Sample records for virtual impactor pcvi

  1. Development and characterization of an ice-selecting pumped counterflow virtual impactor (IS-PCVI) to study ice crystal residuals

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.

    2016-08-01

    Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10-30 µm in diameter with small inadvertent intrusion (~  5 %) of unwanted particles.

  2. Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique

    NASA Astrophysics Data System (ADS)

    Schenk, L. P.; Mertes, S.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Schmidt, S.; Schneider, J.; Worringen, A.; Kandler, K.; Bukowiecki, N.; Ebert, M.; Curtius, J.; Stratmann, F.

    2014-10-01

    A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21-1.34 and temperatures between -18 and -26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).

  3. Separation and sampling of ice nucleation chamber generated ice particles by means of the counterflow virtual impactor technique for the characterization of ambient ice nuclei.

    NASA Astrophysics Data System (ADS)

    Schenk, Ludwig; Mertes, Stephan; Kästner, Udo; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nillius, Björn; Worringen, Annette; Kandler, Konrad; Ebert, Martin; Stratmann, Frank

    2014-05-01

    In 2011, the German research foundation (DFG) research group called Ice Nuclei Research Unit (INUIT (FOR 1525, project STR 453/7-1) was established with the objective to achieve a better understanding concerning heterogeneous ice formation. The presented work is part of INUIT and aims for a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nuclei (IN). For this purpose a counterflow virtual impactor (Kulkarni et al., 2011) system (IN-PCVI) was developed and characterized in order to separate and collect ice particles generated in the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) and to release their IN for further analysis. Here the IN-PCVI was used for the inertial separation of the IN counter produced ice particles from smaller drops and interstitial particles. This is realized by a counterflow that matches the FINCH output flow inside the IN-PCVI. The choice of these flows determines the aerodynamic cut-off diameter. The collected ice particles are transferred into the IN-PCVI sample flow where they are completely evaporated in a particle-free and dry carrier air. In this way, the aerosol particles detected as IN by the IN counter can be extracted and distributed to several particle sensors. This coupled setup FINCH, IN-PCVI and aerosol instrumentation was deployed during the INUIT-JFJ joint measurement field campaign at the research station Jungfraujoch (3580m asl). Downstream of the IN-PCVI, the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA; Brands et al., 2011) was attached for the chemical analysis of the atmospheric IN. Also, number concentration and size distribution of IN were measured online (TROPOS) and IN impactor samples for electron microscopy (TU Darmstadt) were taken. Therefore the IN-PCVI was operated with different flow settings than known from literature (Kulkarni et al., 2011), which required a further characterisation of its cut-off-behaviour. Depending on the operation and thus freezing conditions inside FINCH (temperature/supersaturation), IN number concentrations between 1 and 200 per litre were detected by FINCH and a CPC mounted downstream of the IN-PCVI. The ALABAMA spectra of IN showed organic material from biomass burning and mineral dust particles mixed with organic material. The offline electron microscopy revealed that in average 80% of the IN consist of dust and metal oxides. 20 % are carbonaceous material, of which less than 5 % are soot. Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H. (2008). The fast ice nucleus chamber finch. Atmospheric Research, 90:180-186. Brands, M., Kamphus, M., Böttger, T., Schneider, J., Drewnick, F., Roth, A., Curtius, J., Voigt, C., Borbon, A., Beekmann, M., Bourdon, A., Perrin, T. and Borrmann, S. (2011). Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol., 45, 46-64. Kulkarni, G., Pekour, M., Afchine, A., Murphy, D. M., and Cziczo, D. J. (2011). Comparison of experimental and numerical studies of the performance characteristics of a pumped counterflow virtual impactor. Aerosol Science and Technology, 45(3):382-392.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar

    Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloudmore » system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RH ice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10–30 µm in diameter with small inadvertent intrusion (~  5 %) of unwanted particles.« less

  5. Separation of ice crystals from interstitial aerosol particles using virtual impaction at the Fifth International Ice Nucleation Workshop FIN-3

    NASA Astrophysics Data System (ADS)

    Roesch, M.; Garimella, S.; Roesch, C.; Zawadowicz, M. A.; Katich, J. M.; Froyd, K. D.; Cziczo, D. J.

    2016-12-01

    In this study, a parallel-plate ice chamber, the SPectrometer for Ice Nuclei (SPIN, DMT Inc.) was combined with a pumped counterflow virtual impactor (PCVI, BMI Inc.) to separate ice crystals from interstitial aerosol particles by their aerodynamic size. These measurements were part of the FIN-3 workshop, which took place in fall 2015 at Storm Peak Laboratory (SPL), a high altitude mountain top facility (3220 m m.s.l.) in the Rocky Mountains. The investigated particles were sampled from ambient air and were exposed to cirrus-like conditions inside SPIN (-40°C, 130% RHice). Previous SPIN experiments under these conditions showed that ice crystals were found to be in the super-micron range. Connected to the outlet of the ice chamber, the PCVI was adjusted to separate all particulates aerodynamically larger than 3.5 micrometer to the sample flow while smaller ones were rejected and removed by a pump flow. Using this technique reduces the number of interstitial aerosol particles, which could bias subsequent ice nucleating particle (INP) analysis. Downstream of the PCVI, the separated ice crystals were evaporated and the flow with the remaining INPs was split up to a particle analysis by laser mass spectrometry (PALMS) instrument a laser aerosol spectrometer (LAS, TSI Inc.) and a single particle soot photometer (SP2, DMT Inc.). Based on the sample flow and the resolution of the measured particle data, the lowest concentration threshold for the SP2 instrument was 294 INP L-1 and for the LAS instrument 60 INP L-1. Applying these thresholds as filters to the measured PALMS time series 944 valid INP spectra using the SP2 threshold and 445 valid INP spectra using the LAS threshold were identified. A sensitivity study determining the number of good INP spectra as a function of the filter threshold concentration showed a two-phase linear growth when increasing the threshold concentration showing a breakpoint around 100 INP L-1.

  6. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References: Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric mobility: apparatus, theory, and applications. Aerosol Science, 6:443--451, 1975 Raddatz, M., Wiedensohler, A., Wex, H., and Stratmann, F.: Size selection of sub- and super-micron clay mineral kaolinite particles using a custom-built Maxi-DMA. Nucleation and Atmospheric Aerosols, Vol. 1527, AIP Conference Proceedings, pages 457-460. AMER INST PHYSICS, 2013 Boulter, J. E., Cziczo, D. J., Middlebrook, A. M., Thomson, D. S., and Murphy, D. M.: Design and performance of a Pumped Counterflow Virtual Impactor. Aerosol Science and Technology, 40(11): 969-976, 2006 Kulkarni, G., Pekour, M., Afchine, A., Murphy, D. M., and Cziczo, D. J.: Comparison of experimental and numerical studies of the performance characteristics of a pumped counterflow virtual impactor. Aerosol Science and Technology, 45:382-392, 2011

  7. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also sampled many submicron particles. Probably owing to the different meteorological conditions, the INP/IPR composition was highly variable on a sample to sample basis. Thus, some part of the discrepancies between the different techniques may result from the (unavoidable) non-parallel sampling. The observed differences of the particles group abundances as well as the mixing state of INP/IPR point to the need of further studies to better understand the influence of the separating techniques on the INP/IPR chemical composition.

  8. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from variations in meteorological conditions and subsequent INP/IPR composition. The observed differences in the particle group abundances as well as in the mixing state of INP/IPR express the need for further studies to better understand the influence of the separating techniques on the INP/IPR chemical composition.

  9. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200-400 nm in geometric diameter. In a few cases, a second supermicron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the sub-micrometer range. Silicates and Ca-rich particles were mainly found with diameters above 1 μm (using ISI and FINCH), in contrast to the Ice-CVI which also sampled many submicron particles of both groups. Due to changing meteorological conditions, the INP/IPR composition was highly variable if different samples were compared. Thus, the observed discrepancies between the different separation techniques may partly result from the non-parallel sampling. The differences of the particle group relative number abundance as well as the mixing state of INP/IPR clearly demonstrate the need of further studies to better understand the influence of the separation techniques on the INP/IPR chemical composition. Also, it must be concluded that the abundance of contamination artifacts in the separated INP and IPR is generally large and should be corrected for, emphasizing the need for the accompanying chemical measurements. Thus, further work is needed to allow for routine operation of the three separation techniques investigated.

  10. Virtual impactor

    DOEpatents

    Yeh, Hsu-Chi; Chen, Bean T.; Cheng, Yung-Sung; Newton, George J.

    1988-08-30

    A virtual impactor having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency.

  11. Virtual impactor

    DOEpatents

    Yeh, H.C.; Chen, B.T.; Cheng, Y.S.; Newton, G.J.

    1988-08-30

    A virtual impactor is described having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent to the inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency. 4 figs.

  12. Experimental Characterization of Microfabricated VirtualImpactor Efficiency

    EPA Science Inventory

    The Air-Microfluidics Group is developing a microelectromechanical systems-based direct reading particulate matter (PM) mass sensor. The sensor consists of two main components: a microfabricated virtual impactor (VI) and a PM mass sensor. The VI leverages particle inertia to sepa...

  13. Micromachined cascade virtual impactor with a flow rate distributor for wide range airborne particle classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-Ho; Maeng, Jwa-Young; Park, Dongho

    2007-07-23

    This letter reports a module for airborne particle classification, which consists of a micromachined three-stage virtual impactor for classifying airborne particles according to their size and a flow rate distributor for supplying the required flow rate to the virtual impactor. Dioctyl sebacate particles, 100-600 nm in diameter, and carbon particles, 0.6-10 {mu}m in diameter, were used for particle classification. The collection efficiency and cutoff diameter were examined. The measured cutoff diameters of the first, second, and third stages were 135 nm, 1.9 {mu}m, and 4.8 {mu}m, respectively.

  14. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).

  15. A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles.

    PubMed

    Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun

    2009-09-21

    Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.

  16. High efficiency virtual impactor

    DOEpatents

    Loo, B.W.

    1980-03-27

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.

  17. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  18. Projection correlation based view interpolation for cone beam CT: primary fluence restoration in scatter measurement with a moving beam stop array.

    PubMed

    Yan, Hao; Mou, Xuanqin; Tang, Shaojie; Xu, Qiong; Zankl, Maria

    2010-11-07

    Scatter correction is an open problem in x-ray cone beam (CB) CT. The measurement of scatter intensity with a moving beam stop array (BSA) is a promising technique that offers a low patient dose and accurate scatter measurement. However, when restoring the blocked primary fluence behind the BSA, spatial interpolation cannot well restore the high-frequency part, causing streaks in the reconstructed image. To address this problem, we deduce a projection correlation (PC) to utilize the redundancy (over-determined information) in neighbouring CB views. PC indicates that the main high-frequency information is contained in neighbouring angular projections, instead of the current projection itself, which provides a guiding principle that applies to high-frequency information restoration. On this basis, we present the projection correlation based view interpolation (PC-VI) algorithm; that it outperforms the use of only spatial interpolation is validated. The PC-VI based moving BSA method is developed. In this method, PC-VI is employed instead of spatial interpolation, and new moving modes are designed, which greatly improve the performance of the moving BSA method in terms of reliability and practicability. Evaluation is made on a high-resolution voxel-based human phantom realistically including the entire procedure of scatter measurement with a moving BSA, which is simulated by analytical ray-tracing plus Monte Carlo simulation with EGSnrc. With the proposed method, we get visually artefact-free images approaching the ideal correction. Compared with the spatial interpolation based method, the relative mean square error is reduced by a factor of 6.05-15.94 for different slices. PC-VI does well in CB redundancy mining; therefore, it has further potential in CBCT studies.

