Sample records for virtual experimental study

  1. Physical versus Virtual Manipulative Experimentation in Physics Learning

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios

    2011-01-01

    The aim of this study was to investigate whether physical or virtual manipulative experimentation can differentiate physics learning. There were four experimental conditions, namely Physical Manipulative Experimentation (PME), Virtual Manipulative Experimentation (VME), and two sequential combinations of PME and VME, as well as a control condition…

  2. A virtual experimenter to increase standardization for the investigation of placebo effects.

    PubMed

    Horing, Bjoern; Newsome, Nathan D; Enck, Paul; Babu, Sabarish V; Muth, Eric R

    2016-07-18

    Placebo effects are mediated by expectancy, which is highly influenced by psychosocial factors of a treatment context. These factors are difficult to standardize. Furthermore, dedicated placebo research often necessitates single-blind deceptive designs where biases are easily introduced. We propose a study protocol employing a virtual experimenter - a computer program designed to deliver treatment and instructions - for the purpose of standardization and reduction of biases when investigating placebo effects. To evaluate the virtual experimenter's efficacy in inducing placebo effects via expectancy manipulation, we suggest a partially blinded, deceptive design with a baseline/retest pain protocol (hand immersions in hot water bath). Between immersions, participants will receive an (actually inert) medication. Instructions pertaining to the medication will be delivered by one of three metaphors: The virtual experimenter, a human experimenter, and an audio/text presentation (predictor "Metaphor"). The second predictor includes falsely informing participants that the medication is an effective pain killer, or correctly informing them that it is, in fact, inert (predictor "Instruction"). Analysis will be performed with hierarchical linear modelling, with a sample size of N = 50. Results from two pilot studies are presented that indicate the viability of the pain protocol (N = 33), and of the virtual experimenter software and placebo manipulation (N = 48). It will be challenging to establish full comparability between all metaphors used for instruction delivery, and to account for participant differences in acceptance of their virtual interaction partner. Once established, the presence of placebo effects would suggest that the virtual experimenter exhibits sufficient cues to be perceived as a social agent. He could consequently provide a convenient platform to investigate effects of experimenter behavior, or other experimenter characteristics, e.g., sex, age, race/ethnicity or professional status. More general applications are possible, for example in psychological research such as bias research, or virtual reality research. Potential applications also exist for standardizing clinical research by documenting and communicating instructions used in clinical trials.

  3. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  4. Motion of a virtual cathode in a cylindrical channel with electron beam transport in the “compressed” state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belomyttsev, S. Ya.; Grishkov, A. A.; Tsygankov, R. V.

    2014-03-15

    This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computermore » simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.« less

  5. Effects of simulation fidelity on user experience in virtual fear of public speaking training - an experimental study.

    PubMed

    Poeschl, Sandra; Doering, Nicola

    2014-01-01

    Realistic models in virtual reality training applications are considered to positively influence presence and performance. The experimental study presented, analyzed the effect of simulation fidelity (static vs. animated audience) on presence as a prerequisite for performance in a prototype virtual fear of public speaking application with a sample of N = 40 academic non-phobic users. Contrary to the state of research, no influence was shown on virtual presence and perceived realism, but an animated audience led to significantly higher effects in anxiety during giving a talk. Although these findings could be explained by an application that might not have been realistic enough, they still question the role of presence as a mediating factor in virtual exposure applications.

  6. Traditional Instruction versus Virtual Reality Simulation: A Comparative Study of Phlebotomy Training among Nursing Students in Kuwait

    ERIC Educational Resources Information Center

    William, Abeer; Vidal, Victoria L.; John, Pamela

    2016-01-01

    This quasi-experimental study compared differences in phlebotomy performance on a live client, between a control group taught through the traditional method and an experimental group using virtual reality simulation. The study showed both groups had performed successfully, using the following metrics: number of reinsertions, pain factor, hematoma…

  7. Effects of Game-Based Learning in an Opensim-Supported Virtual Environment on Mathematical Performance

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng

    2017-01-01

    This experimental study was intended to examine whether the integration of game characteristics in the OpenSimulator-supported virtual reality (VR) learning environment can improve mathematical achievement for elementary school students. In this pre- and posttest experimental comparison study, data were collected from 132 fourth graders through an…

  8. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  9. Virtual reality and the traditional method for phlebotomy training among college of nursing students in Kuwait: implications for nursing education and practice.

    PubMed

    Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles

    2013-01-01

    This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.

  10. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.

    PubMed

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.

  11. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents

    PubMed Central

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762

  12. Can virtual science foster real skills? A study of inquiry skills in a virtual world

    NASA Astrophysics Data System (ADS)

    Dodds, Heather E.

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a greater increase in scores for the group that experienced a virtual world exercise. This study adds to the increasing body of knowledge about virtual worlds and inquiry skills, particularly with adult learners.

  13. A Comparison Study of Polyominoes Explorations in a Physical and Virtual Manipulative Environment

    ERIC Educational Resources Information Center

    Yuan, Y.; Lee, C. -Y.; Wang, C. -H.

    2010-01-01

    This study develops virtual manipulative, polyominoes kits for junior high school students to explore polyominoes. The current work conducts a non-equivalent group pretest-post-test quasi-experimental design to compare the performance difference between using physical manipulatives and virtual manipulatives in finding the number of polyominoes.…

  14. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    PubMed

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  15. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    PubMed Central

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  16. Comparison of virtual patient simulation with mannequin-based simulation for improving clinical performances in assessing and managing clinical deterioration: randomized controlled trial.

    PubMed

    Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang

    2014-09-17

    Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.

  17. Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students' conceptual understanding of heat and temperature

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Constantinou, Constantinos P.

    2008-04-01

    We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.

  18. Open Education Students' Perspectives on Using Virtual Museums Application in Teaching History Subjects

    ERIC Educational Resources Information Center

    Ulusoy, Kadir

    2010-01-01

    The study was made to determine whether the attitudes of the open education faculty students, will be changed or not by virtual museum application. The pre-test and post-test model of the experimental design was used in the research. A group of 20 was formed as an experimental group. The pre-test was given to the group before the study and the…

  19. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    NASA Astrophysics Data System (ADS)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  20. Optimizing students’ scientific communication skills through higher order thinking virtual laboratory (HOTVL)

    NASA Astrophysics Data System (ADS)

    Sapriadil, S.; Setiawan, A.; Suhandi, A.; Malik, A.; Safitri, D.; Lisdiani, S. A. S.; Hermita, N.

    2018-05-01

    Communication skill is one skill that is very needed in this 21st century. Preparing and teaching this skill in teaching physics is relatively important. The focus of this research is to optimizing of students’ scientific communication skills after the applied higher order thinking virtual laboratory (HOTVL) on topic electric circuit. This research then employed experimental study particularly posttest-only control group design. The subject in this research involved thirty senior high school students which were taken using purposive sampling. A sample of seventy (70) students participated in the research. An equivalent number of thirty five (35) students were assigned to the control and experimental group. The results of this study found that students using higher order thinking virtual laboratory (HOTVL) in laboratory activities had higher scientific communication skills than students who used the verification virtual lab.

  1. Body Image and Anti-Fat Attitudes: An Experimental Study Using a Haptic Virtual Reality Environment to Replicate Human Touch.

    PubMed

    Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah

    2016-02-01

    It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions.

  2. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  3. Ideas and Approaches on “Construction of High Level Simulation Experimental Teaching Center of Virtual Chemical Laboratory”

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    With the spiritual guidance of the Circular on the Construction of National Virtual Simulation Experimental Teaching Center by the National Department of Education, according to the requirements of construction task and work content, and based on the reality of the simulation experimental teaching center of virtual chemical laboratory at Tianjin University, this paper mainly strengthens the understanding of virtual simulation experimental teaching center from three aspects, and on this basis, this article puts forward specific construction ideas, which refer to the “four combinations, five in one, the optimization of the resources and school-enterprise cooperation”, and on this basis, this article has made effective explorations. It also shows the powerful functions of the virtual simulation experimental teaching platform in all aspects by taking the synthesis and analysis of organic compounds as an example.

  4. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  5. Working Collaboratively in Virtual Learning Environments: Using Second Life with Korean High School Students in History Class

    ERIC Educational Resources Information Center

    Kim, Mi Hwa

    2013-01-01

    The purpose of this experimental study was to investigate the impact of the use of a virtual environment for learning Korean history on high school students' learning outcomes and attitudes toward virtual worlds (collaboration, engagement, general use of SL [Second Life], and immersion). In addition, this experiment examined the relationships…

  6. Effects of ICT Assisted Real and Virtual Learning on the Performance of Secondary School Students

    ERIC Educational Resources Information Center

    Deka, Monisha; Jena, Ananta Kumar

    2017-01-01

    The study aimed to assess the effect of ICT assisted real and virtual learning performance over the traditional approach of secondary school students. Non-Equivalent Pretest-Posttest Quasi Experimental Design used to assess and relate the effects of independent variables virtual learning on dependent variables (i.e. learning performance).…

  7. Probabilistic motor sequence learning in a virtual reality serial reaction time task.

    PubMed

    Sense, Florian; van Rijn, Hedderik

    2018-01-01

    The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.

  8. Employing immersive virtual environments for innovative experiments in health care communication.

    PubMed

    Persky, Susan

    2011-03-01

    This report reviews the literature for studies that employ immersive virtual environment technology methods to conduct experimental studies in health care communication. Advantages and challenges of using these tools for research in this area are also discussed. A literature search was conducted using the Scopus database. Results were hand searched to identify the body of studies, conducted since 1995, that are related to the report objective. The review identified four relevant studies that stem from two unique projects. One project focused on the impact of a clinician's characteristics and behavior on health care communication, the other focused on the characteristics of the patient. Both projects illustrate key methodological advantages conferred by immersive virtual environments, including, ability to maintain simultaneously high experimental control and realism, ability to manipulate variables in new ways, and unique behavioral measurement opportunities. Though implementation challenges exist for immersive virtual environment-based research methods, given the technology's unique capabilities, benefits can outweigh the costs in many instances. Immersive virtual environments may therefore prove an important addition to the array of tools available for advancing our understanding of communication in health care. Published by Elsevier Ireland Ltd.

  9. Guiding Exploration through Three-Dimensional Virtual Environments: A Cognitive Load Reduction Approach

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Fauzy Wan Ismail, Wan Mohd

    2008-01-01

    The real-time interactive nature of three-dimensional virtual environments (VEs) makes this technology very appropriate for exploratory learning purposes. However, many studies have shown that the exploration process may cause cognitive overload that affects the learning of domain knowledge. This article reports a quasi-experimental study that…

  10. Predictors of Achievement When Virtual Manipulatives Are Used for Mathematics Instruction

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Baker, Joseph; Westenskow, Arla; Anderson-Pence, Katie L.; Shumway, Jessica F.; Jordan, Kerry E.

    2014-01-01

    The purpose of this study was to determine variables that predict performance when virtual manipulatives are used for mathematics instruction. This study used a quasi-experimental design. This design was used to determine variables that predict student performance on tests of fraction knowledge for third- and fourth-grade students in two treatment…

  11. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  12. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy.

    PubMed

    Shin, Ji-Won; Song, Gui-Bin; Hwangbo, Gak

    2015-07-01

    [Purpose] The purpose of the study was to evaluate the effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. [Subjects] Sixteen children (9 males, 7 females) with spastic diplegic cerebral palsy were recruited and randomly assigned to the conventional neurological physical therapy group (CG) and virtual reality training group (VRG). [Methods] Eight children in the control group performed 45 minutes of therapeutic exercise twice a week for eight weeks. In the experimental group, the other eight children performed 30 minutes of therapeutic exercise and 15 minutes of a training program using virtual reality twice a week during the experimental period. [Results] After eight weeks of the training program, there were significant differences in eye-hand coordination and visual motor speed in the comparison of the virtual reality training group with the conventional neurological physical therapy group. [Conclusion] We conclude that a well-designed training program using virtual reality can improve eye-hand coordination in children with cerebral palsy.

  13. Preliminary results from DIMES: Dispersion in the ACC

    NASA Astrophysics Data System (ADS)

    Balwada, D.; Speer, K.; LaCasce, J. H.; Owens, B.

    2012-04-01

    The Diapycnal and Isopynal Mixing Experiment in the Southern Ocean (DIMES) is a CLIVAR process study designed to study mixing in the Antarctic Circumpolar Current. The experiment includes tracer release, float, and small-scale turbulence components. This presentation will report on some results of the float component, from floats deployed across the ACC in the Southeast Pacific Ocean. These are the first subsurface Lagrangian trajectories from the ACC. Floats were deployed to follow approximately a constant density surface for a period of 1-3 years. To help aid the experimental results virtual floats were advected using AVISO data and basic statistics were derived from both deployed and virtual float trajectories. Experimental design, initial results, comparison to virtual floats and single particle and relative dispersion calculations will be presented.

  14. Virtual experiments in electronics: beyond logistics, budgets, and the art of the possible

    NASA Astrophysics Data System (ADS)

    Chapman, Brian

    1999-09-01

    It is common and correct to suppose that computers support flexible delivery of educational resources by offering virtual experiments that replicate and substitute for experiments traditionally offered in conventional teaching laboratories. However, traditional methods are limited by logistics, costs, and what is physically possible to accomplish on a laboratory bench. Virtual experiments allow experimental approaches to teaching and learning to transcend these limits. This paper analyses recent and current developments in educational software for 1st- year physics, 2nd-year electronics engineering and 3rd-year communication engineering, based on three criteria: (1)Is the virtual experiment possible in a real laboratory? (2)How direct is the link between the experimental manipulation and the reinforcement of theoretical learning? (3) What impact might the virtual experiment have on the learner's acquisition of practical measurement skills? Virtual experiments allow more flexibility in the directness of the link between experimental manipulation and the theoretical message. However, increasing the directness of this link may reduce or even abolish the measurement processes associated with traditional experiments. Virtual experiments thus pose educational challenges: (a) expanding the design of experimentally based curricula beyond traditional boundaries and (b) ensuring that the learner acquires sufficient experience in making practical measurements.

  15. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  16. Sensorimotor Training in Virtual Reality: A Review

    PubMed Central

    Adamovich, Sergei V.; Fluet, Gerard G.; Tunik, Eugene; Merians, Alma S.

    2010-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait, upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR approaches in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer into real-world functional improvements. PMID:19713617

  17. Comparing two methods of education (virtual versus traditional) on learning of Iranian dental students: a post-test only design study.

    PubMed

    Moazami, Fariborz; Bahrampour, Ehsan; Azar, Mohammad Reza; Jahedi, Farzad; Moattari, Marzieh

    2014-03-05

    The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields.Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann-Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study.

  18. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    PubMed

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  19. Virtual Reality Training With Three-Dimensional Video Games Improves Postural Balance and Lower Extremity Strength in Community-Dwelling Older Adults.

    PubMed

    Lee, Yongwoo; Choi, Wonjae; Lee, Kyeongjin; Song, Changho; Lee, Seungwon

    2017-10-01

    Avatar-based three-dimensional technology is a new approach to improve physical function in older adults. The aim of this study was to use three-dimensional video gaming technology in virtual reality training to improve postural balance and lower extremity strength in a population of community-dwelling older adults. The experimental group participated in the virtual reality training program for 60 min, twice a week, for 6 weeks. Both experimental and control groups were given three times for falls prevention education at the first, third, and fifth weeks. The experimental group showed significant improvements not only in static and dynamic postural balance but also lower extremity strength (p < .05). Furthermore, the experimental group was improved to overall parameters compared with the control group (p < .05). Therefore, three-dimensional video gaming technology might be beneficial for improving postural balance and lower extremity strength in community-dwelling older adults.

  20. Improving flexible thinking in deaf and hard of hearing children with virtual reality technology.

    PubMed

    Passig, D; Eden, S

    2000-07-01

    The study investigated whether rotating three-dimensional (3-D) objects using virtual reality (VR) will affect flexible thinking in deaf and hard of hearing children. Deaf and hard of hearing subjects were distributed into experimental and control groups. The experimental group played virtual 3-D Tetris (a game using VR technology) individually, 15 minutes once weekly over 3 months. The control group played conventional two-dimensional (2-D) Tetris over the same period. Children with normal hearing participated as a second control group in order to establish whether deaf and hard of hearing children really are disadvantaged in flexible thinking. Before-and-after testing showed significantly improved flexible thinking in the experimental group; the deaf and hard of hearing control group showed no significant improvement. Also, before the experiment, the deaf and hard of hearing children scored lower in flexible thinking than the children with normal hearing. After the experiment, the difference between the experimental group and the control group of children with normal hearing was smaller.

  1. Blending Physical and Virtual Manipulatives: An Effort to Improve Students' Conceptual Understanding through Science Laboratory Experimentation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharia, Zacharias C.

    2012-01-01

    This study aimed to investigate the effect of experimenting with physical manipulatives (PM), virtual manipulatives (VM), and a blended combination of PM and VM on undergraduate students' understanding of concepts in the domain of "Light and Color." A pre-post comparison study design was used for the purposes of this study that involved 70…

  2. Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability

    ERIC Educational Resources Information Center

    de la Torre-Luque, Alejandro; Valero-Aguayo, Luis; de la Rubia-Cuestas, Ernesto J.

    2017-01-01

    This study aims to test how an intervention based on virtual reality (VR) may enhance visuospatial skills amongst people with disability. A quasi-experimental intra-group study was therefore conducted. Participants were 20 people with severe disability (65% males; 34.35 years, on average, and 84.95% of disability rate according to the Andalusian…

  3. The Effect of Virtual Language Learning Method on Writing Ability of Iranian Intermediate EFL Learners

    ERIC Educational Resources Information Center

    Khoshsima, Hooshang; Sayadi, Fatemeh

    2016-01-01

    This study aimed at investigating the effect of virtual language learning method on Iranian intermediate EFL learners writing ability. The study was conducted with 20 English Translation students at Chabahar Maritime University who were assigned into two groups, control and experimental, after ensuring of their homogeneity by administering a TOEFL…

  4. A Virtual Reprise of the Stanley Milgram Obedience Experiments

    PubMed Central

    Slater, Mel; Antley, Angus; Davison, Adam; Swapp, David; Guger, Christoph; Barker, Chris; Pistrang, Nancy; Sanchez-Vives, Maria V.

    2006-01-01

    Background Stanley Milgram's 1960s experimental findings that people would administer apparently lethal electric shocks to a stranger at the behest of an authority figure remain critical for understanding obedience. Yet, due to the ethical controversy that his experiments ignited, it is nowadays impossible to carry out direct experimental studies in this area. In the study reported in this paper, we have used a similar paradigm to the one used by Milgram within an immersive virtual environment. Our objective has not been the study of obedience in itself, but of the extent to which participants would respond to such an extreme social situation as if it were real in spite of their knowledge that no real events were taking place. Methodology Following the style of the original experiments, the participants were invited to administer a series of word association memory tests to the (female) virtual human representing the stranger. When she gave an incorrect answer, the participants were instructed to administer an ‘electric shock’ to her, increasing the voltage each time. She responded with increasing discomfort and protests, eventually demanding termination of the experiment. Of the 34 participants, 23 saw and heard the virtual human, and 11 communicated with her only through a text interface. Conclusions Our results show that in spite of the fact that all participants knew for sure that neither the stranger nor the shocks were real, the participants who saw and heard her tended to respond to the situation at the subjective, behavioural and physiological levels as if it were real. This result reopens the door to direct empirical studies of obedience and related extreme social situations, an area of research that is otherwise not open to experimental study for ethical reasons, through the employment of virtual environments. PMID:17183667

  5. A virtual reprise of the Stanley Milgram obedience experiments.

    PubMed

    Slater, Mel; Antley, Angus; Davison, Adam; Swapp, David; Guger, Christoph; Barker, Chris; Pistrang, Nancy; Sanchez-Vives, Maria V

    2006-12-20

    Stanley Milgram's 1960s experimental findings that people would administer apparently lethal electric shocks to a stranger at the behest of an authority figure remain critical for understanding obedience. Yet, due to the ethical controversy that his experiments ignited, it is nowadays impossible to carry out direct experimental studies in this area. In the study reported in this paper, we have used a similar paradigm to the one used by Milgram within an immersive virtual environment. Our objective has not been the study of obedience in itself, but of the extent to which participants would respond to such an extreme social situation as if it were real in spite of their knowledge that no real events were taking place. Following the style of the original experiments, the participants were invited to administer a series of word association memory tests to the (female) virtual human representing the stranger. When she gave an incorrect answer, the participants were instructed to administer an 'electric shock' to her, increasing the voltage each time. She responded with increasing discomfort and protests, eventually demanding termination of the experiment. Of the 34 participants, 23 saw and heard the virtual human, and 11 communicated with her only through a text interface. Our results show that in spite of the fact that all participants knew for sure that neither the stranger nor the shocks were real, the participants who saw and heard her tended to respond to the situation at the subjective, behavioural and physiological levels as if it were real. This result reopens the door to direct empirical studies of obedience and related extreme social situations, an area of research that is otherwise not open to experimental study for ethical reasons, through the employment of virtual environments.

  6. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? Randomised controlled trial.

    PubMed

    Yilmaz Yelvar, Gul Deniz; Çırak, Yasemin; Dalkılınç, Murat; Parlak Demir, Yasemin; Guner, Zeynep; Boydak, Ayşenur

    2017-02-01

    According to literature, virtual reality was found to reduce pain and kinesiophobia in patients with chronic pain. The purpose of the study was to investigate short-term effect of the virtual reality on pain, function, and kinesiophobia in patients with subacute and chronic non-specific low-back pain METHODS: This randomised controlled study in which 44 patients were randomly assigned to the traditional physiotherapy (control group, 22 subjects) or virtual walking integrated physiotherapy (experimental group, 22 subjects). Before and after treatment, Visual Analog Scale (VAS), TAMPA Kinesiophobia Scale (TKS), Oswestry Disability Index (ODI), Nottingham Health Profile (NHP), Timed-up and go Test (TUG), 6-Minute Walk Test (6MWT), and Single-Leg Balance Test were assessed. The interaction effect between group and time was assessed by using repeated-measures analysis of covariance. After treatment, both groups showed improvement in all parameters. However, VAS, TKS, TUG, and 6MWT scores showed significant differences in favor of the experimental group. Virtual walking integrated physiotherapy reduces pain and kinesiophobia, and improved function in patients with subacute and chronic non-specific low-back pain in short term.

  7. An experimental study on fear of public speaking using a virtual environment.

    PubMed

    Slater, Mel; Pertaub, David-Paul; Barker, Chris; Clark, David M

    2006-10-01

    This paper examines a necessary condition for successful exploitation of a virtual environment (VE) in therapeutic intervention for fear of public speaking. The condition is that clients experience a degree of anxiety in the VE that is similar to what they would have been expected to experience in a similar real world setting. We refer to this as a "presence" response. The experimental study involved 20 people who were confident public speakers and 16 who were phobic, assessed on a standard psychological scale. Half of each group spoke within a VE depicting an empty seminar room, and the other half within the same room but populated by a neutrally behaving virtual audience of five people. Three responses were measured--a questionnaire-based measure of anxiety, a measure of self-focused attention on somatic responses, and actual heart rate. On all responses, the people with phobia showed a significant increase in signs of anxiety when speaking to the virtual audience compared to the empty room, whereas the confident people did not. The result was strong in spite of the relatively low representational and behavioral fidelity of the virtual characters.

  8. Using a Virtual Store As a Research Tool to Investigate Consumer In-store Behavior.

    PubMed

    Ploydanai, Kunalai; van den Puttelaar, Jos; van Herpen, Erica; van Trijp, Hans

    2017-07-24

    People's responses to products and/or choice environments are crucial to understanding in-store consumer behaviors. Currently, there are various approaches (e.g., surveys or laboratory settings) to study in-store behaviors, but the external validity of these is limited by their poor capability to resemble realistic choice environments. In addition, building a real store to meet experimental conditions while controlling for undesirable effects is costly and highly difficult. A virtual store developed by virtual reality techniques potentially transcends these limitations by offering the simulation of a 3D virtual store environment in a realistic, flexible, and cost-efficient way. In particular, a virtual store interactively allows consumers (participants) to experience and interact with objects in a tightly controlled yet realistic setting. This paper presents the key elements of using a desktop virtual store to study in-store consumer behavior. Descriptions of the protocol steps to: 1) build the experimental store, 2) prepare the data management program, 3) run the virtual store experiment, and 4) organize and export data from the data management program are presented. The virtual store enables participants to navigate through the store, choose a product from alternatives, and select or return products. Moreover, consumer-related shopping behaviors (e.g., shopping time, walking speed, and number and type of products examined and bought) can also be collected. The protocol is illustrated with an example of a store layout experiment showing that shelf length and shelf orientation influence shopping- and movement-related behaviors. This demonstrates that the use of a virtual store facilitates the study of consumer responses. The virtual store can be especially helpful when examining factors that are costly or difficult to change in real life (e.g., overall store layout), products that are not presently available in the market, and routinized behaviors in familiar environments.

  9. Development of the virtual experimental bench on the basis of modernized research centrifugal compressor stage test unit with the 3D impeller.

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Danilishin, A. M.; Dubenko, A. M.; Kozhukov, Y. V.

    2017-08-01

    Design modernization of the centrifugal compressor stage test bench with three dimensional impeller blades was carried out for the possibility of holding a series of experimental studies of different 3D impeller models. The studies relates to the problem of joint work of the impeller and the stationary channels of the housing when carrying out works on modernization with the aim of improving the parameters of the volumetric capacity or pressure in the presence of design constraints. The object of study is the experimental single end centrifugal compressor stage with the 3D impeller. Compressor stage consists of the 3D impeller, vaneless diffuser (VLD), outlet collector - folded side scroll and downstream pipe. The drive is a DC motor 75 kW. The increase gear (multiplier) was set between the compressor and DC motor, gear ratio is i = 9.8. To obtain the characteristics of the compressor and the flow area the following values were measured: total pressure, static pressure, direction (angles) of the stream in different cross sections. Additional pneumometric probes on the front wall of the VLD of the test bench have been installed. Total pressure probes and foster holes for the measurement of total and static pressure by the new drainage scheme. This allowed carrying out full experimental studies for two elements of centrifugal compressor stage. After the experimental tests the comprehensive information about the performance of model stage were obtained. Was measured geometric parameters and the constructed virtual model of the experimental bench flow part with the help of Creo Parametric 3.0 and ANSYS v. 16.2. Conducted CFD calculations and verification with experimental data. Identifies the steps for further experimental and virtual works.

  10. Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy

    PubMed Central

    Barish, Syndi; Ochs, Michael F.; Sontag, Eduardo D.; Gevertz, Jana L.

    2017-01-01

    Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists. PMID:28716945

  11. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  12. The Effects of Web-Based Interactive Virtual Tours on the Development of Prospective Mathematics Teachers' Spatial Skills

    ERIC Educational Resources Information Center

    Kurtulus, Aytac

    2013-01-01

    The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…

  13. The Effects of Online Professional Development in Technology with Virtual Communities of Practice on Teachers' Attitudes and Content Integration

    ERIC Educational Resources Information Center

    Baratta, Donna Geidel

    2012-01-01

    This quasi-experimental study examined the effects of online professional development in technology with Virtual Communities of Practice (VCoP) on teachers' attitudes and content integration. This research study took place completely online. Over a period of nine months three cohorts of educators from diverse backgrounds and geographical locations…

  14. A Study on Learning Effect among Different Learning Styles in a Web-Based Lab of Science for Elementary School Students

    ERIC Educational Resources Information Center

    Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui

    2008-01-01

    The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…

  15. English as a Second Language on a Virtual Platform--Tradition and Innovation in a New Medium

    ERIC Educational Resources Information Center

    Hansson, Thomas

    2005-01-01

    A pilot study at a local school explores a virtual world during English lessons. The objective of applying a Vygotskian experimental design to the study is to investigate the potential of software, interaction and integration related to problem-solving defined as text composition in a foreign language. Focus of research and practices is on the…

  16. Inducing physiological stress recovery with sounds of nature in a virtual reality forest--results from a pilot study.

    PubMed

    Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter

    2013-06-13

    Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Using Virtual Pets to Increase Fruit and Vegetable Consumption in Children: A Technology-Assisted Social Cognitive Theory Approach.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Moore, James; Brown, Scott; Biersmith, Melanie; Ball, Catherine

    2016-02-01

    A virtual pet in the form of a mid-sized dog was developed based on the framework of social cognitive theory and tested as a vehicle for promoting fruit and vegetable (F&V) consumption in children. Three groups of children (N = 68) between the ages of 7 and 13 years were studied: baseline (no treatment), computer only, and virtual dog. Children in the virtual dog condition interacted with the virtual dog for 3 days, setting F&V consumption goals and receiving evaluation and reinforcement based on whether they met their self-set goals. Children vicariously experienced future health outcomes of F&V consumption by seeing, hearing, and feeling their virtual dog's physical and mental health improve or deteriorate based on their F&V consumption in the physical world. Children in the computer only condition interacted with a computer system that presented equivalent features, but without the virtual dog. Children in the baseline condition did not receive any experimental treatment. Results indicated that children in the virtual dog condition chose to be served significantly more F&V than those in the computer only or baseline conditions did. However, children in the virtual dog condition were unable to consume significantly more F&V than those in the computer only condition, although children in those two conditions consumed more F&V than the baseline condition. Food preferences did not differ significantly across the three conditions before and after the experimental treatments. Theoretical and practical potentials of using a virtual pet to promote F&V consumption systematically in children are discussed.

  18. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  19. An Exploration of Desktop Virtual Reality and Visual Processing Skills in a Technical Training Environment

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.; Kroutter, Paul

    2010-01-01

    Virtual reality (VR) technology has demonstrated effectiveness in a variety of technical learning situations, yet little is known about its differential effects on learners with different levels of visual processing skill. This small-scale exploratory study tested VR through quasi-experimental methodology and a theoretical/conceptual framework…

  20. Exploring Relationships between Students' Interaction and Learning with a Haptic Virtual Biomolecular Model

    ERIC Educational Resources Information Center

    Schonborn, Konrad J.; Bivall, Petter; Tibell, Lena A. E.

    2011-01-01

    This study explores tertiary students' interaction with a haptic virtual model representing the specific binding of two biomolecules, a core concept in molecular life science education. Twenty students assigned to a "haptics" (experimental) or "no-haptics" (control) condition performed a "docking" task where users sought the most favourable…

  1. Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng; Paek, Insu

    2017-01-01

    This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…

  2. The Effects of Activity and Gain Based Virtual Material on Student's Success, Permanency and Attitudes towards Science Lesson

    ERIC Educational Resources Information Center

    Tas, Erol

    2015-01-01

    The main objective of this study is to research the effects of a student gains and activity based virtual material on students' success, permanence and attitudes towards science lesson, developed for science and technology lesson 6th grade "Systems in our body" unit. The study, which had a quasi-experimental design, was conducted with…

  3. Effect of the Blended Learning Environment and the Application of Virtual Class upon the Achievement and the Attitude against the Geography Course

    ERIC Educational Resources Information Center

    Dikmenli, Yurdal; Unaldi, Ulku Eser

    2013-01-01

    This study involves the elucidation of the effect of the virtual classroom application and blended learning medium upon the academic achievement of the students and their attitudes against the geography curse compared to the face to face expository (traditional) method. The study was carried out according to pre-test--post-test experimental design…

  4. First Person Experience of Body Transfer in Virtual Reality

    PubMed Central

    Slater, Mel; Spanlang, Bernhard; Sanchez-Vives, Maria V.; Blanke, Olaf

    2010-01-01

    Background Altering the normal association between touch and its visual correlate can result in the illusory perception of a fake limb as part of our own body. Thus, when touch is seen to be applied to a rubber hand while felt synchronously on the corresponding hidden real hand, an illusion of ownership of the rubber hand usually occurs. The illusion has also been demonstrated using visuomotor correlation between the movements of the hidden real hand and the seen fake hand. This type of paradigm has been used with respect to the whole body generating out-of-the-body and body substitution illusions. However, such studies have only ever manipulated a single factor and although they used a form of virtual reality have not exploited the power of immersive virtual reality (IVR) to produce radical transformations in body ownership. Principal Findings Here we show that a first person perspective of a life-sized virtual human female body that appears to substitute the male subjects' own bodies was sufficient to generate a body transfer illusion. This was demonstrated subjectively by questionnaire and physiologically through heart-rate deceleration in response to a threat to the virtual body. This finding is in contrast to earlier experimental studies that assume visuotactile synchrony to be the critical contributory factor in ownership illusions. Our finding was possible because IVR allowed us to use a novel experimental design for this type of problem with three independent binary factors: (i) perspective position (first or third), (ii) synchronous or asynchronous mirror reflections and (iii) synchrony or asynchrony between felt and seen touch. Conclusions The results support the notion that bottom-up perceptual mechanisms can temporarily override top down knowledge resulting in a radical illusion of transfer of body ownership. The research also illustrates immersive virtual reality as a powerful tool in the study of body representation and experience, since it supports experimental manipulations that would otherwise be infeasible, with the technology being mature enough to represent human bodies and their motion. PMID:20485681

  5. NEDE: an open-source scripting suite for developing experiments in 3D virtual environments.

    PubMed

    Jangraw, David C; Johri, Ansh; Gribetz, Meron; Sajda, Paul

    2014-09-30

    As neuroscientists endeavor to understand the brain's response to ecologically valid scenarios, many are leaving behind hyper-controlled paradigms in favor of more realistic ones. This movement has made the use of 3D rendering software an increasingly compelling option. However, mastering such software and scripting rigorous experiments requires a daunting amount of time and effort. To reduce these startup costs and make virtual environment studies more accessible to researchers, we demonstrate a naturalistic experimental design environment (NEDE) that allows experimenters to present realistic virtual stimuli while still providing tight control over the subject's experience. NEDE is a suite of open-source scripts built on the widely used Unity3D game development software, giving experimenters access to powerful rendering tools while interfacing with eye tracking and EEG, randomizing stimuli, and providing custom task prompts. Researchers using NEDE can present a dynamic 3D virtual environment in which randomized stimulus objects can be placed, allowing subjects to explore in search of these objects. NEDE interfaces with a research-grade eye tracker in real-time to maintain precise timing records and sync with EEG or other recording modalities. Python offers an alternative for experienced programmers who feel comfortable mastering and integrating the various toolboxes available. NEDE combines many of these capabilities with an easy-to-use interface and, through Unity's extensive user base, a much more substantial body of assets and tutorials. Our flexible, open-source experimental design system lowers the barrier to entry for neuroscientists interested in developing experiments in realistic virtual environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of introducing a voluntary virtual patient module to a basic life support with an automated external defibrillator course: a randomised trial

    PubMed Central

    2012-01-01

    Background The concept of virtual patients (VPs) encompasses a great variety of predominantly case-based e-learning modules with different complexity and fidelity levels. Methods for effective placement of VPs in the process of medical education are sought. The aim of this study was to determine whether the introduction of a voluntary virtual patients module into a basic life support with an automated external defibrillator (BLS-AED) course improved the knowledge and skills of students taking the course. Methods Half of the students were randomly assigned to an experimental group and given voluntary access to a virtual patient module consisting of six cases presenting BLS-AED knowledge and skills. Pre- and post-course knowledge tests and skills assessments were performed, as well as a survey of students' satisfaction with the VP usage. In addition, time spent using the virtual patient system, percentage of screen cards viewed and scores in the formative questions in the VP system throughout the course were traced and recorded. Results The study was conducted over a six week period and involved 226 first year medical students. The voluntary module was used by 61 (54%) of the 114 entitled study participants. The group that used VPs demonstrated better results in knowledge acquisition and in some key BLS-AED action skills than the group without access, or those students from the experimental group deliberately not using virtual patients. Most of the students rated the combination of VPs and corresponding teaching events positively. Conclusions The overall positive reaction of students and encouraging results in knowledge and skills acquisition suggest that the usage of virtual patients in a BLS-AED course on a voluntary basis is feasible and should be further investigated. PMID:22709278

  7. Effects of introducing a voluntary virtual patient module to a basic life support with an automated external defibrillator course: a randomised trial.

