to the management of obstructed defecation.
Heriot, A G; Tilney, H S; Simson, J N L
2002-05-01
We describe the case of a 52-year woman with a 17-year history of obstructed defecation in whom all other standard treatments had failed and the patient had refused a colostomy. Her symptoms were controlled by percutaneous endoscopic colostomy with antegrade colonic irrigation. A percutaneous endoscopic colostomy tube was placed in the sigmoid colon endoscopically using a colonoscope and the patient irrigated two liters of water through the percutaneous endoscopic colostomy twice each day and was able to successfully evacuate her rectum without excess straining or discomfort. Percutaneous endoscopic colostomy is an alternative option to colostomy in the management of obstructed defecation.
Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography
NASA Astrophysics Data System (ADS)
Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.
2004-10-01
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-µm axial resolution by use of a femtosecond Crforsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.
Extended Endoscopic and Open Sinus Surgery for Refractory Chronic Rhinosinusitis.
Eloy, Jean Anderson; Marchiano, Emily; Vázquez, Alejandro
2017-02-01
This review discusses extended endoscopic and open sinus surgery for refractory chronic rhinosinusitis. Extended maxillary sinus surgery including endoscopic maxillary mega-antrostomy, endoscopic modified medial maxillectomy, and inferior meatal antrostomy are described. Total/complete ethmoidectomy with mucosal stripping (nasalization) is discussed. Extended endoscopic sphenoid sinus procedures as well as their indications and potential risks are reviewed. Extended endoscopic frontal sinus procedures, such the modified Lothrop procedure, are described. Extended open sinus surgical procedures, such as the Caldwell-Luc approach, frontal sinus trephine procedure, external frontoethmoidectomy, frontal sinus osteoplastic flap with or without obliteration, and cranialization, are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Improving the Endoscopic Detection Rate in Patients with Early Gastric Cancer
2015-01-01
Endoscopists should ideally possess both sufficient knowledge of the endoscopic gastrointestinal disease findings and an appropriate attitude. Before performing endoscopy, the endoscopist must identify several risk factors of gastric cancer, including the patient's age, comorbidities, and drug history, a family history of gastric cancer, previous endoscopic findings of atrophic gastritis or intestinal metaplasia, and a history of previous endoscopic treatments. During endoscopic examination, the macroscopic appearance is very important for the diagnosis of early gastric cancer; therefore, the endoscopist should have a consistent and organized endoscope processing technique and the ability to comprehensively investigate the entire stomach, even blind spots. PMID:26240801
Gastrointestinal endoscopy in pregnancy
Savas, Nurten
2014-01-01
Gastrointestinal endoscopy has a major diagnostic and therapeutic role in most gastrointestinal disorders; however, limited information is available about clinical efficacy and safety in pregnant patients. The major risks of endoscopy during pregnancy include potential harm to the fetus because of hypoxia, premature labor, trauma and teratogenesis. In some cases, endoscopic procedures may be postponed until after delivery. When emergency or urgent indications are present, endoscopic procedures may be considered with some precautions. United States Food and Drug Administration category B drugs may be used in low doses. Endoscopic procedures during pregnancy may include upper gastrointestinal endoscopy, percutaneous endoscopic gastrostomy, sigmoidoscopy, colonoscopy, enteroscopy of the small bowel or video capsule endoscopy, endoscopic retrograde cholangiopancreatography and endoscopic ultrasonography. All gastrointestinal endoscopic procedures in pregnant patients should be performed in hospitals by expert endoscopists and an obstetrician should be informed about all endoscopic procedures. The endoscopy and flexible sigmoidoscopy may be safe for the fetus and pregnant patient, and may be performed during pregnancy when strong indications are present. Colonoscopy for pregnant patients may be considered for strong indications during the second trimester. Although therapeutic endoscopic retrograde cholangiopancreatography may be considered during pregnancy, this procedure should be performed only for strong indications and attempts should be made to minimize radiation exposure. PMID:25386072
Quantitative endoscopy: initial accuracy measurements.
Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P
2000-02-01
The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.
Management of Inflammatory Fluid Collections and Walled-Off Pancreatic Necrosis.