  19. Efficiency of a new bioaerosol sampler in sampling Betula pollen for antigen analyses.

    PubMed

    Rantio-Lehtimäki, A; Kauppinen, E; Koivikko, A

    1987-01-01

    A new bioaerosol sampler consisting of Liu-type atmospheric aerosol sampling inlet, coarse particle inertial impactor, two-stage high-efficiency virtual impactor (aerodynamic particle sizes respectively in diameter: greater than or equal to 8 microns, 8-2.5 microns, and 2.5 microns; sampling on filters) and a liquid-cooled condenser was designed, fabricated and field-tested in sampling birch (Betula) pollen grains and smaller particles containing Betula antigens. Both microscopical (pollen counts) and immunochemical (enzyme-linked immunosorbent assay) analyses of each stage were carried out. The new sampler was significantly more efficient than Burkard trap e.g. in sampling particles of Betula pollen size (ca. 25 microns in diameter). This was prominent during pollen peak periods (e.g. May 19th, 1985, in the virtual impactor 9482 and in the Burkard trap 2540 Betula p.g. X m-3 of air). Betula antigens were detected also in filter stages where no intact pollen grains were found; in the condenser unit the antigen concentrations instead were very low.

  20. Calibration and field application of a Sierra Model 235 cascade impactor.

    PubMed

    Knuth, R H

    1984-06-01

    A Sierra Model 235 slotted impactor was used to measure the particle size distribution of ore dust in uranium concentrating mills. The impactor was calibrated at a flow rate of 0.21 m3/min, using solid monodisperse particles of methylene blue and an impaction surface of Whatman #41 filter paper soaked in mineral oil. The reduction from the impactor's design flow rate of 1.13 m3/min (40 cfm) to 0.21 m3/min (7.5 cfm), a necessary adjustment because of the anticipated large particles sizes of ore dust, increased the stage cut-off diameters by an average factor of 2.3. Evaluation of field test results revealed that the underestimation of mass median diameters, often caused by the rebound and reentrainment of solid particles from dry impaction surfaces, was virtually eliminated by using the oiled Whatman #41 impaction surface.

  1. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  2. Measurements of the size dependence of the concentration of nonvolatile material in fog droplets

    NASA Astrophysics Data System (ADS)

    Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.

    1992-11-01

    Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.

  3. High efficiency virtual impactor

    DOEpatents

    Loo, Billy W.

    1981-01-01

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor (11) for separating an inlet flow (Q.sub.O) having particulate contaminants into a coarse particle flow (Q.sub.1) and a fine particle flow (Q.sub.2) to enable collection of such particles on different filters (19a, 19b) for separate analysis. An inlet particle acceleration nozzle (28) and coarse particle collection probe member (37) having a virtual impaction opening (41) are aligned along a single axis (13) and spaced apart to define a flow separation region (14) at which the fine particle flow (Q.sub.2) is drawn radially outward into a chamber (21) while the coarse particle flow (Q.sub.1) enters the virtual impaction opening (41). Symmetrical outlet means (47) for the chamber (21) provide flow symmetry at the separation region (14) to assure precise separation of particles about a cutpoint size and to minimize losses by wall impaction and gravitational settling. Impulse defocusing means (42) in the probe member (37) provides uniform coarse particle deposition on the filter (19a) to aid analysis. Particle losses of less than 1% for particles in the 0 to 20 micron range may be realized.

  4. Comparative particle recoveries by the retracting rotorod, rotoslide and Burkard spore trap sampling in a compact array

    NASA Astrophysics Data System (ADS)

    Solomon, W. R.; Burge, H. A.; Boise, J. R.; Becker, M.

    1980-06-01

    An array comprising 4 intermittent (retracting) rotorods, 3 (“swingshield”) rotoslides and one Burkard (Hirst) automatic volumetric spore trap was operated on an urban rooftop during 70 periods of 9, 15 or 24 hours in late summer. Standard sampling procedures were utilized and recoveries of pollens as well as spores of Alternaria, Epicoccum, Pithomyces and Ganoderma species compared. Differences between paired counts from each sampler type showed variances increasing with levels of particle prevalence (and deposition). In addition, minimal, non-random, side-to-side and intersampler differences were noted for both impactor types. Exclusion of particles between operating intervals by rotoslides and rotorods was virtually complete. Spore trap recoveries for all particle categories, per m3, exceeded those by both impactors. The greatest (7-fold) difference was noted for the smallest type examined ( Ganoderma). For ragweed pollen, an overall spore trap/impactor ratio approached 1.5. Rain effects were difficult to discern but seemed to influence rotoslides least. Overall differences between impactors were quite small but generally favored the rotoslide in this comparison. Our data confirm the relative advantages of suction traps for small particles. Both impactors and spore traps are suited to pollen and large spore collection, and, with some qualification, data from both may be compared.

  5. A Continuous Flow Diffusion Chamber Study of Sea Salt Particles Acting as Cloud Seeds: Deliquescence, Ice Nucleation and Sublimation

    NASA Astrophysics Data System (ADS)

    Kong, X.; Wolf, M. J.; Garimella, S.; Roesch, M.; Cziczo, D. J.

    2016-12-01

    Sea Salt Aerosols (SSA) are abundant in the atmosphere, and important to the Earth's chemistry and energy budget. However, the roles of sea salts in the context of cloud formation are still poorly understood, which is partially due to the complexity of the water-salt phase diagram. At ambient temperatures, even well below 0°C, SSA deliquesces at sub-water saturated conditions. Since the ratio of the partial pressure over ice versus super-cooled water continuously declines with decreasing temperatures, it is interesting to consider if SSA continues to deliquesce under a super-saturated condition of ice, or if particles act as depositional ice nuclei when a critical supersaturation is reached. Some recent studies suggest hydrated NaCl and simulated sea salt might deliquesce between -35°C to -44°C, and below that deposition freezing becomes possible. Deliquesced droplets can subsequently freeze via the immersion or homogenous freezing mode, depending on if the deliquescence processes is complete. After the droplets or ice particles are formed, it is also interesting to consider how the different processes influence physical properties after evaporation or sublimation. This data is important for climate modeling that includes bromine burst observed in Antarctica, which is hypothesized to be relevant to the sublimation of blowing snow particles. In this study we use a SPectrometer for Ice Nuclei (SPIN; DMT, Inc., Boulder, CO) to perform experiments over a wide range of temperature and RH conditions to quantify deliquescence, droplet formation and ice nucleation. The formation of droplets and ice particles is detected by an advanced Optical Particle Counter (OPC) and the liquid/solid phases are distinguished by a machine learning method based on laser scattering and polarization data. Using an atomizer, four different sea salt samples are generated: pure NaCl and MgCl2 solutions, synthetic seawater, and natural seawater. Downstream of the SPIN chamber, a Pumped Counterflow Virtual Impactor (PCVI) is connected to separate the activated ice particles/large droplets to allow them undergo complete evaporation and sublimation. The particle size distributions are measured and compared to those upstream of SPIN to determine the effects of the ice/droplet nucleation process on the aerosol physical parameters.

  6. DEVELOPMENT AND LABORATORY CHARACTERIZATION OF A PROTOTYPE COARSE PARTICLE CONCENTRATOR FOR INHALATION TOXICOLOGICAL STUDIES. (R825270)

    EPA Science Inventory

    This paper presents the development and laboratory characterization of a prototype slit nozzle virtual impactor that can be used to concentrate coarse particles. A variety of physical design and flow parameters were evaluated including different acceleration and collection sli...

  7. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  8. FIELD EVALUATION OF A HIGH-VOLUME DICHOTOMOUS SAMPLER

    EPA Science Inventory

    This study presents the field evaluation of a high-volume dichotomous sampler that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. The key feature of this device is the utilization of a round-nozzle virtual impactor with a 50% cutpoint at 2.5 5m to split PM10 into...

  9. Sequence analysis of CVI988-based vaccine, pCVI988-699-2-RV that has undergone a reversion to virulence

    USDA-ARS?s Scientific Manuscript database

    In our safety evaluation of CVI988-699-2delta, a vaccine derived from a bacterial artificial chromosome (BAC)-based infectious clone of low passage CVI988, we found that the virus reverted to virulence during a safety trial using specific pathogen free (SPF) leghorn chickens. To determine changes i...

  10. Low pressure drop, multi-slit virtual impactor

    DOEpatents

    Bergman, Werner

    2002-01-01

    Fluid flow is directed into a multiplicity of slit nozzles positioned so that the fluid flow is directed into a gap between the nozzles and (a) a number of receiving chambers and (b) a number of exhaust chambers. The nozzles and chambers are select so that the fluid flow will be separated into a first particle flow component with larger and a second particle flow component with the smaller particles.

  11. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C [Santa Fe, NM

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  12. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation mass spectrometer (ALABAMA). All the tested techniques for measuring ice nucleating particles perform similar from a chemical point of view within the range of their uncertainties and low counting statistics due to the low particle concentrations in free-tropospheric air. Thus, for the first time most of the existing ice nucleation measurement techniques could be compared side by side under real-world atmospheric conditions. Acknowledgment This project is founded by DFG project INUIT (FOR 1525)

  13. Spacecraft studies of Phobos and Mars

    NASA Technical Reports Server (NTRS)

    Murray, Bruce C.

    1990-01-01

    Utilizing the Termoskan data set of the Phobos '88 mission we have recognized a new feature on Mars: Ejecta blanket Distinct In the THermal infrared (EDITH). Virtually all of the more than one hundred of these features discovered in the Termoskan data are located on the plains near Valles Manneris. EDITH's have a startlingly clear dependence upon terrains of Hesperian age, implying a spatial or temporal dependence on Hesperian terrains. Almost no thermally distinct ejecta blankets are associated with any of the thousands of craters within the data set that occur on the older Noachian units. EDITH's also do not appear on the portions of the younger Tharsis Amazonian units seen in the data. The Hesperian terrain dependence cannot be explained by either atmospheric or impactor variations; Noachian and Hesperian terrains must have experienced identical atmospheric and impactor conditions during Hesperian times. Thermally distinct eject a blankets therefore reflect target material differences and/or secondary modification processes. A further discussion of EIDTH's is presented.

  14. [Sampling methods for PM2.5 from stationary sources: a review].