    PubMed

    Kononowicz, Andrzej A; Krawczyk, Paweł; Cebula, Grzegorz; Dembkowska, Marta; Drab, Edyta; Frączek, Bartosz; Stachoń, Aleksandra J; Andres, Janusz

    2012-06-18

    The concept of virtual patients (VPs) encompasses a great variety of predominantly case-based e-learning modules with different complexity and fidelity levels. Methods for effective placement of VPs in the process of medical education are sought. The aim of this study was to determine whether the introduction of a voluntary virtual patients module into a basic life support with an automated external defibrillator (BLS-AED) course improved the knowledge and skills of students taking the course. Half of the students were randomly assigned to an experimental group and given voluntary access to a virtual patient module consisting of six cases presenting BLS-AED knowledge and skills. Pre- and post-course knowledge tests and skills assessments were performed, as well as a survey of students' satisfaction with the VP usage. In addition, time spent using the virtual patient system, percentage of screen cards viewed and scores in the formative questions in the VP system throughout the course were traced and recorded. The study was conducted over a six week period and involved 226 first year medical students. The voluntary module was used by 61 (54%) of the 114 entitled study participants. The group that used VPs demonstrated better results in knowledge acquisition and in some key BLS-AED action skills than the group without access, or those students from the experimental group deliberately not using virtual patients. Most of the students rated the combination of VPs and corresponding teaching events positively. The overall positive reaction of students and encouraging results in knowledge and skills acquisition suggest that the usage of virtual patients in a BLS-AED course on a voluntary basis is feasible and should be further investigated.

  8. How and Why Affective and Reactive Virtual Agents Will Bring New Insights on Social Cognitive Disorders in Schizophrenia? An Illustration with a Virtual Card Game Paradigm

    PubMed Central

    Oker, Ali; Prigent, Elise; Courgeon, Matthieu; Eyharabide, Victoria; Urbach, Mathieu; Bazin, Nadine; Amorim, Michel-Ange; Passerieux, Christine; Martin, Jean-Claude; Brunet-Gouet, Eric

    2015-01-01

    In recent decades, many studies have shown that schizophrenia is associated with severe social cognitive impairments affecting key components, such as the recognition of emotions, theory of mind, attributional style, and metacognition. Most studies investigated each construct separately, precluding analysis of the interactive and immersive nature of real-life situation. Specialized batteries of tests are under investigation to assess social cognition, which is thought now as a link between neurocognitive disorders and impaired functioning. However, this link accounts for a limited part of the variance of real-life functioning. To fill this gap, advances in virtual reality and affective computing have made it possible to carry out experimental investigations of naturalistic social cognition, in controlled conditions, with good reproducibility. This approach is illustrated with the description of a new paradigm based on an original virtual card game in which subjects interpret emotional displays from a female virtual agent, and decipher her helping intentions. Independent variables concerning emotional expression in terms of valence and intensity were manipulated. We show how several useful dependant variables, ranging from classic experimental psychology data to metacognition or subjective experiences records, may be extracted from a single experiment. Methodological issues about the immersion into a simulated intersubjective situation are considered. The example of this new flexible experimental setting, with regards to the many constructs recognized in social neurosciences, constitutes a rationale for focusing on this potential intermediate link between standardized tests and real-life functioning, and also for using it as an innovative media for cognitive remediation. PMID:25870549

  9. How and why affective and reactive virtual agents will bring new insights on social cognitive disorders in schizophrenia? An illustration with a virtual card game paradigm.

    PubMed

    Oker, Ali; Prigent, Elise; Courgeon, Matthieu; Eyharabide, Victoria; Urbach, Mathieu; Bazin, Nadine; Amorim, Michel-Ange; Passerieux, Christine; Martin, Jean-Claude; Brunet-Gouet, Eric

    2015-01-01

    In recent decades, many studies have shown that schizophrenia is associated with severe social cognitive impairments affecting key components, such as the recognition of emotions, theory of mind, attributional style, and metacognition. Most studies investigated each construct separately, precluding analysis of the interactive and immersive nature of real-life situation. Specialized batteries of tests are under investigation to assess social cognition, which is thought now as a link between neurocognitive disorders and impaired functioning. However, this link accounts for a limited part of the variance of real-life functioning. To fill this gap, advances in virtual reality and affective computing have made it possible to carry out experimental investigations of naturalistic social cognition, in controlled conditions, with good reproducibility. This approach is illustrated with the description of a new paradigm based on an original virtual card game in which subjects interpret emotional displays from a female virtual agent, and decipher her helping intentions. Independent variables concerning emotional expression in terms of valence and intensity were manipulated. We show how several useful dependant variables, ranging from classic experimental psychology data to metacognition or subjective experiences records, may be extracted from a single experiment. Methodological issues about the immersion into a simulated intersubjective situation are considered. The example of this new flexible experimental setting, with regards to the many constructs recognized in social neurosciences, constitutes a rationale for focusing on this potential intermediate link between standardized tests and real-life functioning, and also for using it as an innovative media for cognitive remediation.

  10. The Critical Role of Self-Contact for Embodiment in Virtual Reality.

    PubMed

    Bovet, Sidney; Debarba, Henrique Galvan; Herbelin, Bruno; Molla, Eray; Boulic, Ronan

    2018-04-01

    With the broad range of motion capture devices available on the market, it is now commonplace to directly control the limb movement of an avatar during immersion in a virtual environment. Here, we study how the subjective experience of embodying a full-body controlled avatar is influenced by motor alteration and self-contact mismatches. Self-contact is in particular a strong source of passive haptic feedback and we assume it to bring a clear benefit in terms of embodiment. For evaluating this hypothesis, we experimentally manipulate self-contacts and the virtual hand displacement relatively to the body. We introduce these body posture transformations to experimentally reproduce the imperfect or incorrect mapping between real and virtual bodies, with the goal of quantifying the limits of acceptance for distorted mapping on the reported body ownership and agency. We first describe how we exploit egocentric coordinate representations to perform a motion capture ensuring that real and virtual hands coincide whenever the real hand is in contact with the body. Then, we present a pilot study that focuses on quantifying our sensitivity to visuo-tactile mismatches. The results are then used to design our main study with two factors, offset (for self-contact) and amplitude (for movement amplification). Our main result shows that subjects' embodiment remains important, even when an artificially amplified movement of the hand was performed, but provided that correct self-contacts are ensured.

  11. Comparing two methods of education (virtual versus traditional) on learning of Iranian dental students: a post-test only design study

    PubMed Central

    2014-01-01

    Background The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields. Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. Methods This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann–Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. Results A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). Conclusion The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study. PMID:24597923

  12. Multiprog virtual laboratory applied to PLC programming learning

    NASA Astrophysics Data System (ADS)

    Shyr, Wen-Jye

    2010-10-01

    This study develops a Multiprog virtual laboratory for a mechatronics education designed to teach how to programme a programmable logic controller (PLC). The study was carried out with 34 students in the Department of Industry Education and Technology at National Changhua University of Education in Taiwan. In total, 17 students were assigned to each group, experimental and control. Two laboratory exercises were designed to provide students with experience in PLC programming. The results show that the experiments supported by Multiprog virtual laboratory user-friendly control interfaces generate positive meaningful results in regard to students' knowledge and understanding of the material.

  13. Virtual education effect on cognitive learning and attitude of nursing students towards it.

    PubMed

    Borhani, Fariba; Vatanparast, Mahboubeh; Zadeh, Abbas Abbas; Ranjbar, Hadi; Pour, Reza Shojaei

    2011-01-01

    Along with emersion of the Internet, virtual education increasingly has been growing. Many studies discussed this method and its impact on learning. Present study investigated students' attitude towards virtual education as well as its effect on learning. This was a pretest-posttest quasi-experimental study. The nursing students, who had selected fluids and electrolyte disorders course, were randomly divided into two virtual and conventional education groups. The knowledge of students was assessed through a written exam and students' attitude towards virtual education assessed by a researcher-made questionnaire. Mean scores of students in pretest were 0.8 (0.3) and 1.1 (0.59) in virtual and conventional group respectively [mean (SD)]. At the end of the semester their scores were 15.9 (0.58) and 16.51 (0.89) respectively. Mean attitude scores at baseline were 3.19 (0.48) and 3.21 (0.33) followed by 3.55 (0.45) and 3.21 (0.46) at the end of the semester in virtual and conventional groups respectively. Although the scores of conventional group at the end of the course were higher than virtual group, both methods acted similarly in terms of increasing the knowledge. Passing a virtual education course may improve the attitude of the nurses towards it.

  14. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  15. Using Virtual Reality in the Inference-Based Treatment of Compulsive Hoarding

    PubMed Central

    St-Pierre-Delorme, Marie-Eve; O’Connor, Kieron

    2016-01-01

    The present study evaluated the efficacy of adding a virtual reality (VR) component to the treatment of compulsive hoarding (CH), following inference-based therapy (IBT). Participants were randomly assigned to either an experimental or a control condition. Seven participants received the experimental and seven received the control condition. Five sessions of 1 h were administered weekly. A significant difference indicated that the level of clutter in the bedroom tended to diminish more in the experimental group as compared to the control group F(2,24) = 2.28, p = 0.10. In addition, the results demonstrated that both groups were immersed and present in the environment. The results on posttreatment measures of CH (Saving Inventory revised, Saving Cognition Inventory and Clutter Image Rating scale) demonstrate the efficacy of IBT in terms of symptom reduction. Overall, these results suggest that the creation of a virtual environment may be effective in the treatment of CH by helping the compulsive hoarders take action over their clutter. PMID:27486574

  16. Effects of Desktop Virtual Reality Environment Training on State Anxiety and Vocational Identity Scores among Persons with Disabilities during Job Placement

    ERIC Educational Resources Information Center

    Washington, Andre Lamont

    2013-01-01

    This study examined how desktop virtual reality environment training (DVRET) affected state anxiety and vocational identity of vocational rehabilitation services consumers during job placement/job readiness activities. It utilized a quantitative research model with a quasi-experimental pretest-posttest design plus some qualitative descriptive…

  17. Effectiveness of Virtual Reality Using Wii Gaming Technology in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Wuang, Yee-Pay; Chiang, Ching-Sui; Su, Chwen-Yng; Wang, Chih-Chung

    2011-01-01

    This quasi-experimental study compared the effect of standard occupational therapy (SOT) and virtual reality using Wii gaming technology (VRWii) on children with Down syndrome (DS). Children (n=105) were randomly assigned to intervention with either SOT or VRWii, while another 50 served as controls. All children were assessed with measures of…

  18. Virtual Task-Based Situated Language-Learning with "Second Life": Developing EFL Pragmatic Writing and Technological Self-Efficacy

    ERIC Educational Resources Information Center

    Abdallah, Mahmoud M. S.; Mansour, Marian M.

    2015-01-01

    This paper reports on an experimental research study that aimed at investigating the effectiveness of employing a virtual task-based situated language learning (TBSLL) environment mediated by Second Life (SL) in developing EFL student teachers' pragmatic writing skills and their technological self-efficacy. To reach this goal, a control-only…

  19. Youth and the Ethics of Identity Play in Virtual Spaces

    ERIC Educational Resources Information Center

    Siyahhan, Sinem; Barab, Sasha; James, Carrie

    2011-01-01

    In this study, we explored a new experimental methodology for investigating children's (ages 10 to 14) stances with respect to the ethics of online identity play. We used a scenario about peer identity misrepresentation embedded in a 3D virtual game environment and randomly assigned 265 elementary students (162 female, 103 male) to three…

  20. Do Nonverbal Emotional Cues Matter? Effects of Video Casting in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Han, Heeyoung

    2013-01-01

    This study examined the effects of an instructor's use of video casting as a nonverbal emotional cue in synchronous discussion sessions on students' social presence, satisfaction, and learning achievement. A quasi-experimental design was used to evaluate the effect of video casting in a synchronous virtual classroom. The research setting was a…

  1. Using the Bifocal Modeling Framework to Resolve "Discrepant Events" between Physical Experiments and Virtual Models in Biology

    ERIC Educational Resources Information Center

    Blikstein, Paulo; Fuhrmann, Tamar; Salehi, Shima

    2016-01-01

    In this paper, we investigate an approach to supporting students' learning in science through a combination of physical experimentation and virtual modeling. We present a study that utilizes a scientific inquiry framework, which we call "bifocal modeling," to link student-designed experiments and computer models in real time. In this…

  2. Measuring Engagement as Students Learn Dynamic Systems and Control with a Video Game

    ERIC Educational Resources Information Center

    Coller, B. D.; Shernoff, David J.; Strati, Anna

    2011-01-01

    The paper presents results of a multi-year quasi-experimental study of student engagement during which a video game was introduced into an undergraduate dynamic systems and control course. The video game, "EduTorcs", provided challenges in which students devised control algorithms that drive virtual cars and ride virtual bikes through a…

  3. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  4. Computational Studies of Pyrolysis and Upgrading of Bio-oils: Virtual Special Issue

    DOE PAGES

    Xiong, Qingang; Robichaud, David J.

    2017-03-23

    As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.

  5. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction.

    PubMed

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M

    2016-07-01

    Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.

  6. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

    PubMed Central

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.

    2016-01-01

    Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071

  7. Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.

    PubMed

    Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K

    2007-12-01

    Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.

  8. Automated recycling of chemistry for virtual screening and library design.

    PubMed

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  9. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.; Linn, Marcia C.

    2011-01-01

    This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…

  11. Are All Hands-On Activities Equally Effective? Effect of Using Plastic Models, Organ Dissections, and Virtual Dissections on Student Learning and Perceptions

    ERIC Educational Resources Information Center

    Lombardi, Sara A.; Hicks, Reimi E.; Thompson, Katerina V.; Marbach-Ad, Gili

    2014-01-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or…

  12. More Technology, Better Learning Resources, Better Learning? Lessons from Adopting Virtual Microscopy in Undergraduate Medical Education

    ERIC Educational Resources Information Center

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina

    2013-01-01

    The adoption of virtual microscopy at the University of Turku, Finland, created a unique real-world laboratory for exploring ways of reforming the learning environment. The purpose of this study was to evaluate the students' reactions and the impact of a set of measures designed to boost an experimental group's understanding of abnormal histology…

  13. Digital ionosonde studies of F-region waves. [measuring ionospheric disturbances

    NASA Technical Reports Server (NTRS)

    Harper, R. M.; Bowhill, S. A.

    1974-01-01

    Accurate fixed-frequency virtual height data collected on a digital ionosonde are analyzed to measure speed and direction of traveling ionospheric disturbances by matching the experimental data with virtual height and echo amplitude obtained from a simple model of the disturbed ionosphere. Several data records analyzed in this manner indicate speeds of 400 to 680 m/sec and a direction of propagation from north to south. The digital ionosonde collects virtual height data with a time resolution of 10 sec and a height resolution of less than 300 m.

  14. The effectiveness of virtual reality distraction for pain reduction: a systematic review.

    PubMed

    Malloy, Kevin M; Milling, Leonard S

    2010-12-01

    Virtual reality technology enables people to become immersed in a computer-simulated, three-dimensional environment. This article provides a comprehensive review of controlled research on the effectiveness of virtual reality (VR) distraction for reducing pain. To be included in the review, studies were required to use a between-subjects or mixed model design in which VR distraction was compared with a control condition or an alternative intervention in relieving pain. An exhaustive search identified 11 studies satisfying these criteria. VR distraction was shown to be effective for reducing experimental pain, as well as the discomfort associated with burn injury care. Studies of needle-related pain provided less consistent findings. Use of more sophisticated virtual reality technology capable of fully immersing the individual in a virtual environment was associated with greater relief. Overall, controlled research suggests that VR distraction may be a useful tool for clinicians who work with a variety of pain problems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Technology for performing ocular self-examination: comparison between printed and virtual booklets.

    PubMed

    Nascimento, Jennara Candido; Lima, Maria Alzete; Barros, Lívia Moreira; Galindo Neto, Nelson Miguel; Pagliuca, Lorita Marlena Freitag; Caetano, Joselany Áfio

    2018-01-01

    Comparing the results of the ocular self-examination performed with the aid of printed and virtual versions of an educational booklet. A quasi-experimental study carried out in a state (public) school of a capital in northeast Brazil, with 100 students equally divided into control and intervention groups according to age, gender, schooling and economic status. Pearson's Chi-square test and Fisher's exact test were applied with a significance level of 5%. The results of the self-examination obtained by the virtual and printed booklets were statistically similar, except for the item 'Alterations of the pupillary reflex', in which the virtual booklet was more effective for its identification (p=0.049). The printed and virtual versions of the ocular educational booklet have similar efficacy for performing ocular self-examination.

  16. Quality knowledge of science through virtual laboratory as an element of visualization

    NASA Astrophysics Data System (ADS)

    Rizman Herga, Natasa

    Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic experiment, carried out over a period of two school years (2012/2013 and 2013/2014) in ten primary schools, the effectiveness of teaching carried out with the support of a virtual laboratory was analyzed. The obtained empirical findings reveal that the use of virtual laboratory has great impact on the pupils' knowledge and interest. At the end of the experiment, pupils in the experimental group had an advantage according to knowledge of chemical contents in science. Also, the use of virtual laboratory had an impact on the sustainability of the acquired knowledge of science contents and pupils' interest at the end of the experiment, because the pupils in the experimental group had a higher interest for learning science contents. The didactic experiment determined, that the use of virtual laboratory enables quality learning and teaching chemical contents of science, because it allows: (1) experimental work as an active learning method, (2) the visualization of abstract concepts and phenomena, (3) dynamic sub micro presentations (4) integration of all three levels of the chemical concept as a whole and (5) positively impacts pupils' interest, knowledge and sustainability of the acquired knowledge.

  17. A standardized set of 3-D objects for virtual reality research and applications.

    PubMed

    Peeters, David

    2018-06-01

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  18. Middle School Students' Learning of Mechanics Concepts through Engagement in Different Sequences of Physical and Virtual Experiments

    ERIC Educational Resources Information Center

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-01-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…

  19. Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces

    ERIC Educational Resources Information Center

    Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian

    2007-01-01

    Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…

  20. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  1. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: a preliminary study.

    PubMed

    Ji, Eun-Kyu; Lee, Sang-Heon

    2016-11-01

    [Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.

  2. Designing Awe in Virtual Reality: An Experimental Study.

    PubMed

    Chirico, Alice; Ferrise, Francesco; Cordella, Lorenzo; Gaggioli, Andrea

    2017-01-01

    Awe is a little-studied emotion with a great transformative potential. Therefore, the interest toward the study of awe's underlying mechanisms has been increased. Specifically, researchers have been interested in how to reproduce intense feelings of awe within laboratory conditions. It has been proposed that the use of virtual reality (VR) could be an effective way to induce awe in controlled experimental settings, thanks to its ability of providing participants with a sense of "presence," that is, the subjective feeling of being displaced in another physical or imaginary place. However, the potential of VR as awe-inducing medium has not been fully tested yet. In the present study, we provided an evidence-based design and a validation of four immersive virtual environments (VEs) involving 36 participants in a within-subject design. Of these, three VEs were designed to induce awe, whereas the fourth VE was targeted as an emotionally neutral stimulus. Participants self-reported the extent to which they felt awe, general affect and sense of presence related to each environment. As expected, results showed that awe-VEs could induce significantly higher levels of awe and presence as compared to the neutral VE. Furthermore, these VEs induced significantly more positive than negative affect. These findings supported the potential of immersive VR for inducing awe and provide useful indications for the design of awe-inspiring virtual environments.

  3. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    NASA Astrophysics Data System (ADS)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  4. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  5. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  6. Virtual reality and exercise: behavioral and psychological effects of visual feedback.

    PubMed

    Mestre, Daniel R; Ewald, Marine; Maiano, Christophe

    2011-01-01

    We herein report an experimental study examining the potential positive effects of Virtual Reality (VR) feedback during an indoor bicycling exercise. Using a regular bike coupled to a VR system, we compared conditions of no VR feedback, VR feedback and VR feedback with the presence of a virtual coach, acting as a pacer. In VR feedback conditions, we observed a decreased level of perceived exertion and an increased level of enjoyment of physical activity, when compared to a regular exercise situation (no VR feedback). We also observed a shift in the subjects' attentional focus, from association (in the absence of VR feedback) to dissociation (in VR feedback conditions). Moreover, the presence of a virtual coach in the VR environment triggered a systematic regulation of the (virtual) displacement speed, whose relationship with perceived enjoyment and exertion require further work.

  7. Crowd behaviour during high-stress evacuations in an immersive virtual environment

    PubMed Central

    Kapadia, Mubbasir; Thrash, Tyler; Sumner, Robert W.; Gross, Markus; Helbing, Dirk; Hölscher, Christoph

    2016-01-01

    Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared three-dimensional virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive three-dimensional virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioural mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects. PMID:27605166

  8. Crowd behaviour during high-stress evacuations in an immersive virtual environment.

    PubMed

    Moussaïd, Mehdi; Kapadia, Mubbasir; Thrash, Tyler; Sumner, Robert W; Gross, Markus; Helbing, Dirk; Hölscher, Christoph

    2016-09-01

    Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared three-dimensional virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive three-dimensional virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioural mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects. © 2016 The Authors.

  9. Influence of the contact roughness upon railway monobloc wheel acoustic behaviour on virtual prototyping approach

    NASA Astrophysics Data System (ADS)

    Todorov, George; Kamberov, Konstantin; Kralov, Ivan; Ignatov, Ignat

    2017-12-01

    In this study the virtual prototyping is used for evaluation the influence of the contact roughness upon the acoustic behaviour evaluation of railway monobloc wheel. The proposed procedure covers requirements of the European Standard EN 13979-1 "Wheels and bogies - Monobloc wheels". The main advantage of the acoustic assessment based on the virtual engineering technics - absence of the expensive and time consuming physical tests, is sown. The real industrial-project example is presented and comparison of the numerical and experimental results is used for acoustic behaviour assessment and approval of railway monobloc wheel design.

  10. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    PubMed Central

    Liu, Chi; He, Gu; Jiang, Qinglin; Han, Bo; Peng, Cheng

    2013-01-01

    Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents. PMID:23839093

  11. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory

  12. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  13. The Effect of Training Program for Staff Members to Develop Their Skills of Using Virtual Classrooms at King Saud University

    ERIC Educational Resources Information Center

    Alotaibi, Khaled Nahes; Almutairy, Sultan

    2012-01-01

    The present study aims at showing the effectiveness of a suggested training program for staff members at Teachers' College of King Saud University to develop their skills of using virtual classrooms. The research is empirical as it used two experimental groups. The first group is taught how to use the common teaching method and the second group is…

  14. Creating Virtual-hand and Virtual-face Illusions to Investigate Self-representation

    PubMed Central

    Ma, Ke; Lippelt, Dominique P.; Hommel, Bernhard

    2017-01-01

    Studies investigating how people represent themselves and their own body often use variants of "ownership illusions", such as the traditional rubber-hand illusion or the more recently discovered enfacement illusion. However, these examples require rather artificial experimental setups, in which the artificial effector needs to be stroked in synchrony with the participants' real hand or face—a situation in which participants have no control over the stroking or the movements of their real or artificial effector. Here, we describe a technique to establish ownership illusions in a setup that is more realistic, more intuitive, and of presumably higher ecological validity. It allows creating the virtual-hand illusion by having participants control the movements of a virtual hand presented on a screen or in virtual space in front of them. If the virtual hand moves in synchrony with the participants' own real hand, they tend to perceive the virtual hand as part of their own body. The technique also creates the virtual-face illusion by having participants control the movements of a virtual face in front of them, again with the effect that they tend to perceive the face as their own if it moves in synchrony with their real face. Studying the circumstances that illusions of this sort can be created, increased, or reduced provides important information about how people create and maintain representations of themselves. PMID:28287602

  15. An immersive virtual peer for studying social influences on child cyclists' road-crossing behavior.

    PubMed

    Babu, Sabarish V; Grechkin, Timofey Y; Chihak, Benjamin; Ziemer, Christine; Kearney, Joseph K; Cremer, James F; Plumert, Jodie M

    2011-01-01

    The goal of our work is to develop a programmatically controlled peer to bicycle with a human subject for the purpose of studying how social interactions influence road-crossing behavior. The peer is controlled through a combination of reactive controllers that determine the gross motion of the virtual bicycle, action-based controllers that animate the virtual bicyclist and generate verbal behaviors, and a keyboard interface that allows an experimenter to initiate the virtual bicyclist's actions during the course of an experiment. The virtual bicyclist's repertoire of behaviors includes road following, riding alongside the human rider, stopping at intersections, and crossing intersections through specified gaps in traffic. The virtual cyclist engages the human subject through gaze, gesture, and verbal interactions. We describe the structure of the behavior code and report the results of a study examining how 10- and 12-year-old children interact with a peer cyclist that makes either risky or safe choices in selecting gaps in traffic. Results of our study revealed that children who rode with a risky peer were more likely to cross intermediate-sized gaps than children who rode with a safe peer. In addition, children were significantly less likely to stop at the last six intersections after the experience of riding with the risky than the safe peer during the first six intersections. The results of the study and children's reactions to the virtual peer indicate that our virtual peer framework is a promising platform for future behavioral studies of peer influences on children's bicycle riding behavior. © 2011 IEEE Published by the IEEE Computer Society

  16. Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-06-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.

  17. Why Virtual, Why Environments? Implementing Virtual Reality Concepts in Computer-Assisted Language Learning.

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus

    2002-01-01

    Discussion of computer-assisted language learning focuses on the benefits of virtual reality environments, particularly for foreign language contexts. Topics include three approaches to learner autonomy; supporting reflection, including self-awareness; supporting interaction, including collaboration; and supporting experimentation, including…

  18. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  19. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1

    PubMed Central

    Lee, Kyoung-Hee

    2015-01-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287

  20. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1.

    PubMed

    Lee, Kyoung-Hee

    2015-06-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.

  1. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  2. Evaluating the Difference between Virtual and Paper-Based Clinical Cases in Family Medicine Undergraduate Education

    PubMed Central

    Cagran, Branka

    2018-01-01

    Introduction A “virtual patient” is defined as a computer program which simulates real patients' cases. The aim of this study was to determine whether the inclusion of virtual patients affects the level of factual knowledge of family medicine students at the undergraduate level. Methods This was a case-controlled prospective study. The students were randomly divided into experimental (EG: N = 51) and control (CG: N = 48) groups. The students in the EG were asked to practice diagnosis using virtual patients instead of the paper-based clinical cases which were solved by the students in the CG. The main observed variable in the study was knowledge of family medicine, determined by 50 multiple choice questions (MCQs) about knowledge of family medicine. Results There were no statistically significant differences in the groups' initial knowledge. At the final assessment of knowledge, there were no statistically significant differences between the groups, but there was a statistically significant difference between their initial and final knowledge. Conclusions The study showed that adding virtual patient cases to the curriculum, instead of paper clinical cases, did not affect the level of factual knowledge about family medicine. Virtual patients can be used, but a significant educational outcome is not expected. PMID:29568779

  3. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis.

    PubMed

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E

    2013-09-12

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.

  4. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  5. Two-photon calcium imaging in mice navigating a virtual reality environment.

    PubMed

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  6. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  7. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    PubMed

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  8. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape.

    PubMed

    Pan, Xueni; Hamilton, Antonia F de C

    2018-03-05

    As virtual reality (VR) technology and systems become more commercially available and accessible, more and more psychologists are starting to integrate VR as part of their methods. This approach offers major advantages in experimental control, reproducibility, and ecological validity, but also has limitations and hidden pitfalls which may distract the novice user. This study aimed to guide the psychologist into the novel world of VR, reviewing available instrumentation and mapping the landscape of possible systems. We use examples of state-of-the-art research to describe challenges which research is now solving, including embodiment, uncanny valley, simulation sickness, presence, ethics, and experimental design. Finally, we propose that the biggest challenge for the field would be to build a fully interactive virtual human who can pass a VR Turing test - and that this could only be achieved if psychologists, VR technologists, and AI researchers work together. © 2018 The Authors British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  9. Assessing the Effectiveness of a Computer Simulation for Teaching Ecological Experimental Design

    ERIC Educational Resources Information Center

    Stafford, Richard; Goodenough, Anne E.; Davies, Mark S.

    2010-01-01

    Designing manipulative ecological experiments is a complex and time-consuming process that is problematic to teach in traditional undergraduate classes. This study investigates the effectiveness of using a computer simulation--the Virtual Rocky Shore (VRS)--to facilitate rapid, student-centred learning of experimental design. We gave a series of…

  10. How to Augment the Learning Impact of Computer Simulations? The Designs and Effects of Interactivity and Scaffolding

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi

    2017-01-01

    Two investigations were conducted in this study. In the first experiment, the effects of two types of interactivity with a computer simulation were compared: experimentation versus observation interactivity. Experimentation interactivity allows students to use simulations to conduct virtual experiments, whereas observation interactivity allows…

  11. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.

    PubMed

    Lloréns, Roberto; Gil-Gómez, José-Antonio; Alcañiz, Mariano; Colomer, Carolina; Noé, Enrique

    2015-03-01

    To study the clinical effectiveness and the usability of a virtual reality-based intervention compared with conventional physical therapy in the balance recovery of individuals with chronic stroke. Randomized controlled trial. Outpatient neurorehabilitation unit. A total of 20 individuals with chronic stroke. The intervention consisted of 20 one-hour sessions, five sessions per week. The experimental group combined 30 minutes with the virtual reality-based intervention with 30 minutes of conventional training. The control group underwent one hour conventional therapy. Balance performance was assessed at the beginning and at the end of the trial using the Berg Balance Scale, the balance and gait subscales of the Tinetti Performance-Oriented Mobility Assessment, the Brunel Balance Assessment, and the 10-m Walking Test. Subjective data of the virtual reality-based intervention were collected from the experimental group, with a feedback questionnaire at the end of the trial. The results revealed a significant group-by-time interaction in the scores of the Berg Balance Scale (p < 0.05) and in the 10-m Walking Test (p < 0.05). Post-hoc analyses showed greater improvement in the experimental group: 3.8 ±2.6 vs. 1.8 ±1.4 in the Berg Balance Scale, -1.9 ±1.6 seconds vs. 0.0 ±2.3 seconds in the 10-m Walking Test, and also in the number of participants who increased level in the Brunel Balance Assessment (χ(2) = 2.5, p < 0.01). Virtual reality interventions can be an effective resource to enhance the improvement of balance in individuals with chronic stroke. © The Author(s) 2014.

  12. TS-Chemscore, a Target-Specific Scoring Function, Significantly Improves the Performance of Scoring in Virtual Screening.

    PubMed

    Wang, Wen-Jing; Huang, Qi; Zou, Jun; Li, Lin-Li; Yang, Sheng-Yong

    2015-07-01

    Most of the scoring functions currently used in structure-based drug design belong to 'universal' scoring functions, which often give a poor correlation between the calculated scores and experimental binding affinities. In this investigation, we proposed a simple strategy to construct target-specific scoring functions based on known 'universal' scoring functions. This strategy was applied to Chemscore, a widely used empirical scoring function, which led to a new scoring function, termed TS-Chemscore. TS-Chemscore was validated on 14 protein targets, which cover a wide range of biological target categories. The results showed that TS-Chemscore significantly improved the correlation between the calculated scores and experimental binding affinities compared with the original Chemscore. TS-Chemscore was then applied in virtual screening to retrieve novel JAK3 and YopH inhibitors. Top 30 compounds for each target were selected for experimental validation. Six active compounds for JAK3 and four for YopH were obtained. These compounds were out of the lists of top 30 compounds sorted by Chemscore. Collectively, TS-Chemscore established in this study showed a better performance in virtual screening than its counterpart Chemscore. © 2014 John Wiley & Sons A/S.

  13. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  14. Assessing the Success Rate of Students Using a Learning Management System Together with a Collaborative Tool in Web-Based Teaching of Programming Languages

    ERIC Educational Resources Information Center

    Cavus, Nadire; Ibrahim, Dogan

    2007-01-01

    The development of collaborative studies in learning has led to a renewed interest in the field of Web-based education. In this experimental study a highly interactive and collaborative virtual teaching environment has been created by supporting Moodle LMS with collaborative learning tool GREWPtool. The aim of this experimental study has been to…

  15. Effects of Virtual Reality on the Cognitive Memory and Handgun Accuracy Development of Law Enforcement Neophytes

    ERIC Educational Resources Information Center

    Wright, Richard A.

    2013-01-01

    The purpose of this research was to investigate the effects of virtual reality training on the development of cognitive memory and handgun accuracy by law enforcement neophytes. One hundred and six academy students from 6 different academy classes were divided into two groups, experimental and control. The experimental group was exposed to virtual…

  16. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial.

    PubMed

    Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau

    2008-08-01

    This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.

  17. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial.

    PubMed

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-03-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.

  18. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial.

    PubMed

    Lee, DongJin; Lee, MyungMo; Lee, KyoungJin; Song, ChangHo

    2014-07-01

    Asymmetric movements with both hands contributed to the improvement of spatially coupled motion. Thus, the aim of this study was to investigate the effects of an asymmetric training program using virtual reality reflection equipment on upper limb function in stroke patients. Twenty-four stroke patients were randomly allocated to an experimental group (n=12) or a control group (n=12). Both groups participated in conventional physical therapy for 2×30 min/d, 5 d/wk, for 4 weeks. The experimental group also participated in an asymmetric training program using virtual reality reflection equipment, and the control group participated in a symmetric training program. Both asymmetric and symmetric programs were conducted for 30 min/d, 5 d/wk, for 4 weeks. To compare upper limb function before and after intervention, the Fugl-Meyer Assessment (FMA), the Box and Block Test (BBT), grip strength, range of motion (ROM), and spasticity were assessed. Both groups showed significant increases in upper limb function, excepting spasticity, after intervention (P<.05, 1-way repeated-measures analysis of variance [ANOVA]). A significant group-time interaction was demonstrated only for shoulder/elbow/wrist items of FMA, BBT, grip strength, and ROM of wrist flexion, extension, and ulnar deviation (P<.05, 2-way repeated-measures ANOVA). This study confirms that the asymmetric training program using virtual reality reflection equipment is an effective intervention method for improving upper limb function in stroke patients. We consider that an additional study based on a program using virtual reflection, which is more functional than performing simple tasks, and consisting of tasks relevant to the activities of daily living be conducted. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. The Influence of Methylphenidate on Hyperactivity and Attention Deficits in Children With ADHD: A Virtual Classroom Test.

    PubMed

    Mühlberger, A; Jekel, K; Probst, T; Schecklmann, M; Conzelmann, A; Andreatta, M; Rizzo, A A; Pauli, P; Romanos, M

    2016-05-13

    This study compares the performance in a continuous performance test within a virtual reality classroom (CPT-VRC) between medicated children with ADHD, unmedicated children with ADHD, and healthy children. N = 94 children with ADHD (n = 26 of them received methylphenidate and n = 68 were unmedicated) and n = 34 healthy children performed the CPT-VRC. Omission errors, reaction time/variability, commission errors, and body movements were assessed. Furthermore, ADHD questionnaires were administered and compared with the CPT-VRC measures. The unmedicated ADHD group exhibited more omission errors and showed slower reaction times than the healthy group. Reaction time variability was higher in the unmedicated ADHD group compared with both the healthy and the medicated ADHD group. Omission errors and reaction time variability were associated with inattentiveness ratings of experimenters. Head movements were correlated with hyperactivity ratings of parents and experimenters. Virtual reality is a promising technology to assess ADHD symptoms in an ecologically valid environment. © The Author(s) 2016.