Shah, Apeksha; Denicola, Richard; Edirisuriya, Cynthia; Siddiqui, Ali A
2017-12-01
Pancreatic fluid collections are a frequent complication of acute pancreatitis. The revised Atlanta criterion classifies chronic fluid collections into pseudocysts and walled-off pancreatic necrosis (WON). Symptomatic PFCs require drainage options that include surgical, percutaneous, or endoscopic approaches. With the advent of newer and more advanced endoscopic tools and expertise, minimally invasive endoscopic drainage has now become the preferred approach. An endoscopic ultrasonography (EUS)-guided approach for pancreatic fluid collection drainage is now the preferred endoscopic approach. Both plastic stents and metal stents are efficacious and safe; however, metal stents may offer an advantage, especially in infected pseudocysts and in WON. Direct endoscopic necrosectomy is often required in WON. Lumen apposing metal stents allow for direct endoscopic necrosectomy and debridement through the stent lumen and are now preferred in these patients. Endoscopic retrograde cholangiopancreatography with pancreatic duct exploration should be performed concurrent to PFC drainage in patients with suspected PD disruption. PD disruption is associated with an increased severity of pancreatitis, an increased risk of recurrent attacks of pancreatitis and long-term complications, and a decreased rate of PFC resolution after drainage. Ideally, pancreatic ductal disruption should be bridged with endoscopic stenting.
2007-01-01
In this Evaluation, we examine whether the Steris Reliance EPS--a flexible endoscope reprocessing system that was recently introduced to the U.S. market--offers meaningful advantages over "traditional" automated endoscope reprocessors (AERs). Most AERs on the market function similarly to one another. The Reliance EPS, however, includes some unique features that distinguish it from other AERs. For example, it incorporates a "boot" technology for loading the endoscopes into the unit without requiring a lot of endoscope-specific connectors, and it dispenses the germicide used to disinfect the endoscopes from a single-use container. This Evaluation looks at whether the unique features of this model make it a better choice than traditional AERs for reprocessing flexible endoscopes. Our study focuses on whether the Reliance EPS is any more likely to be used correctly-thereby reducing the likelihood that an endoscope will be reprocessed inadequately-and whether the unit possesses any design flaws that could lead to reprocessing failures. We detail the unit's advantages and disadvantages compared with other AERs, and we describe what current users have to say. Our conclusions will help facilities determine whether to select the Reliance EPS.
Modeling the convergence accommodation of stereo vision for binocular endoscopy.
Gao, Yuanqian; Li, Jinhua; Li, Jianmin; Wang, Shuxin
2018-02-01
The stereo laparoscope is an important tool for achieving depth perception in robot-assisted minimally invasive surgery (MIS). A dynamic convergence accommodation algorithm is proposed to improve the viewing experience and achieve accurate depth perception. Based on the principle of the human vision system, a positional kinematic model of the binocular view system is established. The imaging plane pair is rectified to ensure that the two rectified virtual optical axes intersect at the fixation target to provide immersive depth perception. Stereo disparity was simulated with the roll and pitch movements of the binocular system. The chessboard test and the endoscopic peg transfer task were performed, and the results demonstrated the improved disparity distribution and robustness of the proposed convergence accommodation method with respect to the position of the fixation target. This method offers a new solution for effective depth perception with the stereo laparoscopes used in robot-assisted MIS. Copyright © 2017 John Wiley & Sons, Ltd.
Depth cue reliance in surgeons and medical students.
Shah, J; Buckley, D; Frisby, J; Darzi, A
2003-09-01
Depth perception is reduced in endoscopic surgery, although little is known about the effect this has on surgical performance. To assess the role of depth cues, 45 subjects completed tests of depth cue reliance. Surgical skill was assessed using the Minimally Invasive Surgical Trainer-Virtual Reality, a previously validated laparoscopic simulator. We could demonstrate no difference in cue reliance for three depth cues--namely stereo, texture, and outline--between surgeons and medical students. Greater dominance on stereo for medical students was a positive finding and a negative finding for the surgeons when correlated with surgical performance. We suggest that surgeons learn to adapt to the nonstereo environment in MIS, and this is the first study to show evidence of this phenomenon. This difference in stereo reliance is a reflection of the experience that surgeons have with laparoscopy compared with medical students, who have none.