    PubMed

    Jiang, Jing-Kun; Deng, Jian-Guo; Li, Zhen; Li, Xing-Hua; Duan, Lei; Hao, Ji-Ming

    2014-05-01

    The new China national ambient air quality standard has been published in 2012 and will be implemented in 2016. To meet the requirements in this new standard, monitoring and controlling PM2,,5 emission from stationary sources are very important. However, so far there is no national standard method on sampling PM2.5 from stationary sources. Different sampling methods for PM2.5 from stationary sources and relevant international standards were reviewed in this study. It includes the methods for PM2.5 sampling in flue gas and the methods for PM2.5 sampling after dilution. Both advantages and disadvantages of these sampling methods were discussed. For environmental management, the method for PM2.5 sampling in flue gas such as impactor and virtual impactor was suggested as a standard to determine filterable PM2.5. To evaluate environmental and health effects of PM2.5 from stationary sources, standard dilution method for sampling of total PM2.5 should be established.

  15. Spacecraft studies of PHOBOS and Mars

    NASA Astrophysics Data System (ADS)

    Murray, Bruce C.

    Utilizing the Termoskan data set of the Phobos '88 mission we have recognized a new feature on Mars: Ejecta blanket Distinct In the THermal infrared (EDITH). Virtually all of the more than one hundred of these features discovered in the Termoskan data are located on the plains near Valles Manneris. EDITH's have a startlingly clear dependence upon terrains of Hesperian age, implying a spatial or temporal dependence on Hesperian terrains. Almost no thermally distinct ejecta blankets are associated with any of the thousands of craters within the data set that occur on the older Noachian units. EDITH's also do not appear on the portions of the younger Tharsis Amazonian units seen in the data. The Hesperian terrain dependence cannot be explained by either atmospheric or impactor variations; Noachian and Hesperian terrains must have experienced identical atmospheric and impactor conditions during Hesperian times. Thermally distinct eject a blankets therefore reflect target material differences and/or secondary modification processes. A further discussion of EIDTH's is presented.

  16. Evaluation of XMX/2L-MIL Virtual Impactor Performance and Capture and Retention of Aerosol Particles in Two Different Collection Media

    DTIC Science & Technology

    2011-03-01

    The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air...Breiman, T. Hennessy, E. T. Umland, and others. (1995). Evaluation of the Magnitude of the 1993 Hantavirus Outbreak in the Southwestern United States. The...Retention of Aerosol Particles in Two Different Collection Media 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S

  17. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  18. The Deflection Question

    NASA Astrophysics Data System (ADS)

    Greenberg, A. H.; Nesvold, E.; van Heerden, E.; Erasmus, N.; Marchis, F.

    2016-12-01

    On 15 February, 2013, a 15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred 33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found? To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to inform funding decisions for both deflection technology development and PHO characterization missions.

  19. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Van Heerden, Elmarie; Erasmus, Nicolas; Greenberg, Adam; Nesvold, Erika; Galache, Jose Luis; Dahlstrom, Eric; Marchis, Franck

    2016-10-01

    On 15 February, 2013, a ~15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred ~33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found?To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to inform funding decisions for both deflection technology development and PHO characterization missions.

  20. Safety assessment characteristics of pedestrian legform impactors in vehicle-front impact tests.

    PubMed

    Matsui, Yasuhiro

    2014-12-01

    This study investigated the characteristics of safety assessment results of front-area vehicle impact tests carried out using the Transport Research Laboratory (TRL) legform impactor and a flexible legform impactor (FLEX legform impactor). Different types of vehicles (sedan, sport utility vehicle, high-roof K-car, and light cargo van) were examined. The impact locations in the study were the center of the bumper and an extremely stiff structure of the bumper (i.e., in front of the side member) of each tested vehicle. The measured injury criteria were normalized by injury assessment reference values of each legform impactor. The test results for center and side-member impacts indicated that there were no significant differences in ligament injury assessments derived from the normalized knee ligament injury measures between the TRL legform impactor and the FLEX legform impactor. Evaluations made using the TRL legform impactor and the FLEX legform impactor are thus similar in the vehicle safety investigation for knee ligament injury. Vehicle-center impact test results revealed that the tibia fracture assessments derived from the normalized tibia fracture measures did not significantly differ between the TRL legform impactor and the FLEX legform impactor. However, for an impact against an extremely stiff structure, there was a difference in the tibia fracture assessment between the FLEX legform impactor and the TRL legform impactor owing to their different sensor types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P.

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  2. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  3. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  4. Parameterizations of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann

    2005-01-01

    Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).

  5. Impactor core disruption by high-energy planetary collisions

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Phillips, D.; Deguen, R.; Neufeld, J.; Dalziel, S.; Olson, P.

    2017-12-01

    Understanding the fate of impactor cores during large planetary collisions is key for predicting metal-silicate equilibration during Earth's accretion. Accretion models and geochemical observations indicate that much of Earth's mass accreted through high-energy impacts between planetary embryos already differentiated into a metallic core and a silicate mantle. Previous studies on core formation assume that the metallic core of the impactor is left intact by the impact, but it mixes with silicates during the post-impact fall in the magma ocean. Recent impact simulations, however, suggest that the impact cratering process induces significant core disruption and metal-silicate mixing. Unlike existing impact simulations, experiments can produce turbulence, a key ingredient to investigate disruption of the impactor core. Here we use laboratory experiments where a volume of salt solution (representing the impactor core) vertically impacts a pool of water (representing the magma ocean) to quantify impact-induced mixing between the impactor and the target as a function of impact velocity, impactor size and density difference. We find that the ratio between the impactor inertia and its weight controls mixing. Extrapolated to planetary accretion, our results suggest that the impact process induces no significant mixing for impactors of comparable size as the protoplanet whereas the impactor core is highly disrupted by impacts involving impactors much smaller than the protoplanet.

  6. CASCADE IMPACTOR DATA REDUCTION WITH SR-52 AND TI-59 PROGRAMMABLE CALCULATORS

    EPA Science Inventory

    The report provides useful tools for obtaining particle size distributions and graded penetration data from cascade impactor measurements. The programs calculate impactor aerodynamic cut points, total mass collected by the impactor, cumulative mass fraction less than for each sta...

  7. Relationship of stage mensuration data to the performance of new and used cascade impactors.

    PubMed

    Roberts, Daryl L; Romay, Francisco J

    2005-01-01

    Cascade impaction is a standard test method for characterizing the quality of inhalable drug products. The sizes of the nozzles on each stage of the impactor are the critical dimensions for the performance of the impactor. Compendial reference methods call for periodic measurement of the size of the nozzles on each stage, a procedure known as stage mensuration. There is however currently no guidance on acceptable mensuration criteria. We aim to remedy this situation by providing a sound basis for understanding and using mensuration data, be it for acceptance criteria for new impactors or for the setting of mensuration tolerances for in-use impactors. We first show that multi-nozzle impactor stages behave as if all of the nozzles are equal in size to an effective diameter, , that is composed of the area-mean and areamedian diameters, W* and , calculated directly from the individual nozzle diameters for all nozzles on a given stage (equation 1): W= (W*)(2/3) x (W)(1/3) (1). Hence, the effective diameter provides an intuitive and technically sound basis for setting acceptance criteria for new and in-use impactors. We tabulate these criteria for the Mark II eight-stage Andersen cascade impactor and the Next Generation Pharmaceutical Impactor in a manner similar to the tables of critical impactor dimensions published in EP Supplement 5.1 and in USP 28. For two different impactors or for one impactor measured at two different times (e.g., at manufacture and in use), we find that the D50 values of a given stage are related to the effective diameters by D(50,2)/D(50,1)= (W(2)/W(1))(3/2) (2). Using the stage mensuration data for new, as-manufactured NGIs, we compare the D(50 )values of the first 125 as-manufactured NGIs with those of the archivally calibrated NGI. We further establish that the archivally calibrated NGI has D(50) values within 0.3% of an entirely perfect, hypothetical NGI with all nozzles equal to the nominal nozzle diameters. We also apply the equations to a specific mensurated impactor to show that a used impactor with some nozzles outside of the original manufacturing specifications can have the same aerodynamic performance as a new impactor.

  8. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  9. A Game of Space Telephone

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows NASA's Deep Impact impactor spacecraft while it was being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. On July 2, at 10:52 p.m. Pacific time (1:52 a.m. Eastern time, July 3), the impactor will be released from Deep Impact's flyby spacecraft. One day later, it will collide with Tempel 1. The impactor cannot directly talk to Earth, so it will communicate via the flyby spacecraft during its final day.

    The two spacecraft communicate at 'S-band' frequency. The impactor's S-band antenna is the rectangle-shaped object seen on the top of the impactor in this image.

  10. Experimental and theoretical research of the interaction between high-strength supercavitation impactors and monolithic barriers in water

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. N.; Afanas'eva, S. A.; Burkin, V. V.; Diachkovskii, A. S.; Zykova, A. I.; Khabibullin, M. V.; Chupashev, A. V.; Yugov, N. T.

    2017-09-01

    The article describes experimental and theoretical research of the interaction between supercavitating impactors and underwater aluminum alloy and steel barriers. Strong alloys are used for making impactors. An experimental research technique based on a high-velocity hydro-ballistic complex was developed. Mathematical simulation of the collision the impactor and barrier is based on the continuum mechanics inclusive of the deformation and destruction of interacting bodies. Calculated and experimental data on the ultimate penetration thickness of barriers made of aluminum alloy D16T and steel for the developed supercavitating impactor are obtained.

  11. Experimental studies of aerosol- cloud droplet interactions at the puy de Dome observatory (France)

    NASA Astrophysics Data System (ADS)

    Laj, P.; Dupuy, R.; Sellegri, K.; Pichon, J.; Fournol, J.; Cortes, L.; Preunkert, S.; Legrand, M.

    2001-05-01

    The interactions between aerosol particles, gases and cloud droplets were studied at the puy de Dome cloud station (France, 1465 a.s.l.) during winter 2000. The partitioning of gas and aerosol species between interstitial and condensed phases is achieved using a series of instrumentation including a newly developed dual counter-flow virtual impactor (CVI)/ Round jet impactor (RJI) system. The RJI/CVI system, coupled with measurement of cloud microphysical properties, provided direct observation of number and mass partitioning of aerosols under different air mass conditions. Preliminary results from this field experiment allowed for the characterization of size segregated chemical composition of CCNs and of interstitial aerosols by means of gravimetric analysis and ion chromatography. It appears that CCNs are clearly enriched in soluble species as respect to interstitial aerosols. We found evidences of limited growth of Ca2+ - rich coarse particles (>1 μm) that did not form droplets larger than the 5 μm CVI cut-off. The number partitioning of aerosol particles between interstitial and condensed phases clearly depends upon cloud microphysics and aerosol properties and therefore undergoes different behaviour according to air mass origin. However, results cannot be fully explained by diffusion growth alone, in particular for high cloud LWC.

  12. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact

    NASA Astrophysics Data System (ADS)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.

    2018-04-01

    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  13. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  14. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.