  20. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial.

    PubMed

    Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa

    2016-09-01

    Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.

  1. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm.

    PubMed

    Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook

    2012-10-04

    Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.

  2. Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm

    PubMed Central

    2012-01-01

    Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951

  3. Virtual Learning Spaces in the Web: An Agent-Based Architecture of Personalized Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Nunez Esquer, Gustavo; Sheremetov, Leonid

    This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…

  4. Testing the continuum of delusional beliefs: an experimental study using virtual reality.

    PubMed

    Freeman, Daniel; Pugh, Katherine; Vorontsova, Natasha; Antley, Angus; Slater, Mel

    2010-02-01

    A key problem in studying a hypothesized spectrum of severity of delusional ideation is determining that ideas are unfounded. The first objective was to use virtual reality to validate groups of individuals with low, moderate, and high levels of unfounded persecutory ideation. The second objective was to investigate, drawing upon a cognitive model of persecutory delusions, whether clinical and nonclinical paranoia are associated with similar causal factors. Three groups (low paranoia, high nonclinical paranoia, persecutory delusions) of 30 participants were recruited. Levels of paranoia were tested using virtual reality. The groups were compared on assessments of anxiety, worry, interpersonal sensitivity, depression, anomalous perceptual experiences, reasoning, and history of traumatic events. Virtual reality was found to cause no side effects. Persecutory ideation in virtual reality significantly differed across the groups. For the clear majority of the theoretical factors there were dose-response relationships with levels of paranoia. This is consistent with the idea of a spectrum of paranoia in the general population. Persecutory ideation is clearly present outside of clinical groups and there is consistency across the paranoia spectrum in associations with important theoretical variables.

  5. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  6. Assessment of the emotional responses produced by exposure to real food, virtual food and photographs of food in patients affected by eating disorders

    PubMed Central

    2010-01-01

    Background Many researchers and clinicians have proposed using virtual reality (VR) in adjunct to in vivo exposure therapy to provide an innovative form of exposure to patients suffering from different psychological disorders. The rationale behind the 'virtual approach' is that real and virtual exposures elicit a comparable emotional reaction in subjects, even if, to date, there are no experimental data that directly compare these two conditions. To test whether virtual stimuli are as effective as real stimuli, and more effective than photographs in the anxiety induction process, we tested the emotional reactions to real food (RF), virtual reality (VR) food and photographs (PH) of food in two samples of patients affected, respectively, by anorexia (AN) and bulimia nervosa (BN) compared to a group of healthy subjects. The two main hypotheses were the following: (a) the virtual exposure elicits emotional responses comparable to those produced by the real exposure; (b) the sense of presence induced by the VR immersion makes the virtual experience more ecological, and consequently more effective than static pictures in producing emotional responses in humans. Methods In total, 10 AN, 10 BN and 10 healthy control subjects (CTR) were randomly exposed to three experimental conditions: RF, PH, and VR while their psychological (Stait Anxiety Inventory (STAI-S) and visual analogue scale for anxiety (VAS-A)) and physiological (heart rate, respiration rate, and skin conductance) responses were recorded. Results RF and VR induced a comparable emotional reaction in patients higher than the one elicited by the PH condition. We also found a significant effect in the subjects' degree of presence experienced in the VR condition about their level of perceived anxiety (STAI-S and VAS-A): the higher the sense of presence, the stronger the level of anxiety. Conclusions Even though preliminary, the present data show that VR is more effective than PH in eliciting emotional responses similar to those expected in real life situations. More generally, the present study suggests the potential of VR in a variety of experimental, training and clinical contexts, being its range of possibilities extremely wide and customizable. In particular, in a psychological perspective based on a cognitive behavioral approach, the use of VR enables the provision of specific contexts to help patients to cope with their diseases thanks to an easily controlled stimulation. PMID:20602749

  7. An experimental study on CHVE's performance evaluation.

    PubMed

    Paiva, Paulo V F; Machado, Liliane S; Oliveira, Jauvane C

    2012-01-01

    Virtual reality-based training simulators, with collaborative capabilities, are known to improve the way users interact with one another while learning or improving skills on a given medical procedure. Performance evaluation of Collaborative Haptic Virtual Environments (CHVE) allows us to understand how such systems can work in the Internet, as well as the requirements for multisensorial and real-time data. This work discloses new performance evaluation results for the collaborative module of the CyberMed VR framework.

  8. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  9. An Algorithm for Creating Virtual Controls Using Integrated and Harmonized Longitudinal Data.

    PubMed

    Hansen, William B; Chen, Shyh-Huei; Saldana, Santiago; Ip, Edward H

    2018-06-01

    We introduce a strategy for creating virtual control groups-cases generated through computer algorithms that, when aggregated, may serve as experimental comparators where live controls are difficult to recruit, such as when programs are widely disseminated and randomization is not feasible. We integrated and harmonized data from eight archived longitudinal adolescent-focused data sets spanning the decades from 1980 to 2010. Collectively, these studies examined numerous psychosocial variables and assessed past 30-day alcohol, cigarette, and marijuana use. Additional treatment and control group data from two archived randomized control trials were used to test the virtual control algorithm. Both randomized controlled trials (RCTs) assessed intentions, normative beliefs, and values as well as past 30-day alcohol, cigarette, and marijuana use. We developed an algorithm that used percentile scores from the integrated data set to create age- and gender-specific latent psychosocial scores. The algorithm matched treatment case observed psychosocial scores at pretest to create a virtual control case that figuratively "matured" based on age-related changes, holding the virtual case's percentile constant. Virtual controls matched treatment case occurrence, eliminating differential attrition as a threat to validity. Virtual case substance use was estimated from the virtual case's latent psychosocial score using logistic regression coefficients derived from analyzing the treatment group. Averaging across virtual cases created group estimates of prevalence. Two criteria were established to evaluate the adequacy of virtual control cases: (1) virtual control group pretest drug prevalence rates should match those of the treatment group and (2) virtual control group patterns of drug prevalence over time should match live controls. The algorithm successfully matched pretest prevalence for both RCTs. Increases in prevalence were observed, although there were discrepancies between live and virtual control outcomes. This study provides an initial framework for creating virtual controls using a step-by-step procedure that can now be revised and validated using other prevention trial data.

  10. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  11. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  12. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  13. Virtual lab for learning equipment and treatment of experimental measurements of rainfall, runoff and erosion in small rural catchments

    NASA Astrophysics Data System (ADS)

    Ángel Bajo, José; Redel-Macías, María Dolores; Nichols, Mary; Pérez, Rafael; Bellido, Francisco; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    A virtual lab for learning to use devices and to treat experimental measurements of hydrological and erosive processes in small agricultural catchments was created to support the practical content of the subject Restoration of Forest Ecosystems of the Master of Forest Engineer (University of Cordoba). The objective was to build a virtual place representing a real site equipped to make measurements of rainfall, runoff and sediment concentration. The virtual lab included pictures, videos and explanations that facilitate learning. Moreover, some practical cases were proposed to apply the explained terms. The structure of menu consisted of: Experimental measurements in catchments; Gallery of videos; Equipment; Practical case; Glossary and Additional Information. Their contents were carefully carried out by professors and scientists of Hydrology and Electronics. The main advantages of the virtual lab were its compatibility with on-line platforms such as Moodle and the presentation of examples for the direct analysis as a basis for solving the proposed practical cases. It has been successfully used for two years and was well-values by the students due the opportunities offered by self-access learning tools. In addition, constraints associated with field trips such as logistical complexity and economic aspects are removed.

  14. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  15. The Validity of Virtual Environments for Eliciting Emotional Responses in Patients with Eating Disorders and in Controls

    ERIC Educational Resources Information Center

    Ferrer-Garcia, Marta; Gutierrez-Maldonado, Jose; Caqueo-Urizar, Alejandra; Moreno, Elena

    2009-01-01

    This article explores the efficacy of virtual environments representing situations that are emotionally significant to patients with eating disorders (ED) to modify depression and anxiety levels both in these patients and in controls. Eighty-five ED patients and 108 students were randomly exposed to five experimental virtual environments (a…

  16. Analysis of a virtual memory model for maintaining database views

    NASA Technical Reports Server (NTRS)

    Kinsley, Kathryn C.; Hughes, Charles E.

    1992-01-01

    This paper presents an analytical model for predicting the performance of a new support strategy for database views. This strategy, called the virtual method, is compared with traditional methods for supporting views. The analytical model's predictions of improved performance by the virtual method are then validated by comparing these results with those achieved in an experimental implementation.

  17. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Analysing neutron scattering data using McStas virtual experiments

    NASA Astrophysics Data System (ADS)

    Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.

    2011-04-01

    With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.

  19. Of virtual victims and victimized virtues: differential effects of experienced aggression in video games on social cooperation.

    PubMed

    Rothmund, Tobias; Gollwitzer, Mario; Klimmt, Christoph

    2011-01-01

    Two experimental studies were used to investigate how interacting with aggressive virtual characters in video games affects trust and cooperation of players. Study 1 demonstrates that experiencing virtual aggression from a victim's perspective can impair players' investments in a subsequent common goods dilemma situation. This effect is mediated by reduced expectations of trust in the cooperativeness of interaction partners. In Study 2 the same effect was replicated by using a different cooperation task and by investigating the moderating role of justice sensitivity from a victim's perspective as a dispositional factor. Participants transferred less money to an unknown partner in a trust game after exposure to aggressive nonplayer characters in a video game. This effect was stronger for people high in victim sensitivity. Results of both studies can be interpreted in line with the sensitivity to mean intentions model and add to the body of research on violent media effects.

  20. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  1. Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.

    PubMed

    Vaccaro, Richard J; Zaki, Ahmed S

    2017-02-11

    A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.

  2. Design and evaluation of a simulation for pediatric dentistry in virtual worlds.

    PubMed

    Papadopoulos, Lazaros; Pentzou, Afroditi-Evaggelia; Louloudiadis, Konstantinos; Tsiatsos, Thrasyvoulos-Konstantinos

    2013-10-29

    Three-dimensional virtual worlds are becoming very popular among educators in the medical field. Virtual clinics and patients are already used for case study and role play in both undergraduate and continuing education levels. Dental education can also take advantage of the virtual world's pedagogical features in order to give students the opportunity to interact with virtual patients (VPs) and practice in treatment planning. The objective of this study was to design and evaluate a virtual patient as a supplemental teaching tool for pediatric dentistry. A child VP, called Erietta, was created by utilizing the programming and building tools that online virtual worlds offer. The case is about an eight-year old girl visiting the dentist with her mother for the first time. Communication techniques such as Tell-Show-Do and parents' interference management were the basic elements of the educational scenario on which the VP was based. An evaluation of the simulation was made by 103 dental students in their fourth year of study. Two groups were formed: an experimental group which was exposed to the simulation (n=52) and a control group which did not receive the simulation (n=51). At the end, both groups were asked to complete a knowledge questionnaire and the results were compared. A statistically significant difference between the two groups was found by applying a t test for independent samples (P<.001), showing a positive learning effect from the VP. The majority of the participants evaluated the aspects of the simulation very positively while 69% (36/52) of the simulation group expressed their preference for using this module as an additional teaching tool. This study demonstrated that a pediatric dentistry VP built in a virtual world offers significant learning potential when used as a supplement to the traditional teaching techniques.

  3. Traditional microscopy instruction versus process-oriented virtual microscopy instruction: a naturalistic experiment with control group.

    PubMed

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina; Gegenfurtner, Andreas; Björk, Pasi; Säljö, Roger

    2011-03-30

    Virtual microscopy is being introduced in medical education as an approach for learning how to interpret information in microscopic specimens. It is, however, far from evident how to incorporate its use into existing teaching practice. The aim of the study was to explore the consequences of introducing virtual microscopy tasks into an undergraduate pathology course in an attempt to render the instruction more process-oriented. The research questions were: 1) How is virtual microscopy perceived by students? 2) Does work on virtual microscopy tasks contribute to improvement in performance in microscopic pathology in comparison with attending assistant-led demonstrations only? During a one-week period, an experimental group completed three sets of virtual microscopy homework assignments in addition to attending demonstrations. A control group attended the demonstrations only. Performance in microscopic pathology was measured by a pre-test and a post-test. Student perceptions of regular instruction and virtual microscopy were collected one month later by administering the Inventory of Intrinsic Motivation and open-ended questions. The students voiced an appreciation for virtual microscopy for the purposes of the course and for self-study. As for learning gains, the results indicated that learning was speeded up in a subgroup of students consisting of conscientious high achievers. The enriched instruction model may be suited as such for elective courses following the basic course. However, the instructional model needs further development to be suited for basic courses.

  4. Restorative effects of virtual nature settings.

    PubMed

    Valtchanov, Deltcho; Barton, Kevin R; Ellard, Colin

    2010-10-01

    Previous research regarding the potential benefits of exposing individuals to surrogate nature (photographs and videos) has found that such immersion results in restorative effects such as increased positive affect, decreased negative affect, and decreased stress. In the current experiment, we examined whether immersion in a virtual computer-generated nature setting could produce restorative effects. Twenty-two participants were equally divided between two conditions, while controlling for gender. In each condition, participants performed a stress-induction task, and were then immersed in virtual reality (VR) for 10 minutes. The control condition featured a slide show in VR, and the nature experimental condition featured an active exploration of a virtual forest. Participants in the nature condition were found to exhibit increased positive affect and decreased stress after immersion in VR when compared to those in the control condition. The results suggest that immersion in virtual nature settings has similar beneficial effects as exposure to surrogate nature. These results also suggest that VR can be used as a tool to study and understand restorative effects.

  5. The Impact of User-Input Devices on Virtual Desktop Trainers

    DTIC Science & Technology

    2010-09-01

    playing the game more enjoyable. Some of these changes include the design of controllers, the controller interface, and ergonomic changes made to...within subjects experimental design to evaluate young active duty Soldier’s ability to move and shoot in a virtual environment using different input...sufficient gaming proficiency, resulting in more time dedicated to training military skills. We employed a within subjects experimental design to

  6. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    PubMed

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  7. Theoretical aspects of virtual simulators to train crews of fishing fleet

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L.; Smetyuh, N.

    2018-05-01

    The use of virtual simulators is an important trend in the modern education, including the continuous training of specialists to meet the rapidly changing requirements for their qualification. Modern virtual simulators are multifunctional, i.e. they can be used to develop and enhance the skills as well as to control professional skills and abilities of specialists of diverse profiles under various working conditions. This study is based on the generalization of a large experience in the sphere of applying ready-made multifunctional virtual simulators (MFVS) and developing new ones for the training and retraining of the crews of the Azov-Black Sea fishing vessels. The results of the experimental studies of the MFVS "Fishing Simulator for Trawling and Purse Seining" show that at least 10 sessions are required to develop sustainable purse seining fishing skills. Almost all trainees (95%) successfully cope with the task within the time permitted by the standard requirements (three minutes) after 15 sessions.

  8. Hit Identification and Optimization in Virtual Screening: Practical Recommendations Based Upon a Critical Literature Analysis

    PubMed Central

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.

    2013-01-01

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234

  9. Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games.

    PubMed

    Kozlov, Michail D; Johansen, Mark K

    2010-12-01

    The purpose of this research was to illustrate the broad usefulness of simple video-game-based virtual environments (VEs) for psychological research on real-world behavior. To this end, this research explored several high-level social phenomena in a simple, inexpensive computer-game environment: the reduced likelihood of helping under time pressure and the bystander effect, which is reduced helping in the presence of bystanders. In the first experiment, participants had to find the exit in a virtual labyrinth under either high or low time pressure. They encountered rooms with and without virtual bystanders, and in each room, a virtual person requested assistance. Participants helped significantly less frequently under time pressure but the presence/absence of a small number of bystanders did not significantly moderate helping. The second experiment increased the number of virtual bystanders, and participants were instructed to imagine that these were real people. Participants helped significantly less in rooms with large numbers of bystanders compared to rooms with no bystanders, thus demonstrating a bystander effect. These results indicate that even sophisticated high-level social behaviors can be observed and experimentally manipulated in simple VEs, thus implying the broad usefulness of this paradigm in psychological research as a good compromise between experimental control and ecological validity.

  10. Dynamically allocated virtual clustering management system

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  11. The validity of virtual environments for eliciting emotional responses in patients with eating disorders and in controls.

    PubMed

    Ferrer-García, Marta; Gutiérrez-Maldonado, José; Caqueo-Urízar, Alejandra; Moreno, Elena

    2009-11-01

    This article explores the efficacy of virtual environments representing situations that are emotionally significant to patients with eating disorders (ED) to modify depression and anxiety levels both in these patients and in controls. Eighty-five ED patients and 108 students were randomly exposed to five experimental virtual environments (a kitchen with low-calorie food, a kitchen with high-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool) and to one neutral environment. In the interval between the presentation of each situation, anxiety and depressed mood were assessed. Results of several repeated measures analyses demonstrated that patients show higher levels of anxiety and a more depressed mood after eating, especially high-calorie food, and after visiting the swimming pool than in the neutral room. In contrast, controls only show higher levels of anxiety in the swimming pool. In the rest of the situations they presented a similar mood state as in the neutral room. We concluded that virtual reality is a useful vehicle for eliciting similar emotional reactions to those one would expect in real life situations. Thus, this technology seems well suited for use in experimental studies as well as in evaluative and therapeutic contexts.

  12. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial

    PubMed Central

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement. PMID:27134363

  13. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  14. VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA

    PubMed Central

    Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.

    2010-01-01

    Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449

  15. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial.

    PubMed

    Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de los Reyes-Guzmán, A; Trincado-Alonso, F; Piazza, S; Polonio-López, B

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra(®) virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.

  16. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial

    PubMed Central

    Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η 2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511

  17. Models for Experimental High Density Housing

    NASA Astrophysics Data System (ADS)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  18. Novel Virtual Environment for Alternative Treatment of Children with Cerebral Palsy

    PubMed Central

    de Oliveira, Juliana M.; Fernandes, Rafael Carneiro G.; Pinto, Cristtiano S.; Pinheiro, Plácido R.; Ribeiro, Sidarta

    2016-01-01

    Cerebral palsy is a severe condition usually caused by decreased brain oxygenation during pregnancy, at birth or soon after birth. Conventional treatments for cerebral palsy are often tiresome and expensive, leading patients to quit treatment. In this paper, we describe a virtual environment for patients to engage in a playful therapeutic game for neuropsychomotor rehabilitation, based on the experience of the occupational therapy program of the Nucleus for Integrated Medical Assistance (NAMI) at the University of Fortaleza, Brazil. Integration between patient and virtual environment occurs through the hand motion sensor “Leap Motion,” plus the electroencephalographic sensor “MindWave,” responsible for measuring attention levels during task execution. To evaluate the virtual environment, eight clinical experts on cerebral palsy were subjected to a questionnaire regarding the potential of the experimental virtual environment to promote cognitive and motor rehabilitation, as well as the potential of the treatment to enhance risks and/or negatively influence the patient's development. Based on the very positive appraisal of the experts, we propose that the experimental virtual environment is a promising alternative tool for the rehabilitation of children with cerebral palsy. PMID:27403154

  19. Socially Anxious and Confident Men Interact with a Forward Virtual Woman: An Experimental Study

    PubMed Central

    Pan, Xueni; Gillies, Marco; Barker, Chris; Clark, David M.; Slater, Mel

    2012-01-01

    Background Male volunteers entered an immersive virtual reality that depicted a party, where they were approached by a lone virtual woman who initiated a conversation. The goal was to study how socially anxious and socially confident men would react to this event. Interest focused on whether the socially anxious participants would exhibit sustained anxiety during the conversation or whether this would diminish over time, and differ from the responses of the more socially confident men. Methodology The scenario was a party with five virtual characters, four sitting at a distance from the participant and talking amongst themselves and one lone woman standing closer. The woman approached the participant, introduced herself and initiated a conversation that was first about mundane matters and then became more personal and intimate. Participants were men who were either relatively socially confident (18) or socially anxious in their relationships with women (18). A second experimental factor was whether or not the other four characters occasionally looked towards the participant. There was a post-trial questionnaire about social anxiety in relation to the experience, and skin conductance and ECG physiological measures were recorded. Our expectation was that the socially anxious participants would show greater anxiety throughout. Conclusions Compared to baseline readings both socially confident and socially anxious groups on average showed signs of significantly increased stress at the initial approach of the virtual woman. The stress then diminished once the conversation entered into the mundane phase and then did not significantly change. Comparing pre- and post-questionnaire anxiety scores there was no change for the more confident participants but a significant decrease in average score amongst the anxious group. The methodology of placing socially anxious participants in a virtual reality where they can gain experience of how to act in a stressful situation promises a novel way forward for treating social anxiety. PMID:22509251

  20. Evaluation of a 'virtual' approach to commissioning health research.

    PubMed

    McCourt, Christine A; Morgan, Philip A; Youll, Penny

    2006-10-18

    The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme--the 'Health of Londoners Programme'--in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium.

  1. Evaluation of a 'virtual' approach to commissioning health research

    PubMed Central

    McCourt, Christine A; Morgan, Philip A; Youll, Penny

    2006-01-01

    Background The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme – the 'Health of Londoners Programme' – in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. Methods A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. Results The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. Conclusion There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium. PMID:17049079

  2. Experimental and theoretical study of friction torque from radial ball bearings

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie

    2017-10-01

    In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.

  3. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke.

    PubMed

    Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee

    2013-01-01

    This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.

  4. Post-Fisherian Experimentation: From Physical to Virtual

    DOE PAGES

    Jeff Wu, C. F.

    2014-04-24

    Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.

  5. Virtual screening of cocrystal formers for CL-20

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Hong; Chen, Min-Bo; Chen, Wei-Ming; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen

    2014-08-01

    According to the structure characteristics of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) and the kinetic mechanism of the cocrystal formation, the method of virtual screening CL-20 cocrystal formers by the criterion of the strongest intermolecular site pairing energy (ISPE) was proposed. In this method the strongest ISPE was thought to determine the first step of the cocrystal formation. The prediction results for four sets of common drug molecule cocrystals by this method were compared with those by the total ISPE method from the reference (Musumeci et al., 2011), and the experimental results. This method was then applied to virtually screen the CL-20 cocrystal formers, and the prediction results were compared with the experimental results.

  6. Assessment of emotional reactivity produced by exposure to virtual environments in patients with eating disorders.

    PubMed

    Gutiérrez-Maldonado, José; Ferrer-García, Marta; Caqueo-Urízar, Alejandra; Letosa-Porta, Alex

    2006-10-01

    The aim of this study was to assess the usefulness of virtual environments representing situations that are emotionally significant to subjects with eating disorders (ED). These environments may be applied with both evaluative and therapeutic aims and in simulation procedures to carry out a range of experimental studies. This paper is part of a wider research project analyzing the influence of the situation to which subjects are exposed on their performance on body image estimation tasks. Thirty female patients with eating disorders were exposed to six virtual environments: a living-room (neutral situation), a kitchen with high-calorie food, a kitchen with low-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool. After exposure to each environment the STAI-S (a measurement of state anxiety) and the CDB (a measurement of depression) were administered to all subjects. The results show that virtual reality instruments are particularly useful for simulating everyday situations that may provoke emotional reactions such as anxiety and depression, in patients with ED. Virtual environments in which subjects are obliged to ingest high-calorie food provoke the highest levels of state anxiety and depression.

  7. Improving students’ creativity using cooperative learning with virtual media on static fluida concept

    NASA Astrophysics Data System (ADS)

    Gunawan; Harjono, A.; Sahidu, H.; Nisrina

    2018-04-01

    Creativity is an important component of global competition in the 21st century. Therefore, learning innovation is needed to make students more creative. This research was conducted to improve students' creativity through cooperative learning using virtual media for the static fluid concept. This study was a quasi-experiment through a pre-test post-test design. The samples were chosen using cluster random sampling technique to obtain two groups, namely experimental group and control group. Data were collected using a creativity test in the form of an essay consisting of verbal and figural tests. The data were analyzed using t-test and N-gain test to determine the improvement of creativity in both groups. The results showed that the improvement of students' creativity in the experimental group was higher than the control group. The difference in the improvement of students’ creativity in both group is significant. Students become more creative especially related to indicators of fluency and elaboration. We conclude that the application of cooperative learning model using virtual media has a positive effect on students’ creativity.

  8. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).

  9. Experimental study of an adaptive CFRC reflector for high order wave-front error correction

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2018-03-01

    The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.

  10. Effects of movement imitation training in Parkinson's disease: A virtual reality pilot study.

    PubMed

    Robles-García, Verónica; Corral-Bergantiños, Yoanna; Espinosa, Nelson; García-Sancho, Carlos; Sanmartín, Gabriel; Flores, Julián; Cudeiro, Javier; Arias, Pablo

    2016-05-01

    Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by customizing motor-patterns to be observed and imitated. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using virtual reality. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, immediately after, and two weeks after the training period. Movement amplitude increased significantly after the therapy in the experimental group for the trained and un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were differently modified by training in the two groups; although the changes in the input-output recruitment were similar. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These results must be clarified in future larger trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Research on Modeling Technology of Virtual Robot Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.

    2017-12-01

    Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.

  12. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  13. Remote laboratories for optical metrology: from the lab to the cloud

    NASA Astrophysics Data System (ADS)

    Osten, W.; Wilke, M.; Pedrini, G.

    2012-10-01

    The idea of remote and virtual metrology has been reported already in 2000 with a conceptual illustration by use of comparative digital holography, aimed at the comparison of two nominally identical but physically different objects, e.g., master and sample, in industrial inspection processes. However, the concept of remote and virtual metrology can be extended far beyond this. For example, it does not only allow for the transmission of static holograms over the Internet, but also provides an opportunity to communicate with and eventually control the physical set-up of a remote metrology system. Furthermore, the metrology system can be modeled in the environment of a 3D virtual reality using CAD or similar technology, providing a more intuitive interface to the physical setup within the virtual world. An engineer or scientist who would like to access the remote real world system can log on to the virtual system, moving and manipulating the setup through an avatar and take the desired measurements. The real metrology system responds to the interaction between the avatar and the 3D virtual representation, providing a more intuitive interface to the physical setup within the virtual world. The measurement data are stored and interpreted automatically for appropriate display within the virtual world, providing the necessary feedback to the experimenter. Such a system opens up many novel opportunities in industrial inspection such as the remote master-sample-comparison and the virtual assembling of parts that are fabricated at different places. Moreover, a multitude of new techniques can be envisaged. To them belong modern ways for documenting, efficient methods for metadata storage, the possibility for remote reviewing of experimental results, the adding of real experiments to publications by providing remote access to the metadata and to the experimental setup via Internet, the presentation of complex experiments in classrooms and lecture halls, the sharing of expensive and complex infrastructure within international collaborations, the implementation of new ways for the remote test of new devices, for their maintenance and service, and many more. The paper describes the idea of remote laboratories and illustrates the potential of the approach on selected examples with special attention to optical metrology.

  14. Embodiment: A New Perspective for Evaluating Physicality in Learning

    ERIC Educational Resources Information Center

    Han, Insook

    2013-01-01

    The purpose of this study is to provide a new perspective for evaluating physicality in learning with a preliminary experimental study based on embodied cognition. While there are studies showing no superiority of physical manipulation over virtual manipulation, there are also studies that seem to advocate adding more physicality in simulations…

  15. Virtual Diagnostics Interface: Real Time Comparison of Experimental Data and CFD Predictions for a NASA Ares I-Like Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2007-01-01

    Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.

  16. Virtual Superheroes: Using Superpowers in Virtual Reality to Encourage Prosocial Behavior

    PubMed Central

    Rosenberg, Robin S.; Baughman, Shawnee L.; Bailenson, Jeremy N.

    2013-01-01

    Background Recent studies have shown that playing prosocial video games leads to greater subsequent prosocial behavior in the real world. However, immersive virtual reality allows people to occupy avatars that are different from them in a perceptually realistic manner. We examine how occupying an avatar with the superhero ability to fly increases helping behavior. Principal Findings Using a two-by-two design, participants were either given the power of flight (their arm movements were tracked to control their flight akin to Superman’s flying ability) or rode as a passenger in a helicopter, and were assigned one of two tasks, either to help find a missing diabetic child in need of insulin or to tour a virtual city. Participants in the “super-flight” conditions helped the experimenter pick up spilled pens after their virtual experience significantly more than those who were virtual passengers in a helicopter. Conclusion The results indicate that having the “superpower” of flight leads to greater helping behavior in the real world, regardless of how participants used that power. A possible mechanism for this result is that having the power of flight primed concepts and prototypes associated with superheroes (e.g., Superman). This research illustrates the potential of using experiences in virtual reality technology to increase prosocial behavior in the physical world. PMID:23383029

  17. Virtual laboratories: new opportunities for collaborative water science

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Arheimer, Berit; Bloeschl, Guenter; Baratti, Emanuele; Capell, Rene; Castellarin, Attilio; Freer, Jim; Han, Dawei; Hrachowitz, Markus; Hundecha, Yeshewatesfa; Hutton, Christopher; Lindström, Goran; Montanari, Alberto; Nijzink, Remko; Parajka, Juraj; Toth, Elena; Viglione, Alberto; Wagener, Thorsten

    2015-04-01

    Reproducibility and repeatability of experiments are the fundamental prerequisites that allow researchers to validate results and share hydrological knowledge, experience and expertise in the light of global water management problems. Virtual laboratories offer new opportunities to enable these prerequisites since they allow experimenters to share data, tools and pre-defined experimental procedures (i.e. protocols). Here we present the outcomes of a first collaborative numerical experiment undertaken by five different international research groups in a virtual laboratory to address the key issues of reproducibility and repeatability. Moving from the definition of accurate and detailed experimental protocols, a rainfall-runoff model was independently applied to 15 European catchments by the research groups and model results were collectively examined through a web-based discussion. We found that a detailed modelling protocol was crucial to ensure the comparability and reproducibility of the proposed experiment across groups. Our results suggest that sharing comprehensive and precise protocols and running the experiments within a controlled environment (e.g. virtual laboratory) is as fundamental as sharing data and tools for ensuring experiment repeatability and reproducibility across the broad scientific community and thus advancing hydrology in a more coherent way.

  18. Composite multi-parameter ranking of real and virtual compounds for design of MC4R agonists: renaissance of the Free-Wilson methodology.

    PubMed

    Nilsson, Ingemar; Polla, Magnus O

    2012-10-01

    Drug design is a multi-parameter task present in the analysis of experimental data for synthesized compounds and in the prediction of new compounds with desired properties. This article describes the implementation of a binned scoring and composite ranking scheme for 11 experimental parameters that were identified as key drivers in the MC4R project. The composite ranking scheme was implemented in an AstraZeneca tool for analysis of project data, thereby providing an immediate re-ranking as new experimental data was added. The automated ranking also highlighted compounds overlooked by the project team. The successful implementation of a composite ranking on experimental data led to the development of an equivalent virtual score, which was based on Free-Wilson models of the parameters from the experimental ranking. The individual Free-Wilson models showed good to high predictive power with a correlation coefficient between 0.45 and 0.97 based on the external test set. The virtual ranking adds value to the selection of compounds for synthesis but error propagation must be controlled. The experimental ranking approach adds significant value, is parameter independent and can be tuned and applied to any drug discovery project.

  19. Virtual Reality Exposure Training for Musicians: Its Effect on Performance Anxiety and Quality.

    PubMed

    Bissonnette, Josiane; Dubé, Francis; Provencher, Martin D; Moreno Sala, Maria T

    2015-09-01

    Music performance anxiety affects numerous musicians, with many of them reporting impairment of performance due to this problem. This exploratory study investigated the effects of virtual reality exposure training on students with music performance anxiety. Seventeen music students were randomly assigned to a control group (n=8) or a virtual training group (n=9). Participants were asked to play a musical piece by memory in two separate recitals within a 3-week interval. Anxiety was then measured with the Personal Report of Confidence as a Performer Scale and the S-Anxiety scale from the State-Trait Anxiety Inventory (STAI-Y). Between pre- and post-tests, the virtual training group took part in virtual reality exposure training consisting of six 1-hour long sessions of virtual exposure. The results indicate a significant decrease in performance anxiety for musicians in the treatment group for those with a high level of state anxiety, for those with a high level of trait anxiety, for women, and for musicians with high immersive tendencies. Finally, between the pre- and post-tests, we observed a significant increase in performance quality for the experimental group, but not for the control group.

  20. Analyzing a multimodal biometric system using real and virtual users

    NASA Astrophysics Data System (ADS)

    Scheidat, Tobias; Vielhauer, Claus

    2007-02-01

    Three main topics of recent research on multimodal biometric systems are addressed in this article: The lack of sufficiently large multimodal test data sets, the influence of cultural aspects and data protection issues of multimodal biometric data. In this contribution, different possibilities are presented to extend multimodal databases by generating so-called virtual users, which are created by combining single biometric modality data of different users. Comparative tests on databases containing real and virtual users based on a multimodal system using handwriting and speech are presented, to study to which degree the use of virtual multimodal databases allows conclusions with respect to recognition accuracy in comparison to real multimodal data. All tests have been carried out on databases created from donations from three different nationality groups. This allows to review the experimental results both in general and in context of cultural origin. The results show that in most cases the usage of virtual persons leads to lower accuracy than the usage of real users in terms of the measurement applied: the Equal Error Rate. Finally, this article will address the general question how the concept of virtual users may influence the data protection requirements for multimodal evaluation databases in the future.

  1. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial.

    PubMed

    Pourazar, Morteza; Mirakhori, Fatemeh; Hemayattalab, Rasool; Bagherzadeh, Fazlolah

    2017-09-21

    The purpose of this study was to investigate the training effects of Virtual Reality (VR) intervention program on reaction time in children with cerebral palsy. Thirty boys ranging from 7 to 12 years (mean = 11.20; SD = .76) were selected by available sampling method and randomly divided into the experimental and control groups. Simple Reaction Time (SRT) and Discriminative Reaction Time (DRT) were measured at baseline and 1 day after completion of VR intervention. Multivariate analysis of variance (MANOVA) and paired sample t-test were performed to analyze the results. MANOVA test revealed significant effects for group in posttest phase, with lower reaction time in both measures for the experimental group. Based on paired sample t-test results, both RT measures significantly improved in experimental group following the VR intervention program. This paper proposes VR as a promising tool into the rehabilitation process for improving reaction time in children with cerebral palsy.

  2. Experimental Characterization of Microfabricated VirtualImpactor Efficiency

    EPA Science Inventory

    The Air-Microfluidics Group is developing a microelectromechanical systems-based direct reading particulate matter (PM) mass sensor. The sensor consists of two main components: a microfabricated virtual impactor (VI) and a PM mass sensor. The VI leverages particle inertia to sepa...

  3. A virtual patient educational activity to improve interprofessional competencies: A randomized trial.

    PubMed

    Shoemaker, Michael J; de Voest, Margaret; Booth, Andrew; Meny, Lisa; Victor, Justin

    2015-01-01

    The purpose of the present study was to determine whether an interprofessional virtual patient educational activity improved interprofessional competencies in pharmacy, physician assistant, and physical therapy graduate students. Seventy-two fifth semester pharmacy (n = 33), fourth semester physician assistant (n = 27) and fourth semester physical therapy (n = 12) graduate students participated in the study. Participants were stratified by discipline and randomized into control (n = 38) and experimental groups (n = 34). At baseline and at study completion, all participants completed an original, investigator-developed survey that measured improvement in selected Interprofessional Education Collaborative (IPEC) competencies and the Readiness for Interprofessional Learning Scale (RIPLS). The experimental group had statistically significantly greater odds of improving on a variety of IPEC competencies and RIPLS items. The use of a single, interprofessional educational activity resulted in having a greater awareness of other professions' scopes of practice, what other professions have to offer a given patient and how different professions can collaborate in patient care.