Future Development of Endoscopic Accessories for Endoscopic Submucosal Dissection
Jang, Jae-Young
2017-01-01
Endoscopic submucosal dissection (ESD) has recently been accepted as a standard treatment for patients with early gastric cancer (EGC), without lymph node metastases. Given the rise in the number of ESDs being performed, new endoscopic accessories are being developed and existing accessories modified to facilitate the execution of ESD and reduce complication rates. This paper examines the history underlying the development of these new endoscopic accessories and indicates future directions for the development of these accessories. PMID:28609819
Huikai, Li; Enqiang, Linghu
2013-01-01
It is of vital importance to determine the depth of lesions to be treated by endoscopic submucosal dissection. This study aimed to compare the accuracy of using hot biopsy forceps method with endoscopic ultrasonography for determination of the depth of gastric epithelial neoplasia. Hot biopsy forceps method and/or endoscopic ultrasonography were used to determine the depth of lesions in 27 patients. With hot biopsy forceps method, we assumed a lesion completely lifted up by a hot biopsy forceps to be confined to the mucosal layer, and one partly lifted up to be located beyond the mucosal layer. The accuracy of hot biopsy forceps method and endoscopic ultrasonography in determining the depth of lesions were compared. Of the 27 patients, 25 underwent endoscopic submucosal dissection and 2 underwent surgery. The total accuracy of hot biopsy forceps method in determining the depth of lesions was 92.6% and that of endoscopic ultrasonography was 81.8%. Overestimation of hot biopsy forceps method and endoscopic ultrasonography were 3.7% vs. 13.6%, respectively. The sensitivity and the specificity of hot biopsy forceps method were 95.5% and 80.0% and those of EUS were 83.3% and 75.0%. Hot biopsy forceps method has a trend towards higher accuracy and lower overestimation than endoscopic ultrasonography.
Chan, Jason Y K; Leung, Iris; Navarro-Alarcon, David; Lin, Weiyang; Li, Peng; Lee, Dennis L Y; Liu, Yun-hui; Tong, Michael C F
2016-03-01
To evaluate the feasibility of a unique prototype foot-controlled robotic-enabled endoscope holder (FREE) in functional endoscopic sinus surgery. Cadaveric study. Using human cadavers, we investigated the feasibility, advantages, and disadvantages of the robotic endoscope holder in performing endoscopic sinus surgery with two hands in five cadaver heads, mimicking a single nostril three-handed technique. The FREE robot is relatively easy to use. Setup was quick, taking less than 3 minutes from docking the robot at the head of the bed to visualizing the middle meatus. The unit is also relatively small, takes up little space, and currently has four degrees of freedom. The learning curve for using the foot control was short. The use of both hands was not hindered by the presence of the endoscope in the nasal cavity. The tremor filtration also aided in the smooth movement of the endoscope, with minimal collisions. The FREE endoscope holder in an ex-vivo cadaver test corroborated the feasibility of the robotic prototype, which allows for a two-handed approach to surgery equal to a single nostril three-handed technique without the holder that may reduce operating time. Further studies will be needed to evaluate its safety profile and use in other areas of endoscopic surgery. NA. Laryngoscope, 126:566-569, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Kato, Shin; Kuwatani, Masaki; Sugiura, Ryo; Sano, Itsuki; Kawakubo, Kazumichi; Ono, Kota; Sakamoto, Naoya
2017-08-11
The effect of endoscopic sphincterotomy prior to endoscopic biliary stenting to prevent post-endoscopic retrograde cholangiopancreatography pancreatitis remains to be fully elucidated. The aim of this study is to prospectively evaluate the non-inferiority of non-endoscopic sphincterotomy prior to stenting for naïve major duodenal papilla compared with endoscopic sphincterotomy prior to stenting in patients with biliary stricture. We designed a multicentre randomised controlled trial, for which we will recruit 370 patients with biliary stricture requiring endoscopic biliary stenting from 26 high-volume institutions in Japan. Patients will be randomly allocated to the endoscopic sphincterotomy group or the non-endoscopic sphincterotomy group. The main outcome measure is the incidence of pancreatitis within 2 days of initial transpapillary biliary drainage. Data will be analysed on completion of the study. We will calculate the 95% confidence intervals (CIs) of the incidence of pancreatitis in each group and analyse weather the difference in both groups with 95% CIs is within the non-inferiority margin (6%) using the Wald method. This study has been approved by the institutional review board of Hokkaido University Hospital (IRB: 016-0181). Results will be submitted for presentation at an international medical conference and published in a peer-reviewed journal. The University Hospital Medical Information Network ID: UMIN000025727 Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Monitoring of endoscope reprocessing with an adenosine triphosphate (ATP) bioluminescence method.