    PubMed

    Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M

    2017-11-01

    Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Crater Morphology of Engineered and Natural Impactors into Planetary Ice

    NASA Astrophysics Data System (ADS)

    Danner, M.; Winglee, R.; Koch, J.

    2017-12-01

    Crater morphology of engineered impactors, such as those proposed for the Europa Kinetic Ice Penetrator (EKIP) mission, varies drastically from that of natural impactors (i.e. Asteroids, meteoroids). Previous work of natural impact craters in ice have been conducted with the intent to bound the thickness of Europa's ice crust; this work focuses on the depth, size, and compressional effects caused by various impactor designs, and the possible effects to the Europan surface. The present work details results from nine projectiles that were dropped on the Taku Glacier, AK at an altitude of 775 meters above surface; three rocks to simulate natural impactors, and six iterations of engineered steel and aluminum penetrator projectiles. Density measurements were taken at various locations within the craters, as well as through a cross section of the crater. Due to altitude restrictions, projectiles remained below terminal velocity. The natural/rock impact craters displayed typical cratering characteristics such as shallow, half meter scale depth, and orthogonal compressional forcing. The engineered projectiles produced impact craters with depths averaging two meters, with crater widths matching the impactor diameters. Compressional waves from the engineered impactors propagated downwards, parallel to direction of impact. Engineered impactors create significantly less lateral fracturing than natural impactors. Due to the EKIP landing mechanism, sampling of pristine ice closer to the lander is possible than previously thought with classical impact theory. Future work is planned to penetrate older, multiyear ice with higher velocity impacts.

  16. When Worlds Collide

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    1997-07-01

    Although considerable attention has been paid to the catastrophic fragmentation of small planetary bodies following hypervelocity collisions, laboratory experiments at the NASA Ames Vertical Gun Range allow documenting the fate of the impactor. Of particular interest is the effect of oblique impacts on curved planetary surfaces, i.e., when the size of the impactor approaches 20% of the size of the target. Such experiments reveal that the shock created at first contact disrupts and decouples the impactor before it penetrates the target for 5-6 km/s impact velocities. This process has five important consequences. First, relatively large impactor fragments can survive the collision with minimal damage (5-6 largest sizes = 10% of the impactor mass). Moreover, surface curvature ensures escape of larger impactor debris exhibiting a wide range of shocked states. Second, these fragments follow different trajectories depending on their style of failure (spallation or shear) and provenance (their location in the impactor). Third, a low impedance veneer (regolith) reduces the degree of impactor fragmentation. Fourth, the process significantly decreases the energy (peak pressure) in the target and allows its survival even for collisions with large specific energies. Nevertheless, significant residual mafic melts result through frictional heating. And fifth, nominal oblique trajectories (30 deg) become equivalent to much lower angle events (< 10 deg) as the impactor:target ratio approaches 1:4. This process can be scaled (to first order) to asteroid-size events and could provide a mechanism to produce different meteor streams and asteroid families from a single event while leaving behind an intact but mafic scar on the parent body.

  17. Virtual Impactors: Search and Destroy

    NASA Astrophysics Data System (ADS)

    Milani, Andrea; Chesley, Steven R.; Boattini, Andrea; Valsecchi, Giovanni B.

    2000-05-01

    If for an asteroid which has been observed only over a short arc and then lost there are orbits compatible with the observations resulting in collisions, recovery would be desirable to decide if it will actually impact. If recovery is essentially impractical, as is the case for many small asteroids in the 100- to 500-m-diameter range, the next best thing is to make sure that the lost asteroid is not on a collision course. We propose a method for achieving this guarantee, with an observational effort far smaller than the one required for recovery. The procedure involves the computation of an orbit that is compatible with the available observations and, by hypothesis, results in an impact at some later encounter; this we call a virtual impactor (VI). The collision at some future time is a strong constraint; thus the VI has a well determined orbit. We show that it is possible to compute for each given time of observation the skyprint of the VI, that is the set of astrometric positions compatible with an impact (or a near impact). The skyprint needs to be scanned by powerful enough telescopes to perform a negative observation; once this has been done for the skyprints of all VIs, collisions can be excluded even without recovery. We propose to apply this procedure to the case of the lost asteroid 1998 OX 4, for which we have found orbital solutions with impacts in the years 2014, 2038, 2044, and 2046. Suitable observing windows are found when the VI would be close to the Earth in 2001 and in 2003, and the corresponding skyprints are small enough to be covered with very few frames. This procedure might become more and more necessary in the future, as the number of discoveries of small potentially hazardous asteroids increases; we discuss the general principles and the validation procedures that should apply to such a VI removal campaign.

  18. Grooved impactor and inertial trap for sampling inhalable particulate matter

    DOEpatents

    Loo, Billy W.

    1984-01-01

    An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

  19. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  20. Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated andersen cascade impactors (ACIs): part 2--investigation of bias in extra-fine mass fraction with AIM-HRT impactor.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Doyle, Cathy C; Ali, Rubina S; Avvakoumova, Valentina I; Christopher, J David; Quiroz, Jorge; Strickland, Helen; Tougas, Terrence; Lyapustina, Svetlana

    2010-09-01

    The purpose of this study was to resolve an anomalously high measure of extra-fine particle fraction (EPF) determined by the abbreviated cascade impactor possibly relevant for human respiratory tract (AIM-HRT) in the experiment described in Part 1 of this two-part series, in which the relative precision of abbreviated impactors was evaluated in comparison with a full resolution Andersen eight-stage cascade impactor (ACI). Evidence that the surface coating used to mitigate particle bounce was laterally displaced by the flow emerging from the jets of the lower stage was apparent upon microscopic examination of the associated collection plate of the AIM-HRT impactor whose cut point size defines EPF. A filter soaked in surfactant was floated on top of this collection plate, and further measurements were made using the same pressurized metered-dose inhaler-based formulation and following the same procedure as in Part 1. Measures of EPF, fine particle, and coarse particle fractions were comparable with those obtained with the ACI, indicating that the cause of the bias had been identified and removed. When working with abbreviated impactors, this precaution is advised whenever there is evidence that surface coating displacement has occurred, a task that can be readily accomplished by microscopic inspection of all collection plates after allowing the impactor to sample ambient air for a few minutes.

  1. "Isocrater" impacts: Conditions and mantle dynamical responses for different impactor types

    NASA Astrophysics Data System (ADS)

    Ruedas, Thomas; Breuer, Doris

    2018-05-01

    Impactors of different types and sizes can produce a final crater of the same diameter on a planet under certain conditions. We derive the condition for such "isocrater impacts" from scaling laws, as well as relations that describe how the different impactors affect the interior of the target planet; these relations are also valid for impacts that are too small to affect the mantle. The analysis reveals that in a given isocrater impact, asteroidal impactors produce anomalies in the interior of smaller spatial extent than cometary or similar impactors. The differences in the interior could be useful for characterizing the projectile that formed a given crater on the basis of geophysical observations and potentially offer a possibility to help constrain the demographics of the ancient impactor population. A series of numerical models of basin-forming impacts on Mercury, Venus, the Moon, and Mars illustrates the dynamical effects of the different impactor types on different planets. It shows that the signature of large impacts may be preserved to the present in Mars, the Moon, and Mercury, where convection is less vigorous and much of the anomaly merges with the growing lid. On the other hand, their signature will long have been destroyed in Venus, whose vigorous convection and recurring lithospheric instabilities obliterate larger coherent anomalies.

  2. Effect of drug load and plate coating on the particle size distribution of a commercial albuterol metered dose inhaler (MDI) determined using the Andersen and Marple-Miller cascade impactors.

    PubMed

    Nasr, M M; Ross, D L; Miller, N C

    1997-10-01

    The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the "loading effect" recently reported. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Coating impactor collection plates had an impact on measured MMAD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (< 1.10 microns in AI and < 1.25 microns in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.

  3. Asteroid Impact Risk: Ground Hazard versus Impactor Size

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan; Wheeler, Lorien; Dotson, Jessie; Aftosmis, Michael; Tarano, Ana

    2017-01-01

    We utilized a probabilistic asteroid impact risk (PAIR) model to stochastically assess the impact risk due to an ensemble population of Near-Earth Objects (NEOs). Concretely, we present the variation of risk with impactor size. Results suggest that large impactors dominate the average risk, even when only considering the subset of undiscovered NEOs.

  4. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  5. The terrestrial late veneer from core disruption of a lunar-sized impactor

    NASA Astrophysics Data System (ADS)

    Genda, H.; Brasser, R.; Mojzsis, S. J.

    2017-12-01

    Overabundances in highly siderophile elements (HSEs) of Earth's mantle can be explained by conveyance from a singular, immense (D ∼ 3000 km) ;Late Veneer; impactor of chondritic composition, subsequent to lunar formation and terrestrial core-closure. Such rocky objects of approximately lunar mass (∼0.01 M⊕) ought to be differentiated, such that nearly all of their HSE payload is sequestered into iron cores. Here, we analyze the mechanical and chemical fate of the core of such a Late Veneer impactor, and trace how its HSEs are suspended - and thus pollute - the mantle. For the statistically most-likely oblique collision (∼45°), the impactor's core elongates and thereafter disintegrates into a metallic hail of small particles (∼10 m). Some strike the orbiting Moon as sesquinary impactors, but most re-accrete to Earth as secondaries with further fragmentation. We show that a single oblique impactor provides an adequate amount of HSEs to the primordial terrestrial silicate reservoirs via oxidation of (

  6. KSC-05PD-0116

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Ball Aerospace in Boulder, Colo., the impactor on the Deep Impact spacecraft is tested. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.

  7. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR HARVARD PM IMPACTOR CALIBRATION AND LEAK TESTING (UA-L-7.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for the periodic calibration and leak testing of Harvard particulate matter (PM) impactor units. This procedure applies directly to the calibration and leak testing of Harvard PM impactor units used during the Arizona NHEXAS ...

  8. 49 CFR 572.185 - Thorax (upper torso) assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... impactor at contact with the thorax. The non-struck side arm is oriented vertically, pointing downward. The...); (iv) The impactor is guided, if needed, so that at contact with the thorax its longitudinal axis is... rib not less than 37 mm and not greater than 44 mm. (ii) The impactor force shall be computed as the...

  9. 49 CFR 572.185 - Thorax (upper torso) assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... impactor at contact with the thorax. The non-struck side arm is oriented vertically, pointing downward. The...); (iv) The impactor is guided, if needed, so that at contact with the thorax its longitudinal axis is... rib not less than 37 mm and not greater than 44 mm. (ii) The impactor force shall be computed as the...

  10. 49 CFR 572.185 - Thorax (upper torso) assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... impactor at contact with the thorax. The non-struck side arm is oriented vertically, pointing downward. The...); (iv) The impactor is guided, if needed, so that at contact with the thorax its longitudinal axis is... rib not less than 37 mm and not greater than 44 mm. (ii) The impactor force shall be computed as the...

  11. 49 CFR 572.185 - Thorax (upper torso) assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... impactor at contact with the thorax. The non-struck side arm is oriented vertically, pointing downward. The...); (iv) The impactor is guided, if needed, so that at contact with the thorax its longitudinal axis is... rib not less than 37 mm and not greater than 44 mm. (ii) The impactor force shall be computed as the...