  4. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial.

    PubMed

    Collange Grecco, Luanda André; de Almeida Carvalho Duarte, Natália; Mendonça, Mariana E; Galli, Manuela; Fregni, Felipe; Oliveira, Claudia Santos

    2015-12-01

    To compare the effects of anodal vs. sham transcranial direct current stimulation combined with virtual reality training for improving gait in children with cerebral palsy. A pilot, randomized, controlled, double-blind, clinical trial. Rehabilitation clinics. A total of 20 children with diparesis owing to cerebral palsy. The experimental group received anodal stimulation and the control group received sham stimulation over the primary motor cortex during virtual reality training. All patients underwent the same training programme involving a virtual reality (10 sessions). Evaluations were performed before and after the intervention as well as at the one-month follow-up and involved gait analysis, the Gross Motor Function Measure, the Pediatric Evaluation Disability Inventory and the determination of motor evoked potentials. The experimental group had a better performance regarding gait velocity (experimental group: 0.63 ±0.17 to 0.85 ±0.11 m/s; control group: 0.73 ±0.15 to 0.61 ±0.15 m/s), cadence (experimental group: 97.4 ±14.1 to 116.8 ±8.7 steps/minute; control group: 92.6 ±10.4 to 99.7 ±9.7 steps/minute), gross motor function (dimension D experimental group: 59.7 ±12.8 to 74.9 ±13.8; control group: 58.9 ±10.4 to 69.4 ±9.3; dimension E experimental group: 59.0 ±10.9 to 79.1 ±8.5; control group: 60.3 ±10.1 to 67.4 ±11.4) and independent mobility (experimental group: 34.3 ±5.9 to 43.8 ±75.3; control group: 34.4 ±8.3 to 37.7 ±7.7). Moreover, transcranial direct current stimulation led to a significant increase in motor evoked potential (experimental group: 1.4 ±0.7 to 2.6 ±0.4; control group: 1.3 ±0.6 to 1.6 ±0.4). These preliminary findings support the hypothesis that anodal transcranial direct current stimulation combined with virtual reality training could be a useful tool for improving gait in children with cerebral palsy. © The Author(s) 2015.

  5. The effectiveness of virtual reality interventions in improving balance in adults with impaired balance compared with standard or no treatment: a systematic review and meta-analysis.

    PubMed

    Booth, Vicky; Masud, Tahir; Connell, Louise; Bath-Hextall, Fiona

    2014-05-01

    To evaluate whether virtual reality interventions, including interactive gaming systems, are effective at improving balance in adults with impaired balance. Systematic review and meta-analysis of randomized control trials. Studies were identified from electronic databases (CENTRAL, MEDLINE, EMBASE, AMED, CINAHL, PyschINFO, PyschBITE, OTseeker, Ei Compendex, and Inspec) searched to November 2011, and repeated in November 2012. Two reviewers selected studies meeting inclusion criteria and quality of included studies assessed using a Joanna Briggs Institute appraisal tool. Data was pooled and a meta-analysis completed. The systematic review was reported following guidance of the PRISMA statement. A total of 251 articles were screened. Eight randomized control trials were included. These studies presented the results of 239 participants, with various aetiologies, and used a variety of virtual reality systems. The number of falls was documented in only one included study. Meta-analysis was completed on data from the Berg Balance Scale, walking speed, 30 second sit-to-stand test, and Timed Up and Go Test, and favoured standard therapy when compared with standard plus virtual reality interventions. There was a notable inconsistency in the outcome measures, experimental, and control interventions used within the included studies. The pooled results of the studies showed no significant difference. Therefore this review cannot support nor refute the use of virtual reality interventions, rather than conventional physiotherapy, to improve balance in adults with impaired balance.

  6. Operator Localization of Virtual Objects

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Menges, Brian M.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects'age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are also influenced by their relative position when superimposed. Design implications are discussed.

  7. One New Method to Generate 3-Dimensional Virtual Mannequin

    NASA Astrophysics Data System (ADS)

    Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le

    The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.

  8. Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study

    PubMed Central

    Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark

    2016-01-01

    The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 siblings of patients with psychosis, and 53 controls walked 5 times in a virtual bar with different levels of environmental social stress. Virtual social stressors were population density, ethnic density and hostility. Paranoia about virtual humans and subjective distress in response to virtual social stress exposures were measured with State Social Paranoia Scale (SSPS) and self-rated momentary subjective distress (SUD), respectively. Pre-existing (subclinical) symptoms were assessed with the Community Assessment of Psychic Experiences (CAPE), Green Paranoid Thoughts Scale (GPTS) and the Social Interaction Anxiety Scale (SIAS). Paranoia and subjective distress increased with degree of social stress in the environment. Psychosis liability and pre-existing symptoms, in particular negative affect, positively impacted the level of paranoia and distress in response to social stress. These results provide experimental evidence that heightened sensitivity to environmental social stress may play an important role in the onset and course of psychosis. PMID:27038469

  9. Studying the Effectiveness of Multi-User Immersive Environments for Collaborative Evaluation Tasks

    ERIC Educational Resources Information Center

    Lorenzo, Carlos-Miguel; Sicilia, Miguel Angel; Sanchez, Salvador

    2012-01-01

    Massively Multiuser On-line Learning (MMOL) Platforms, often called "virtual learning worlds", constitute a still unexplored context for communication-enhanced learning, where synchronous communication skills in an explicit social setting enhance the potential of effective collaboration. In this paper, we report on an experimental study of…

  10. Adding a Feature: Can a Pop-Up Chat Box Enhance Virtual Reference Services?

    PubMed

    Fan, Suhua Caroline; Fought, Rick L; Gahn, Paul C

    2017-01-01

    Online users seek help from virtual reference services via email, phone, texting, and live chat. Technologies have enabled new features in library websites to help make this service more accessible and effective. This article is an evaluation of an experimental pop-up live chat box on the website of a health sciences library to see whether the feature would enhance virtual reference services.

  11. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  12. Design of focused and restrained subsets from extremely large virtual libraries.

    PubMed

    Jamois, Eric A; Lin, Chien T; Waldman, Marvin

    2003-11-01

    With the current and ever-growing offering of reagents along with the vast palette of organic reactions, virtual libraries accessible to combinatorial chemists can reach sizes of billions of compounds or more. Extracting practical size subsets for experimentation has remained an essential step in the design of combinatorial libraries. A typical approach to computational library design involves enumeration of structures and properties for the entire virtual library, which may be unpractical for such large libraries. This study describes a new approach termed as on the fly optimization (OTFO) where descriptors are computed as needed within the subset optimization cycle and without intermediate enumeration of structures. Results reported herein highlight the advantages of coupling an ultra-fast descriptor calculation engine to subset optimization capabilities. We also show that enumeration of properties for the entire virtual library may not only be unpractical but also wasteful. Successful design of focused and restrained subsets can be achieved while sampling only a small fraction of the virtual library. We also investigate the stability of the method and compare results obtained from simulated annealing (SA) and genetic algorithms (GA).

  13. Height, social comparison, and paranoia: An immersive virtual reality experimental study

    PubMed Central

    Freeman, Daniel; Evans, Nicole; Lister, Rachel; Antley, Angus; Dunn, Graham; Slater, Mel

    2014-01-01

    Mistrust of others may build upon perceptions of the self as vulnerable, consistent with an association of paranoia with perceived lower social rank. Height is a marker of social status and authority. Therefore we tested the effect of manipulating height, as a proxy for social rank, on paranoia. Height was manipulated within an immersive virtual reality simulation. Sixty females who reported paranoia experienced a virtual reality train ride twice: at their normal and reduced height. Paranoia and social comparison were assessed. Reducing a person's height resulted in more negative views of the self in comparison with other people and increased levels of paranoia. The increase in paranoia was fully mediated by changes in social comparison. The study provides the first demonstration that reducing height in a social situation increases the occurrence of paranoia. The findings indicate that negative social comparison is a cause of mistrust. PMID:24924485

  14. A novel framework for virtual prototyping of rehabilitation exoskeletons.

    PubMed

    Agarwal, Priyanshu; Kuo, Pei-Hsin; Neptune, Richard R; Deshpande, Ashish D

    2013-06-01

    Human-worn rehabilitation exoskeletons have the potential to make therapeutic exercises increasingly accessible to disabled individuals while reducing the cost and labor involved in rehabilitation therapy. In this work, we propose a novel human-model-in-the-loop framework for virtual prototyping (design, control and experimentation) of rehabilitation exoskeletons by merging computational musculoskeletal analysis with simulation-based design techniques. The framework allows to iteratively optimize design and control algorithm of an exoskeleton using simulation. We introduce biomechanical, morphological, and controller measures to quantify the performance of the device for optimization study. Furthermore, the framework allows one to carry out virtual experiments for testing specific "what-if" scenarios to quantify device performance and recovery progress. To illustrate the application of the framework, we present a case study wherein the design and analysis of an index-finger exoskeleton is carried out using the proposed framework.

  15. Acquisition of Fire Safety Knowledge and Skills With Virtual Reality Simulation.

    PubMed

    Rossler, Kelly L; Sankaranarayanan, Ganesh; Duvall, Adrianne

    2018-05-25

    Prelicensure nursing students seeking to enter perioperative nursing need preparatory fire safety knowledge and skills training to participate as a member of an operating room (OR) team. This pilot study examined the effectiveness of the Virtual Electrosurgery Skill Trainer (VEST) on OR fire safety skills among prelicensure nursing students. An experimental pretest-posttest design was used in this study. Twenty nursing students were randomized to a control or an intervention group. Knowledge and skills acquisition of OR fire safety were assessed. There were no statistically significant findings in knowledge for either group. Fisher exact test demonstrated significant relationships between the skills performance criteria of following emergency procedures for a fire and demonstrating PASS (pull-aim-squeeze-sweep) technique (P = .001). Academic and hospital educators may consider incorporating virtual reality simulation to teach fire safety education or reinforce general fire safety practices to nursing students and novice nurses.

  16. Virtually the ultimate research lab.

    PubMed

    Kulik, Alexander

    2018-04-26

    Virtual reality (VR) can serve as a viable platform for psychological research. The real world with many uncontrolled variables can be masked to immerse participants in complex interactive environments that are under full experimental control. However, as any other laboratory setting, these simulations are not perceived equally to reality and they also afford different behaviour. We need a better understanding of these differences, which are often related to parameters of the technical setup, to support valid interpretations of experimental results. © 2018 The British Psychological Society.

  17. A Second Chance at Health: How a 3D Virtual World Can Improve Health Self-Efficacy for Weight Loss Management Among Adults.

    PubMed

    Behm-Morawitz, Elizabeth; Lewallen, Jennifer; Choi, Grace

    2016-02-01

    Health self-efficacy, or the beliefs in one's capabilities to perform health behaviors, is a significant factor in eliciting health behavior change, such as weight loss. Research has demonstrated that virtual embodiment has the potential to alter one's psychology and physicality, particularly in health contexts; however, little is known about the impacts embodiment in a virtual world has on health self-efficacy. The present research is a randomized controlled trial (N = 90) examining the effectiveness of virtual embodiment and play in a social virtual world (Second Life [SL]) for increasing health self-efficacy (exercise and nutrition efficacy) among overweight adults. Participants were randomly assigned to a 3D social virtual world (avatar virtual interaction experimental condition), 2D social networking site (no avatar virtual interaction control condition), or no intervention (no virtual interaction control condition). The findings of this study provide initial evidence for the use of SL to improve exercise efficacy and to support weight loss. Results also suggest that individuals who have higher self-presence with their avatar reap more benefits. Finally, quantitative findings are triangulated with qualitative data to increase confidence in the results and provide richer insight into the perceived effectiveness and limitations of SL for meeting weight loss goals. Themes resulting from the qualitative analysis indicate that participation in SL can improve motivation and efficacy to try new physical activities; however, individuals who have a dislike for video games may not be benefitted by avatar-based virtual interventions. Implications for research on the transformative potential of virtual embodiment and self-presence in general are discussed.

  18. Integration of computer-assisted fracture reduction system and a hybrid 3-DOF-RPS mechanism for assisting the orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Irwansyah; Sinh, N. P.; Lai, J. Y.; Essomba, T.; Asbar, R.; Lee, P. Y.

    2018-02-01

    In this paper, we present study to integrate virtual fracture bone reduction simulation tool with a novel hybrid 3-DOF-RPS external fixator to relocate back bone fragments into their anatomically original position. A 3D model of fractured bone was reconstructed and manipulated using 3D design and modeling software, PhysiGuide. The virtual reduction system was applied to reduce a bilateral femoral shaft fracture type 32-A3. Measurement data from fracture reduction and fixation stages were implemented to manipulate the manipulator pose in patient’s clinical case. The experimental result presents that by merging both of those techniques will give more possibilities to reduce virtual bone reduction time, improve facial and shortest healing treatment.

  19. The time course of location-avoidance learning in fear of spiders.

    PubMed

    Rinck, Mike; Koene, Marieke; Telli, Sibel; Moerman-van den Brink, Wiltine; Verhoeven, Barbara; Becker, Eni S

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the participants were exposed to virtual spiders. Unbeknown to the participants, only two of four museum rooms contained spiders, allowing for avoidance learning. Indeed, the more SF the participants were, the faster they learned to avoid the rooms that contained spiders (Experiment. 1), and within the first six trials, high fearfuls already developed a preference for starting their search task in rooms without spiders (Experiment 2). These results illustrate the time course of avoidance learning in SFs, and they speak to the usefulness of IVEs in fundamental anxiety research.

  20. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1990-12-01

    Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministicmore » viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.« less

  1. A call for virtual experiments: accelerating the scientific process.

    PubMed

    Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar

    2015-01-01

    Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Command & Control in Virtual Environments: Designing a Virtual Environment for Experimentation

    DTIC Science & Technology

    2010-06-01

    proceed with the research: Second Life/ OpenSim A popular leader in the desktop virtual worlds revolution, for many Second Life has become...prototype environments and adapt them quickly within the world. OpenSim is an open-source community built around upon the Second Life platform...functionality natively present in Second Life and the Opensim platform. With the recent release of Second Life Viewer 2.0, which contains a complete

  3. A VM-shared desktop virtualization system based on OpenStack

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  4. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study.

    PubMed

    Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho

    2016-07-01

    [Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.

  5. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity

    PubMed Central

    Chen, Can; Wang, Ting; Wu, Fengbo; Huang, Wei; He, Gu; Ouyang, Liang; Xiang, Mingli; Peng, Cheng; Jiang, Qinglin

    2014-01-01

    Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophore model-based virtual screening, docking-based virtual screening, and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were used to retrieve novel PKM2 activators from commercially available chemical databases. Tetrahydroquinoline derivatives were identified as potential scaffolds of PKM2 activators. Thus, the hybrid virtual screening approach was applied to screen the focused tetrahydroquinoline derivatives embedded in the ZINC database. Six hit compounds were selected from the final hits and experimental studies were then performed. Compound 8 displayed a potent inhibitory effect on human lung cancer cells. Following treatment with Compound 8, cell viability, apoptosis, and reactive oxygen species (ROS) production were examined in A549 cells. Finally, we evaluated the effects of Compound 8 on mice xenograft tumor models in vivo. These results may provide important information for further research on novel PKM2 activators as antitumor agents. PMID:25214764

  6. Use of immersive virtual reality to assess episodic memory: A validation study in older adults.

    PubMed

    Corriveau Lecavalier, Nick; Ouellet, Émilie; Boller, Benjamin; Belleville, Sylvie

    2018-05-29

    Virtual reality (VR) allows for the creation of ecological environments that could be used for cognitive assessment and intervention. This study comprises two parts that describe and assess an immersive VR task, the Virtual Shop, which can be used to measure episodic memory. Part 1 addresses its applicability in healthy older adults by measuring presence, motivation, and cybersickness symptoms. Part 2 addresses its construct validity by investigating correlations between performance in the VR task and on a traditional experimental memory task, and by measuring whether the VR task is sensitive to age-related memory differences. Fifty-seven older and 20 younger adults were assessed in the Virtual Shop, in which they memorised and fetched 12 familiar items. Part 1 showed high levels of presence, higher levels of motivation for the VR than for the traditional task, and negligible cybersickness symptoms. Part 2 indicates that memory performance in the VR task is positively correlated with performance on a traditional memory task for both age groups, and age-related differences were found on the VR and traditional memory tasks. Thus, the use of VR is feasible in older adults and the Virtual Shop is a valid task to assess and train episodic memory in this population.

  7. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    PubMed

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  8. Virtual Reality for Research in Social Neuroscience

    PubMed Central

    Parsons, Thomas D.; Gaggioli, Andrea; Riva, Giuseppe

    2017-01-01

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters—either driven by a human or by a computer—allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature. PMID:28420150

  9. Virtual Reality for Research in Social Neuroscience.

    PubMed

    Parsons, Thomas D; Gaggioli, Andrea; Riva, Giuseppe

    2017-04-16

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters-either driven by a human or by a computer-allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature.

  10. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.

    PubMed

    Chalil Madathil, Kapil; Greenstein, Joel S

    2017-11-01

    Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  12. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  13. The diffusion of virtual communities in health care: concepts and challenges.

    PubMed

    Demiris, George

    2006-08-01

    This paper providers an overview and discussion of virtual communities in health care. Furthermore, we aim to discuss in this context ethical, legal and technical considerations and the current status of research in this domain. We searched medical and social science literature including survey studies, randomized and non-randomized controlled interventions and reviews. The literature indicates that a virtual community in health care as a group of people using telecommunication with the purposes of delivering health care and education, and/or providing support, covers a wide range of clinical specialties, technologies and stakeholders. Examples include peer-to-peer networks, virtual health care delivery and research teams. Ethical challenges including the concepts of identity and deception, privacy and confidentiality and technical issues, such as sociability and usability are discussed. Virtual communities may empower patients and enhance coordination of care services; however, there is not sufficient systematic evidence of the effectiveness of virtual communities on clinical outcomes or patient empowerment. Researchers need to address issues, such as sample sizes and experimental design to further the research field in this domain. When practitioners utilize virtual community tools to communicate with patients or colleagues they have to maximize sociability and usability of this mode of communication, while addressing concerns for privacy and the fear of de-humanizing practice, and the lack of clarity or relevance of current legislative frameworks.

  14. Implementation of training programs in self-regulated learning strategies in Moodle format: results of a experience in higher education.

    PubMed

    Núñez, José Carlos; Cerezo, Rebeca; Bernardo, Ana; Rosário, Pedro; Valle, Antonio; Fernández, Estrella; Suárez, Natalia

    2011-04-01

    This paper tests the efficacy of an intervention program in virtual format intended to train studying and self-regulation strategies in university students. The aim of this intervention is to promote a series of strategies which allow students to manage their learning processes in a more proficient and autonomous way. The program has been developed in Moodle format and hosted by the Virtual Campus of the University of Oviedo. The present study had a semi-experimental design, included an experimental group (n=167) and a control one (n=206), and used pretest and posttest measures (self-regulated learning strategies' declarative knowledge, self-regulated learning macro-strategy planning-execution-assessment, self-regulated learning strategies on text, surface and deep learning approaches, and academic achievement). Data suggest that the students enrolled in the training program, comparing with students in the control group, showed a significant improvement in their declarative knowledge, general and on text use of learning strategies, increased their deep approach to learning, decreased their use of a surface approach and, in what concerns to academic achievement, statistically significant differences have been found in favour of the experimental group.

  15. Modeling behavior dynamics using computational psychometrics within virtual worlds.

    PubMed

    Cipresso, Pietro

    2015-01-01

    In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  16. Pain modulation during drives through cold and hot virtual environments.

    PubMed

    Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K

    2007-08-01

    Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or cold stimuli is modulated by "warm "or "cold " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that cold worlds would reduce pain perception from heat stimuli, while warm environments would reduce pain perception from cold stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and cold pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three cold stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or cold). We found that both warm and cold virtual environments reduced pain intensity and unpleasantness for heat and cold pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.

  17. Virtual Balancing for Studying and Training Postural Control.

    PubMed

    Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph

    2017-01-01

    Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.

  18. Virtual Balancing for Studying and Training Postural Control

    PubMed Central

    Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K.; Maurer, Christoph

    2017-01-01

    Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training. PMID:29018320

  19. Implementation of ECIRR model based on virtual simulation media to reduce students’ misconception on kinetic theory of gases

    NASA Astrophysics Data System (ADS)

    Prastiwi, A. C.; Kholiq, A.; Setyarsih, W.

    2018-03-01

    The purposed of this study are to analyse reduction of students’ misconceptions after getting ECIRR with virtual simulation. The design of research is the pre-experimental design with One Group Pretest-Posttest Design. Subjects of this research were 36 students of class XI MIA-5 SMAN 1 Driyorejo Gresik 2015/2016 school year. Students misconceptions was determined by Three-tier Diagnostic Test. The result shows that the average percentage of misconceptions reduced on topics of ideal gas law, equation of ideal gases and kinetic theory of gases respectively are 38%, 34% and 38%.

  20. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  1. Open Virtual Worlds as Pedagogical Research Tools: Learning from the Schome Park Programme

    NASA Astrophysics Data System (ADS)

    Twining, Peter; Peachey, Anna

    This paper introduces the term Open Virtual Worlds and argues that they are ‘unclaimed educational spaces’, which provide a valuable tool for researching pedagogy. Having explored these claims the way in which Teen Second Life® virtual world was used for pedagogical experimentation in the initial phases of the Schome Park Programme is described. Four sets of pedagogical dimensions that emerged are presented and illustrated with examples from the Schome Park Programme.

  2. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.

    PubMed

    Chen, Wei; Chao, Jian-Gang; Zhang, Yan; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2017-10-01

    Astronauts' orientation preferences tend to correlate with their susceptibility to space motion sickness (SMS). Orientation preferences appear universally, since variable sensory cue priorities are used between individuals. However, SMS susceptibility changes after proper training, while orientation preferences seem to be intrinsic proclivities. The present study was conducted to investigate whether orientation preferences change if susceptibility is reduced after repeated exposure to a virtual reality (VR) stimulus environment that induces SMS. A horizontal supine posture was chosen to create a sensory context similar to weightlessness, and two VR devices were used to produce a highly immersive virtual scene. Subjects were randomly allocated to an experimental group (trained through exposure to a provocative rotating virtual scene) and a control group (untrained). All subjects' orientation preferences were measured twice with the same interval, but the experimental group was trained three times during the interval, while the control group was not. Trained subjects were less susceptible to SMS, with symptom scores reduced by 40%. Compared with untrained subjects, trained subjects' orientation preferences were significantly different between pre- and posttraining assessments. Trained subjects depended less on visual cues, whereas few subjects demonstrated the opposite tendency. Results suggest that visual information may be inefficient and unreliable for body orientation and stabilization in a rotating visual scene, while reprioritizing preferences for different sensory cues was dynamic and asymmetric between individuals. The present findings should facilitate customization of efficient and proper training for astronauts with different sensory prioritization preferences and dynamic characteristics.Chen W, Chao J-G, Zhang Y, Wang J-K, Chen X-W, Tan C. Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform. 2017; 88(10):903-910.

  3. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    PubMed Central

    Lin, Shang-Chang; Hu, Chia-Jui; Lin, Pei-Chun

    2015-01-01

    We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors. PMID:27065748

  4. A Virtual Laboratory for Digital Signal Processing

    ERIC Educational Resources Information Center

    Dow, Chyi-Ren; Li, Yi-Hsung; Bai, Jin-Yu

    2006-01-01

    This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code…

  5. "Virtual" Experiment for Understanding the Electrocardiogram and the Mean Electrical Axis.

    ERIC Educational Resources Information Center

    Anderson, Jamie; DiCarlo, Stephen E.

    2000-01-01

    Describes a virtual experiment designed to introduce students to the theory and application of the electrocardiogram (ECG) and the mean electrical axis (MEA). Students are asked to reduce and analyze data, calculate and plot the MEA, and answer questions in the inquiry-based, experimental activity. (Author/WRM)

  6. Exploring Moral Action Using lmmersive Virtual Reality

    DTIC Science & Technology

    2016-10-01

    the Obedience. in The Bar experimental scenario is in the context of sexual harassment and has two phases, a ll in immersive virtual rea lity. In...a paper for submission to a high impact journal (depending of course on the final resu lts). 4. Conclusions The original proposal set out the

  7. Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study.

    PubMed

    Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark

    2016-11-01

    The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 siblings of patients with psychosis, and 53 controls walked 5 times in a virtual bar with different levels of environmental social stress. Virtual social stressors were population density, ethnic density and hostility. Paranoia about virtual humans and subjective distress in response to virtual social stress exposures were measured with State Social Paranoia Scale (SSPS) and self-rated momentary subjective distress (SUD), respectively. Pre-existing (subclinical) symptoms were assessed with the Community Assessment of Psychic Experiences (CAPE), Green Paranoid Thoughts Scale (GPTS) and the Social Interaction Anxiety Scale (SIAS). Paranoia and subjective distress increased with degree of social stress in the environment. Psychosis liability and pre-existing symptoms, in particular negative affect, positively impacted the level of paranoia and distress in response to social stress. These results provide experimental evidence that heightened sensitivity to environmental social stress may play an important role in the onset and course of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Testing virtual reality-based cue-exposure software: Which cue-elicited responses best discriminate between patients with eating disorders and healthy controls?

    PubMed

    Pla-Sanjuanelo, Joana; Ferrer-García, Marta; Vilalta-Abella, Ferran; Riva, Giuseppe; Dakanalis, Antonios; Ribas-Sabaté, Joan; Andreu-Gracia, Alexis; Fernandez-Aranda, Fernando; Sanchez-Diaz, Isabel; Escandón-Nagel, Neli; Gomez-Tricio, Osane; Tena, Virgínia; Gutiérrez-Maldonado, José

    2017-07-27

    Virtual reality (VR) technologies have been proposed as a new tool able to improve on in vivo exposure in patients with eating disorders. This study assessed the validity of a VR-based software for cue exposure therapy (CET) in people with bulimia nervosa (BN) and binge eating disorder (BED). Fifty eight outpatients (33 BN and 25 BED) and 135 healthy participants were exposed to 10 craved virtual foods and a neutral cue in four experimental virtual environments (kitchen, dining room, bedroom, and cafeteria). After exposure to each VR scenario, food craving and anxiety were assessed. The frequency/severity of episodes of uncontrollable overeating was also assessed and body mass index was measured prior to the exposure. In both groups, craving and anxiety responses when exposed to the food-related virtual environments were significantly higher than in the neutral-cue virtual environment. However, craving and anxiety levels were higher in the clinical group. Furthermore, cue-elicited anxiety was better at discriminating between clinical and healthy groups than cue-elicited craving. This study provides evidence of the ability of food-related VR environments to provoke food craving and anxiety responses in BN and BED patients and highlights the need to consider both responses during treatment. The results support the use of VR-CET in the treatment of eating disorder patients characterized by binge-eating and people with high bulimic symptoms.

  9. Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Narayana, P. L.; Kim, Seong-Woong; Hong, Jae-Keun; Reddy, N. S.; Yeom, Jong-Taek

    2018-03-01

    The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.

  10. A New Virtual and Remote Experimental Environment for Teaching and Learning Science

    NASA Astrophysics Data System (ADS)

    Lustigova, Zdena; Lustig, Frantisek

    This paper describes how a scientifically exact and problem-solving-oriented remote and virtual science experimental environment might help to build a new strategy for science education. The main features are: the remote observations and control of real world phenomena, their processing and evaluation, verification of hypotheses combined with the development of critical thinking, supported by sophisticated relevant information search, classification and storing tools and collaborative environment, supporting argumentative writing and teamwork, public presentations and defense of achieved results, all either in real presence, in telepresence or in combination of both. Only then real understanding of generalized science laws and their consequences can be developed. This science learning and teaching environment (called ROL - Remote and Open Laboratory), has been developed and used by Charles University in Prague since 1996, offered to science students in both formal and informal learning, and also to science teachers within their professional development studies, since 2003.

  11. A case study on the in silico absorption simulations of levothyroxine sodium immediate-release tablets.

    PubMed

    Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Grbic, Sandra; Parojcic, Jelena; Vucicevic, Katarina; Prostran, Milica; Miljkovic, Branislava

    2012-04-01

    The aim of this case study was to develop a drug-specific absorption model for levothyroxine (LT4) using mechanistic gastrointestinal simulation technology (GIST) implemented in the GastroPlus™ software package. The required input parameters were determined experimentally, in silico predicted and/or taken from the literature. The simulated plasma profile was similar and in a good agreement with the data observed in the in vivo bioequivalence study, indicating that the GIST model gave an accurate prediction of LT4 oral absorption. Additionally, plasma concentration-time profiles were simulated based on a set of experimental and virtual in vitro dissolution data in order to estimate the influence of different in vitro drug dissolution kinetics on the simulated plasma profiles and to identify biorelevant dissolution specification for LT4 immediate-release (IR) tablets. A set of experimental and virtual in vitro data was also used for correlation purposes. In vitro-in vivo correlation model based on the convolution approach was applied in order to assess the relationship between the in vitro and in vivo data. The obtained results suggest that dissolution specification of more than 85% LT4 dissolved in 60 min might be considered as biorelevant dissolution specification criteria for LT4 IR tablets. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Shared virtual memory and generalized speedup

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhu, Jianping

    1994-01-01

    Generalized speedup is defined as parallel speed over sequential speed. The generalized speedup and its relation with other existing performance metrics, such as traditional speedup, efficiency, scalability, etc., are carefully studied. In terms of the introduced asymptotic speed, it was shown that the difference between the generalized speedup and the traditional speedup lies in the definition of the efficiency of uniprocessor processing, which is a very important issue in shared virtual memory machines. A scientific application was implemented on a KSR-1 parallel computer. Experimental and theoretical results show that the generalized speedup is distinct from the traditional speedup and provides a more reasonable measurement. In the study of different speedups, various causes of superlinear speedup are also presented.

  13. How should a virtual agent present psychoeducation? Influence of verbal and textual presentation on adherence

    PubMed Central

    Tielman, Myrthe L.; Neerincx, Mark A.; van Meggelen, Marieke; Franken, Ingmar; Brinkman, Willem-Paul

    2017-01-01

    BACKGROUND AND OBJECTIVE: With the rise of autonomous e-mental health applications, virtual agents can play a major role in improving trustworthiness, therapy outcome and adherence. In these applications, it is important that patients adhere in the sense that they perform the tasks, but also that they adhere to the specific recommendations on how to do them well. One important construct in improving adherence is psychoeducation, information on the why and how of therapeutic interventions. In an e-mental health context, this can be delivered in two different ways: verbally by a (virtual) embodied conversational agent or just via text on the screen. The aim of this research is to study which presentation mode is preferable for improving adherence. METHODS : This study takes the approach of evaluating a specific part of a therapy, namely psychoeducation. This was done in a non-clinical sample, to first test the general constructs of the human-computer interaction. We performed an experimental study on the effect of presentation mode of psychoeducation on adherence. In this study, we took into account the moderating effects of attitude towards the virtual agent and recollection of the information. Within the paradigm of expressive writing, we asked participants (n= 46) to pick one of their worst memories to describe in a digital diary after receiving verbal or textual psychoeducation. RESULTS AND CONCLUSION: We found that both the attitude towards the virtual agent and how well the psychoeducation was recollected were positively related to adherence in the form of task execution. Moreover, after controlling for the attitude to the agent and recollection, presentation of psychoeducation via text resulted in higher adherence than verbal presentation by the virtual agent did. PMID:28800346

  14. Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome.

    PubMed

    Wuang, Yee-Pay; Chiang, Ching-Sui; Su, Chwen-Yng; Wang, Chih-Chung

    2011-01-01

    This quasi-experimental study compared the effect of standard occupational therapy (SOT) and virtual reality using Wii gaming technology (VRWii) on children with Down syndrome (DS). Children (n = 105) were randomly assigned to intervention with either SOT or VRWii, while another 50 served as controls. All children were assessed with measures of sensorimotor functions. At post-intervention, the treatment groups significantly outperformed the control group on all measures. Participants in the VRWii group had a greater pre-post change on motor proficiency, visual-integrative abilities, and sensory integrative functioning. Virtual reality using Wii gaming technology demonstrated benefit in improving sensorimotor functions among children with DS. It could be used as adjuvant therapy to other proven successful rehabilitative interventions in treating children with DS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  16. Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet

    NASA Technical Reports Server (NTRS)

    Shang, Joseph S.; Chang, Chau-Lyan

    2007-01-01

    Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.

  17. Virtual museum of Japanese Buddhist temple features for intercultural communication

    NASA Astrophysics Data System (ADS)

    Kawai, Takashi; Takao, Hidenobu; Inoue, Tetsuri; Miyamoto, Hiroyuki; Noro, Kageyu

    1998-04-01

    This paper describes the production and presentation of an experimental virtual museum of Japanese Buddhist art. This medium can provide an easy way to introduce a cultural heritage to people of different cultures. The virtual museum consisted of a multimedia program that included stereoscopic 3D movies of Buddhist statues; binaural 3D sounds of Buddhist ceremonies and the fragrance of incense from the Buddhist temple. The aim was to reproduce both the Buddhist artifacts and atmosphere as realistically as possible.

  18. The scientific research potential of virtual worlds.

    PubMed

    Bainbridge, William Sims

    2007-07-27

    Online virtual worlds, electronic environments where people can work and interact in a somewhat realistic manner, have great potential as sites for research in the social, behavioral, and economic sciences, as well as in human-centered computer science. This article uses Second Life and World of Warcraft as two very different examples of current virtual worlds that foreshadow future developments, introducing a number of research methodologies that scientists are now exploring, including formal experimentation, observational ethnography, and quantitative analysis of economic markets or social networks.

  19. Acute Effect of Static Stretching on Lower Limb Movement Performance by Using STABL Virtual Reality System.

    PubMed

    Ameer, Mariam A; Muaidi, Qassim I

    2017-07-17

    The effect of acute static stretch (ASS) on the lower limb RT has been recently questioned to decrease the risk of falling and injuries in situations requiring a rapid reaction, as in the cases of balance disturbance. The main purpose of this study was to detect the effect of ASS on the lower limb RT by using virtual reality device. Two Group Control Group design. Research laboratory. The control and experimental groups were formed randomly from sixty female university students. Each participant in the experimental group was tested before and after ASS for the quadriceps, hamstrings and planter flexor muscles, and compared with the control group with warming-up exercise only. The stretching program involved warming-up in the form of circular running inside the lab for 5 minutes followed by stretching of each muscle group thrice, to the limit of discomfort of 45 s, with resting period of 15s between stretches. The measurements included the RT of the dominant lower extremity by using the dynamic stability program, STABL Virtual Reality System (Model No. DIZ 2709, Motek Medical and Force Link Merged Co., Amsterdam). There was statistically significant reduction (F = 162, P= .00) in post-test RT between the two groups, and significant decrease in RT after stretching, in the experimental group (7.5%) (P= .00). ASS of the lower limb muscles tends to decrease the lower limb RT and improve movement performance.

  20. Dynamic impedance compensation for wireless power transfer using conjugate power

    NASA Astrophysics Data System (ADS)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  1. Trier Social Stress Test in vivo and in virtual reality: Dissociation of response domains.