Parohl, Nina; Stiefenhöfer, Doris; Heiligtag, Sabine; Reuter, Henning; Dopadlik, Dana; Mosel, Frank; Gerken, Guido; Dechêne, Alexander; Heintschel von Heinegg, Evelyn; Jochum, Christoph; Buer, Jan; Popp, Walter
2017-01-01
Background: The arising challenges over endoscope reprocessing quality proposes to look for possibilities to measure and control the process of endoscope reprocessing. Aim: The goal of this study was to evaluate the feasibility of monitoring endoscope reprocessing with an adenosine triphosphate (ATP) based bioluminescence system. Methods: 60 samples of eight gastroscopes have been assessed from routine clinical use in a major university hospital in Germany. Endoscopes have been assessed with an ATP system and microbial cultures at different timepoints during the reprocessing. Findings: After the bedside flush the mean ATP level in relative light units (RLU) was 19,437 RLU, after the manual cleaning 667 RLU and after the automated endoscope reprocessor (AER) 227 RLU. After the manual cleaning the mean total viable count (TVC) per endoscope was 15.3 CFU/10 ml, and after the AER 5.7 CFU/10 ml. Our results show that there are reprocessing cycles which are not able to clean a patient used endoscope. Conclusion: Our data suggest that monitoring of flexible endoscope with ATP can identify a number of different influence factors, like the endoscope condition and the endoscopic procedure, or especially the quality of the bedside flush and manual cleaning before the AER. More process control is one option to identify and improve influence factors to finally increase the overall reprocessing quality, best of all by different methods. ATP measurement seems to be a valid technique that allows an immediate repeat of the manual cleaning if the ATP results after manual cleaning exceed the established cutoff of 200 RLU.
21 CFR 882.1480 - Neurological endoscope.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurological endoscope. 882.1480 Section 882.1480...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1480 Neurological endoscope. (a) Identification. A neurological endoscope is an instrument with a light source used to view the inside of the...
21 CFR 882.1480 - Neurological endoscope.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neurological endoscope. 882.1480 Section 882.1480...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1480 Neurological endoscope. (a) Identification. A neurological endoscope is an instrument with a light source used to view the inside of the...
[The development of endoscope workstation].
Qi, L; Qi, L; Qiou, Q J; Yu, Q L
2001-01-01
This paper introduces an endoscope workstation, which solved the weak points of multimedia endoscope database used by most hospitals. The endoscope workstation was built on pedal-switch and NTFS file system. This paper also Introduces how to make program optimal and quick inputting. The workstation has promoted the efficiency of the doctor's operation.
Endoscopic mucosal resection of colonic lesions: current applications and future prospects.
Poppers, David M; Haber, Gregory B
2008-05-01
The introduction of submucosal fluid injection has remarkably extended the range of endoscopically resectable polyps. The limiting factor for endoscopic resection is not polyp size, but polyp depth. Endoscopic ultrasound is a useful adjunctive diagnostic tool to assess the depth of invasion. The success of are section ultimately depends on pathologic confirmation of a benign nature of this lesion or of a cancer limited to the mucosa. Selected well-differentiated cancers without lymphovascular invasion of the superficial submucosa can be successfully resected endoscopically.
Endoscopic full-thickness resection: Current status
Schmidt, Arthur; Meier, Benjamin; Caca, Karel
2015-01-01
Conventional endoscopic resection techniques such as endoscopic mucosal resection or endoscopic submucosal dissection are powerful tools for treatment of gastrointestinal neoplasms. However, those techniques are restricted to superficial layers of the gastrointestinal wall. Endoscopic full-thickness resection (EFTR) is an evolving technique, which is just about to enter clinical routine. It is not only a powerful tool for diagnostic tissue acquisition but also has the potential to spare surgical therapy in selected patients. This review will give an overview about current EFTR techniques and devices. PMID:26309354
Endoscopic full-thickness resection: Current status.
Schmidt, Arthur; Meier, Benjamin; Caca, Karel
2015-08-21
Conventional endoscopic resection techniques such as endoscopic mucosal resection or endoscopic submucosal dissection are powerful tools for treatment of gastrointestinal neoplasms. However, those techniques are restricted to superficial layers of the gastrointestinal wall. Endoscopic full-thickness resection (EFTR) is an evolving technique, which is just about to enter clinical routine. It is not only a powerful tool for diagnostic tissue acquisition but also has the potential to spare surgical therapy in selected patients. This review will give an overview about current EFTR techniques and devices.
Endoscopic optical coherence tomography: technologies and clinical applications [Invited
Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde
2017-01-01
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882
Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.
Herz, P R; Chen, Y; Aguirre, A D; Schneider, K; Hsiung, P; Fujimoto, J G; Madden, K; Schmitt, J; Goodnow, J; Petersen, C
2004-10-01
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.