  12. 49 CFR 572.185 - Thorax (upper torso) assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... impactor at contact with the thorax. The non-struck side arm is oriented vertically, pointing downward. The...); (iv) The impactor is guided, if needed, so that at contact with the thorax its longitudinal axis is... rib not less than 37 mm and not greater than 44 mm. (ii) The impactor force shall be computed as the...

  13. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR HARVARD PM IMPACTOR CALIBRATION AND LEAK TESTING (UA-L-7.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for the periodic calibration and leak testing of Harvard particulate matter (PM) impactor units. This procedure applies directly to the calibration and leak testing of Harvard PM impactor units used during the Arizona NHEXAS ...

  14. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1201—Impactor EC03OC91.00...

  15. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1201—Impactor EC03OC91.00...

  16. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1201—Impactor EC03OC91.00...

  17. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1201—Impactor EC03OC91.00...

  18. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1201—Impactor EC03OC91.00...

  19. One-Way Trip to Tempel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Quick Time Movie for PIA02135 Impactor Targeting Sensor Approach

    This movie shows Deep Impact's impactor probe approaching comet Tempel 1. It is made up of images taken by the probe's impactor targeting sensor. The probe collided with the comet at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randolph, B.

    Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be describedmore » along with some considerations for future composite liners requirements in the HEDP Program.« less

  1. A primordial origin for the compositional similarity between the Earth and the Moon.

    PubMed

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B; Raymond, Sean N

    2015-04-09

    Most of the properties of the Earth-Moon system can be explained by a collision between a planetary embryo (giant impactor) and the growing Earth late in the accretion process. Simulations show that most of the material that eventually aggregates to form the Moon originates from the impactor. However, analysis of the terrestrial and lunar isotopic compositions show them to be highly similar. In contrast, the compositions of other Solar System bodies are significantly different from those of the Earth and Moon, suggesting that different Solar System bodies have distinct compositions. This challenges the giant impact scenario, because the Moon-forming impactor must then also be thought to have a composition different from that of the proto-Earth. Here we track the feeding zones of growing planets in a suite of simulations of planetary accretion, to measure the composition of Moon-forming impactors. We find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are statistically more similar to the planets they impact. A large fraction of planet-impactor pairs have almost identical compositions. Thus, the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

  2. Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping

    NASA Astrophysics Data System (ADS)

    Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca

    2017-11-01

    Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  3. Dynamics of yield-stress droplets: Morphology of impact craters

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart

    2017-11-01

    Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.

  4. Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.

    PubMed

    Noll, James D; Birch, Eileen

    2004-12-01

    In a previous study, the efficacy of commercial and prototype impactors for sampling diesel particulate matter (DPM) in coal mines was investigated. Laboratory and field samples were collected on quartz-fiber filters and analyzed for organic and elemental carbon. Coal dust contributed a minimal amount of elemental carbon when commercial cascade impactors and prototype impactors, designed by the University of Minnesota (UMN) and the US Bureau of Mines (BOM), were used to collect submicrometer dust fractions. Other impactors were not as effective at excluding coal dust. The impactors evaluated in that study were either not commercially available or were multi-stage, expensive, and difficult to use for personal measurements. A commercial version of the BOM impactor, called the DPM Cassette, was recently introduced by SKC. Tests were conducted to evaluate the performance of the DPM Cassette for measuring diesel-source elemental carbon in the presence of coal dust. Bituminous coals from three mines in two different coal provinces were examined. The dust particle diameters were small and the coal dust contained a high percentage of carbon, thereby giving a worst-case condition for non-anthracite coal mines. Results for the DPM Cassette were essentially identical to those obtained by the BOM impactors in a previous study. At a respirable coal dust concentration of 5.46 mg m(-3), which is 3.8 times the regulatory limit, the DPM Cassette collected only 34 microg m(-3) of coal-source elemental carbon.

  5. Detectability of Chelyabinsk-like impactors with Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Wainscoat, Richard J.; Denneau, Larry

    2018-03-01

    In this work we present the results of our analysis of the detectability of an object in the size range of the recent Chelyabinsk impactor under the current discovery and follow-up capabilities, using the specific observational strategy of the Pan-STARRS survey as a reference point. We first discuss the observability of real-life cases inspired by the impact trajectories of 2008 TC3, 2014 AA, the past Earth encounters with 2014 RC and 2015 TB145, the upcoming fly-by of 2012 TC4 and the Chelyabinsk event. We then expand our analysis with the investigation of synthetic impactors with realistic orbital distributions. Among the various conclusions of our analysis, we discuss how the time of first detectability of an object does not necessarily correspond to the moment when that same object can be recognized as an impactor. We also point out how objects discovered only a few days before impact can be immediately identified as impactors, partly thanks to the good astrometric quality that telescopes like Pan-STARRS currently achieve.

  6. Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth's atmosphere.

    PubMed

    Magna, Tomáš; Žák, Karel; Pack, Andreas; Moynier, Frédéric; Mougel, Bérengère; Peters, Stefan; Skála, Roman; Jonášová, Šárka; Mizera, Jiří; Řanda, Zdeněk

    2017-08-09

    Chemical fingerprints of impacts are usually compromised by extreme conditions in the impact plume, and the contribution of projectile matter to impactites does not often exceed a fraction of per cent. Here we use chromium and oxygen isotopes to identify the impactor and impact-plume processes for Zhamanshin astrobleme, Kazakhstan. ε 54 Cr values up to 1.54 in irghizites, part of the fallback ejecta, represent the 54 Cr-rich extremity of the Solar System range and suggest a CI-like chondrite impactor. Δ 17 O values as low as -0.22‰ in irghizites, however, are incompatible with a CI-like impactor. We suggest that the observed 17 O depletion in irghizites relative to the terrestrial range is caused by partial isotope exchange with atmospheric oxygen (Δ 17 O = -0.47‰) following material ejection. In contrast, combined Δ 17 O-ε 54 Cr data for central European tektites (distal ejecta) fall into the terrestrial range and neither impactor fingerprint nor oxygen isotope exchange with the atmosphere are indicated.Identifying the original impactor from craters remains challenging. Here, the authors use chromium and oxygen isotopes to indicate that the Zhamanshin astrobleme impactor was a carbonaceous chrondrite by demonstrating that depleted 17O values are due to exchange with atmospheric oxygen.

  7. KSC-05PD-0114

    NASA Technical Reports Server (NTRS)

    2005-01-01

    the Fischer Assembly building at Ball Aerospace in Boulder, Colo. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.

  8. Design and Use of a Guided Weight Impactor to Impart Barely Visible Impact Damage

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Przekop, Adam

    2016-01-01

    Aircraft structure is required to demonstrate satisfaction of the FAR requirements for Category 1, such as barely visible impact damage (BVID). Typical aircraft structure is impacted using a dropped weight impactor, which can impart BVID to the top surface of the structure. A recent test of a multi-bay box (MBB) composite test article, that represents an 80% scale center section of a hybrid wing body aircraft, required impact to be in a direction other than vertical from above, but still in an direction that is normal to the surface. This requirement eliminated the use of the conventional dropped weight impactor. Therefore, a design study was undertaken to determine the most effective way to efficiently and reliably impact the MBB. The chosen design was a guided weight impactor that is gravity driven. This paper describes the design of the guided weight impactor, and presents the results of its use for imparting BVID to the MBB. The guided weight impactor was seen to be a very reliable method to impart BVID, while at the same time having the capability to be highly configurable for use on other aircraft structure that is impacted at a variety of impact energies and from a variety of directions.

  9. Ruling out Virtual Impactors with Negative Observations

    NASA Astrophysics Data System (ADS)

    Milani, A.; Chesley, S. R.; Boattini, A.; Valsecchi, G. B.

    1999-09-01

    If, for an asteroid which has been observed only over a short arc then lost, there are orbits compatible with the observations resulting in collisions, recovery would be desirable to decide if it will actually impact. If recovery is essentially impractical, as is the case for many small asteroids in the 100 m to 500 m diameter range, the next best thing is to make sure that the lost asteroid is not on a collision course. We propose a method to achieve this guarantee, with an observational effort far smaller than the one required for recovery. The procedure involves the computation of an orbit which is compatible with the available observations and, by hypothesis, results in an impact at some later encounter; this we call a Virtual Impactor (VI). The collision at some future time is a strong constraint, thus the VI has a well determined orbit. We show that it is possible to compute for each given time of observation the skyprint of the VI, that is the set of astrometric positions compatible with an impact (or a near impact). The skyprint needs to be scanned by powerful enough telescopes to perform a negative observation; once this has been done for the skyprints of all VIs, collisions can be excluded even without recovery. We propose to apply this procedure to the case of the lost asteroid 1998 OX_4, for which we have found orbital solutions with impacts in the years 2014, 2038, 2044 and 2046. Suitable observing windows are found when the VI would be close to the Earth in 2001 and in 2003, and the corresponding skyprints are small enough to be covered with very few frames. This procedure might become more and more necessary in the future, as the number of discoveries of small potentially hazardous asteroids increases; we discuss the general principles and the validation procedures that should apply to such a VI removal campaign. This research has been funded by the Italian Space Agency (ASI), by a NATO fellowship, by Consiglio Nazionale delle Ricerche (CNR), by the University of Pisa, and by the Spaceguard Foundation.

  10. Separation Anxiety Over for Deep Impact

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image of Deep Impact's impactor probe was taken by the mission's mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 (2:07 a.m. Eastern time, July 3). The impactor is scheduled to collide with comet Tempel 1 at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The impactor can be seen at the center of the image.

  11. GPU-accelerated computational tool for studying the effectiveness of asteroid disruption techniques

    NASA Astrophysics Data System (ADS)

    Zimmerman, Ben J.; Wie, Bong

    2016-10-01

    This paper presents the development of a new Graphics Processing Unit (GPU) accelerated computational tool for asteroid disruption techniques. Numerical simulations are completed using the high-order spectral difference (SD) method. Due to the compact nature of the SD method, it is well suited for implementation with the GPU architecture, hence solutions are generated at orders of magnitude faster than the Central Processing Unit (CPU) counterpart. A multiphase model integrated with the SD method is introduced, and several asteroid disruption simulations are conducted, including kinetic-energy impactors, multi-kinetic energy impactor systems, and nuclear options. Results illustrate the benefits of using multi-kinetic energy impactor systems when compared to a single impactor system. In addition, the effectiveness of nuclear options is observed.

  12. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  13. Australasian microtektites: Impactor identification using Cr, Co and Ni ratios

    NASA Astrophysics Data System (ADS)

    Folco, L.; Glass, B. P.; D'Orazio, M.; Rochette, P.