    PubMed

    Shiban, Youssef; Diemer, Julia; Brandl, Simone; Zack, Rebecca; Mühlberger, Andreas; Wüst, Stefan

    2016-12-01

    The Trier Social Stress Test (TSST) is considered a reliable paradigm for inducing psychosocial stress. Virtual reality (VR) has successfully been applied to ensure a greater degree of efficiency and standardization in the TSST. Studies using the TSST in VR (VR-TSST) have reported significant stress reactions, with subjective and peripheral physiological reactions comparable to those in response to the in vivo TSST and with lower cortisol reactions. The current study examined whether an additional virtual competitive factor triggers larger stress responses than a standard VR-TSST. Forty-five male participants were randomly assigned to either in vivo TSST, VR-TSST (VR) or VR-TSST with a virtual competitor (VR+). A significant increase of self-reported stress, electrodermal activity, and heart rate indicated a pronounced stress reaction with no differences between groups. For salivary cortisol, however, responder rates differed significantly between groups, with in vivo participants showing overall higher response rates (86%) than participants of both VR groups (VR: 33%, VR+: 47%). In contrast, participants of both VR groups judged the task significantly more challenging than did in vivo TSST participants. In sum, our results indicate successful stress induction in all experimental conditions, and a marked dissociation of salivary cortisol levels on the one hand, and the physiological and psychological stress reactions on the other hand. The competitive scenario did not significantly enhance stress reactions. VR technology may serve as a standardized tool for inducing social stress in experimental settings, but further research is needed to clarify why the stress reaction as assessed by cortisol differs from peripheral and subjective stress reactions in VR. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Adaptive Changes in Sensorimotor Coordination and Motion Sickness Following Repeated Exposures to Virtual Environments

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.; Bloomberg, J. J.

    2007-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. The purpose of this research was to compare disturbances in sensorimotor coordination produced by dome and head-mounted virtual environment displays and to examine the effects of exposure duration, and repeated exposures to VR systems. The first study examined disturbances in balance control, and the second study examined disturbances in eye-head-hand (EHH) and eye-head coordination.

  3. Enhancing Pre-Service Teachers' Awareness to Pupils' Test-Anxiety with 3D Immersive Simulation

    ERIC Educational Resources Information Center

    Passig, David; Moshe, Ronit

    2008-01-01

    This study investigated whether participating in a 3D immersive virtual reality world simulating the experience of test-anxiety would affect preservice teachers' awareness to the phenomenon. Ninety subjects participated in this study, and were divided into three groups. The experimental group experienced a 3D immersive simulation which made…

  4. Effects of Learning Analytics Dashboard: Analyzing the Relations among Dashboard Utilization, Satisfaction, and Learning Achievement

    ERIC Educational Resources Information Center

    Kim, Jeonghyun; Jo, Il-Hyun; Park, Yeonjeong

    2016-01-01

    The learning analytics dashboard (LAD) is a newly developed learning support tool for virtual classrooms that is believed to allow students to review their online learning behavior patterns intuitively through the provision of visual information. The purpose of this study was to empirically validate the effects of LAD. An experimental study was…

  5. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2014-02-10

    Escherichia coli remains one of the principal pathogens that cause nosocomial infections, medical conditions that are increasingly common in healthcare facilities. E. coli is intrinsically resistant to many antibiotics, and multidrug-resistant strains have emerged recently. Chemoinformatics has been a great ally of experimental methodologies such as high-throughput screening, playing an important role in the discovery of effective antibacterial agents. However, there is no approach that can design safer anti-E. coli agents, because of the multifactorial nature and complexity of bacterial diseases and the lack of desirable ADMET (absorption, distribution, metabolism, elimination, and toxicity) profiles as a major cause of disapproval of drugs. In this work, we introduce the first multitasking model based on quantitative-structure biological effect relationships (mtk-QSBER) for simultaneous virtual prediction of anti-E. coli activities and ADMET properties of drugs and/or chemicals under many experimental conditions. The mtk-QSBER model was developed from a large and heterogeneous data set of more than 37800 cases, exhibiting overall accuracies of >95% in both training and prediction (validation) sets. The utility of our mtk-QSBER model was demonstrated by performing virtual prediction of properties for the investigational drug avarofloxacin (AVX) under 260 different experimental conditions. Results converged with the experimental evidence, confirming the remarkable anti-E. coli activities and safety of AVX. Predictions also showed that our mtk-QSBER model can be a promising computational tool for virtual screening of desirable anti-E. coli agents, and this chemoinformatic approach could be extended to the search for safer drugs with defined pharmacological activities.

  6. Human Fear Conditioning Conducted in Full Immersion 3-Dimensional Virtual Reality

    PubMed Central

    Huff, Nicole C.; Zielinski, David J.; Fecteau, Matthew E.; Brady, Rachael; LaBar, Kevin S.

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment1. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses. In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects 2 . Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction. PMID:20736913

  7. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.

    PubMed

    Feinstein, Wei P; Brylinski, Michal

    2015-01-01

    Computational approaches have emerged as an instrumental methodology in modern research. For example, virtual screening by molecular docking is routinely used in computer-aided drug discovery. One of the critical parameters for ligand docking is the size of a search space used to identify low-energy binding poses of drug candidates. Currently available docking packages often come with a default protocol for calculating the box size, however, many of these procedures have not been systematically evaluated. In this study, we investigate how the docking accuracy of AutoDock Vina is affected by the selection of a search space. We propose a new procedure for calculating the optimal docking box size that maximizes the accuracy of binding pose prediction against a non-redundant and representative dataset of 3,659 protein-ligand complexes selected from the Protein Data Bank. Subsequently, we use the Directory of Useful Decoys, Enhanced to demonstrate that the optimized docking box size also yields an improved ranking in virtual screening. Binding pockets in both datasets are derived from the experimental complex structures and, additionally, predicted by eFindSite. A systematic analysis of ligand binding poses generated by AutoDock Vina shows that the highest accuracy is achieved when the dimensions of the search space are 2.9 times larger than the radius of gyration of a docking compound. Subsequent virtual screening benchmarks demonstrate that this optimized docking box size also improves compound ranking. For instance, using predicted ligand binding sites, the average enrichment factor calculated for the top 1 % (10 %) of the screening library is 8.20 (3.28) for the optimized protocol, compared to 7.67 (3.19) for the default procedure. Depending on the evaluation metric, the optimal docking box size gives better ranking in virtual screening for about two-thirds of target proteins. This fully automated procedure can be used to optimize docking protocols in order to improve the ranking accuracy in production virtual screening simulations. Importantly, the optimized search space systematically yields better results than the default method not only for experimental pockets, but also for those predicted from protein structures. A script for calculating the optimal docking box size is freely available at www.brylinski.org/content/docking-box-size. Graphical AbstractWe developed a procedure to optimize the box size in molecular docking calculations. Left panel shows the predicted binding pose of NADP (green sticks) compared to the experimental complex structure of human aldose reductase (blue sticks) using a default protocol. Right panel shows the docking accuracy using an optimized box size.

  8. Haptic simulation framework for determining virtual dental occlusion.

    PubMed

    Wu, Wen; Chen, Hui; Cen, Yuhai; Hong, Yang; Khambay, Balvinder; Heng, Pheng Ann

    2017-04-01

    The surgical treatment of many dentofacial deformities is often complex due to its three-dimensional nature. To determine the dental occlusion in the most stable position is essential for the success of the treatment. Computer-aided virtual planning on individualized patient-specific 3D model can help formulate the surgical plan and predict the surgical change. However, in current computer-aided planning systems, it is not possible to determine the dental occlusion of the digital models in the intuitive way during virtual surgical planning because of absence of haptic feedback. In this paper, a physically based haptic simulation framework is proposed, which can provide surgeons with the intuitive haptic feedback to determine the dental occlusion of the digital models in their most stable position. To provide the physically realistic force feedback when the dental models contact each other during the searching process, the contact model is proposed to describe the dynamic and collision properties of the dental models during the alignment. The simulated impulse/contact-based forces are integrated into the unified simulation framework. A validation study has been conducted on fifteen sets of virtual dental models chosen at random and covering a wide range of the dental relationships found clinically. The dental occlusions obtained by an expert were employed as a benchmark to compare the virtual occlusion results. The mean translational and angular deviations of the virtual occlusion results from the benchmark were small. The experimental results show the validity of our method. The simulated forces can provide valuable insights to determine the virtual dental occlusion. The findings of this work and the validation of proposed concept lead the way for full virtual surgical planning on patient-specific virtual models allowing fully customized treatment plans for the surgical correction of dentofacial deformities.

  9. Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters

    ERIC Educational Resources Information Center

    Younge, Andrew J.

    2016-01-01

    With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…

  10. Noise and Vibration Risk Prevention Virtual Web for Ubiquitous Training

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Cubero-Atienza, Antonio J.; Martínez-Valle, José Miguel; Pedrós-Pérez, Gerardo; del Pilar Martínez-Jiménez, María

    2015-01-01

    This paper describes a new Web portal offering experimental labs for ubiquitous training of university engineering students in work-related risk prevention. The Web-accessible computer program simulates the noise and machine vibrations met in the work environment, in a series of virtual laboratories that mimic an actual laboratory and provide the…

  11. An Experience of CACSD for Networked Control Systems: From Mechatronic Platform Identification to Control Implementation

    ERIC Educational Resources Information Center

    Losada, Cristina; Espinosa, Felipe; Santos, Carlos; Gálvez, Manuel; Bueno, Emilio J.; Marrón, Marta; Rodríguez, Francisco J.

    2016-01-01

    Continual advances in information and communication technologies (ICT) are revolutionizing virtual education and bringing new tools on the market that provide virtual solutions to a range of problems. Nevertheless, nonvirtual experimentation using computer-aided control system design tools is still fundamental for future engineers. This paper…

  12. A "Virtual Fieldtrip": Service Learning in Distance Education Technical Writing Courses

    ERIC Educational Resources Information Center

    Soria, Krista M.; Weiner, Brad

    2013-01-01

    This mixed-methods experimental study examined the effect of service learning in a distance education technical writing course. Quantitative analysis of data found evidence for a positive relationship between participation in service learning and technical writing learning outcomes. Additionally, qualitative analysis suggests that service learning…

  13. Virtual Foreign Correspondence: Experimental Instructions in Digital Foreign News Reporting

    ERIC Educational Resources Information Center

    Hahn, Oliver; Stalph, Florian; Steller, Tom

    2018-01-01

    Within a series of six qualitative studies over seven years, this research in instructing journalism students investigates whether or not covering foreign news from home via Internet technology can substitute foreign correspondents on-site to reduce costs. Co-orientation and decontextualization can be described as characteristic for virtual…

  14. Using Virtual Reality with and without Gaming Attributes for Academic Achievement

    ERIC Educational Resources Information Center

    Vogel, Jennifer J.; Greenwood-Ericksen, Adams; Cannon-Bowers, Jan; Bowers, Clint A.

    2006-01-01

    A subcategory of computer-assisted instruction (CAI), games have additional attributes such as motivation, reward, interactivity, score, and challenge. This study used a quasi-experimental design to determine if previous findings generalize to non simulation-based game designs. Researchers observed significant improvement in the overall population…

  15. Cultivating Student Global Competence: A Pilot Experimental Study

    ERIC Educational Resources Information Center

    Li, Yulong

    2013-01-01

    Although student global competence has been recognized as an important learning outcome by more and more colleges and universities, campus internationalization efforts remain fragmented and largely ineffective. We proposed a pedagogical intervention that provided students from China and the U.S. with opportunities to establish virtual contact and…

  16. Virtual Reality Applications for Stress Management Training in the Military.

    PubMed

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  17. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.

    PubMed

    Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A

    2014-07-01

    Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Virtual Threat Effect: A Test of Competing Explanations for the Effects of Racial Stereotyping in Video Games on Players' Cognitions.

    PubMed

    Behm-Morawitz, Elizabeth; Hoffswell, Joseph; Chen, Szu-Wei

    2016-05-01

    Past research provides evidence that embodying a racially stereotyped African American video game character triggers stereotyped thinking among White players. However, the mechanisms through which virtual racial embodiment of a negatively stereotyped character in a video game impacts stereotyped thinking are still unknown. This study expands on past research and utilizes a between-subjects experimental design to test two possible theoretical explanations: the virtual threat effect and presence. On the one hand, embodying a negatively stereotyped African American character may elicit stereotyped thinking among White players due to the mere exposure to the threatening stereotype. According to this explanation, negative affective response to the threatening stimulus predicts stereotyping. On the other hand, the process of embodying, not just observing, the stereotyped African American character suggests that presence in the game may determine how impactful the game imagery is on White players' stereotyping of African Americans. In this case, level of presence would predict stereotyping. The findings of this study advance research by providing evidence of a psychological explanation for the negative effects of embodying a racially stereotyped video game character on players' race-related perceptions. We conceptualize the "virtual threat effect," which may be applied in additional contexts to understand how embodying stereotyped representations of outgroups in virtual environments may negatively affect individuals' perceptions and support of these groups.

  19. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  20. Localization of Virtual Objects in the Near Visual Field (Operator Interaction with Simple Virtual Objects)

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Menges, Brian M.

    1998-01-01

    Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content in four experiments using a total of 38 subjects. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects' age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. These errors apparently arise from the occlusion of the physical background by the optically superimposed virtual objects. But they are modified by subjects' accommodative competence and specific viewing conditions. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are influenced by their relative position when superimposed. The design implications of the findings are discussed in a concluding section.

  1. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  2. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  3. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  4. Using virtual reality environment to improve joint attention associated with pervasive developmental disorder.

    PubMed

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or dangerous consequences to deal with. Joint attention is a critical skill in the disorder characteristics of children with PDD. The absence of joint attention is a deficit frequently affects their social relationship in daily life. Therefore, this study designed the Joint Attention Skills Learning (JASL) systems with data glove tool to help children with PDD to practice joint attention behavior skills. The JASL specifically focus the skills of pointing, showing, sharing things and behavior interaction with other children with PDD. The system is designed in playroom-scene and presented in the first-person perspectives for users. The functions contain pointing and showing, moving virtual objects, 3D animation, text, speaking sounds, and feedback. The method was employed single subject multiple-probe design across subjects' designs, and analysis of visual inspection in this study. It took 3 months to finish the experimental section. Surprisingly, the experiment results reveal that the participants have further extension in improving the joint attention skills in their daily life after using the JASL system. The significant potential in this particular treatment of joint attention for each participant will be discussed in details in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences

    PubMed Central

    Parsons, Thomas D.

    2015-01-01

    An essential tension can be found between researchers interested in ecological validity and those concerned with maintaining experimental control. Research in the human neurosciences often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and interactions. While this research is valuable, there is a growing interest in the human neurosciences to use cues about target states in the real world via multimodal scenarios that involve visual, semantic, and prosodic information. These scenarios should include dynamic stimuli presented concurrently or serially in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Furthermore, there is growing interest in contextually embedded stimuli that can constrain participant interpretations of cues about a target’s internal states. Virtual reality environments proffer assessment paradigms that combine the experimental control of laboratory measures with emotionally engaging background narratives to enhance affective experience and social interactions. The present review highlights the potential of virtual reality environments for enhanced ecological validity in the clinical, affective, and social neurosciences. PMID:26696869

  6. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences.

    PubMed

    Parsons, Thomas D

    2015-01-01

    An essential tension can be found between researchers interested in ecological validity and those concerned with maintaining experimental control. Research in the human neurosciences often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and interactions. While this research is valuable, there is a growing interest in the human neurosciences to use cues about target states in the real world via multimodal scenarios that involve visual, semantic, and prosodic information. These scenarios should include dynamic stimuli presented concurrently or serially in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Furthermore, there is growing interest in contextually embedded stimuli that can constrain participant interpretations of cues about a target's internal states. Virtual reality environments proffer assessment paradigms that combine the experimental control of laboratory measures with emotionally engaging background narratives to enhance affective experience and social interactions. The present review highlights the potential of virtual reality environments for enhanced ecological validity in the clinical, affective, and social neurosciences.

  7. Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.

    PubMed

    Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo

    2013-01-01

    To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.

  8. A virtual environment for medical radiation collaborative learning.

    PubMed

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

  9. Application of virtual reality graphics in assessment of concussion.

    PubMed

    Slobounov, Semyon; Slobounov, Elena; Newell, Karl

    2006-04-01

    Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.

  10. Using a 3D Virtual Supermarket to Measure Food Purchase Behavior: A Validation Study

    PubMed Central

    Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-01-01

    Background There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. Objective The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of “presence” (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Methods Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. Results A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real: 12.6%), and meat and fish (virtual: 16.5%; real: 16.8%). Significant differences in proportional expenditures were observed for 6 food groups, with largest differences (virtual – real) for dairy (in expenditure 6.5%, P<.001; in items 2.2%, P=.04) and fresh fruit and vegetables (in expenditure: –3.1%, P=.04; in items: 5.9%, P=.002). There was no trend of overspending in the Virtual Supermarket and participants experienced a medium-to-high presence (88%, 73/83 scored medium; 8%, 7/83 scored high). Conclusions Shopping patterns in the Virtual Supermarket were comparable to those in real life. Overall, the Virtual Supermarket is a valid tool to measure food purchasing behavior. Nevertheless, it is important to improve the functionality of some food categories, in particular fruit and vegetables and dairy. The results of this validation will assist in making further improvements to the software and with optimization of the internal and external validity of this innovative methodology. PMID:25921185

  11. Using a 3D virtual supermarket to measure food purchase behavior: a validation study.

    PubMed

    Waterlander, Wilma Elzeline; Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-04-28

    There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of "presence" (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real: 12.6%), and meat and fish (virtual: 16.5%; real: 16.8%). Significant differences in proportional expenditures were observed for 6 food groups, with largest differences (virtual - real) for dairy (in expenditure 6.5%, P<.001; in items 2.2%, P=.04) and fresh fruit and vegetables (in expenditure: -3.1%, P=.04; in items: 5.9%, P=.002). There was no trend of overspending in the Virtual Supermarket and participants experienced a medium-to-high presence (88%, 73/83 scored medium; 8%, 7/83 scored high). Shopping patterns in the Virtual Supermarket were comparable to those in real life. Overall, the Virtual Supermarket is a valid tool to measure food purchasing behavior. Nevertheless, it is important to improve the functionality of some food categories, in particular fruit and vegetables and dairy. The results of this validation will assist in making further improvements to the software and with optimization of the internal and external validity of this innovative methodology.

  12. Direct manipulation of virtual objects

    NASA Astrophysics Data System (ADS)

    Nguyen, Long K.

    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables.

  13. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products.

    PubMed

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-wai

    2016-01-25

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  15. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products

    NASA Astrophysics Data System (ADS)

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-Wai

    2016-01-01

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  16. On the usefulness of the concept of presence in virtual reality applications

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2015-03-01

    Virtual Reality (VR) leads to realistic experimental situations, while enabling researchers to have deterministic control on these situations, and to precisely measure participants' behavior. However, because more realistic and complex situations can be implemented, important questions arise, concerning the validity and representativeness of the observed behavior, with reference to a real situation. One example is the investigation of a critical (virtually dangerous) situation, in which the participant knows that no actual threat is present in the simulated situation, and might thus exhibit a behavioral response that is far from reality. This poses serious problems, for instance in training situations, in terms of transfer of learning to a real situation. Facing this difficult question, it seems necessary to study the relationships between three factors: immersion (physical realism), presence (psychological realism) and behavior. We propose a conceptual framework, in which presence is a necessary condition for the emergence of a behavior that is representative of what is observed in real conditions. Presence itself depends not only on physical immersive characteristics of the Virtual Reality setup, but also on contextual and psychological factors.

  17. Using shadow page cache to improve isolated drivers performance.

    PubMed

    Zheng, Hao; Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much.

  18. Effect of a virtual environment on the development of mathematical skills in children with dyscalculia.

    PubMed

    de Castro, Marcus Vasconcelos; Bissaco, Márcia Aparecida Silva; Panccioni, Bruno Marques; Rodrigues, Silvia Cristina Martini; Domingues, Andreia Miranda

    2014-01-01

    In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG) and experimental (EG) groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT) was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05). The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development.

  19. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment.

    PubMed

    Minovski, Nikola; Perdih, Andrej; Solmajer, Tom

    2012-05-01

    The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.

  20. Using Shadow Page Cache to Improve Isolated Drivers Performance

    PubMed Central

    Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much. PMID:25815373

  1. Seeing and identifying with a virtual body decreases pain perception.

    PubMed

    Hänsel, Alexander; Lenggenhager, Bigna; von Känel, Roland; Curatolo, Michele; Blanke, Olaf

    2011-09-01

    Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. We found that visuo-tactile stroking of a virtual body but not of a control object led to increased pressure pain thresholds and self-location. This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  2. Application of virtual reality methods to obesity prevention and management research.

    PubMed

    Persky, Susan

    2011-03-01

    There is a great need for empirical evidence to inform clinical prevention and management of overweight and obesity. Application of virtual reality (VR) methods to this research agenda could present considerable advantages. Use of VR methods in basic and applied obesity prevention and treatment research is currently extremely limited. However, VR has been employed for social and behavioral research in many other domains where it has demonstrated validity and utility. Advantages of VR technologies as research tools include the ability to situate hypothetical research scenarios in realistic settings, tight experimental control inherent in virtual environments, the ability to manipulate and control any and all scenario elements, and enhanced behavioral measurement opportunities. The means by which each of these features could enhance obesity prevention and management research is discussed and illustrated in the context of an example research study. Challenges associated with the application of VR methods, such as technological limitations and cost, are also considered. By employing experimental VR methods to interrogate clinical encounters and other health-related situations, researchers may be able to elucidate causal relationships, strengthen theoretical models, and identify potential targets for intervention. In so doing, researchers stand to make important contributions to evidence-based practice innovation in weight management and obesity prevention. © 2011 Diabetes Technology Society.

  3. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.

    PubMed

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch

    2010-12-01

    We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p<0.05). The apparent differences among feedback groups were not significant in Day 2 of the acquisition session (ANOVA, p>0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.

  4. Application of Virtual Reality Methods to Obesity Prevention and Management Research

    PubMed Central

    Persky, Susan

    2011-01-01

    There is a great need for empirical evidence to inform clinical prevention and management of overweight and obesity. Application of virtual reality (VR) methods to this research agenda could present considerable advantages. Use of VR methods in basic and applied obesity prevention and treatment research is currently extremely limited. However, VR has been employed for social and behavioral research in many other domains where it has demonstrated validity and utility. Advantages of VR technologies as research tools include the ability to situate hypothetical research scenarios in realistic settings, tight experimental control inherent in virtual environments, the ability to manipulate and control any and all scenario elements, and enhanced behavioral measurement opportunities. The means by which each of these features could enhance obesity prevention and management research is discussed and illustrated in the context of an example research study. Challenges associated with the application of VR methods, such as technological limitations and cost, are also considered. By employing experimental VR methods to interrogate clinical encounters and other health-related situations, researchers may be able to elucidate causal relationships, strengthen theoretical models, and identify potential targets for intervention. In so doing, researchers stand to make important contributions to evidence-based practice innovation in weight management and obesity prevention. PMID:21527102

  5. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  6. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  7. The Virtual Solar System Project: Developing Conceptual Understanding of Astronomical Concepts through Building Three-Dimensional Computational Models.

    ERIC Educational Resources Information Center

    Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.

    2002-01-01

    Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…

  8. Workbooks to virtual worlds: a pilot study comparing educational tools to foster a culture of safety and respect in Ontario.

    PubMed

    Mallette, Claire; Duff, Margaret; McPhee, Carolyn; Pollex, Heather; Wood, Anya

    2011-01-01

    Nurses frequently experience horizontal violence in their interactions with nursing colleagues within the workplace. By definition, horizontal violence includes such disrespectful behaviours as intimidation, coercion, bullying, criticism, exclusion or belittling. Educational programs addressing horizontal violence have been developed, but few have been evaluated with respect to knowledge acquisition and transfer. The purpose of this paper is to describe an experimental effectiveness study, using a pre/post design with a control group (total N=164). The research evaluated an innovative educational program in which nurses, using avatars, role-played strategies to address horizontal violence within a virtual nursing unit developed on the Second Life platform. The results of participating in this program were compared with more traditional educational methodologies, such as a workbook and a self-directed e-learning module. While all strategies were perceived by participants as beneficial, the findings from this study suggest that learning through the self-directed e-learning module followed with practice in a virtual world is an effective way of acquiring knowledge, skills and abilities to better address horizontal violence.

  9. Virtual reality-based prospective memory training program for people with acquired brain injury.

    PubMed

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  10. Virtual reality on mobile phones to reduce anxiety in outpatient surgery.

    PubMed

    Mosso, José L; Gorini, Alessandra; De La Cerda, Gustavo; Obrador, Tomas; Almazan, Andrew; Mosso, Dejanira; Nieto, Jesus J; Riva, Giuseppe

    2009-01-01

    When undergo ambulatory surgical operations, the majority of patients experience high level of anxiety. Different experimental studies have shown that distraction techniques are effective in reducing pain and related anxiety. Since Virtual reality (VR) has been demonstrated a good distraction technique, it has been repeatedly used in hospital contexts for reducing pain in burned patients, but it has never been used during surgical operations. With the present randomized controlled study we intended to verify the effectiveness of VR in reducing anxiety in patients undergoing ambulatory operations under local or regional anaesthesia. In particular, we measured the degree to which anxiety associated with surgical intervention was reduced by distracting patients with immersive VR provided through a cell phone connected to an HMD compared to a no-distraction control condition. A significant reduction of anxiety was obtained after 45 minutes of operation in the VR group, but not in the control group and, after 90 minutes, the reduction was larger in the experimental group than in other one. In conclusion, this study presents an innovative promising technique to reduce anxiety during surgical interventions, even if more studies are necessary to investigate its effectiveness in other kinds of operations and in larger numbers of patients.

  11. Design, development, testing and validation of a Photonics Virtual Laboratory for the study of LEDs

    NASA Astrophysics Data System (ADS)

    Naranjo, Francisco L.; Martínez, Guadalupe; Pérez, Ángel L.; Pardo, Pedro J.

    2014-07-01

    This work presents the design, development, testing and validation of a Photonic Virtual Laboratory, highlighting the study of LEDs. The study was conducted from a conceptual, experimental and didactic standpoint, using e-learning and m-learning platforms. Specifically, teaching tools that help ensure that our students perform significant learning have been developed. It has been brought together the scientific aspect, such as the study of LEDs, with techniques of generation and transfer of knowledge through the selection, hierarchization and structuring of information using concept maps. For the validation of the didactic materials developed, it has been used procedures with various assessment tools for the collection and processing of data, applied in the context of an experimental design. Additionally, it was performed a statistical analysis to determine the validity of the materials developed. The assessment has been designed to validate the contributions of the new materials developed over the traditional method of teaching, and to quantify the learning achieved by students, in order to draw conclusions that serve as a reference for its application in the teaching and learning processes, and comprehensively validate the work carried out.

  12. Quality of Service Control Based on Virtual Private Network Services in a Wide Area Gigabit Ethernet Optical Test Bed

    NASA Astrophysics Data System (ADS)

    Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina

    We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.

  13. Interreality for the management and training of psychological stress: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Psychological stress occurs when an individual perceives that environmental demands tax or exceed his or her adaptive capacity. Its association with severe health and emotional diseases, points out the necessity to find new efficient strategies to treat it. Moreover, psychological stress is a very personal problem and requires training focused on the specific needs of individuals. To overcome the above limitations, the INTERSTRESS project suggests the adoption of a new paradigm for e-health - Interreality - that integrates contextualized assessment and treatment within a hybrid environment, bridging the physical and the virtual worlds. According to this premise, the aim of this study is to investigate the advantages of using advanced technologies, in combination with cognitive behavioral therapy (CBT), based on a protocol for reducing psychological stress. Methods/Design The study is designed as a randomized controlled trial. It includes three groups of approximately 50 subjects each who suffer from psychological stress: (1) the experimental group, (2) the control group, (3) the waiting list group. Participants included in the experimental group will receive a treatment based on cognitive behavioral techniques combined with virtual reality, biofeedback and mobile phone, while the control group will receive traditional stress management CBT-based training, without the use of new technologies. The wait-list group will be reassessed and compared with the two other groups five weeks after the initial evaluation. After the reassessment, the wait-list patients will randomly receive one of the two other treatments. Psychometric and physiological outcomes will serve as quantitative dependent variables, while subjective reports of participants will be used as the qualitative dependent variable. Discussion What we would like to show with the present trial is that bridging virtual experiences, used to learn coping skills and emotional regulation, with real experiences using advanced technologies (virtual reality, advanced sensors and smartphones) is a feasible way to address actual limitations of existing protocols for psychological stress. Trial registration http://clinicaltrials.gov/ct2/show/NCT01683617 PMID:23806013

  14. How to Achieve Better Results Using Pass-Based Virtual Screening: Case Study for Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Pogodin, Pavel V.; Lagunin, Alexey A.; Rudik, Anastasia V.; Filimonov, Dmitry A.; Druzhilovskiy, Dmitry S.; Nicklaus, Mark C.; Poroikov, Vladimir V.

    2018-04-01

    Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of “active” and “inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

  15. Is All Motivation Good for Learning? Dissociable Influences of Approach and Avoidance Motivation in Declarative Memory

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…

  16. An Experimental Study of Instructor Immediacy in the Wimba Virtual Classroom

    ERIC Educational Resources Information Center

    Bodie, Lorah Wood

    2009-01-01

    The social underpinnings of learning make it important to understand how people experience themselves and form relationships in web-based educational environments. Social presence is a critical factor of a communication medium that plays an important role in building community and improving the effectiveness of instruction. The components of…

  17. Supporting Foreign Language Vocabulary Learning through Kinect-Based Gaming

    ERIC Educational Resources Information Center

    Urun, Mehmet Faith; Aksoy, Hasan; Comez, Rasim

    2017-01-01

    This study aimed to explore the effectiveness of a Kinect-based game called Tom Clancy's Ghost Recon: Future Soldier to investigate possible contributions of game-based learning in a virtual language classroom at a state university in Ankara, Turkey. A quasi-experimental design where the treatment group (N= 26) was subjected to kinect-based…

  18. Study on an Interactive Truck Crane Simulation Platform Based on Virtual Reality Technology

    ERIC Educational Resources Information Center

    Sang, Yong; Zhu, Yu; Zhao, Honghua; Tang, Mingyan

    2016-01-01

    The modern web-based distance education overcomes space-time restriction of the traditional teaching forms. However, being short of specifically observable and operable experimental equipment makes the web-based education lack advantages in the knowledge learning progress, which needs strong stereoscopic effect and operability. Truck crane is the…

  19. The Proteus Effect: The Effect of Transformed Self-Representation on Behavior

    ERIC Educational Resources Information Center

    Yee, Nick; Bailenson, Jeremy

    2007-01-01

    Virtual environments, such as online games and web-based chat rooms, increasingly allow us to alter our digital self-representations dramatically and easily. But as we change our self-representations, do our self-representations change our behavior in turn? In 2 experimental studies, we explore the hypothesis that an individual's behavior conforms…

  20. A Virtual Out-of-Body Experience Reduces Fear of Death

    PubMed Central

    2017-01-01

    Immersive virtual reality can be used to visually substitute a person’s real body by a life-sized virtual body (VB) that is seen from first person perspective. Using real-time motion capture the VB can be programmed to move synchronously with the real body (visuomotor synchrony), and also virtual objects seen to strike the VB can be felt through corresponding vibrotactile stimulation on the actual body (visuotactile synchrony). This setup typically gives rise to a strong perceptual illusion of ownership over the VB. When the viewpoint is lifted up and out of the VB so that it is seen below this may result in an out-of-body experience (OBE). In a two-factor between-groups experiment with 16 female participants per group we tested how fear of death might be influenced by two different methods for producing an OBE. In an initial embodiment phase where both groups experienced the same multisensory stimuli there was a strong feeling of body ownership. Then the viewpoint was lifted up and behind the VB. In the experimental group once the viewpoint was out of the VB there was no further connection with it (no visuomotor or visuotactile synchrony). In a control condition, although the viewpoint was in the identical place as in the experimental group, visuomotor and visuotactile synchrony continued. While both groups reported high scores on a question about their OBE illusion, the experimental group had a greater feeling of disownership towards the VB below compared to the control group, in line with previous findings. Fear of death in the experimental group was found to be lower than in the control group. This is in line with previous reports that naturally occurring OBEs are often associated with enhanced belief in life after death. PMID:28068368

  1. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  2. Around Marshall

    NASA Image and Video Library

    1993-12-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  3. Sexual self-regulation and cognitive absorption as factors of sexual response toward virtual characters.

    PubMed

    Renaud, Patrice; Trottier, Dominique; Nolet, Kevin; Rouleau, Joanne L; Goyette, Mathieu; Bouchard, Stéphane

    2014-04-01

    The eye movements and penile responses of 20 male participants were recorded while they were immersed with virtual sexual stimuli. These participants were divided into two groups according to their capacity to focus their attention in immersion (high and low focus). In order to understand sexual self-regulation better, we subjected participants to three experimental conditions: (a) immersion with a preferred sexual stimulus, without sexual inhibition; (b) immersion with a preferred sexual stimulus, with sexual inhibition; and (c) immersion with a neutral stimulus. A significant difference was observed between the effects of each condition on erectile response and scanpath. The groups differed on self-regulation of their erectile responses and on their scanpath patterns. High focus participants had more difficulties than low focus participants with inhibiting their sexual responses and displayed less scattered eye movement trajectories over the critical areas of the virtual sexual stimuli. Results are interpreted in terms of sexual self-regulation and cognitive absorption in virtual immersion. In addition, the use of validated virtual sexual stimuli is presented as a methodological improvement over static and moving pictures, since it paves the way for the study of the role of social interaction in an ecologically valid and well-controlled way.

  4. Virtual reality and cognitive rehabilitation: a review of current outcome research.

    PubMed

    Larson, Eric B; Feigon, Maia; Gagliardo, Pablo; Dvorkin, Assaf Y

    2014-01-01

    Recent advancement in the technology of virtual reality (VR) has allowed improved applications for cognitive rehabilitation. The aim of this review is to facilitate comparisons of therapeutic efficacy of different VR interventions. A systematic approach for the review of VR cognitive rehabilitation outcome research addressed the nature of each sample, treatment apparatus, experimental treatment protocol, control treatment protocol, statistical analysis and results. Using this approach, studies that provide valid evidence of efficacy of VR applications are summarized. Applications that have not yet undergone controlled outcome study but which have promise are introduced. Seventeen studies conducted over the past eight years are reviewed. The few randomized controlled trials that have been completed show that some applications are effective in treating cognitive deficits in people with neurological diagnoses although further study is needed. Innovations requiring further study include the use of enriched virtual environments that provide haptic sensory input in addition to visual and auditory inputs and the use of commercially available gaming systems to provide tele-rehabilitation services. Recommendations are offered to improve efficacy of rehabilitation, to improve scientific rigor of rehabilitation research and to broaden access to the evidence-based treatments that this research has identified.

  5. Non-hierarchical Influence of Visual Form, Touch, and Position Cues on Embodiment, Agency, and Presence in Virtual Reality

    PubMed Central

    Pritchard, Stephen C.; Zopf, Regine; Polito, Vince; Kaplan, David M.; Williams, Mark A.