Endoscopic findings following retroperitoneal pancreas transplantation.
Pinchuk, Alexey V; Dmitriev, Ilya V; Shmarina, Nonna V; Teterin, Yury S; Balkarov, Aslan G; Storozhev, Roman V; Anisimov, Yuri A; Gasanov, Ali M
2017-07-01
An evaluation of the efficacy of endoscopic methods for the diagnosis and correction of surgical and immunological complications after retroperitoneal pancreas transplantation. From October 2011 to March 2015, 27 patients underwent simultaneous retroperitoneal pancreas-kidney transplantation (SPKT). Diagnostic oesophagogastroduodenoscopy (EGD) with protocol biopsy of the donor and recipient duodenal mucosa and endoscopic retrograde pancreatography (ERP) were performed to detect possible complications. Endoscopic stenting of the main pancreatic duct with plastic stents and three-stage endoscopic hemostasis were conducted to correct the identified complications. Endoscopic methods showed high efficiency in the timely diagnosis and adequate correction of complications after retroperitoneal pancreas transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali
2018-01-01
Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.
Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, Kongfatt; Dutta, Ashish; Prasad, Girijesh
2018-04-01
Virtual keyboard applications and alternative communication devices provide new means of communication to assist disabled people. To date, virtual keyboard optimization schemes based on script-specific information, along with multimodal input access facility, are limited. In this paper, we propose a novel method for optimizing the position of the displayed items for gaze-controlled tree-based menu selection systems by considering a combination of letter frequency and command selection time. The optimized graphical user interface layout has been designed for a Hindi language virtual keyboard based on a menu wherein 10 commands provide access to type 88 different characters, along with additional text editing commands. The system can be controlled in two different modes: eye-tracking alone and eye-tracking with an access soft-switch. Five different keyboard layouts have been presented and evaluated with ten healthy participants. Furthermore, the two best performing keyboard layouts have been evaluated with eye-tracking alone on ten stroke patients. The overall performance analysis demonstrated significantly superior typing performance, high usability (87% SUS score), and low workload (NASA TLX with 17 scores) for the letter frequency and time-based organization with script specific arrangement design. This paper represents the first optimized gaze-controlled Hindi virtual keyboard, which can be extended to other languages.
Endoscopic Therapy in Crohn's Disease: Principle, Preparation, and Technique.
Chen, Min; Shen, Bo
2015-09-01
Stricture and fistula are common complications of Crohn's disease. Endoscopic balloon dilation and needle-knife stricturotomy has become a valid treatment option for Crohn's disease-associated strictures. Endoscopic therapy is also increasingly used in Crohn's disease-associated fistula. Preprocedural preparations, including routine laboratory testing, imaging examination, anticoagulant management, bowel cleansing and proper sedation, are essential to ensure a successful and safe endoscopic therapy. Adverse events, such as perforation and excessive bleeding, may occur during endoscopic intervention. The endoscopist should be well trained, always be cautious, anticipate for possible procedure-associated complications, be prepared for damage control during endoscopy, and have surgical backup ready. In this review, we discuss the principle, preparation, techniques of endoscopic therapy, as well as the prevention and management of endoscopic procedure-associated complications. We propose that inflammatory bowel disease endoscopy may be a part of training for "super" gastroenterology fellows, i.e., those seeking a career in advanced endoscopy or in inflammatory bowel disease.
Endoscopic versus open bursectomy of lateral malleolar bursitis.
Choi, Jae Hyuck; Lee, Kyung Tai; Lee, Young Koo; Kim, Dong Hyun; Kim, Jeong Ryoul; Chung, Woo Chull; Cha, Seung Do
2012-06-01
Compare the result of endoscopic versus open bursectomy in lateral malleolar bursitis. Prospective evaluation of 21 patients (22 ankles) undergoing either open or endoscopic excision of lateral malleolar bursitis. The median age was 64 (38-79) years old. The median postoperative follow-up was 15 (12-18) months. Those patients undergoing endoscopic excision showed a higher satisfaction rate (excellent 9, good 2) than open excision (excellent 4, good 3, fair 1). The wounds also healed earlier in the endoscopic group although the operation time was slightly longer. One patient in the endoscopic group had recurrence of symptoms but complications in the open group included one patient with skin necrosis, one patient with wound dehiscence, and two patients of with superficial peroneal nerve injury. Endoscopic resection of the lateral malleolar bursitis is a promising technique and shows favorable results compared to the open resection. Therapeutic studies-Investigating the result of treatment, Level II.