    2018-02-01

    Impactor identification is one of the challenges of large-scale impact cratering studies due to the dilution of meteoritic material in impactites (typically < 1 wt%). The nature of the impactor that generated the Australasian tektite/microtektite strewn field, i.e., the largest Cenozoic strewn field (∼15% of the Earth's surface), the youngest (∼0.78 Myr old) on Earth, and the only one without an associated impact crater so far, is an outstanding issue. We identify a chondritic impactor signature in 77 Australasian microtektites (size range: ∼200-700 μm) from within 3000 km from the hypothetical impact location in Indochina (∼17°N, 107°E) based on variations of Cr, Co and Ni interelement ratios in a Co/Ni vs Cr/Ni space (46 microtektites analyzed in this work by Laser Ablation-Inductively Coupled Plasma -Mass Spectrometry and 31 from literature by means of Neutron Activation Analyses with Cr, Co and Ni concentrations up to ∼370, 50 and 680 μg/g, respectively). Despite substantial overlap in Cr/Ni versus Co/Ni composition for several meteorite types with chondritic composition (chondrites and primitive achondrites), regression calculation based on ∼85% of the studied microtektites best fit a mixing line between crustal compositions and an LL chondrite. However, due to some scatter mainly in the Cr versus Ni ratios in the considered dataset, an LL chondrite may not be the best fit to the data amongst impactors of primitive compositions. Eight high Ni/Cr and five low Ni/Cr outlier microtektites (∼15% in total) deviate from the above mixing trend, perhaps resulting from incomplete homogenization of heterogeneous impactor and target precursor materials at the microtektite scale, respectively. Together with previous evidence from the ∼35 Myr old Popigai impact spherules and the ∼1 Myr old Ivory Coast microtektites, our finding suggests that at least three of the five known Cenozoic distal impact ejecta were generated by the impacts of large stony asteroids of chondritic composition, and possibly of ordinary chondritic composition. The impactor signature found in Australasian microtektites documents mixing of target and impactor melts upon impact cratering. This requires target-impactor mixing in both the two competing models in literature for the formation of the Australasian tektites/microtektites: the impact cratering and low-altitude airburst plume models.

  14. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.

    2016-09-01

    The giant impact theory is the most widely recognized formation scenario of the Earth's Moon. Giant impact models based on dynamical simulations predict that the Moon acquired a significant amount of impactor (Theia) material, which is challenging to reconcile with geochemical data for O, Si, Cr, Ti and W isotopes in the Earth and Moon. Three new giant impact scenarios have been proposed to account for this discrepancy - hit-and-run impact, impact with a fast-spinning protoEarth and massive impactors - each one reducing the proportion of the impactor in the Moon compared to the original canonical giant impact model. The validity of each theory and their different dynamical varieties are evaluated here using an integrated approach that considers new high-precision Zr isotope measurements of lunar rocks, and quantitative geochemical modelling of the isotopic composition of the impactor Theia. All analysed lunar samples (whole-rock, ilmenite and pyroxene separates) display identical Zr isotope compositions to that of the Earth within the uncertainty of 13 ppm for 96Zr/90Zr (2σ weighted average). This 13 ppm upper limit is used to infer the most extreme isotopic composition that Theia could have possessed, relative to the Earth, for each of the proposed giant impact theories. The calculated Theian composition is compared with the Zr isotope compositions of different solar system materials in order to constrain the source region of the impactor. As a first order approximation, we show that all considered models (including the canonical) are plausible, alleviating the initial requirement for the new giant impact models. Albeit, the canonical and hit-and-run models are the most restrictive, suggesting that the impactor originated from a region close to the Earth. The fast-spinning protoEarth and massive impactor models are more relaxed and increase the allowed impactor distance from the Earth. Similar calculations carried out for O, Cr, Ti and Si isotope data support these conclusions but exclude a CI- and enstatite chondrite-like composition for Theia. Thus, the impactor Theia most likely had a Zr isotope composition close to that of the Earth, and this suggests that a large part of the inner solar system (or accretion region of the Earth, Theia and enstatite chondrites) had a uniform Zr isotope composition.

  15. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen eight-stage cascade impactor (ACI).

    PubMed

    Mohammed, Hlack; Roberts, Daryl L; Copley, Mark; Hammond, Mark; Nichols, Steven C; Mitchell, Jolyon P

    2012-09-01

    Current pharmacopeial methods for testing dry powder inhalers (DPIs) require that 4.0 L be drawn through the inhaler to quantify aerodynamic particle size distribution of "inhaled" particles. This volume comfortably exceeds the internal dead volume of the Andersen eight-stage cascade impactor (ACI) and Next Generation pharmaceutical Impactor (NGI) as designated multistage cascade impactors. Two DPIs, the second (DPI-B) having similar resistance than the first (DPI-A) were used to evaluate ACI and NGI performance at 60 L/min following the methodology described in the European and United States Pharmacopeias. At sampling times ≥2 s (equivalent to volumes ≥2.0 L), both impactors provided consistent measures of therapeutically important fine particle mass (FPM) from both DPIs, independent of sample duration. At shorter sample times, FPM decreased substantially with the NGI, indicative of incomplete aerosol bolus transfer through the system whose dead space was 2.025 L. However, the ACI provided consistent measures of both variables across the range of sampled volumes evaluated, even when this volume was less than 50% of its internal dead space of 1.155 L. Such behavior may be indicative of maldistribution of the flow profile from the relatively narrow exit of the induction port to the uppermost stage of the impactor at start-up. An explanation of the ACI anomalous behavior from first principles requires resolution of the rapidly changing unsteady flow and pressure conditions at start up, and is the subject of ongoing research by the European Pharmaceutical Aerosol Group. Meanwhile, these experimental findings are provided to advocate a prudent approach by retaining the current pharmacopeial methodology.

  16. New Analysis Of The Baptistina Asteroid Family: Implications For Its Link With The K/t Impactor

    NASA Astrophysics Data System (ADS)

    Delbo, Marco; Nesvorny, D.; Licandro, J.; Ali-Lagoa, V.

    2012-10-01

    The Baptistina Asteroid Family (BAF) is the result of the breakup of an asteroid roughly 100 million years ago. This family is the source of meteoroids and near-Earth asteroids and likely caused an asteroid shower of impactors on our Earth. Bottke et al. (2007) proposed a link between the BAF and the K/T impactor, based on the favorable timing, large probability of a terrestrial impact of one 10-km BAF asteroid, and the Sloan colors of the BAF members, indicating that the BAF may have composition consistent with the K/T impactor (CM2-type carbonaceous meteorite, as inferred from chromium studies at different K/T boundary sites; Alvarez et al. 1980, Kring et al. 2007). The relationship between the BAF and K/T impactor is now controversial. Masiero et al. (2011) found that the albedo of BAF family members is 0.15, significantly higher than expected for a dark carbonaceous parent body. Also, Reddy et al. (2011) reported the spectroscopic observations of (298) Baptistina and objects in the general neighborhood of the BAF, and suggested the BAF includes a mixture of spectroscopic types that is not very different from the background (mostly S-type asteroids in the background Flora family). Unfortunately, Reddy et al. observed only the large asteroids near (298) Baptistina, and not the K/T-impactor-size BAF members with D 10 km. Using WISE albedos, Sloan colors and newly obtained spectroscopic observations of BAF members, here we show that (1) the large objects in the BAF are mostly BAF interlopers, (2) that BAF has an homogeneous composition consistent with an X-type class. We discuss the implications of the link between the BAF and the K/T impactor.

  17. Aerosol Sampling: Comparison of Two Rotating Impactors for Field Droplet Sizing and Volumetric Measurements

    DTIC Science & Technology

    2009-01-01

    the rotating impactors were measured via spectroscopy and microscopy. The rotary impactors were colocated with an isokinetic air sampler for a total...diameter, and the 90% diameter (DV10 and DV90; ASTM 2004). For each replication, an isokinetic air sampler and rotary sampler operated simultaneously in the...working area of the dispersion tunnel. The isokinetic sampler (StaplexH Model TFIA High Volume Air Sampler, The Staplex Company, Brooklyn, NY) was

  18. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  19. Dark-ray and dark-floor craters on Ganymede, and the provenance of large impactors in the Jovian system

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Mckinnon, William B.

    1991-01-01

    The dark-floor and dark-ray craters on the icy Jovian satellite, Ganymede, may derive their visual characteristics from impactor contamination. It is presently hypothesized that the rays darken as a result of the near-surface concentration of impactor material; this could occur, first, due to magnetic sputtering while the rays are bright, and subsequently, once a critical albedo is reached, due to thermal sublimation into discrete icy and nonicy patches. Voyager visible spectra of dark rays indicate that most large-ray systems are 'redder' than grooved or cratered terrains, and are among the 'reddest' units on Ganymede. More than half of the recent impactors on Ganymede may have been reddish D-type asteroids or comets, accounting for the albedos and colors of dark terrains on both Ganymede and Callisto.

  20. A Game of Space Telephone

    NASA Image and Video Library

    2006-10-19

    This image shows NASA Deep Impact spacecraft being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. On July 2, 2005. The impactor S-band antenna is the rectangle-shaped object seen on the top of the impactor.

  1. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  2. A space mission to detect imminent Earth impactors

    NASA Astrophysics Data System (ADS)

    Valsecchi, G. B.; Perozzi, E.; Rossi, A.

    2015-03-01

    One of the goals of NEO surveys is to discover Earth impactors before they hit. How much warning time is desirable depends on the size of the impactors: for the larger ones more time is needed to mount effective mitigation measures. Initially, NEO surveys were aimed at large impactors, that can have significant global effects; however, their typical time scale is orders of magnitude larger than human lifetime. At the other extreme, monthly and annual events, liberating energies of the order of 1 to 10 kilotons, are immaterial as a threat to mankind, not justifying substantial expenditure on them. Intermediate events are of more concern: in the megatons range, timescales are of the order of centuries, and the damage can be substantial. A classical example is the Tunguska event, in which a body with a diameter of about 30 to 50 m liberated about 5 megatons in the atmosphere, devastating 2 000 square kilometers of Siberian forest.

  3. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: Signature of a chondritic impactor

    NASA Astrophysics Data System (ADS)

    Quitté, Ghylaine; Robin, Eric; Levasseur, Sylvain; Capmas, Françoise; Rocchia, Robert; Birck, Jean-Louis; Allègre, Claude Jean

    It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re-Os, Hf-W, and Mn-Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous-Tertiary (K-T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni-rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.

  4. Discriminating Ability of Abbreviated Impactor Measurement Approach (AIM) to Detect Changes in Mass Median Aerodynamic Diameter (MMAD) of an Albuterol/Salbutamol pMDI Aerosol.