    2016-01-01

    The concept of self-representation is commonly decomposed into three component constructs (sense of embodiment, sense of agency, and sense of presence), and each is typically investigated separately across different experimental contexts. For example, embodiment has been explored in bodily illusions; agency has been investigated in hypnosis research; and presence has been primarily studied in the context of Virtual Reality (VR) technology. Given that each component involves the integration of multiple cues within and across sensory modalities, they may rely on similar underlying mechanisms. However, the degree to which this may be true remains unclear when they are independently studied. As a first step toward addressing this issue, we manipulated a range of cues relevant to these components of self-representation within a single experimental context. Using consumer-grade Oculus Rift VR technology, and a new implementation of the Virtual Hand Illusion, we systematically manipulated visual form plausibility, visual–tactile synchrony, and visual–proprioceptive spatial offset to explore their influence on self-representation. Our results show that these cues differentially influence embodiment, agency, and presence. We provide evidence that each type of cue can independently and non-hierarchically influence self-representation yet none of these cues strictly constrains or gates the influence of the others. We discuss theoretical implications for understanding self-representation as well as practical implications for VR experiment design, including the suitability of consumer-based VR technology in research settings. PMID:27826275

  6. Social environments and interpersonal distance regulation in psychosis: A virtual reality study.

    PubMed

    Geraets, Chris N W; van Beilen, Marije; Pot-Kolder, Roos; Counotte, Jacqueline; van der Gaag, Mark; Veling, Wim

    2018-02-01

    Experimentally studying the influence of social environments on mental health and behavior is challenging, as social context is difficult to standardize in laboratory settings. Virtual Reality (VR) enables studying social interaction in terms of interpersonal distance in a more ecologically valid manner. Regulation of interpersonal distance may be abnormal in patients with psychotic disorders and influenced by environmental stress, symptoms or distress. To investigate interpersonal distance in people with a psychotic disorder and at ultrahigh risk for psychosis (UHR) compared to siblings and controls in virtual social environments, and explore the relationship between clinical characteristics and interpersonal distance. Nineteen UHR patients, 52 patients with psychotic disorders, 40 siblings of patients with a psychotic disorder and 47 controls were exposed to virtual cafés. In five virtual café visits, participants were exposed to different levels of social stress, in terms of crowdedness, ethnicity and hostility. Measures on interpersonal distance, distress and state paranoia were obtained. Baseline measures included trait paranoia, social anxiety, depressive, positive and negative symptoms. Interpersonal distance increased when social stressors were present in the environment. No difference in interpersonal distance regulation was found between the groups. Social anxiety and distress were positively associated with interpersonal distance in the total sample. This VR paradigm indicates that interpersonal distance regulation in response to environmental social stressors is unaltered in people with psychosis or UHR. Environmental stress, social anxiety and distress trigger both people with and without psychosis to maintain larger interpersonal distances in social situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A virtual reality test identifies the visuospatial strengths of adolescents with dyslexia.

    PubMed

    Attree, Elizabeth A; Turner, Mark J; Cowell, Naina

    2009-04-01

    Research suggests that the deficits characterizing dyslexia may also be associated with superior visuospatial abilities. Other research suggests that superior visuospatial abilities of people with dyslexia may not have been so far identified because of the lack of appropriate tests of real-life spatial ability. A recent small-scale study found that visuospatial superiority was evident in men with dyslexia. This study assessed the visuospatial ability of adolescents with dyslexia in order to determine whether these adolescents performed better on a pseudo real-life visuospatial test than did their nondyslexic peers. Forty-two adolescents took part in the study. There was an equal numerical split between the experimental and control groups. The experimental group all had a diagnosis of dyslexia by an educational psychologist or specialist teacher. Visuospatial ability was assessed using the Recall of Designs and the Pattern Construction subtests from the British Ability Scales (2nd edition; BAS-11) together with a computer-generated virtual environment test. The assessments were administered in a counterbalanced order. Adolescents with dyslexia tended to perform less well than their nondyslexic peers on the BAS-11 tests; however, this difference was not statistically significant. For the computer-generated virtual environment test (pseudo real-life measure), statistically significant higher scores were achieved by the dyslexic group. These findings suggest that adolescents with dyslexia may exhibit superior visuospatial strengths on certain pseudo real-life tests of spatial ability. The usefulness of these findings is discussed in relation to possible implications for assessment and educational intervention programs for adolescents with dyslexia.

  8. Command & Control in Virtual Environments: Laboratory Experimentation to Compare Virtual with Physical

    DTIC Science & Technology

    2010-06-01

    Markus, 1994). Media richness theory rests on the assumption that organizations process information to reduce uncertainty and equivocality ( Daft ... Organization Design ), 554-571. Daft , R. L., & Macintosh, N. B. (1981). A tentative exploration into the amount and equivocality of information... design and customization. For instance, recent research demonstrates further how the performance of both Hierarchy and Edge organizations is

  9. A Method for the Control of Multigrasp Myoelectric Prosthetic Hands

    PubMed Central

    Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael

    2012-01-01

    This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515

  10. [Virtual audiovisual talking heads: articulatory data and models--applications].

    PubMed

    Badin, P; Elisei, F; Bailly, G; Savariaux, C; Serrurier, A; Tarabalka, Y

    2007-01-01

    In the framework of experimental phonetics, our approach to the study of speech production is based on the measurement, the analysis and the modeling of orofacial articulators such as the jaw, the face and the lips, the tongue or the velum. Therefore, we present in this article experimental techniques that allow characterising the shape and movement of speech articulators (static and dynamic MRI, computed tomodensitometry, electromagnetic articulography, video recording). We then describe the linear models of the various organs that we can elaborate from speaker-specific articulatory data. We show that these models, that exhibit a good geometrical resolution, can be controlled from articulatory data with a good temporal resolution and can thus permit the reconstruction of high quality animation of the articulators. These models, that we have integrated in a virtual talking head, can produce augmented audiovisual speech. In this framework, we have assessed the natural tongue reading capabilities of human subjects by means of audiovisual perception tests. We conclude by suggesting a number of other applications of talking heads.

  11. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    NASA Astrophysics Data System (ADS)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  12. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations

    PubMed Central

    2017-01-01

    Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163

  13. Complementary Research on Student Geoscience Learning at Grand Canyon by Means of In-situ and Virtual Modalities

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.

    2016-12-01

    Education through exploration—typically in the field—is fundamental in geoscience. But not all students enjoy equal access to field-based learning, while technological advances afford ever more immersive, rich, and student-centered virtual field experiences. No virtual modalities yet conceived can supplant field-based learning, but logistical and financial contraints can render them the only practical option for enabling most students to explore pedagogically powerful but inaccessible places located across and even beyond Earth. We are producers of a growing portfolio of immersive virtual field trips (iVFTs) situated around the globe, and engaged in research on iVFT effectiveness. Our methods are more complementary than comparative, given that virtual and in-situ modalities have distinct advantages and disadvantages. In the case of iVFTs, these factors have not yet been well-studied. We conducted a mixed-methods complementary study in an introductory historical-geology class (n = 120) populated mostly by non-majors and representing the diversity of our large urban Southwestern research university. For the same course credit, students chose either an in-person field trip (ipFT) to Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group) to be done in the same time interval. We collected quantitative and qualitative data from both groups before, during, and after both interventions. Learning outcomes based on content elements of the Trail of Time Exhibition at Grand Canyon were assessed using pre/post concept sketching and formative inquiry exercises. Student attitudes and novelty-space factors were assessed pre- and post-intervention using the PANAS instrument of Watson and Clark and with questionnaires tailored to each modality. Coding and comparison of pre/post concept sketches showed improved conceptual knowledge in both groups, but more so in the experimental (iVFT) group. Emergent themes from the pre/post questionnaires and PANAS yielded testable ideas to enhance iVFT usability and ipFT accessibility and did not indicate a clear preference for either modality, but they do support the value of iVFTs as pedagogically sound geoscience learning experiences.

  14. From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs

    NASA Astrophysics Data System (ADS)

    Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan

    2014-07-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.

  15. Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory

    PubMed Central

    Anderson, P. S. L.; Rayfield, E. J.

    2012-01-01

    Computational models such as finite-element analysis offer biologists a means of exploring the structural mechanics of biological systems that cannot be directly observed. Validated against experimental data, a model can be manipulated to perform virtual experiments, testing variables that are hard to control in physical experiments. The relationship between tooth form and the ability to break down prey is key to understanding the evolution of dentition. Recent experimental work has quantified how tooth shape promotes fracture in biological materials. We present a validated finite-element model derived from physical compression experiments. The model shows close agreement with strain patterns observed in photoelastic test materials and reaction forces measured during these experiments. We use the model to measure strain energy within the test material when different tooth shapes are used. Results show that notched blades deform materials for less strain energy cost than straight blades, giving insights into the energetic relationship between tooth form and prey materials. We identify a hypothetical ‘optimal’ blade angle that minimizes strain energy costs and test alternative prey materials via virtual experiments. Using experimental data and computational models offers an integrative approach to understand the mechanics of tooth morphology. PMID:22399789

  16. A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles

    PubMed Central

    Alderisio, Francesco; Lombardi, Maria; Fiore, Gianfranco; di Bernardo, Mario

    2017-01-01

    Existing experimental works on movement coordination in human ensembles mostly investigate situations where each subject is connected to all the others through direct visual and auditory coupling, so that unavoidable social interaction affects their coordination level. Here, we present a novel computer-based set-up to study movement coordination in human groups so as to minimize the influence of social interaction among participants and implement different visual pairings between them. In so doing, players can only take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players in the group and their own dynamics. In addition, our set-up enables the deployment of virtual computer players to investigate dyadic interaction between a human and a virtual agent, as well as group synchronization in mixed teams of human and virtual agents. We show how this novel set-up can be employed to study coordination both in dyads and in groups over different structures of interconnections, in the presence as well as in the absence of virtual agents acting as followers or leaders. Finally, in order to illustrate the capabilities of the architecture, we describe some preliminary results. The platform is available to any researcher who wishes to unfold the mechanisms underlying group synchronization in human ensembles and shed light on its socio-psychological aspects. PMID:28649217

  17. [Parallel virtual reality visualization of extreme large medical datasets].

    PubMed

    Tang, Min

    2010-04-01

    On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.

  18. Virtual reality environments for post-stroke arm rehabilitation.

    PubMed

    Subramanian, Sandeep; Knaut, Luiz A; Beaudoin, Christian; McFadyen, Bradford J; Feldman, Anatol G; Levin, Mindy F

    2007-06-22

    Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions. A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback. The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments. We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.

  19. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  20. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    ERIC Educational Resources Information Center

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  1. Using virtual reality to investigate psychological processes and mechanisms associated with the onset and maintenance of psychosis: a systematic review.

    PubMed

    Valmaggia, Lucia R; Day, Fern; Rus-Calafell, Mar

    2016-07-01

    In the last decade researchers have embraced virtual reality to explore the psychological processes and mechanisms that are involved in the onset and maintenance of psychosis. A systematic review was conducted to synthesise the evidence of using virtual reality to investigate these mechanisms. Web of Science, PsycINFO, Embase, and Medline were searched. Reference lists of collected papers were also visually inspected to locate any relevant cited journal articles. In total 6001 articles were potentially eligible for inclusion; of these, 16 studies were included in the review. The review identified studies investigating the effect of interpersonal sensitivity, childhood bullying victimisation, physical assault, perceived ethnic discrimination, social defeat, population density and ethnic density on the real-time appraisal of VR social situations. Further studies demonstrated the potential of VR to investigate paranoid ideation, anomalous experiences, self-confidence, self-comparison, physiological activation and behavioural response. The reviewed studies suggest that VR can be used to investigate psychological processes and mechanisms associated with psychosis. Implications for further experimental research, as well as for assessment and clinical practise are discussed. The present review has been registered in the PROSPERO register: CRD42016038085.

  2. Virtual reality systems for rodents

    PubMed Central

    Ayaz, Aslı

    2017-01-01

    Abstract Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies. PMID:29491968

  3. Virtually Ostracized: Studying Ostracism in Immersive Virtual Environments

    PubMed Central

    Wesselmann, Eric D.; Law, Alvin Ty; Williams, Kipling D.

    2012-01-01

    Abstract Electronic-based communication (such as Immersive Virtual Environments; IVEs) may offer new ways of satisfying the need for social connection, but they also provide ways this need can be thwarted. Ostracism, being ignored and excluded, is a common social experience that threatens fundamental human needs (i.e., belonging, control, self-esteem, and meaningful existence). Previous ostracism research has made use of a variety of paradigms, including minimal electronic-based interactions (e.g., Cyberball) and communication (e.g., chatrooms and Short Message Services). These paradigms, however, lack the mundane realism that many IVEs now offer. Further, IVE paradigms designed to measure ostracism may allow researchers to test more nuanced hypotheses about the effects of ostracism. We created an IVE in which ostracism could be manipulated experimentally, emulating a previously validated minimal ostracism paradigm. We found that participants who were ostracized in this IVE experienced the same negative effects demonstrated in other ostracism paradigms, providing, to our knowledge, the first evidence of the negative effects of ostracism in virtual environments. Though further research directly exploring these effects in online virtual environments is needed, this research suggests that individuals encountering ostracism in other virtual environments (such as massively multiplayer online role playing games; MMORPGs) may experience negative effects similar to those of being ostracized in real life. This possibility may have serious implications for individuals who are marginalized in their real life and turn to IVEs to satisfy their need for social connection. PMID:22897472

  4. Virtually ostracized: studying ostracism in immersive virtual environments.

    PubMed

    Kassner, Matthew P; Wesselmann, Eric D; Law, Alvin Ty; Williams, Kipling D

    2012-08-01

    Electronic-based communication (such as Immersive Virtual Environments; IVEs) may offer new ways of satisfying the need for social connection, but they also provide ways this need can be thwarted. Ostracism, being ignored and excluded, is a common social experience that threatens fundamental human needs (i.e., belonging, control, self-esteem, and meaningful existence). Previous ostracism research has made use of a variety of paradigms, including minimal electronic-based interactions (e.g., Cyberball) and communication (e.g., chatrooms and Short Message Services). These paradigms, however, lack the mundane realism that many IVEs now offer. Further, IVE paradigms designed to measure ostracism may allow researchers to test more nuanced hypotheses about the effects of ostracism. We created an IVE in which ostracism could be manipulated experimentally, emulating a previously validated minimal ostracism paradigm. We found that participants who were ostracized in this IVE experienced the same negative effects demonstrated in other ostracism paradigms, providing, to our knowledge, the first evidence of the negative effects of ostracism in virtual environments. Though further research directly exploring these effects in online virtual environments is needed, this research suggests that individuals encountering ostracism in other virtual environments (such as massively multiplayer online role playing games; MMORPGs) may experience negative effects similar to those of being ostracized in real life. This possibility may have serious implications for individuals who are marginalized in their real life and turn to IVEs to satisfy their need for social connection.

  5. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  6. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  7. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis.

    PubMed

    Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F

    2014-01-01

    To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.

  8. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  9. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    PubMed Central

    Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Qingang; Robichaud, David J.

    As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.

  11. Effectiveness of Virtual Worlds in Public Health Preparedness Training

    ERIC Educational Resources Information Center

    Earley, Elvia A.

    2012-01-01

    In emergency response training, it is essential that the learners are able to apply their classroom knowledge and implement the practical and critical thinking skills they learned. A quasi-experimental methodology with a non-randomized control group and a pretest-posttest was used in this study to evaluate the training level of satisfaction as a…

  12. Building Virtual Cities, Inspiring Intelligent Citizens: Digital Games for Developing Students' Problem Solving and Learning Motivation

    ERIC Educational Resources Information Center

    Yang, Ya-Ting Carolyn

    2012-01-01

    This study investigates the effectiveness digital game-based learning (DGBL) on students' problem solving, learning motivation, and academic achievement. In order to provide substantive empirical evidence, a quasi-experimental design was implemented over the course of a full semester (23 weeks). Two ninth-grade Civics and Society classes, with a…

  13. Cultural Modelling: Literature review

    DTIC Science & Technology

    2006-09-01

    of mood and/or emotions. Our review did show some evidence that artificial intelligence research has tended to depict human decision making as...pp. 72-79). The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB). Halfill, T., Sundstrom, E., Nielsen, T. M...M. & Thagard, P. (2005). Changing personalities: Towards realistic virtual characters. Journal of Experimental & Theoretical Artificial Intelligence

  14. Factors that predict the use or non-use of virtual dissection by high school biology teachers

    NASA Astrophysics Data System (ADS)

    Cockerham, William

    2001-07-01

    With the advent of computers into scholastic classrooms, virtual dissection has become a potential educational tool in high school biology lab settings. Utilizing non-experimental survey research methodology, this study attempted to identify factors that may influence high school biology teachers to use or not to use a virtual dissection. A 75-item research survey instrument consisting of both demographic background and Likert style questions was completed by 215 high school members of the National Association of Biology Teachers. The survey responses provided data to answer the research questions concerning the relationship between the likelihood of a high school biology teacher using a virtual dissection and a number of independent variables from the following three categories: (a) demographics, (b) attitude and experience, and (c) resources and support. These data also allowed for the determination of a demographic profile of the sample population. The demographic profile showed the sample population of high school biology teachers to be two-thirds female, mature, highly educated and very experienced. Analysis of variance and Pearson product moment correlational statistics were used to determine if there was a relationship between high school biology teachers' likelihood to use a virtual dissection and the independent variables. None of the demographic or resource and support independent variables demonstrated a strong relationship to the dependent variable of teachers' likelihood to use a virtual dissection. Three of the attitude and experience independent variables showed a statistically significant (p < .05) relationship to teachers' likelihood to use a virtual dissection: attitude toward virtual dissection, previous use of a virtual dissection and intention to use a real animal dissection. These findings may indicate that teachers are using virtual dissection as a supplement rather than a substitute. It appears that those concerned with promoting virtual dissection in high school biology classrooms will have to develop simulations that are more compelling to the teachers. Additionally, if science teacher organizations want to reduce the controversy surrounding dissection, they may need to re-visit their positions on the importance of real animal dissection.

  15. The influence of action on episodic memory: a virtual reality study.

    PubMed

    Plancher, Gaën; Barra, Julien; Orriols, Eric; Piolino, Pascale

    2013-01-01

    A range of empirical findings suggest that active learning is important for memory. However, few studies have focused on the mechanisms underlying this enactment effect in episodic memory using complex environments. Research using virtual reality has yielded inconsistent results. We postulated that the effect of action depends on the degree of interaction with the environment and freedom in the planning of an itinerary. To test these hypotheses, we disentangled the interaction and planning components of action to investigate whether each enhances factual and spatial memory. Seventy-two participants (36 male and 36 female) explored a virtual town in one of three experimental conditions: (a) a passive condition where participants were immersed as passenger of the car (no interaction, no planning); (b) a planning-only condition (the subject chose the itinerary but did not drive the car); (c) an interaction-only condition (the subject drove the car but the itinerary was fixed). We found that itinerary choice and motor control both enhanced spatial memory, while factual memory was impaired by online motor control. The role of action in memory is discussed.

  16. The Rolling with Slipping Experiment in the Virtual Physics Laboratory--Context-Based Teaching Material

    ERIC Educational Resources Information Center

    Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.

    2016-01-01

    The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center propose a joint project. The goals are to enable scientific workflows of stakeholders to run on multiple cloud resources by use of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federat ion of Cloud Resources , and (c) High-Throughput Fabric Virtualization. This is a matching fund project in which Fermilab and KISTI will contribute equal resources .

  18. Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial.

    PubMed

    Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel

    2014-09-06

    In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).

  19. Virtual fetal pig dissection as an agent of knowledge acquisition and attitudinal change in female high school biology students

    NASA Astrophysics Data System (ADS)

    Maloney, Rebecca Scudari

    One way to determine if all students can learn through the use of computers is to introduce a lesson taught completely via computers and compare the results with those gained when the same lesson is taught in a traditional manner. This study attempted to determine if a virtual fetal pig dissection can be used as a viable alternative for an actual dissection for females enrolled in high school biology classes by comparing the knowledge acquisition and attitudinal change between the experimental (virtual dissection) and control (actual dissection) groups. Two hundred and twenty-four students enrolled in biology classes in a suburban all-girl parochial high school participated in this study. Female students in an all-girl high school were chosen because research shows differences in science competency and computer usage between the genders that may mask the performance of females on computer-based tasks in a science laboratory exercise. Students who completed the virtual dissection scored significantly higher on practical test and objective tests that were used to measure knowledge acquisition. Attitudinal change was measured by examining the students' attitudes toward dissections, computer usage in the classroom, and toward biology both before and after the dissections using pre and post surveys. Significant results in positive gain scores were found in the virtual dissection group's attitude toward dissections, and their negative gain score toward virtual dissections. Attitudinal changes toward computers and biology were not significant. A purposefully selected sample of the students were interviewed, in addition to gathering a sample of the students' daily dissection journals, as data highlighting their thoughts and feelings about their dissection experience. Further research is suggested to determine if a virtual laboratory experience can be a substitute for actual dissections, or may serve as an enhancement to an actual dissection.

  20. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering.

    PubMed

    Benoit, Michel; Guerchouche, Rachid; Petit, Pierre-David; Chapoulie, Emmanuelle; Manera, Valeria; Chaurasia, Gaurav; Drettakis, George; Robert, Philippe

    2015-01-01

    Virtual reality (VR) opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE) approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories. Eighteen healthy volunteers (mean age 68.2 years) presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant's home city (FamPhoto), and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE) consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice) and an unknown image-based virtual environment (UnknoIBVE), which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity). CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed using a verbal fluency task and quality of the recollection was assessed using the "remember/know" procedure. All subjects completed the experiment. Sense of security and fatigue were not significantly different between the conditions with and without VR. The FamPhoto condition yielded a higher emotion score than the other conditions (P<0.05). The CyberSickness questionnaire showed that participants did not experience sickness during the experiment across the VR conditions. VR stimulates autobiographical memory, as demonstrated by the increased total number of responses on the autobiographical fluency task and the increased number of conscious recollections of memories for familiar versus unknown scenes (P<0.01). The study indicates that VR using the FamIBVE system is well tolerated by the elderly. VR can also stimulate recollections of autobiographical memory and convey familiarity of a given scene, which is an essential requirement for use of VR during reminiscence therapy.

  1. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering

    PubMed Central

    Benoit, Michel; Guerchouche, Rachid; Petit, Pierre-David; Chapoulie, Emmanuelle; Manera, Valeria; Chaurasia, Gaurav; Drettakis, George; Robert, Philippe

    2015-01-01

    Background Virtual reality (VR) opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE) approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories. Methods Eighteen healthy volunteers (mean age 68.2 years) presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant’s home city (FamPhoto), and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE) consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice) and an unknown image-based virtual environment (UnknoIBVE), which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity). CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed using a verbal fluency task and quality of the recollection was assessed using the “remember/know” procedure. Results All subjects completed the experiment. Sense of security and fatigue were not significantly different between the conditions with and without VR. The FamPhoto condition yielded a higher emotion score than the other conditions (P<0.05). The CyberSickness questionnaire showed that participants did not experience sickness during the experiment across the VR conditions. VR stimulates autobiographical memory, as demonstrated by the increased total number of responses on the autobiographical fluency task and the increased number of conscious recollections of memories for familiar versus unknown scenes (P<0.01). Conclusion The study indicates that VR using the FamIBVE system is well tolerated by the elderly. VR can also stimulate recollections of autobiographical memory and convey familiarity of a given scene, which is an essential requirement for use of VR during reminiscence therapy. PMID:25834437

  2. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial.

    PubMed

    Viana, R T; Laurentino, G E C; Souza, R J P; Fonseca, J B; Silva Filho, E M; Dias, S N; Teixeira-Salmela, L F; Monte-Silva, K K

    2014-01-01

    Upper limb (UL) impairment is the most common disabling deficit following a stroke. Previous studies have suggested that transcranial direct current stimulation (tDCS) enhances the effect of conventional therapies. This pilot double-blind randomized control trial aimed to determine whether or not tDCS, combined with Wii virtual reality therapy (VRT), would be superior to Wii therapy alone in improving upper limb function and quality of life in chronic stroke individuals. Twenty participants were randomly assigned either to an experimental group that received VRT and tDCS, or a control group that received VRT and sham tDCS. The therapy was delivered over 15 sessions with 13 minutes of active or sham anodal tDCS, and one hour of virtual reality therapy. The outcomes included were determined using the Fugl-Meyer scale, the Wolf motor function test, the modified Ashworth scale (MAS), grip strength, and the stroke specific quality of life scale (SSQOL). Minimal clinically important differences (MCID) were observed when assessing outcome data. Both groups demonstrated gains in all evaluated areas, except for the SSQOL-UL domain. Differences between groups were only observed in wrist spasticity levels in the experimental group, where more than 50% of the participants achieved the MCID. These findings support that tDCS, combined with VRT therapy, should be investigated and clarified further.

  3. Static Design and Finite Element Analysis of Innovative CFRP Transverse Leaf Spring

    NASA Astrophysics Data System (ADS)

    Carello, M.; Airale, A. G.; Ferraris, A.; Messana, A.; Sisca, L.

    2017-12-01

    This paper describes the design and the numerical modelization of a novel transverse Carbon Fiber Reinforced Plastic (CFRP) leaf-spring prototype for a multilink suspension. The most significant innovation is in the functional integration where the leaf spring has been designed to work as spring, anti-roll bar, lower and longitudinal arms at the same time. In particular, the adopted work flow maintains a very close correlation between virtual simulations and experimental tests. Firstly, several tests have been conducted on the CFRP specimen to characterize the material property. Secondly, a virtual card fitting has been carried out in order to set up the leaf-spring Finite Element (FE) model using CRASURV formulation as material law and RADIOSS as solver. Finally, extensive tests have been done on the manufactured component for validation. The results obtained show a good agreement between virtual simulation and experimental tests. Moreover, this solution enabled the suspension to reduce about 75% of the total mass without losing performance.

  4. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments

    PubMed Central

    Slater, Mel

    2009-01-01

    In this paper, I address the question as to why participants tend to respond realistically to situations and events portrayed within an immersive virtual reality system. The idea is put forward, based on the experience of a large number of experimental studies, that there are two orthogonal components that contribute to this realistic response. The first is ‘being there’, often called ‘presence’, the qualia of having a sensation of being in a real place. We call this place illusion (PI). Second, plausibility illusion (Psi) refers to the illusion that the scenario being depicted is actually occurring. In the case of both PI and Psi the participant knows for sure that they are not ‘there’ and that the events are not occurring. PI is constrained by the sensorimotor contingencies afforded by the virtual reality system. Psi is determined by the extent to which the system can produce events that directly relate to the participant, the overall credibility of the scenario being depicted in comparison with expectations. We argue that when both PI and Psi occur, participants will respond realistically to the virtual reality. PMID:19884149

  5. Introduction of Virtual Patient Software to Enhance Physician Assistant Student Knowledge in Palliative Medicine.

    PubMed

    Prazak, Kristine A

    2017-01-01

    The purpose of this project was to infuse palliative medicine and end-of-life care creatively into physician assistant (PA) education. Nine second-year PA students volunteered to participate in this quasi-experimental, pretest-posttest pilot study. Students initially completed an anonymous survey evaluating seven domains of knowledge in palliative medicine coupled with a self-assessment in competence. Virtual patient software was then used to simulate clinical encounters that addressed major palliative care domains. Upon completion of these cases, the same survey, with the addition of three questions about their own personal feelings, was administered. Overall response was positive in regard to improved knowledge and the virtual patient experience. After completion of the cases, students rated their self-assessed skills higher in all domains than prior to completing the cases. Factual knowledge scores showed a slight but not significant improvement, with an average pre-survey score of 4.56 and post-survey score of 4.67. Using virtual patient software can be a way of infusing palliative medicine and end-of-life care into PA education. These encounters can then be modified to include interprofessional encounters within the health professions.

  6. Incorporating a collaborative web-based virtual laboratory in an undergraduate bioinformatics course.

    PubMed

    Weisman, David

    2010-01-01

    Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  7. Effect of a Virtual Environment on the Development of Mathematical Skills in Children with Dyscalculia

    PubMed Central

    de Castro, Marcus Vasconcelos; Bissaco, Márcia Aparecida Silva; Panccioni, Bruno Marques; Rodrigues, Silvia Cristina Martini; Domingues, Andreia Miranda

    2014-01-01

    In this study, we show the effectiveness of a virtual environment comprising 18 computer games that cover mathematics topics in a playful setting and that can be executed on the Internet with the possibility of player interaction through chat. An arithmetic pre-test contained in the Scholastic Performance Test was administered to 300 children between 7 and 10 years old, including 162 males and 138 females, in the second grade of primary school. Twenty-six children whose scores showed a low level of mathematical knowledge were chosen and randomly divided into the control (CG) and experimental (EG) groups. The EG participated to the virtual environment and the CG participated in reinforcement using traditional teaching methods. Both groups took a post-test in which the Scholastic Performance Test (SPT) was given again. A statistical analysis of the results using the Student's t-test showed a significant learning improvement for the EG and no improvement for the CG (p≤0.05). The virtual environment allows the students to integrate thought, feeling and action, thus motivating the children to learn and contributing to their intellectual development. PMID:25068511

  8. Discovery of Novel New Delhi Metallo-β-Lactamases-1 Inhibitors by Multistep Virtual Screening

    PubMed Central

    Wang, Xuequan; Lu, Meiling; Shi, Yang; Ou, Yu; Cheng, Xiaodong

    2015-01-01

    The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold. PMID:25734558

  9. Virtual reality for treatment compliance for people with serious mental illness.

    PubMed

    Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E

    2014-10-08

    Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or adverse effects. Satisfaction with treatment - measured using an un-referenced scale - and reported as "interest in training" was better for the virtual reality group (1 RCT, n = 64, MD 6.00 CI 1.39 to 10.61,low quality evidence). There is no clear good quality evidence for or against using virtual reality for treatment compliance among people with serious mental illness. If virtual reality is used, the experimental nature of the intervention should be clearly explained. High-quality studies should be undertaken in this area to explore any effects of this novel intervention and variations of approach.

  10. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study

    PubMed Central

    Ortiz-Gutiérrez, Rosa; Cano-de-la-Cuerda, Roberto; Galán-del-Río, Fernando; Alguacil-Diego, Isabel María; Palacios-Ceña, Domingo; Miangolarra-Page, Juan Carlos

    2013-01-01

    Postural control disorders are among the most frequent motor disorder symptoms associated with multiple sclerosis. This study aims to demonstrate the potential improvements in postural control among patients with multiple sclerosis who complete a telerehabilitation program that represents a feasible alternative to physical therapy for situations in which conventional treatment is not available. Fifty patients were recruited. Control group (n = 25) received physiotherapy treatment twice a week (40 min per session). Experimental group (n = 25) received monitored telerehabilitation treatment via videoconference using the Xbox 360® and Kinect console. Experimental group attended 40 sessions, four sessions per week (20 min per session).The treatment schedule lasted 10 weeks for both groups. A computerized dynamic posturography (Sensory Organization Test) was used to evaluate all patients at baseline and at the end of the treatment protocol. Results showed an improvement over general balance in both groups. Visual preference and the contribution of vestibular information yielded significant differences in the experimental group. Our results demonstrated that a telerehabilitation program based on a virtual reality system allows one to optimize the sensory information processing and integration systems necessary to maintain the balance and postural control of people with multiple sclerosis. We suggest that our virtual reality program enables anticipatory PC and response mechanisms and might serve as a successful therapeutic alternative in situations in which conventional therapy is not readily available. PMID:24185843

  11. Virtual fragment preparation for computational fragment-based drug design.

    PubMed

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  12. Possible applications of the LEAP motion controller for more interactive simulated experiments in augmented or virtual reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.

  13. Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Kaushik, Aman C.; Kumar, Sanjay; Wei, Dong Q.; Sahi, Shakti

    2018-02-01

    GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor) belonging to ‘Class A’ of GPCR family and expressed in beta cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

  14. New cochlear implant research coding strategy based on the MP3(000™) strategy to reintroduce the virtual channel effect.

    PubMed

    Neben, Nicole; Lenarz, Thomas; Schuessler, Mark; Harpel, Theo; Buechner, Andreas

    2013-05-01

    Results for speech recognition in noise tests when using a new research coding strategy designed to introduce the virtual channel effect provided no advantage over MP3(000™). Although statistically significant smaller just noticeable differences (JNDs) were obtained, the findings for pitch ranking proved to have little clinical impact. The aim of this study was to explore whether modifications to MP3000 by including sequential virtual channel stimulation would lead to further improvements in hearing, particularly for speech recognition in background noise and in competing-talker conditions, and to compare results for pitch perception and melody recognition, as well as informally collect subjective impressions on strategy preference. Nine experienced cochlear implant subjects were recruited for the prospective study. Two variants of the experimental strategy were compared to MP3000. The study design was a single-blinded ABCCBA cross-over trial paradigm with 3 weeks of take-home experience for each user condition. Comparing results of pitch-ranking, a significantly reduced JND was identified. No significant effect of coding strategy on speech understanding in noise or competing-talker materials was found. Melody recognition skills were the same under all user conditions.

  15. Haptic feedback for virtual assembly

    NASA Astrophysics Data System (ADS)

    Luecke, Greg R.; Zafer, Naci

    1998-12-01

    Assembly operations require high speed and precision with low cost. The manufacturing industry has recently turned attenuation to the possibility of investigating assembly procedures using graphical display of CAD parts. For these tasks, some sort of feedback to the person is invaluable in providing a real sense of interaction with virtual parts. This research develops the use of a commercial assembly robot as the haptic display in such tasks. For demonstration, a peg-hole insertion task is studied. Kane's Method is employed to derive the dynamics of the peg and the contact motions between the peg and the hole. A handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is equipped with a six axis force/torque transducer. The use grabs the handle and the user-applied forces are recorded. A 300 MHz Pentium computer is used to simulate the dynamics of the virtual peg and its interactions as it is inserted in the virtual hole. The computed torque control is then employed to exert the full dynamics of the task to the user hand. Visual feedback is also incorporated to help the user in the process of inserting the peg into the hole. Experimental results are presented to show several contact configurations for this virtually simulated task.

  16. Goal-Directed Movement Enhances Body Representation Updating

    PubMed Central

    Wen, Wen; Muramatsu, Katsutoshi; Hamasaki, Shunsuke; An, Qi; Yamakawa, Hiroshi; Tamura, Yusuke; Yamashita, Atsushi; Asama, Hajime

    2016-01-01

    Body representation refers to perception, memory, and cognition related to the body and is updated continuously by sensory input. The present study examined the influence of goals on body representation updating with two experiments of the rubber hand paradigm. In the experiments, participants moved their hidden left hands forward and backward either in response to instruction to touch a virtual object or without any specific goal, while a virtual left hand was presented 250 mm above the real hand and moved in synchrony with the real hand. Participants then provided information concerning the perceived heights of their real left hands and rated their sense of agency and ownership of the virtual hand. Results of Experiment 1 showed that when participants moved their hands with the goal of touching a virtual object and received feedback indicating goal attainment, the perceived positions of their real hands shifted more toward that of the virtual hand relative to that in the condition without a goal, indicating that their body representations underwent greater modification. Furthermore, results of Experiment 2 showed that the effect of goal-directed movement occurred in the active condition, in which participants moved their own hands, but did not occur in the passive condition, in which participants’ hands were moved by the experimenter. Therefore, we concluded that the sense of agency probably contributed to the updating of body representation involving goal-directed movement. PMID:27445766

  17. Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment

    NASA Astrophysics Data System (ADS)

    Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald

    2008-03-01

    The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.

  18. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less

  19. Research on inosculation between master of ceremonies or players and virtual scene in virtual studio

    NASA Astrophysics Data System (ADS)

    Li, Zili; Zhu, Guangxi; Zhu, Yaoting

    2003-04-01

    A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.

  20. The Effects of Virtual Versus Physical Lab Manipulatives on Inquiry Skill Acquisition and Conceptual Understanding of Density

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.

  1. Self-reported Cognitive Biases Moderate the Associations Between Social Stress and Paranoid Ideation in a Virtual Reality Experimental Study.