    PubMed

    David Christopher, J; Patel, Rajni B; Mitchell, Jolyon P; Tougas, Terrence P; Goodey, Adrian P; Quiroz, Jorge; Andersson, Patrik U; Lyapustina, Svetlana

    2017-11-01

    This article reports on results from a two-lab, multiple impactor experiment evaluating the abbreviated impactor measurement (AIM) concept, conducted by the Cascade Impaction Working Group of the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of this experiment was to expand understanding of the performance of an AIM-type apparatus based on the Andersen eight-stage non-viable cascade impactor (ACI) for the assessment of inhalation aerosols and sprays, compared with the full-resolution version of that impactor described in the pharmacopeial compendia. The experiment was conducted at two centers with a representative commercially available pressurized metered dose inhaler (pMDI) containing albuterol (salbutamol) as active pharmaceutical ingredient (API). Metrics of interest were total mass (TM) emitted from the inhaler, impactor-sized mass (ISM), as well as the ratio of large particle mass (LPM) to small particle mass (SPM). ISM and the LPM/SPM ratio together comprise the efficient data analysis (EDA) metrics. The results of the comparison demonstrated that in this study, the AIM approach had adequate discrimination to detect changes in the mass median aerodynamic diameter (MMAD) of the ACI-sampled aerodynamic particle size distribution (APSD), and therefore could be employed for routine product quality control (QC). As with any test method considered for inclusion in a regulatory filing, the transition from an ACI (used in development) to an appropriate AIM/EDA methodology (used in QC) should be evaluated and supported by data on a product-by-product basis.

  5. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  6. The University of Hawaii NEO Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Fohring, Dora; Tholen, David J.; Claytor, Zach; Ramanjooloo, Yudish; Hung, Denise; Aspin, Colin

    2017-10-01

    At the University of Hawaii, we carry out NEO follow-up observations for orbital refinement. We regularly observe eight nights a month using the University of Hawaii 88-inch (UH88) telescope and utilise Canada-France-Hawaii Telescope queue time for recovery of targets with large ephemeris uncertainties. Our focus is follow-up of Virtual Impactors and faint asteroids with magnitudes V>21. The combination of excellent atmospheric conditions on Mauna Kea and long integration times allow us to observe asteroids as faint as V=25. Recent extensive improvements to our workhorse UH88 telescope have included renovations to the telescope exterior, software upgrades, and the commissioning of the new monolithic STA-1600 10K CCD. Recent observational highlights include astrometry of 2017 JB2 during its diurnal retrograde loop and photometric observations 2016 HO3 which was measured to have a synodic period of 27.90 minutes.

  7. 49 CFR 571.226 - Standard No. 226; Ejection Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plywood with a minimum thickness of 18 mm as a reaction surface on the opposite side of the glazing to... attached to the impactor with its center of gravity passing through the axis of motion of the impactor and...

  8. The impactor flux in the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1994-01-01

    Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.

  9. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone

    NASA Technical Reports Server (NTRS)

    Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.

  10. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  11. INERTIAL CASCADE IMPACTOR SUBSTRATE MEDIA FOR FLUE GAS SAMPLING

    EPA Science Inventory

    The report summarizes Southern Research Institute's experience with greases and glass fiber filter material used as collection substrates in inertial cascade impactors. Available greases and glass fiber filter media have been tested to determine which are most suitable for flue g...

  12. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  13. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and may reduce the diameters of particles entering the patient. This effect is more significant for nebulizers producing large particles. Changes in ambient temperature did not affect these observations.

  14. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Wiersema, Kimberly J; Doyle, Cathy C

    2003-10-22

    The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)--fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)--beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared determining mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction <4.7 microm aerodynamic diameter (FPF(<4.7 microm)). Next Generation Pharmaceutical Impactor (NGI)-size distributions for Flovent comprised finer particles than determined by Andersen 8-stage impactor (ACI) (MMAD = 2.0 +/- 0.05 micro m [NGI]; 2.8 +/- 0.07 microm [ACI]); however, FPF(<4.7 microm) by both impactors was in the narrow range 88% to 93%. Size distribution agreement for Intal was better (MMAD = 4.3 +/- 0.19 microm (NGI), 4.2 +/- 0.13 microm (ACI), with FPF(<4.7 microm) ranging from 52% to 60%. The Aerodynamic Particle Sizer (APS) undersized aerosols produced with either formulation (MMAD = 1.8 +/- 0.07 micro m and 3.2 +/- 0.02 micro m for Flovent and Intal, respectively), but values of FPF(<4.7 microm)from the single-stage impactor (SSI) located at the inlet to the APS (82.9% +/- 2.1% [Flovent], 46.4% +/- 2.4% [Intal]) were fairly close to corresponding data from the multi-stage impactors. APS-measured size distributions for Qvar (MMAD = 1.0 +/- 0.03 micro m; FPF(<4.7 micro m)= 96.4% +/- 2.5%), were in fair agreement with both NGI (MMAD = 0.9 +/- 0.03 micro m; FPF(<4.7 microm)= 96.7% +/- 0.7%), and ACI (MMAD = 1.2 +/- 0.02 microm, FPF(<4.7 microm)= 98% +/- 0.5%), but FPF(<4.7 microm) from the SSI (67.1% +/- 4.1%) was lower than expected, based on equivalent data obtained by the other techniques. Particle bounce, incomplete evaporation of volatile constituents and the presence of surfactant particles are factors that may be responsible for discrepancies between the techniques.

  15. The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

    NASA Astrophysics Data System (ADS)

    Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René

    The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.

  16. Imparting Barely Visible Impact Damage to a Stitched Composite Large-Scale Pressure Box

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Przekop, Adam

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration, which has been a focus of the NASA Environmentally Responsible Aviation Project. The NASA-Boeing structural development for the HWB aircraft culminated in testing of the multi-bay box, which is an 80%-scale representation of the pressurized center-body section. This structure was tested in the NASA Langley Research Center Combined Loads Test System facility. As part of this testing, barely visible impact damage was imparted to the interior and exterior of the test article to demonstrate compliance with a condition representative of the requirements for Category 1 damaged composite structure as defined by the Federal Aviation Regulations. Interior impacts were imparted using an existing spring-loaded impactor, while the exterior impacts were imparted using a newly designed, gravity-driven impactor. This paper describes the impacts to the test article, and the design of the gravitydriven guided-weight impactor. The guided-weight impactor proved to be a very reliable method to impart barely visible impact damage in locations which are not easily accessible for a traditional drop-weight impactor, while at the same time having the capability to be highly configurable for use on other aircraft structures.

  17. Heavy metal toxicity as a kill mechanism in impact caused mass extinctions

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Davenport, S. A.; Jones, D. D.; Wdowiak, P.

    1988-01-01

    Heavy metals that are known to be toxic exist in carbonaceous chrondrites at abundances considerably in excess to that of the terrestrial crust. An impactor of relatively undifferentiated cosmic matter would inject into the terrestrial environment large quantities of toxic elements. The abundances of toxic metals found in the Allende CV carbonaceous chondrite and the ratio of meteoritic abundance to crustal abundance are: Cr, 3630 PPM, 30X; Co, 662 PPM, 23X; ni, 13300 PPm, 134X; se, 8.2 PPM, 164X; Os, 0.828 PPM, 166X. The resulting areal density for global dispersal of impactor derived heavy metals and their dilution with terrestrial ejecta are important factors in the determination of the significance of impactor heavy metal toxicity as a kill mechanism in impact caused mass extinctions. A 10 km-diameter asteroid having a density of 3 gram per cu cm would yield a global areal density of impact dispersed chondritic material of 3 kg per square meter. The present areal density of living matter on the terrestrial land surface is 1 kg per square meter. Dilution of impactor material with terrestrial ejecta is determined by energetics, with the mass of ejecta estimated to be in the range of 10 to 100 times that of the mass of the impactor. Because a pelagic impact would be the most likely case, the result would be a heavy metal rainout.

  18. Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Agbasi, Chijioke Raphael

    The non-linear elastodynamics of a flat plate subjected to low velocity foreign body impacts is studied, resembling the space debris impacts on the space structure. The work is based on a central hypothesis that in addition to identifying the impact locations, the material properties of the foreign objects can also be classified using acousto-ultrasonic signals (AUS). Simultaneous localization of impact point and classification of impact object is quite challenging using existing state-of-the-art structural health monitoring (SHM) approaches. Available techniques seek to report the exact location of impact on the structure, however, the reported information is likely to have errors from nonlinearity and variability in the AUS signals due to materials, geometry, boundary conditions, wave dispersion, environmental conditions, sensor and hardware calibration etc. It is found that the frequency and speed of the guided wave generated in the plate can be quantized based on the impactor's relationship with the plate (i.e. the wave speed and the impactor's mechanical properties are coupled). In this work, in order to characterize the impact location and mechanical properties of imapctors, nonlinear transient phenomenon is empirically studied to decouple the understanding using the dominant frequency band (DFB) and Lag Index (LI) of the acousto-ultrasonic signals. Next the understanding was correlated with the elastic modulus of the impactor to predict transmitted force histories. The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over conventional localized sensor clusters. It was found that the TSSC provides unbiased sensor voting that boosts sensitivity towards classification of impact events. To prove the concept, a coupled field (multiphysics) finite element model (CFFEM) is developed and a series of experiments were performed. The dominant frequency band (DBF) along with a Lag Index (LI) feature extraction technique was found to be suitable for classifying the impactors. Results show that TSSC with DBF features increase the sensitivity of impactor's elastic modulus, if the covariance of the AUS from the TSSC and other conventional sensor clusters are compared. It is observe that for the impact velocity, geometric and mechanical properties studied herein, longitudinal and flexural waves are excited, and there are quantifiable differences in the Lamb wave signatures excited for different impactor materials. It is found that such differences are distinguishable only by the proposed TSSC, but not by other state-of-the-art sensor configurations used in SHM. This study will be useful for modeling an inverse problem needed for classifying impactor materials and the subsequent reconstruction of force histories via neural network or artificial intelligence. Finally an alternative novel approach is proposed to describe the Probability Map of Impact (PMOI) over the entire structure. PMOI could serve as a read-out tool for simultaneously identifying the impact location and the type of the impactor that has impacted the structure. PMOI is intended to provide high risk areas of the space structures where the incipient damage could exist (e.g. area with PMOI > 95%) after an impact.

  19. DESIGN AND CALIBRATION OF THE EPA PM 2.5 WELL IMPACTOR NINETY-SIX (WINS)

    EPA Science Inventory

    The EPA well-type impactor ninety-six (WINS) was designed and calibrated to serve as a particle size separation device for the EPA reference method sampler for particulate matter under 2.5 um aerodynamic diameter. The WINS was designed to operate downstream of a PM10 inlet at a...

  20. Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation.

    PubMed

    Weisenbach, Charles A; Logsdon, Katie; Salzar, Robert S; Chancey, Valeta Carol; Brozoski, Fredrick

    2018-03-01

    Military combat helmets protect the wearer from a variety of battlefield threats, including projectiles. Helmet back-face deformation (BFD) is the result of the helmet defeating a projectile and deforming inward. Back-face deformation can result in localized blunt impacts to the head. A method was developed to investigate skull injury due to BFD behind-armor blunt trauma. A representative impactor was designed from the BFD profiles of modern combat helmets subjected to ballistic impacts. Three post-mortem human subject head specimens were each impacted using the representative impactor at three anatomical regions (frontal bone, right/left temporo-parietal regions) using a pneumatic projectile launcher. Thirty-six impacts were conducted at energy levels between 5 J and 25 J. Fractures were detected in two specimens. Two of the specimens experienced temporo-parietal fractures while the third specimen experienced no fractures. Biomechanical metrics, including impactor acceleration, were obtained for all tests. The work presented herein describes initial research utilizing a test method enabling the collection of dynamic exposure and biomechanical response data for the skull at the BFD-head interface.