    PubMed

    Pot-Kolder, Roos; Veling, Wim; Counotte, Jacqueline; van der Gaag, Mark

    2018-06-06

    Cognitive biases are associated with psychosis liability and paranoid ideation. This study investigated the moderating relationship between pre-existing self-reported cognitive biases and the occurrence of paranoid ideation in response to different levels of social stress in a virtual reality environment. This study included 170 participants with different levels of psychosis liability (55 recent onset psychosis, 20 ultrahigh risk for psychosis, 42 siblings of psychotic patients, and 53 controls). All participants were exposed to virtual environments with different levels of social stress. The level of experienced paranoia in the virtual environments was measured with the State Social Paranoia Scale. Cognitive biases were assessed with a self-report continuous measure. Also, cumulative number of cognitive biases was calculated using dichotomous measures of the separate biases, based on general population norm scores. Higher belief inflexibility bias (Z = 2.83, P < .001), attention to threat bias (Z = 3.40, P < .001), external attribution bias (Z = 2.60, P < .001), and data-gathering bias (Z = 2.07, P < .05) were all positively associated with reported paranoid ideation in the social virtual environments. Level of paranoid response increased with number of cognitive biases present (B = 1.73, P < .001). The effect of environmental stressors on paranoid ideation was moderated by attention to threat bias (Z = 2.78, P < .01) and external attribution bias (Z = 2.75, P < .01), whereas data-gathering bias and belief inflexibility did not moderate the relationship. There is an additive effect of separate cognitive biases on paranoid response to social stress. The effect of social environmental stressors on paranoid ideation is further enhanced by attention to threat bias and external attribution bias.

  2. Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts.

    PubMed

    Delong, Ralph; Ko, Ching-Chang; Anderson, Gary C; Hodges, James S; Douglas, W H

    2002-12-01

    Quantitative measures of occlusal contacts are of paramount importance in the study of chewing dysfunction. A tool is needed to identify and quantify occlusal parameters without occlusal interference caused by the technique of analysis. This laboratory simulation study compared occlusal contacts constructed from 3-dimensional images of dental casts and interocclusal records with contacts found by use of conventional methods. Dental casts of 10 completely dentate adults were mounted in a semi-adjustable Denar articulator. Maximum intercuspal contacts were marked on the casts using red film. Intercuspal records made with an experimental vinyl polysiloxane impression material recorded maximum intercuspation. Three-dimensional virtual models of the casts and interocclusal records were made using custom software and an optical scanner. Contacts were calculated between virtual casts aligned manually (CM), aligned with interocclusal records scanned seated on the mandibular casts (C1) or scanned independently (C2), and directly from virtual interocclusal records (IR). Sensitivity and specificity calculations used the marked contacts as the standard. Contact parameters were compared between method pairs. Statistical comparisons used analysis of variance and the Tukey-Kramer post hoc test (P=<.05). Sensitivities (range 0.76-0.89) did not differ significantly among the 4 methods (P=.14); however, specificities (range 0.89-0.98) were significantly lower for IR (P=.0001). Contact parameters of methods CM, C1, and C2 differed significantly from those of method IR (P<.02). The ranking based on method pair comparisons was C2/C1 > CM/C1 = CM/C2 > C2/IR > CM/IR > C1/IR, where ">" means "closer than." Within the limits of this study, occlusal contacts calculated from aligned virtual casts accurately reproduce articulator contacts.

  3. Experimental Study of Exclusive H2(e,e'p)n Reaction Mechanisms at High Q2

    NASA Astrophysics Data System (ADS)

    Egiyan, K. S.; Asryan, G.; Gevorgyan, N.; Griffioen, K. A.; Laget, J. M.; Kuhn, S. E.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dashyan, N.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fersch, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Marchand, C.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Anefalos Pereira, S.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-06-01

    The reaction H2(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.75

  4. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    PubMed

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  5. Design, development, and evaluation of an online virtual emergency department for training trauma teams.

    PubMed

    Youngblood, Patricia; Harter, Phillip M; Srivastava, Sakti; Moffett, Shannon; Heinrichs, Wm LeRoy; Dev, Parvati

    2008-01-01

    Training interdisciplinary trauma teams to work effectively together using simulation technology has led to a reduction in medical errors in emergency department, operating room, and delivery room contexts. High-fidelity patient simulators (PSs)-the predominant method for training healthcare teams-are expensive to develop and implement and require that trainees be present in the same place at the same time. In contrast, online computer-based simulators are more cost effective and allow simultaneous participation by students in different locations and time zones. In this pilot study, the researchers created an online virtual emergency department (Virtual ED) for team training in crisis management, and compared the effectiveness of the Virtual ED with the PS. We hypothesized that there would be no difference in learning outcomes for graduating medical students trained with each method. In this pilot study, we used a pretest-posttest control group, experimental design in which 30 subjects were randomly assigned to either the Virtual ED or the PS system. In the Virtual ED each subject logged into the online environment and took the role of a team member. Four-person teams worked together in the Virtual ED, communicating in real time with live voice over Internet protocol, to manage computer-controlled patients who exhibited signs and symptoms of physical trauma. Each subject had the opportunity to be the team leader. The subjects' leadership behavior as demonstrated in both a pretest case and a posttest case was assessed by 3 raters, using a behaviorally anchored scale. In the PS environment, 4-person teams followed the same research protocol, using the same clinical scenarios in a Simulation Center. Guided by the Emergency Medicine Crisis Resource Management curriculum, both the Virtual ED and the PS groups applied the basic principles of team leadership and trauma management (Advanced Trauma Life Support) to manage 6 trauma cases-a pretest case, 4 training cases, and a posttest case. The subjects in each group were assessed individually with the same simulation method that they used for the training cases. Subjects who used either the Virtual ED or the PS showed significant improvement in performance between pretest and posttest cases (P < 0.05). In addition, there was no significant difference in subjects' performance between the 2 types of simulation, suggesting that the online Virtual ED may be as effective for learning team skills as the PS, the method widely used in Simulation Centers. Data on usability and attitudes toward both simulation methods as learning tools were equally positive. This study shows the potential value of using virtual learning environments for developing medical students' and resident physicians' team leadership and crisis management skills.

  6. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.

    PubMed

    Moglia, Andrea; Ferrari, Vincenzo; Morelli, Luca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2016-06-01

    No single large published randomized controlled trial (RCT) has confirmed the efficacy of virtual simulators in the acquisition of skills to the standard required for safe clinical robotic surgery. This remains the main obstacle for the adoption of these virtual simulators in surgical residency curricula. To evaluate the level of evidence in published studies on the efficacy of training on virtual simulators for robotic surgery. In April 2015 a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, the Clinical Trials Database (US) and the Meta Register of Controlled Trials. All publications were scrutinized for relevance to the review and for assessment of the levels of evidence provided using the classification developed by the Oxford Centre for Evidence-Based Medicine. The publications included in the review consisted of one RCT and 28 cohort studies on validity, and seven RCTs and two cohort studies on skills transfer from virtual simulators to robot-assisted surgery. Simulators were rated good for realism (face validity) and for usefulness as a training tool (content validity). However, the studies included used various simulation training methodologies, limiting the assessment of construct validity. The review confirms the absence of any consensus on which tasks and metrics are the most effective for the da Vinci Skills Simulator and dV-Trainer, the most widely investigated systems. Although there is consensus for the RoSS simulator, this is based on only two studies on construct validity involving four exercises. One study on initial evaluation of an augmented reality module for partial nephrectomy using the dV-Trainer reported high correlation (r=0.8) between in vivo porcine nephrectomy and a virtual renorrhaphy task according to the overall Global Evaluation Assessment of Robotic Surgery (GEARS) score. In one RCT on skills transfer, the experimental group outperformed the control group, with a significant difference in overall GEARS score (p=0.012) during performance of urethrovesical anastomosis on an inanimate model. Only one study included assessment of a surgical procedure on real patients: subjects trained on a virtual simulator outperformed the control group following traditional training. However, besides the small numbers, this study was not randomized. There is an urgent need for a large, well-designed, preferably multicenter RCT to study the efficacy of virtual simulation for acquisition competence in and safe execution of clinical robotic-assisted surgery. We reviewed the literature on virtual simulators for robot-assisted surgery. Validity studies used various simulation training methodologies. It is not clear which exercises and metrics are the most effective in distinguishing different levels of experience on the da Vinci robot. There is no reported evidence of skills transfer from simulation to clinical surgery on real patients. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  8. Learning Environments and Inquiry Behaviors in Science Inquiry Learning: How Their Interplay Affects the Development of Conceptual Understanding in Physics

    ERIC Educational Resources Information Center

    Bumbacher, Engin; Salehi, Shima; Wierzchula, Miriam; Blikstein, Paulo

    2015-01-01

    Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to…

  9. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia

    PubMed Central

    Khurana, Meetika; Walia, Shefali

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902

  10. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia.

    PubMed

    Khurana, Meetika; Walia, Shefali; Noohu, Majumi M

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.

  11. Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children.

    PubMed

    Passig, D; Eden, S

    2001-12-01

    The aim of this study was to investigate whether the practice of rotating Virtual Reality (VR) three-dimensional (3D) objects will enhance the spatial rotation thinking of deaf and hard-of-hearing children compared to the practice of rotating two-dimensional (2D) objects. Two groups were involved in this study: an experimental group, which included 21 deaf and hardof-hearing children, who played a VR 3D game, and a control group of 23 deaf and hard-of-hearing children, who played a similar 2D (not VR) game. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved the children's performance of spatial rotation, which enhanced their ability to perform better in other intellectual skills as well as in their sign language skills.

  12. [L.A. Blumenfeld and study of photosynthesis by spectroscopy methods at Chair of Biophysics, Faculty of Physics, Moscow State University].

    PubMed

    Kukushkin, A K

    2013-01-01

    Nowadays spectroscopy methods are widely employed to study photosynthesis. For instance, fluorescence methods are often in use to study virtually all steps of photosynthesis process. Theoretical models of phenomena under study are of importance for interpretation of experimental data. A decisive role of L.A. Blumenfeld, the former head of the Chair of Biophysics, Faculty of Physics, Moscow State University, in the study of photosynthesis process is shown in this work.

  13. The Use of Virtual Reality in Psychology: A Case Study in Visual Perception

    PubMed Central

    Wilson, Christopher J.; Soranzo, Alessandro

    2015-01-01

    Recent proliferation of available virtual reality (VR) tools has seen increased use in psychological research. This is due to a number of advantages afforded over traditional experimental apparatus such as tighter control of the environment and the possibility of creating more ecologically valid stimulus presentation and response protocols. At the same time, higher levels of immersion and visual fidelity afforded by VR do not necessarily evoke presence or elicit a “realistic” psychological response. The current paper reviews some current uses for VR environments in psychological research and discusses some ongoing questions for researchers. Finally, we focus on the area of visual perception, where both the advantages and challenges of VR are particularly salient. PMID:26339281

  14. Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality.

    PubMed

    Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V

    2015-01-01

    Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights.

  15. Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality

    PubMed Central

    Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V.

    2016-01-01

    Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights. PMID:26779081

  16. An evaluation of nonclinical dissociation utilizing a virtual environment shows enhanced working memory and attention.

    PubMed

    Saidel-Goley, Isaac N; Albiero, Erin E; Flannery, Kathleen A

    2012-02-01

    Dissociation is a mental process resulting in the disruption of memory, perception, and sometimes identity. At a nonclinical level, only mild dissociative experiences occur. The nature of nonclinical dissociation is disputed in the literature, with some asserting that it is a beneficial information processing style and others positing that it is a psychopathological phenomenon. The purpose of this study was to further the understanding of nonclinical dissociation with respect to memory and attention, by including a more ecologically valid virtual reality (VR) memory task along with standard neuropsychological tasks. Forty-five undergraduate students from a small liberal arts college in the northeast participated for course credit. The participants completed a battery of tasks including two standard memory tasks, a standard attention task, and an experimental VR memory task; the VR task included immersion in a virtual apartment, followed by incidental object-location recall for objects in the virtual apartment. Support for the theoretical model portraying nonclinical dissociation as a beneficial information processing style was found in this study. Dissociation scores were positively correlated with working memory scores and attentional processing scores on the standard neuropsychological tasks. In terms of the VR task, dissociation scores were positively correlated with more false positive memories that could be the result of a tendency of nonclinical highly dissociative individuals to create more elaborative schemas. This study also demonstrates that VR paradigms add to the prediction of cognitive functioning in testing protocols using standard neuropsychological tests, while simultaneously increasing ecological validity.

  17. vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available.

    PubMed

    Chaput, Ludovic; Martinez-Sanz, Juan; Quiniou, Eric; Rigolet, Pascal; Saettel, Nicolas; Mouawad, Liliane

    2016-01-01

    In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e. when a good proportion of actives are found in the 1-10 % best ranked molecules. The use of several programs (in our study, Gold, Surflex, FlexX and Glide were considered) shows a divergence of the results, which presents a difficulty in guiding the experiments. To overcome this divergence and increase the yield of the virtual screening, we created the standard deviation consensus (SDC) and variable SDC (vSDC) methods, consisting of the intersection of molecule sets from several virtual screening programs, based on the standard deviations of their ranking distributions. SDC allowed us to find hits for two new protein targets by testing only 9 and 11 small molecules from a chemical library of circa 15,000 compounds. Furthermore, vSDC, when applied to the 102 proteins of the DUD-E benchmarking database, succeeded in finding more hits than any of the four isolated programs for 13-60 % of the targets. In addition, when only 10 molecules of each of the 102 chemical libraries were considered, vSDC performed better in the number of hits found, with an improvement of 6-24 % over the 10 best-ranked molecules given by the individual docking programs.Graphical abstractIn drug design, for a given target and a given chemical library, the results obtained with different virtual screening programs are divergent. So how to rationally guide the experimental tests, especially when only a few number of experiments can be made? The variable Standard Deviation Consensus (vSDC) method was developed to answer this issue. Left panel the vSDC principle consists of intersecting molecule sets, chosen on the basis of the standard deviations of their ranking distributions, obtained from various virtual screening programs. In this study Glide, Gold, FlexX and Surflex were used and tested on the 102 targets of the DUD-E database. Right panel Comparison of the average percentage of hits found with vSDC and each of the four programs, when only 10 molecules from each of the 102 chemical libraries of the DUD-E database were considered. On average, vSDC was capable of finding 38 % of the findable hits, against 34 % for Glide, 32 % for Gold, 16 % for FlexX and 14 % for Surflex, showing that with vSDC, it was possible to overcome the unpredictability of the virtual screening results and to improve them.

  18. Spatial cognition in a virtual reality home-cage extension for freely moving rodents

    PubMed Central

    Kaupert, Ursula; Frei, Katja; Bagorda, Francesco; Schatz, Alexej; Tocker, Gilad; Rapoport, Sophie; Derdikman, Dori

    2017-01-01

    Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals’ group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. NEW & NOTEWORTHY Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals’ group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms. PMID:28077665

  19. A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia.

    PubMed

    Fasilis, Th; Patrikelis, P; Siatouni, A; Alexoudi, A; Veretzioti, A; Zachou, L; Gatzonis, S-St

    2018-01-01

    Dementia is one of the increasing problems of modern societies. The immediate cure is not a possible solution, at least at the moment, but science has found a number of new ways to retard and under specific conditions to halt its development. A potential, and constantly evolving scientific field is the use of Computerized Cognitive Rehabilitation (CCR) and Virtual Environments (Vr.E). According to the existing literature, subjecting patients to various neuro-rehabilitative conditions within 3D virtual environments, allows them to obtain significant therapeutic benefits in which both transferability and durations over time are observed, in relation to the training period of the intervention. In the present study we examine whether "Serious Games (SGs)" - (learning and rehabilitating games in virtual and augmented reality) - have utilitarian value in the field of cognitive neurorehabilitation, concerned with demented population. For research purposes, we have conducted a number of case studies, based on 10 elderly patients, suffering from moderate or mild severity impairment of higher cortical functions, attributed to various types of dementias (Vascular, Alzheimer's disease, DLB dementia and mixed dementia). Each participant underwent rehabilitative intervention through our SG for a total of 10 hours within 4-5 weeks period. At the end of the cognitive rehabilitation program, patients' performance was assessed based in standard neuropsychological tests (measuring: working memory, memory retention, attention, problem solving, rigid thinking and executive function) and the results were compared with measurements taken before, during, and at the end of the intervention. Our experimental hypothesis states that there will be a significant difference between the results of cognitive performance of the patients between the pre- and post- rehabilitative period, consequential of the Interactive Computer-based Training (ICT). In conclusion, a review and brief analysis of the relevant literature was carried out in order to investigate the specification of potentially beneficial variables and to appreciate as much as possible the multifactorial causes related to this particular rehabilitation method of the corresponding suffering population. The ultimate purpose of our research is the design and creation of a prospective interactive cognitive rehabilitation training SG, able to combine both the neuro-rehabilitative character of the controlled virtual environment, as well as the potential realism that is also attributed to it (factual validity under high experimental realism). The results showed a relative improvement in the total of the cognitive variables under consideration after the completion of the neuro-rehabilitative program, while a parallel review of the literature on the subject revealed methodological considerations similar to those of the present study.

  20. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.

    PubMed

    Gregg, Robert D; Lenzi, Tommaso; Hargrove, Levi J; Sensinger, Jonathon W

    2014-12-01

    Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach.

  1. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees

    PubMed Central

    Lenzi, Tommaso; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach. PMID:25558185

  2. Experimental far-field imaging properties of a ~5-μm diameter spherical lens.

    PubMed

    Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu

    2013-06-01

    Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.

  3. A Magnifying Glass for Virtual Imaging of Subwavelength Resolution by Transformation Optics.

    PubMed

    Sun, Fei; Guo, Shuwei; Liu, Yichao; He, Sailing

    2018-06-14

    Traditional magnifying glasses can give magnified virtual images with diffraction-limited resolution, that is, detailed information is lost. Here, a novel magnifying glass by transformation optics, referred to as a "superresolution magnifying glass" (SMG) is designed, which can produce magnified virtual images with a predetermined magnification factor and resolve subwavelength details (i.e., light sources with subwavelength distances can be resolved). Based on theoretical calculations and reductions, a metallic plate structure to produce the reduced SMG in microwave frequencies, which gives good performance verified by both numerical simulations and experimental results, is proposed and realized. The function of SMG is to create a superresolution virtual image, unlike traditional superresolution imaging devices that create real images. The proposed SMG will create a new branch of superresolution imaging technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Teleoperation with virtual force feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.J.

    1993-08-01

    In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summedmore » and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.« less

  5. NeuroVR 1.5 - a free virtual reality platform for the assessment and treatment in clinical psychology and neuroscience.

    PubMed

    Riva, Giuseppe; Carelli, Laura; Gaggioli, Andrea; Gorini, Alessandra; Vigna, Cinzia; Corsi, Riccardo; Faletti, Gianluca; Vezzadini, Luca

    2009-01-01

    At MMVR 2007 we presented NeuroVR (http://www.neurovr.org) a free virtual reality platform based on open-source software. The software allows non-expert users to adapt the content of 14 pre-designed virtual environments to the specific needs of the clinical or experimental setting. Following the feedbacks of the 700 users who downloaded the first version, we developed a new version - NeuroVR 1.5 - that improves the possibility for the therapist to enhance the patient's feeling of familiarity and intimacy with the virtual scene, by using external sounds, photos or videos. Specifically, the new version now includes full sound support and the ability of triggering external sounds and videos using the keyboard. The outcomes of different trials made using NeuroVR will be presented and discussed.

  6. Students as Virtual Scientists: An exploration of students' and teachers' perceived realness of a remote electron microscopy investigation

    NASA Astrophysics Data System (ADS)

    Childers, Gina; Jones, M. Gail

    2015-10-01

    Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.

  7. Is Sexual Objectification and Victimization of Females in Video Games Associated With Victim Blaming or Victim Empathy?

    PubMed

    Beck, Victoria; Rose, Chris

    2018-04-01

    The goal of this study was to investigate whether the sexual objectification and virtual violence against females in video games increases negative attitudes toward females, when addressing a variety of noted methodological issues. Study participants were randomly assigned to a control group, where participants played Madden NFL 12, or an experimental group, where participants played Grand Theft Auto. In the experimental group, participants played the game with a confederate, who exposed participants to sexual objectification and violence against females. Study results indicated that both the experimental and control groups had equivalently low levels of rape myth acceptance prior to game play. Immediately after game play, there still was no statistically significant difference in rape myth acceptance between groups; however, there was a decrease in rape myth acceptance for the experimental group. The decrease in rape myth acceptance continued and magnified for the experimental group, over time, to the point of creating a statistically significant difference between the two groups for the follow-up measure at the end of the study.

  8. A Virtual Radial Arm Maze for the Study of Multiple Memory Systems in a Functional Magnetic Resonance Imaging Environment

    PubMed Central

    Xu, Dongrong; Hao, Xuejun; Wang, Zhishun; Duan, Yunsuo; Liu, Feng; Marsh, Rachel; Yu, Shan; Peterson, Bradley S.

    2015-01-01

    An increasing number of functional brain imaging studies are employing computer-based virtual reality (VR) to study changes in brain activity during the performance of high-level psychological and cognitive tasks. We report the development of a VR radial arm maze that adapts for human use in a scanning environment with the same general experimental design of behavioral tasks as that has been used with remarkable effectiveness for the study of multiple memory systems in rodents. The software platform is independent of specific computer hardware and operating systems, as we aim to provide shared access to this technology by the research community. We hope that doing so will provide greater standardization of software platform and study paradigm that will reduce variability and improve the comparability of findings across studies. We report the details of the design and implementation of this platform and provide information for downloading of the system for demonstration and research applications. PMID:26366052

  9. Virtual hybrid test control of sinuous crack

    NASA Astrophysics Data System (ADS)

    Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane

    2017-05-01

    The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.

  10. Effects of anatomical variation on trainee performance in a virtual reality temporal bone surgery simulator.

    PubMed

    Piromchai, P; Ioannou, I; Wijewickrema, S; Kasemsiri, P; Lodge, J; Kennedy, G; O'Leary, S

    2017-01-01

    To investigate the importance of anatomical variation in acquiring skills in virtual reality cochlear implant surgery. Eleven otolaryngology residents participated in this study. They were randomly allocated to practice cochlear implant surgery on the same specimen or on different specimens for four weeks. They were then tested on two new specimens, one standard and one challenging. Videos of their performance were de-identified and reviewed independently, by two blinded consultant otolaryngologists, using a validated assessment scale. The scores were compared between groups. On the standard specimen, the round window preparation score was 2.7 ± 0.4 for the experimental group and 1.7 ± 0.6 for the control group (p = 0.01). On the challenging specimen, instrument handling and facial nerve preservation scores of the experimental group were 3.0 ± 0.4 and 3.5 ± 0.7 respectively, while the control group received scores of 2.1 ± 0.8 and 2.4 ± 0.9 respectively (p < 0.05). Training on temporal bones with differing anatomies is beneficial in the development of expertise.

  11. Virtual reality and pain management: current trends and future directions.

    PubMed

    Li, Angela; Montaño, Zorash; Chen, Vincent J; Gold, Jeffrey I

    2011-03-01

    Virtual reality (VR) has been used to manage pain and distress associated with a wide variety of known painful medical procedures. In clinical settings and experimental studies, participants immersed in VR experience reduced levels of pain, general distress/unpleasantness and report a desire to use VR again during painful medical procedures. Investigators hypothesize that VR acts as a nonpharmacologic form of analgesia by exerting an array of emotional affective, emotion-based cognitive and attentional processes on the body's intricate pain modulation system. While the exact neurobiological mechanisms behind VR's action remain unclear, investigations are currently underway to examine the complex interplay of cortical activity associated with immersive VR. Recently, new applications, including VR, have been developed to augment evidenced-based interventions, such as hypnosis and biofeedback, for the treatment of chronic pain. This article provides a comprehensive review of the literature, exploring clinical and experimental applications of VR for acute and chronic pain management, focusing specifically on current trends and recent developments. In addition, we propose mechanistic theories highlighting VR distraction and neurobiological explanations, and conclude with new directions in VR research, implications and clinical significance.

  12. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  13. The impact of the Virtual Ophthalmology Clinic on medical students' learning: a randomised controlled trial

    PubMed Central

    Succar, T; Zebington, G; Billson, F; Byth, K; Barrie, S; McCluskey, P; Grigg, J

    2013-01-01

    Aim The Virtual Ophthalmology Clinic (VOC) is an interactive web-based teaching module, with special emphasis on history taking and clinical reasoning skills. The purpose of this study was to determine the impact of VOC on medical students' learning. Methods A randomised controlled trial (RCT) was conducted with medical students from the University of Sydney (n=188) who were randomly assigned into either an experimental (n=93) or a control group (n=95). A pre- and post-test and student satisfaction questionnaire were administered. Twelve months later a follow-up test was conducted to determine the long-term retention rate of graduates. Results There was a statistically significant (P<0.001) within-subject improvement pre- to post rotation in the number of correctly answered questions for both the control and experimental groups (mean improvement for control 10%, 95% CI 1.3–2.6, and for experimental 17.5%, 95% CI 3.0–4.0). The improvement was significantly greater in the experimental group (mean difference in improvement between groups 7.5%, 95% CI 0.8–2.3, P<0.001). At 12 months follow-up testing, the experimental group scored on average 1.6 (8%) (95%CI 0.4 to 2.7, P=0.007) higher than the controls. Conclusion On the basis of a statistically significant improvement in academic performance and highly positive student feedback, the implementation of VOC may provide a means to address challenges to ophthalmic learning outcomes in an already crowded medical curriculum. PMID:23867718

  14. A roadmap to computational social neuroscience.

    PubMed

    Tognoli, Emmanuelle; Dumas, Guillaume; Kelso, J A Scott

    2018-02-01

    To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration of social self-organization at all levels-from neuronal patterns to people interacting with each other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.

  15. Web-Based Integrated Research Environment for Aerodynamic Analyses and Design

    NASA Astrophysics Data System (ADS)

    Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won

    e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.

  16. Bat noseleaf model: echolocation function, design considerations, and experimental verification.

    PubMed

    Kuc, Roman

    2011-05-01

    This paper describes a possible bat noseleaf echolocation function that improves target elevation resolution. Bats with a protruding noseleaf can rotate the lancet to act as an acoustic mirror that reflects the nostril emission, modeled as a virtual nostril that produces a delayed emission. The cancellation of the nostril and virtual nostril components at a target produces a sharp spectral notch whose frequency location relates to target elevation. This notch can be observed directly from the swept-frequency emission waveform, suggesting cochlear processing capabilities. Physical acoustic principles indicate the design considerations and trade-offs that a bat can accomplish through noseleaf shape and emission characteristics. An experimental model verifies the analysis and exhibits an elevation versus notch frequency sensitivity of approximately 1°/kHz.

  17. High psychosis liability is associated with altered autonomic balance during exposure to Virtual Reality social stressors.

    PubMed

    Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim

    2017-06-01

    Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanism and may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social stressors was examined in participants with different liability to psychosis. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra-high risk for psychosis, 42 siblings of patients with psychosis and 53 controls were exposed to social stressors (crowdedness, ethnic minority status and hostility) in a Virtual Reality environment. Heart rate variability parameters and skin conductance levels were measured at baseline and during Virtual Reality experiments. High psychosis liability groups had significantly increased heart rate and decreased heart rate variability compared to low liability groups both at baseline and during Virtual Reality experiments. Both low frequency (LF) and high frequency (HF) power were reduced, while the LF/HF ratio was similar between groups. The number of virtual social stressors significantly affected heart rate, HF, LF/HF and skin conductance level. There was no interaction between psychosis liability and amount of virtual social stress. High liability to psychosis is associated with decreased parasympathetic activity in virtual social environments, which reflects generally high levels of arousal, rather than increased autonomic reactivity to social stressors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  19. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  20. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    PubMed Central

    Heydrich, Lukas; Dodds, Trevor J.; Aspell, Jane E.; Herbelin, Bruno; Bülthoff, Heinrich H.; Mohler, Betty J.; Blanke, Olaf

    2013-01-01

    In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body. PMID:24385970

  1. Acquisition of Language and Intercultural Competences in Tourism and Hospitality Studies through Active Experimentation in Second Life

    ERIC Educational Resources Information Center

    García, Mercedes Rico; da Silva, Paula Ferreira

    2018-01-01

    Living in a global world involves not only mastering languages, but also dealing with different habits and values. It becomes critical with students trained to deal with a multicultural public, such as the group of learners from tourism covered by our research. Our proposal aims to analyze whether the virtual world of Second Life (SL) facilitates…

  2. Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: A feasibility study.

    PubMed

    Bortone, Ilaria; Leonardis, Daniele; Solazzi, Massimiliano; Procopio, Caterina; Crecchi, Alessandra; Bonfiglio, Luca; Frisoli, Antonio

    2017-07-01

    The past decade has seen the emergence of rehabilitation treatments using virtual reality environments. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. In this work, we propose a novel Neuro Rehabilitation System for children with movement disorders, that is based on serious games in immersive virtual reality with haptic feedback. The system design aims to enhance involvement and engagement of patients, to provide congruent multi-sensory afferent feedback during motor exercises, and to benefit from the flexibility of virtual reality in adapting exercises to the patient's needs. We present a feasibility study of the method conducted through an experimental rehabilitation session in a group of 4 children with Cerebral Palsy and Developmental Dyspraxia, 4 Typically Developing children and 4 healthy adults. Subjects and patients were able to accomplish the proposed rehabilitation session and average performance of the motor exercises in patients were lower, although comparable, to healthy subjects. Together with positive comments reported by children after the rehabilitation session, results are encouraging for application of the method in a prolonged rehabilitation treatment.

  3. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation

    PubMed Central

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-01-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria – 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to the mechanisms of the normal rhythm and AF arrhythmogenesis are investigated and discussed. The 3D model of the atria itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and arrhythmogenesis. Results of such simulations can be directly compared with experimental electrophysiological and endocardial mapping data, as well as clinical ECG recordings. More importantly, the virtual human atria can provide validated means for directly dissecting 3D excitation propagation processes within the atrial walls from an in vivo whole heart, which are beyond the current technical capabilities of experimental or clinical set-ups. PMID:21762716

  4. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023

  5. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    PubMed

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  6. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    NASA Astrophysics Data System (ADS)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  7. [Effectiveness of a programme based on a virtual reality game for cognitive enhancement in schizophrenia].

    PubMed

    López-Martín, Olga; Segura Fragoso, Antonio; Rodríguez Hernández, Marta; Dimbwadyo Terrer, Iris; Polonio-López, Begoña

    2016-01-01

    To evaluate the effectiveness of a programme based on a virtual reality game to improve cognitive domains in patients with schizophrenia. A randomized controlled trial was conducted in 40 patients with schizophrenia, 20 in the experimental group and 20 in the control group. The experimental group received 10 sessions with Nintendo Wii(®) for 5 weeks, 50 minutes/session, 2 days/week in addition to conventional treatment. The control group received conventional treatment only. Statistically significant differences in the T-Score were found in 5 of the 6 cognitive domains assessed: processing speed (F=12.04, p=0.001), attention/vigilance (F=12.75, p=0.001), working memory (F=18.86, p <0.01), verbal learning (F=7.6, p=0.009), visual learning (F=3.6, p=0.064), and reasoning and problem solving (F=11.08, p=0.002). Participation in virtual reality interventions aimed at cognitive training have great potential for significant gains in different cognitive domains assessed in patients with schizophrenia. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  8. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  9. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  10. The Effects of Virtual Weather on Presence

    NASA Astrophysics Data System (ADS)

    Wissmath, Bartholomäus; Weibel, David; Mast, Fred W.

    In modern societies people tend to spend more time in front of computer screens than outdoors. Along with an increasing degree of realism displayed in digital environments, simulated weather appears more and more realistic and more often implemented in digital environments. Research has found that the actual weather influences behavior and mood. In this paper we experimentally examine the effects of virtual weather on the sense of presence. Thereby we found individuals (N=30) to immerse deeper in digital environments displaying fair weather conditions than in environments displaying bad weather. We also investigate whether virtual weather can influence behavior. The possible implications of theses findings for presence theory as well as digital environment designers will be discussed.

  11. Enhancing the Induction Skill of Deaf and Hard-of-Hearing Children with Virtual Reality Technology.

    PubMed

    Passig, D; Eden, S

    2000-01-01

    Many researchers have found that for reasoning and reaching a reasoned conclusion, particularly when the process of induction is required, deaf and hard-of-hearing children have unusual difficulty. The purpose of this study was to investigate whether the practice of rotating virtual reality (VR) three-dimensional (3D) objects will have a positive effect on the ability of deaf and hard-of-hearing children to use inductive processes when dealing with shapes. Three groups were involved in the study: (1) experimental group, which included 21 deaf and hard-of-hearing children, who played a VR 3D game; (2) control group I, which included 23 deaf and hard-of-hearing children, who played a similar two-dimensional (2D) game (not VR game); and (3) control group II of 16 hearing children for whom no intervention was introduced. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved inductive thinking used by the experimental group for shapes as compared with the first control group, who did not significantly improve their performance. Also, prior to the VR 3D experience, the deaf and hard-of-hearing children attained lower scores in inductive abilities than the children with normal hearing, (control group II). The results for the experimental group, after the VR 3D experience, improved to the extent that there was no noticeable difference between them and the children with normal hearing.

  12. Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis.

    PubMed

    Fuentes, María Antonia; Borrego, Adrián; Latorre, Jorge; Colomer, Carolina; Alcañiz, Mariano; Sánchez-Ledesma, María José; Noé, Enrique; Llorens, Roberto

    2018-04-02

    Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.

  13. The Effect of the Physical Presence of Co-Players on Perceived Ostracism and Event-Related Brain Potentials in the Cyberball Paradigm

    PubMed Central

    Weschke, Sarah; Niedeggen, Michael

    2013-01-01

    The affective and cognitive mechanisms elicited by the experience of social exclusion—or ostracism—have recently been explored using behavioral and neurocognitive methods. Most of the studies took advantage of the Cyberball paradigm, a virtual ball tossing game with presumed co-players connected via the internet. Consistent behavioral findings indicate that exclusion obviously threatens fundamental social needs (belonging, self-esteem, meaningful existence, and control) and lowers mood. In this study, we followed the question whether the credibility of the setting affects the processing of social exclusion. In contrast to a control group (standard Cyberball setup), co-players were physically present in an experimental group. Although the credibility of the virtual ball tossing game was significantly enhanced in the experimental group, self-reported negative mood and need threat were not enhanced compared to the control group. Event-related brain potentials (ERPs), however, indicated a differential processing of social exclusion. The N2 amplitude triggered by occasional ball receptions was significantly reduced in the experimental group. This effect was restricted for an early time range (130–210 ms), and did not extend to the following P3 components. The ERP effect in the N2 time range can be related to a differential social reward processing in ostracism if co-players are physically present. The lack of a corresponding correlate in the behavioral data indicates that some facets of ostracism processing are not covered by questionnaire data. PMID:23951269

  14. ExperimentaLab: A Virtual Platform to Enhance Entrepreneurial Education through Training

    ERIC Educational Resources Information Center

    Iscaro, Valentina; Castaldi, Laura; Sepe, Enrica

    2017-01-01

    With a view to enhancing the entrepreneurial activity of universities, the authors explore the concepts and features of the "experimental lab", presenting it as an effective means of supporting entrepreneurial training programmes and helping students to turn ideas into actual start-ups. In this context, the term experimental lab refers…

  15. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2009-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  16. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2010-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  17. Steering a virtual blowfly: simulation of visual pursuit.

    PubMed

    Boeddeker, Norbert; Egelhaaf, Martin

    2003-09-22

    The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.

  18. Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2008-12-01

    This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.

  19. Virtual Proprioception for eccentric training.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2017-07-01

    Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.

  20. High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.

    2009-11-01

    We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.

  1. Virtual microphone sensing through vibro-acoustic modelling and Kalman filtering

    NASA Astrophysics Data System (ADS)

    van de Walle, A.; Naets, F.; Desmet, W.

    2018-05-01

    This work proposes a virtual microphone methodology which enables full field acoustic measurements for vibro-acoustic systems. The methodology employs a Kalman filtering framework in order to combine a reduced high-fidelity vibro-acoustic model with a structural excitation measurement and small set of real microphone measurements on the system under investigation. By employing model order reduction techniques, a high order finite element model can be converted in a much smaller model which preserves the desired accuracy and maintains the main physical properties of the original model. Due to the low order of the reduced-order model, it can be effectively employed in a Kalman filter. The proposed methodology is validated experimentally on a strongly coupled vibro-acoustic system. The virtual sensor vastly improves the accuracy with respect to regular forward simulation. The virtual sensor also allows to recreate the full sound field of the system, which is very difficult/impossible to do through classical measurements.

  2. Sheet metals characterization using the virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2018-05-01

    In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.

  3. Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease

    PubMed Central

    Cipresso, Pietro; Albani, Giovanni; Serino, Silvia; Pedroli, Elisa; Pallavicini, Federica; Mauro, Alessandro; Riva, Giuseppe

    2014-01-01

    Introduction: Several recent studies have pointed out that early impairment of executive functions (EFs) in Parkinson’s Disease (PD) may be a crucial marker to detect patients at risk for developing dementia. The main objective of this study was to compare the performances of PD patients with mild cognitive impairment (PD-MCI) with PD patients with normal cognition (PD-NC) and a control group (CG) using a traditional assessment of EFs and the Virtual Multiple Errands Test (VMET), a virtual reality (VR)-based tool. In order to understand which subcomponents of EFs are early impaired, this experimental study aimed to investigate specifically which instrument best discriminates among these three groups. Materials and methods: The study included three groups of 15 individuals each (for a total of 45 participants): 15 PD-NC; 15 PD-MCI, and 15 cognitively healthy individuals (CG). To assess the global neuropsychological functioning and the EFs, several tests (including the Mini Mental State Examination (MMSE), Clock Drawing Test, and Tower of London test) were administered to the participants. The VMET was used for a more ecologically valid neuropsychological evaluation of EFs. Results: Findings revealed significant differences in the VMET scores between the PD-NC patients vs. the controls. In particular, patients made more errors in the tasks of the VMET, and showed a poorer ability to use effective strategies to complete the tasks. This VMET result seems to be more sensitive in the early detection of executive deficits because these two groups did not differ in the traditional assessment of EFs (neuropsychological battery). Conclusion: This study offers initial evidence that a more ecologically valid evaluation of EFs is more likely to lead to detection of subtle executive deficits. PMID:25538578

  4. Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson's disease.

    PubMed

    Cipresso, Pietro; Albani, Giovanni; Serino, Silvia; Pedroli, Elisa; Pallavicini, Federica; Mauro, Alessandro; Riva, Giuseppe

    2014-01-01

    Several recent studies have pointed out that early impairment of executive functions (EFs) in Parkinson's Disease (PD) may be a crucial marker to detect patients at risk for developing dementia. The main objective of this study was to compare the performances of PD patients with mild cognitive impairment (PD-MCI) with PD patients with normal cognition (PD-NC) and a control group (CG) using a traditional assessment of EFs and the Virtual Multiple Errands Test (VMET), a virtual reality (VR)-based tool. In order to understand which subcomponents of EFs are early impaired, this experimental study aimed to investigate specifically which instrument best discriminates among these three groups. The study included three groups of 15 individuals each (for a total of 45 participants): 15 PD-NC; 15 PD-MCI, and 15 cognitively healthy individuals (CG). To assess the global neuropsychological functioning and the EFs, several tests (including the Mini Mental State Examination (MMSE), Clock Drawing Test, and Tower of London test) were administered to the participants. The VMET was used for a more ecologically valid neuropsychological evaluation of EFs. Findings revealed significant differences in the VMET scores between the PD-NC patients vs. the controls. In particular, patients made more errors in the tasks of the VMET, and showed a poorer ability to use effective strategies to complete the tasks. This VMET result seems to be more sensitive in the early detection of executive deficits because these two groups did not differ in the traditional assessment of EFs (neuropsychological battery). This study offers initial evidence that a more ecologically valid evaluation of EFs is more likely to lead to detection of subtle executive deficits.

  5. Genomic Quantitative Genetics to Study Evolution in the Wild.

    PubMed

    Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin

    2017-12-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Building a responsive teacher: how temporal contingency of gaze interaction influences word learning with virtual tutors

    PubMed Central

    Lee, Hanju; Kanakogi, Yasuhiro; Hiraki, Kazuo

    2015-01-01

    Animated pedagogical agents are lifelike virtual characters designed to augment learning. A review of developmental psychology literature led to the hypothesis that the temporal contingency of such agents would promote human learning. We developed a Pedagogical Agent with Gaze Interaction (PAGI), an experimental animated pedagogical agent that engages in gaze interaction with students. In this study, university students learned words of a foreign language, with temporally contingent PAGI (live group) or recorded version of PAGI (recorded group), which played pre-recorded sequences from live sessions. The result revealed that students in the live group scored considerably better than those in the recorded group. The finding indicates that incorporating temporal contingency of gaze interaction from a pedagogical agent has positive effect on learning. PMID:26064584

  7. Virtual reality for obsessive-compulsive disorder: past and the future.

    PubMed

    Kim, Kwanguk; Kim, Chan-Hyung; Kim, So-Yeon; Roh, Daeyoung; Kim, Sun I

    2009-09-01

    The use of computers, especially for virtual reality (VR), to understand, assess, and treat various mental health problems has been developed for the last decade, including application for phobia, post-traumatic stress disorder, attention deficits, and schizophrenia. However, the number of VR tools addressing obsessive-compulsive disorder (OCD) is still lacking due to the heterogeneous symptoms of OCD and poor understanding of the relationship between VR and OCD. This article reviews the empirical literatures for VR tools in the future, which involve applications for both clinical work and experimental research in this area, including examining symptoms using VR according to OCD patients' individual symptoms, extending OCD research in the VR setting to also study behavioral and physiological correlations of the symptoms, and expanding the use of VR for OCD to cognitive-behavioral intervention.

  8. 3D gaze tracking system for NVidia 3D Vision®.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2013-01-01

    Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.

  9. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  10. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies.

    PubMed

    Bagherzadeh, Kowsar; Shirgahi Talari, Faezeh; Sharifi, Amirhossein; Ganjali, Mohammad Reza; Saboury, Ali Akbar; Amanlou, Massoud

    2015-01-01

    Tyrosinase, a widely spread enzyme in micro-organisms, animals, and plants, participates in two rate-limiting steps in melanin formation pathway which is responsible for skin protection against UV lights' harm whose functional deficiency result in serious dermatological diseases. This enzyme seems to be responsible for neuromelanin formation in human brain as well. In plants, the enzyme leads the browning pathway which is commonly observed in injured tissues that is economically very unfavorable. Among different types of tyrosinase, mushroom tyrosinase has the highest homology with the mammalian tyrosinase and the only commercial tyrosinase available. In this study, ligand-based pharmacophore drug discovery method was applied to rapidly identify mushroom tyrosinase enzyme inhibitors using virtual screening. The model pharmacophore of essential interactions was developed and refined studying already experimentally discovered potent inhibitors employing Docking analysis methodology. After pharmacophore virtual screening and binding modes prediction, 14 compounds from ZINC database were identified as potent inhibitors of mushroom tyrosinase which were classified into five groups according to their chemical structures. The inhibition behavior of the discovered compounds was further studied through Classical Molecular Dynamic Simulations and the conformational changes induced by the presence of the studied ligands were discussed and compared to those of the substrate, tyrosine. According to the obtained results, five novel leads are introduced to be further optimized or directly used as potent inhibitors of mushroom tyrosinase.

  11. Searching for new leads to treat epilepsy. Target-based virtual screening for the discovery of anticonvulsant agents.

    PubMed

    Palestro, Pablo; Enrique, Nicolas; Goicoechea, Sofia; Villalba, María Luisa; Sabatier, Laureano Leonel; Martin, Pedro; Milesi, Veronica; Bruno-Blanch, Luis E; Gavernet, Luciana

    2018-06-05

    The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by MES-test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N,N´-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in-vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin and N.N´-diphenethylsulfamide.

  12. Tactile Radar: experimenting a computer game with visually disabled.

    PubMed

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  13. Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics

    PubMed Central

    Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R

    2017-01-01

    Background Virtual focus groups—such as online chat and video groups—are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. Objective To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. Methods We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Results Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Conclusions Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. PMID:28330832

  14. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Ho; Siviour, Clive R.

    2015-09-01

    Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM) in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively) medium (drop-weight) and high (gas-gun) strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  15. A Novel Artificial Bee Colony Approach of Live Virtual Machine Migration Policy Using Bayes Theorem

    PubMed Central

    Xu, Gaochao; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24385877

  16. A virtual-system coupled multicanonical molecular dynamics simulation: Principles and applications to free-energy landscape of protein-protein interaction with an all-atom model in explicit solvent

    NASA Astrophysics Data System (ADS)

    Higo, Junichi; Umezawa, Koji; Nakamura, Haruki

    2013-05-01

    We propose a novel generalized ensemble method, a virtual-system coupled multicanonical molecular dynamics (V-McMD), to enhance conformational sampling of biomolecules expressed by an all-atom model in an explicit solvent. In this method, a virtual system, of which physical quantities can be set arbitrarily, is coupled with the biomolecular system, which is the target to be studied. This method was applied to a system of an Endothelin-1 derivative, KR-CSH-ET1, known to form an antisymmetric homodimer at room temperature. V-McMD was performed starting from a configuration in which two KR-CSH-ET1 molecules were mutually distant in an explicit solvent. The lowest free-energy state (the most thermally stable state) at room temperature coincides with the experimentally determined native complex structure. This state was separated to other non-native minor clusters by a free-energy barrier, although the barrier disappeared with elevated temperature. V-McMD produced a canonical ensemble faster than a conventional McMD method.

  17. A novel artificial bee colony approach of live virtual machine migration policy using Bayes theorem.

    PubMed

    Xu, Gaochao; Ding, Yan; Zhao, Jia; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  18. Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a Docked Analysis Facility for ALICE

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.

  19. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.

    PubMed

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  20. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  1. Virtual action and real action have different impacts on comprehension of concrete verbs

    PubMed Central

    Repetto, Claudia; Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    In the last decade, many results have been reported supporting the hypothesis that language has an embodied nature. According to this theory, the sensorimotor system is involved in linguistic processes such as semantic comprehension. One of the cognitive processes emerging from the interplay between action and language is motor simulation. The aim of the present study is to deepen the knowledge about the simulation of action verbs during comprehension in a virtual reality setting. We compared two experimental conditions with different motor tasks: one in which the participants ran in a virtual world by moving the joypad knob with their left hand (virtual action performed with their feet plus real action performed with the hand) and one in which they only watched a video of runners and executed an attentional task by moving the joypad knob with their left hand (no virtual action plus real action performed with the hand). In both conditions, participants had to perform a concomitant go/no-go semantic task, in which they were asked to press a button (with their right hand) when presented with a sentence containing a concrete verb, and to refrain from providing a response when the verb was abstract. Action verbs described actions performed with hand, foot, or mouth. We recorded electromyography (EMG) latencies to measure reaction times of the linguistic task. We wanted to test if the simulation occurs, whether it is triggered by the virtual or the real action, and which effect it produces (facilitation or interference). Results underlined that those who virtually ran in the environment were faster in understanding foot-action verbs; no simulation effect was found for the real action. The present findings are discussed in the light of the embodied language framework, and a hypothesis is provided that integrates our results with those in literature. PMID:25759678

  2. SedWorks: A 3-D visualisation software package to help students link surface processes with depositional product

    NASA Astrophysics Data System (ADS)

    Jones, M. A.; Edwards, A.; Boulton, P.

    2010-12-01

    Helping students to develop a cognitive and intuitive feel for the different temporal and spatial scales of processes through which the rock record is assembled is a primary goal of geoscience teaching. SedWorks is a 3-D virtual geoscience world that integrates both quantitative modelling and field-based studies into one interactive package. The program aims to help students acquire scientific content, cultivate critical thinking skills, and hone their problem solving ability, while also providing them with the opportunity to practice the activities undertaken by professional earth scientists. SedWorks is built upon a game development platform used for constructing interactive 3-D applications. Initially the software has been developed for teaching the sedimentology component of a Geoscience degree and consists of a series of continents or land masses each possessing sedimentary environments which the students visit on virtual field trips. The students are able to interact with the software to collect virtual field data from both the modern environment and the stratigraphic record, and to formulate hypotheses based on their observations which they can test through virtual physical experimentation within the program. The program is modular in design in order to enhance its adaptability and to allow scientific content to be updated so that the knowledge and skills acquired are at the cutting edge. We will present an example module in which students undertake a virtual field study of a 2-km long stretch of a river to observe how sediment is transported and deposited. On entering the field area students are able to observe different bedforms in different parts of the river as they move up- and down-stream, as well as in and out of the river. As they explore, students discover ‘hot spots’ at which particular tools become available to them. This includes tools for measuring the physical parameters of the flow and sediment bed (e.g. velocity, depth, grain size, bed slope), a zoom-in/zoom-out function (to increase or decrease the resolution of the observations, e.g. zoom-in to observe the motion of individual grains on the bed) and a sectioning tool (to allow students to cut a cross-section through a bedform to observe the sedimentary structure being created). Students are encouraged to make notes of their observations in a field notebook, as they would in the real world. Based on their observations, students form hypotheses about the relationship between the physical attributes of the flow and the way in which sediment is transported, bedforms produced and sedimentary structures created. They are able to test these hypotheses using a virtual flume in an experimental field station, conveniently located within the field area. Concepts investigated by the students during the virtual field study include controls on bedload sediment transport, bedform phase diagrams, flow structure within channels (and its effect on sediment erosion and deposition), fluvial facies models and controls on facies architecture, and landscape evolution over different temporal and spatial scales.

  3. Center of Excellence for Remote and Medically Under-Served Areas

    DTIC Science & Technology

    2008-04-11

    was an experimental, quantitative , qualitative, descriptive research study related to audio, data and video transmission from the ambulance to the... posttest score. Both the pretest and posttest questions were generated randomly from a bank of XXX course-related test questions. The analysis below...shows the mean for the pretest , posttest , and difference scores for the classroom group, the virtual group, and the total group. (Note: Two of the

  4. QSAR Methods.

    PubMed

    Gini, Giuseppina

    2016-01-01

    In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

  5. Shared virtual environments for telerehabilitation.

    PubMed

    Popescu, George V; Burdea, Grigore; Boian, Rares

    2002-01-01

    Current VR telerehabilitation systems use offline remote monitoring from the clinic and patient-therapist videoconferencing. Such "store and forward" and video-based systems cannot implement medical services involving patient therapist direct interaction. Real-time telerehabilitation applications (including remote therapy) can be developed using a shared Virtual Environment (VE) architecture. We developed a two-user shared VE for hand telerehabilitation. Each site has a telerehabilitation workstation with a videocamera and a Rutgers Master II (RMII) force feedback glove. Each user can control a virtual hand and interact hapticly with virtual objects. Simulated physical interactions between therapist and patient are implemented using hand force feedback. The therapist's graphic interface contains several virtual panels, which allow control over the rehabilitation process. These controls start a videoconferencing session, collect patient data, or apply therapy. Several experimental telerehabilitation scenarios were successfully tested on a LAN. A Web-based approach to "real-time" patient telemonitoring--the monitoring portal for hand telerehabilitation--was also developed. The therapist interface is implemented as a Java3D applet that monitors patient hand movement. The monitoring portal gives real-time performance on off-the-shelf desktop workstations.

  6. Hybrid polylingual object model: an efficient and seamless integration of Java and native components on the Dalvik virtual machine.

    PubMed

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.

  7. Customizing G Protein-coupled receptor models for structure-based virtual screening.

    PubMed

    de Graaf, Chris; Rognan, Didier

    2009-01-01

    This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.

  8. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.

    PubMed

    Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin

    2014-09-01

    Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®

  9. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  10. Learning inverse kinematics: reduced sampling through decomposition into virtual robots.

    PubMed

    de Angulo, Vicente Ruiz; Torras, Carme

    2008-12-01

    We propose a technique to speedup the learning of the inverse kinematics of a robot manipulator by decomposing it into two or more virtual robot arms. Unlike previous decomposition approaches, this one does not place any requirement on the robot architecture, and thus, it is completely general. Parametrized self-organizing maps are particularly adequate for this type of learning, and permit comparing results directly obtained and through the decomposition. Experimentation shows that time reductions of up to two orders of magnitude are easily attained.

  11. Virtual reality: A new track in psychological research.

    PubMed

    de la Rosa, Stephan; Breidt, Martin

    2018-05-10

    One major challenge of social interaction research is to achieve high experimental control over social interactions to allow for rigorous scientific reasoning. Virtual reality (VR) promises this level of control. Pan and Hamilton guide us with a detailed review on existing and future possibilities and challenges of using VR for social interaction research. Here, we extend the discussion to methodological and practical implications when using VR. © 2018 The Authors. British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  12. Virtual reality in laparoscopic surgery.

    PubMed

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  13. Mobile Virtual Private Networking

    NASA Astrophysics Data System (ADS)

    Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny

    Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.

  14. Virtual Interactive Classroom: A New Technology for Distance Learning Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Babula, Maria

    1999-01-01

    The Virtual Interactive Classroom (VIC) allows Internet users, specifically students, to remotely control and access data from scientific equipment. This is a significant advantage to school systems that cannot afford experimental equipment, have Internet access, and are seeking to improve science and math scores with current resources. A VIC Development Lab was established at Lewis to demonstrate that scientific equipment can be controlled by remote users over the Internet. Current projects include a wind tunnel, a room camera, a science table, and a microscope.

  15. Integration and Implementation of Web Simulators in Experimental e-Learning: An Application for Capacity Auctions

    ERIC Educational Resources Information Center

    Otamendi, Francisco Javier; Doncel, Luis Miguel

    2013-01-01

    Experimental teaching in general, and simulation in particular, have primarily been used in lecture rooms but in the future must also be adapted to e-learning. The integration of web simulators into virtual learning environments, coupled with specific supporting video documentation and the use of videoconference tools, results in robust…

  16. Experimental Support for Evaluation of the Victoria Class Virtual Submarine (VCVS)

    DTIC Science & Technology

    2012-03-01

    comportementales de ce genre . y A P P R O V A L S H E E T Document No. 5283-001 Version 03 Document Name: Experimental Support for Evaluation...encountered that reduced access to HMCS Corner Brook: 11  Cold moves to charge submarine batteries;  Filming events; and,  Slight delays due

  17. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses that can be offered for curricula in Earth Sciences. The primary goal is to open up a research laboratory such as the one available at Stanford to promising students worldwide who are currently left out of such educational resources.

  18. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments.

    PubMed

    Mania, Katerina; Wooldridge, Dave; Coxon, Matthew; Robinson, Andrew

    2006-01-01

    Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual and interaction fidelity of immersive virtual environments on memory awareness states. A between groups experiment was carried out to explore the effect of rendering quality on location-based recognition memory for objects and associated states of awareness. The experimental space, consisting of two interconnected rooms, was rendered either flat-shaded or using radiosity rendering. The computer graphics simulations were displayed on a stereo head-tracked Head Mounted Display. Participants completed a recognition memory task after exposure to the experimental space and reported one of four states of awareness following object recognition. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection, and also included guesses. Experimental results revealed variations in the distribution of participants' awareness states across conditions while memory performance failed to reveal any. Interestingly, results revealed a higher proportion of recollections associated with mental imagery in the flat-shaded condition. These findings comply with similar effects revealed in two earlier studies summarized here, which demonstrated that the less "naturalistic" interaction interface or interface of low interaction fidelity provoked a higher proportion of recognitions based on visual mental images.

  19. Application of virtual distances methodology to laser tracker verification with an indexed metrology platform

    NASA Astrophysics Data System (ADS)

    Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.

    2015-11-01

    High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.

  20. Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system

    NASA Astrophysics Data System (ADS)

    Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd

    2016-10-01

    Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.

  1. Augmented reality glass-free three-dimensional display with the stereo camera

    NASA Astrophysics Data System (ADS)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  2. Virtual reality robotic telesurgery simulations using MEMICA haptic system

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavroidis, Constantinos; Bouzit, Mourad; Dolgin, Benjamin; Harm, Deborah L.; Kopchok, George E.; White, Rodney

    2001-01-01

    The authors conceived a haptic mechanism called MEMICA (Remote Mechanical Mirroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace haptic system. The development of a novel MEMICA gloves and virtual reality models are being explored to allow simulation of telesurgery and other applications. The MEMICA gloves are being designed to provide intuitive mirroring of the conditions at a virtual site where a robot simulates the presence of a human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and electrically controlled force and stiffness (ECFS) actuators that are based on the use of Electro-Rheological Fluids (ERF. In this paper the design of the MEMICA system and initial experimental results are presented.

  3. Dielectric dispersion for short double-strand DNA.

    PubMed

    Omori, Shinji; Katsumoto, Yoichi; Yasuda, Akio; Asami, Koji

    2006-05-01

    A complex dielectric constant for double-strand DNA molecules with a length of not greater than 120 base pairs in an aqueous solution containing 30 mM NaCl was systematically measured as a function of chain length in such a way that experimental uncertainties associated with the molecular-weight distribution of specimens were virtually excluded. In contrast to the past experimental and theoretical studies for much longer DNA molecules, both the molar specific dielectric increment and the relaxation time are proportional to the chain length. These scaling rules cannot be accounted for by any theory so far proposed that gives analytical expressions for those two quantities in the long-chain limit.

  4. Computational method for multi-modal microscopy based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao

    2017-02-01

    In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.

  5. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure

    PubMed Central

    vom Saal, Frederick S.; Welshons, Wade V.

    2016-01-01

    There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources. PMID:25304273

  6. Virtual Viewing Time: The Relationship between Presence and Sexual Interest in Androphilic and Gynephilic Men

    PubMed Central

    Fromberger, Peter; Meyer, Sabrina; Kempf, Christina; Jordan, Kirsten; Müller, Jürgen L.

    2015-01-01

    Virtual Reality (VR) has successfully been used in the research of human behavior for more than twenty years. The main advantage of VR is its capability to induce a high sense of presence. This results in emotions and behavior which are very close to those shown in real situations. In the context of sex research, only a few studies have used high-immersive VR so far. The ones that did can be found mostly in the field of forensic psychology. Nevertheless, the relationship between presence and sexual interest still remains unclear. The present study is the first to examine the advantages of high-immersive VR in comparison to a conventional standard desktop system regarding their capability to measure sexual interest. 25 gynephilic and 20 androphilic healthy men underwent three experimental conditions, which differed in their ability to induce a sense of presence. In each condition, participants were asked to rate ten male and ten female virtual human characters regarding their sexual attractiveness. Without their knowledge, the subjects’ viewing time was assessed throughout the rating. Subjects were then asked to rate the sense of presence they had experienced as well as their perceived realism of the characters. Results suggested that stereoscopic viewing can significantly enhance the subjective sexual attractiveness of sexually relevant characters. Furthermore, in all three conditions participants looked significantly longer at sexually relevant virtual characters than at sexually non-relevant ones. The high immersion condition provided the best discriminant validity. From a statistical point of view, however, the sense of presence had no significant influence on the discriminant validity of the viewing time task. The study showed that high-immersive virtual environments enhance realism ratings as well as ratings of sexual attractiveness of three-dimensional human stimuli in comparison to standard desktop systems. Results also show that viewing time seems to be influenced neither by sexual attractiveness nor by realism of stimuli. This indicates how important task specific mechanisms of the viewing time effect are. PMID:25992790

  7. Virtual containment system for composite flywheels

    NASA Astrophysics Data System (ADS)

    Shiue, Fuh-Wen

    2001-07-01

    There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.

  8. Experimental vibroacoustic testing of plane panels using synthesized random pressure fields.

    PubMed

    Robin, Olivier; Berry, Alain; Moreau, Stéphane

    2014-06-01

    The experimental reproduction of random pressure fields on a plane panel and corresponding induced vibrations is studied. An open-loop reproduction strategy is proposed that uses the synthetic array concept, for which a small array element is moved to create a large array by post-processing. Three possible approaches are suggested to define the complex amplitudes to be imposed to the reproduction sources distributed on a virtual plane facing the panel to be tested. Using a single acoustic monopole, a scanning laser vibrometer and a baffled simply supported aluminum panel, experimental vibroacoustic indicators such as the Transmission Loss for Diffuse Acoustic Field, high-speed subsonic and supersonic Turbulent Boundary Layer excitations are obtained. Comparisons with simulation results obtained using a commercial software show that the Transmission Loss estimation is possible under both excitations. Moreover and as a complement to frequency domain indicators, the vibroacoustic behavior of the panel can be studied in the wave number domain.

  9. A virtual reality intervention (Second Life) to improve weight maintenance: Rationale and design for an 18-month randomized trial.

    PubMed

    Sullivan, D K; Goetz, J R; Gibson, C A; Mayo, M S; Washburn, R A; Lee, Y; Ptomey, L T; Donnelly, J E

    2016-01-01

    Despite the plethora of weight loss programs available in the US, the prevalence of overweight and obesity (BMI≥25kg/m(2)) among US adults continues to rise at least, in part, due to the high probability of weight regain following weight loss. Thus, the development and evaluation of novel interventions designed to improve weight maintenance are clearly needed. Virtual reality environments offer a promising platform for delivering weight maintenance interventions as they provide rapid feedback, learner experimentation, real-time personalized task selection and exploration. Utilizing virtual reality during weight maintenance allows individuals to engage in repeated experiential learning, practice skills, and participate in real-life scenarios without real-life repercussions, which may diminish weight regain. We will conduct an 18-month effectiveness trial (6 months weight loss, 12 months weight maintenance) in 202 overweight/obese adults (BMI 25-44.9kg/m(2)). Participants who achieve ≥5% weight loss following a 6month weight loss intervention delivered by phone conference call will be randomized to weight maintenance interventions delivered by conference call or conducted in a virtual environment (Second Life®). The primary aim of the study is to compare weight change during maintenance between the phone conference call and virtual groups. Secondarily, potential mediators of weight change including energy and macronutrient intake, physical activity, consumption of fruits and vegetables, self-efficacy for both physical activity and diet, and attendance and completion of experiential learning assignments will also be assessed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A virtual reality intervention (second life) to improve weight maintenance: Rationale and design for an 18 month randomized trial

    PubMed Central

    Sullivan, DK; Goetz, JR; Gibson, CA; Mayo, MS; Washburn, RA; Lee, Y; Ptomey, LT; Donnelly, JE

    2015-01-01

    Despite the plethora of weight loss programs available in the US, the prevalence of overweight and obesity (BMI ≥ 25 kg/m2) among US adults continues to rise at least, in part, due to the high probability of weight regain following weight loss. Thus, the development and evaluation of novel interventions designed to improve weight maintenance is clearly needed. Virtual reality environments offer a promising platform for delivering weight maintenance interventions as they provide rapid feedback, learner experimentation, real-time personalized task selection and exploration. Utilizing virtual reality during weight maintenance allows individuals to engage in repeated experiential learning, practice skills, and participate in real-life scenarios without reallife repercussions, which may diminish weight regain. We will conduct an 18-month effectiveness trial (6 months weight loss, 12 months weight maintenance) in 202 overweight/obese adults (BMI 25–44.9 kg/m2). Participants who achieve ≥ 5% weight loss following a 6 month weight loss intervention delivered by phone conference call will be randomized to weight maintenance interventions delivered by conference call or conducted in a virtual environment (Second Life®). The primary aim of the study is to compare weight change during maintenance between the phone conference call and virtual groups. Secondarily, potential mediators of weight change including energy and macronutrient intake, physical activity, consumption of fruits and vegetables, self-efficacy for both physical activity and diet, and attendance and completion of experiential learning assignments will also be assessed. PMID:26616535

  11. Using virtual reality to explore self-regulation in high-risk settings.

    PubMed

    Kniffin, Tracey C; Carlson, Charles R; Ellzey, Antonio; Eisenlohr-Moul, Tory; Beck, Kelly Battle; McDonald, Renee; Jouriles, Ernest N

    2014-10-01

    Virtual reality (VR) models allow investigators to explore high-risk situations carefully in the laboratory using physiological assessment strategies and controlled conditions not available in field settings. This article introduces the use of a virtual experience to examine the influence of self-regulatory skills training on female participants' reactions to a high-risk encounter with an aggressive male. Sixty-three female participants were recruited for the study. Demographic data indicated that 54% of the participants were not currently in a relationship, 36.5% were in a committed relationship, and 9.5% were occasionally dating. After obtaining informed consent, participants were assigned randomly to either a diaphragmatic breathing training condition or an attention control condition. Results indicated that both groups rated the virtual environment as equally realistic; the aggressive advances of the male were also perceived as equally real across the two experimental groups. Physiological data indicated that there were no differences between the groups on respiration or cardiovascular measures during baseline or during the VR task. After the VR experience, however, the participants in the breathing training condition had lower respiration rates and higher heart rate variability measures than those in the control condition. The results suggest that VR platforms provide a realistic and challenging environment to examine how self-regulation procedures may influence behavioral outcomes. Real-time dynamic engagement in a virtual setting affords investigators with an opportunity to evaluate the utility of self-regulatory skills training for improving safety in situations where there are uncertain and risky outcomes. © The Author(s) 2014.

  12. Quality of experience in real and virtual environments: some suggestions for the development of positive technologies.

    PubMed

    Gaggioli, Andrea

    2012-01-01

    What does one feel when one uses virtual reality? How does this experience differ from the experience associated with "real life" activities and situations? To answer these questions, we used the Experience Sampling Method (ESM), a procedure that allows researchers to investigate the daily fluctuations in the quality of experience through on-line self reports that participants fill out during daily life. The investigation consisted in one-week ESM observation (N = 42). During this week, participants underwent two virtual reality sessions: Immediately after the exposure to virtual environments, they were asked to complete a ESM report. For data analysis, experiential variables were aggregated into four dimensions: Mood, Engagement, Confidence, and Intrinsic Motivation Intrinsic Motivation. Findings showed that virtual experience is characterized by a specific configuration, which comprises significantly positive values for affective and cognitive components. In particular, positive scores of Mood suggest that participants perceived VR as an intrinsically pleasurable activity, while positive values of Engagement indicate that the use of VR and the experimental task provided valid opportunities for action and high skill investment. Furthermore, results showed that virtual experience is associated with Flow, a state of consciousness characterized by narrowed focus of attention, deep concentration, positive affect and intrinsic reward. Implications for VR research and practice are discussed.

  13. The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking

    NASA Astrophysics Data System (ADS)

    Dhitareka, P. H.; Firman, H.; Rusyati, L.

    2018-05-01

    This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.

  14. The virtual slice setup.

    PubMed

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  15. [Experimental study on ergonomical color matching design of virtual crew cabin layout in manned spacecraft].

    PubMed

    Zhou, Q X; Qu, Z S; Wang, C H; Jiang, G H

    2001-12-01

    Objective. To approach general principles of color matching for crew module layout and to provide its ergonomical evaluation with basic data. Method. First, according to some ergonomic rules a virtual reality experimental system was set up, then 64 subjects of different ages and with some background of spaceflight were offered a color matching example according to their own choice in advance. Finally, all the hues, saturations, and lightnesses of the selected colors and their total number were statistically analyzed by SPSS 8.0 software. Result. After choosing the colors for items (standard cabinets, floor, handrails, supports and etc.) in the crew cabin, the mean kinds of color hue matching in the cockpit was 5. In addition, above half of subjects endorsed the example colors but its saturation and lightness were a little higher than those of the example every time. Although its distribution was discrete, there still was a common agreement on color matching (about 50%). Conclusion. When the color matching of crew module in long time flight was ergonomically designed, generally, cool and warm hues should be taken into consideration, and their total number need be controlled to be under 5 so as to satisfy human psychological characters.

  16. Virtual reality and pain management: current trends and future directions

    PubMed Central

    Li, Angela; Montaño, Zorash; Chen, Vincent J; Gold, Jeffrey I

    2011-01-01

    SUMMARY Virtual reality (VR) has been used to manage pain and distress associated with a wide variety of known painful medical procedures. In clinical settings and experimental studies, participants immersed in VR experience reduced levels of pain, general distress/unpleasantness and report a desire to use VR again during painful medical procedures. Investigators hypothesize that VR acts as a nonpharmacologic form of analgesia by exerting an array of emotional affective, emotion-based cognitive and attentional processes on the body’s intricate pain modulation system. While the exact neurobiological mechanisms behind VR’s action remain unclear, investigations are currently underway to examine the complex interplay of cortical activity associated with immersive VR. Recently, new applications, including VR, have been developed to augment evidenced-based interventions, such as hypnosis and biofeedback, for the treatment of chronic pain. This article provides a comprehensive review of the literature, exploring clinical and experimental applications of VR for acute and chronic pain management, focusing specifically on current trends and recent developments. In addition, we propose mechanistic theories highlighting VR distraction and neurobiological explanations, and conclude with new directions in VR research, implications and clinical significance. PMID:21779307

  17. Social Stress Increases Cortisol and Hampers Attention in Adolescents with Excess Weight

    PubMed Central

    Verdejo-Garcia, Antonio; Moreno-Padilla, Maria; Garcia-Rios, M. Carmen; Lopez-Torrecillas, Francisca; Delgado-Rico, Elena; Schmidt-Rio-Valle, Jacqueline; Fernandez-Serrano, Maria J.

    2015-01-01

    Objective To experimentally examine if adolescents with excess weight are more sensitive to social stress and hence more sensitive to harmful effects of stress in cognition. Design and Methods We conducted an experimental study in 84 adolescents aged 12 to 18 years old classified in two groups based on age adjusted Body Mass Index percentile: Normal weight (n=42) and Excess weight (n=42). Both groups were exposed to social stress as induced by the virtual reality version of the Trier Social Stress Task --participants were requested to give a public speech about positive and negative aspects of their personalities in front of a virtual audience. The outcome measures were salivary cortisol levels and performance in cognitive tests before and after the social stressor. Cognitive tests included the CANTAB Rapid Visual Processing Test (measuring attention response latency and discriminability) and the Iowa Gambling Task (measuring decision-making). Results Adolescents with excess weight compared to healthy weight controls displayed increased cortisol response and less improvement of attentional performance after the social stressor. Decision-making performance decreased after the social stressor in both groups. Conclusion Adolescents who are overweight or obese have increased sensitivity to social stress, which detrimentally impacts attentional skills. PMID:25898204

  18. Experimental effective shape control of a powered transfemoral prosthesis.

    PubMed

    Gregg, Robert D; Lenzi, Tommaso; Fey, Nicholas P; Hargrove, Levi J; Sensinger, Jonathon W

    2013-06-01

    This paper presents the design and experimental implementation of a novel feedback control strategy that regulates effective shape on a powered transfemoral prosthesis. The human effective shape is the effective geometry to which the biological leg conforms--through movement of ground reaction forces and leg joints--during the stance period of gait. Able-bodied humans regulate effective shapes to be invariant across conditions such as heel height, walking speed, and body weight, so this measure has proven to be a very useful tool for the alignment and design of passive prostheses. However, leg joints must be actively controlled to assume different effective shapes that are unique to tasks such as standing, walking, and stair climbing. Using our previous simulation studies as a starting point, we model and control the effective shape as a virtual kinematic constraint on the powered Vanderbilt prosthetic leg with a custom instrumented foot. An able-bodied subject used a by-pass adapter to walk on the controlled leg over ground and over a treadmill. These preliminary experiments demonstrate, for the first time, that effective shape (or virtual constraints in general) can be used to control a powered prosthetic leg.

  19. Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction

    NASA Astrophysics Data System (ADS)

    Sulea, Traian; Hogues, Hervé; Purisima, Enrico O.

    2012-05-01

    We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.

  20. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

Top