  1. Properties of the dead zone due to the gas cushion effect in PBX 9502

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-06-01

    The gas cushion effect is a well-known phenomenon in which gas trapped between an impactor and an explosive precompresses and deadens a layer of the explosive. We have conducted a series of impact experiments, with and without a trapped gas layer, on the plastic bonded explosive PBX 9502 (95% TATB and 5% Kel-F 800). In each experiment, a 100-oriented LiF window was glued, with an intervening Al foil (a reflector for VISAR), to the surface of a thin (2.5-3.3 mm) PBX 9502 sample and the opposite surface impacted by an impactor at a velocity sufficient to produce an overdriven detonation. VISAR was used to observe arrival of the resulting shock wave and reverberations between the LiF window and the impactor. In three experiments, a gap of 25-38 mm, filled with He gas at a pressure of 0.79 bar, existed between the impactor and the sample at the beginning of the experiment. In these three experiments, a low-amplitude wave reflected from the interface between the reacted explosive and the dead zone was observed to precede the reflection from the impactor. We have used the observed wave amplitudes and arrival times to quantify the properties of the dead zone and, by comparison to existing EOS data for reacted and unreacted PBX 9502, estimate the extent of reaction in the dead zone. This work was supported by the US Department of Energy under contract DE-AC52-06NA25396.

  2. DESIGN AND CALIBRATION OF THE EPA PM2.5 WELL IMPACTOR NINETY-SIX (WINS)

    EPA Science Inventory

    The EPA well-type impactor ninety-six (WINS) was designed and calibrated to serve as a particle size separation device for the EPA reference method sampler for particulate matter under 2.5 um aerodynamic diameter. The WINS was designed to operate downstream of a PM10 inlet at a v...

  3. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR PREPARATION OF PM AND URG IMPACTORS AND IMPACTION PLATES (UA-L-8.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the stages of preparation required for Harvard particulate matter (PM) sampler impactor: (1) prior to in-field use of the particulate sampling system, (2) in-field sampling, and (3) disassembly after field use. This procedure applies direct...

  4. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  5. Identification of sources of aerosol particles in three locations in eastern Botswana

    NASA Astrophysics Data System (ADS)

    Chimidza, S.; Moloi, K.

    2000-07-01

    Airborne particles have been collected using a dichotomous virtual impactor at three different locations in the eastern part of Botswana: Serowe, Selibe-Phikwe, and Francistown. The particles were separated into two fractions (fine and coarse). Sampling at the three locations was done consecutively during the months of July and August, which are usually dry and stable. The sampling time for each sample was 12 hours during the day. For elemental composition, energy-dispersive x-ray fluorescence technique was used. Correlations and principal component analysis with varimax rotation were used to identify major sources of aerosol particles. In all the three places, soil was found to be the main source of aerosol particles. A copper-nickel mine and smelter at Selibe-Phikwe was found to be not only a source of copper and nickel particles in Selibe-Phikwe but also a source of these particles in far places like Serowe. In Selibe-Phikwe and Francistown, car exhaust was found to be the major source of fine particles of lead and bromine.

  6. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM).

    PubMed

    Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2015-04-01

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment

    NASA Astrophysics Data System (ADS)

    Saiki, T.; Imamura, H.; Arakawa, M.; Wada, K.; Takagi, Y.; Hayakawa, M.; Shirai, K.; Yano, H.; Okamoto, C.

    2017-07-01

    Hayabusa2 is a sample return mission of JAXA launched on 3 December 2014. Hayabusa2 is the successor of Hayabusa, which returned samples from the asteroid Itokawa to the Earth. Although the design of Hayabusa2 follows that of Hayabusa, the former is equipped with some new components. The small carry-on impactor (SCI) is one of those components. The SCI is a compact kinetic impactor designed to remove the asteroid surface regolith locally and create an artificial crater. One of the most important scientific objectives of Hayabusa2 is to investigate the chemical and physical properties of the internal materials and structures of the target body, asteroid Ryugu. Hayabusa2 will attempt to observe the resultant crater with some scientific instruments and to get samples from around the crater. High kinetic energy is required to create a meaningful crater, however, the impact system design needs to fit within strict constraints. Complicated functions, such as a guidance and control system, are not permitted. A special type of shaped charge is used for the acceleration of the impactor of the SCI in order to make system simpler. Using this explosion technique makes it possible to accelerate the impactor very quickly and to hit the asteroid without a guidance system. However, the impact operation will be complicated because the explosive is very powerful and it scatters high-speed debris at the detonation. This paper describes an overview of the SCI system, the results of the development testing and an outline of the impact experiment of the Hayabusa2 mission.

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR PREPARATION OF PM AND URG IMPACTORS AND IMPACTION PLATES (UA-L-8.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the stages of preparation required for Harvard particulate matter (PM) sampler impactor: (1) prior to in-field use of the particulate sampling system, (2) in-field sampling, and (3) disassembly after field use. This procedure applies direct...

  9. Collection and Analysis of Aircraft Emitted Particles

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.

  10. Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Ho, Jin; Kim, Bang-Yeop

    2015-09-01

    Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.

  11. Characterizing the Early Impact Bombardment

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  12. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, Cassandra K.; Sims, S. C.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor collects size-fractionated distributions of aerosols on a series of 10 MHz quartz crystals and employs SAW devices coated with chemical sensors for gas detection. Presently, we are calibrating the ER-2 certified QCM/SAW cascade impactor in the laboratory for the detection of ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. We are also characterizing sampling efficiency by measuring the loss of ozone on different materials. There are parallel experiments underway to measure the variations in the sensitivity and response of the QCM/SAW crystals as a function of temperature and pressure. Results of the work to date will be shown.

  13. Inheritance of magma ocean differentiation during lunar origin by giant impact

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1992-01-01

    The giant impact model for the Moon has won widespread support. It seems to satisfactorily explain the high angular momentum of the Earth-Moon system, and the strong depletion of FeNi in the Moon. This model is usually assumed to entail no significant fractionation of nonvolatile lithophile elements relative to a simple binary mixture of impactor silicates plus protoearth silicates. Although the Earth may have been hot enough before the impact to be completely molten, analysis of the likely number and timing of major impacts in the prehistory of the impactor indicates that a fully molten, undifferentiated condition for that relatively small body is unlikely. Given selective sampling by the giant impact, any significant vertical differentiation within the noncore portion of the impactor would have been largely inherited by the Moon.

  14. Field Measurement and Model Evaluation Program for Assessment of the Environmental Effects of Military Smokes: The Atterbury-87 Field Study of Smoke Dispersion Model

    DTIC Science & Technology

    1989-02-01

    satisfies these criteria and is a major3 reason for the enduring popularity of the Prairie Grass database. Taller or slightly less homogeneous vegetation only...by California Measurements, Inc. (Sierra Madre , CA). The cascade impactor of the PC-2 is comprised of ten aerodynamic inertial impactors arranged in

  15. Wild Duck Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On April 7, 2005, the Deep Impact spacecraft's Impactor Target Sensor camera recorded this image of M11, the Wild Duck cluster, a galactic open cluster located 6 thousand light years away. The camera is located on the impactor spacecraft, which will image comet Tempel 1 beginning 22 hours before impact until about 2 seconds before impact. Impact with comet Tempel 1 is planned for July 4, 2005.

  16. Options and uncertainties in planetary defense: Mission planning and vehicle design for flexible response

    NASA Astrophysics Data System (ADS)

    Barbee, Brent W.; Syal, Megan Bruck; Dearborn, David; Gisler, Galen; Greenaugh, Kevin; Howley, Kirsten M.; Leung, Ron; Lyzhoft, Josh; Miller, Paul L.; Nuth, Joseph A.; Plesko, Catherine; Seery, Bernard D.; Wasem, Joseph; Weaver, Robert P.; Zebenay, Melak

    2018-02-01

    This paper is part of an integrated study by NASA and the NNSA to quantitatively understand the response timeframe should a threatening Earth-impacting near-Earth object (NEO) be identified. The two realistic responses considered are the use of a spacecraft functioning as either a kinetic impactor or a nuclear explosive carrier to deflect the approaching NEO. The choice depends on the NEO size and mass, the available response time prior to Earth impact, and the various uncertainties. Whenever practical, the kinetic impactor is the preferred approach, but various factors, such as large uncertainties or short available response time, reduce the kinetic impactor's suitability and, ultimately, eliminate its sufficiency. Herein we examine response time and the activities that occur between the time when an NEO is recognized as being a sufficient threat to require a deflection and the time when the deflection impulse is applied to the NEO. To use a kinetic impactor for successful deflection of an NEO, it is essential to minimize the reaction time and maximize the time available for the impulse delivered to the NEO by the kinetic impactor to integrate forward in time to the eventual deflection of the NEO away from Earth impact. To shorten the response time, we develop tools to survey the profile of needed spacecraft launches and the possible mission payloads. We further present a vehicle design capable of either serving as a kinetic impactor, or, if the need arises, serving as a system to transport a nuclear explosive to the NEO. These results are generated by analyzing a specific case study in which the simulated Earth-impacting NEO is modeled very closely after the real NEO known as 101955 Bennu (1999 RQ36). Bennu was selected for our case study in part because it is the best-studied of the known NEOs. It is also the destination of NASA's OSIRIS-REx sample return mission, which is, at the time of this writing, enroute to Bennu following a September 2016 launch.

  17. PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset.

    PubMed

    Miller, Carl S; Madura, Nathaniel H; Schneider, Lawrence W; Klinich, Kathleen D; Reed, Matthew P; Rupp, Jonathan D

    2013-11-01

    Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject. The masses of the sleds and the force- deflection characteristics of the energy-absorbing interface material between the sleds were set to provide the impactor sled with a velocity profile that matched the average driver door velocity history produced in a series of side NCAP tests. Impactor padding was also selected so that average ATD pelvis and thorax responses from the same series of side NCAP tests were reproduced when the ATD used in these tests was impacted using the average door-velocity history. Each subject was first impacted on one side of the body using an initial impactor speed of 3 m/s. If a post-test CT scan and strain-gage data revealed two or fewer non-displaced rib fractures, then the PMHS was impacted on the contralateral side of the body at a speed of 8 m/s or 10 m/s. The results of tests in the 3 m/s and 8 m/s conditions were used to develop force-deflection response corridors for the abdomen, force history response corridors for the pelvis (iliac wing and greater trochanter), the midthigh, and the thorax. Response corridors for the lateral acceleration of the pelvis were also developed. Future work will compare side impact ATD responses to these response corridors.

  18. Size-selective pulmonary dose indices for metal-working fluid aerosols in machining and grinding operations in the automobile manufacturing industry.

    PubMed

    Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A

    1994-01-01

    The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.

  19. Parallel particle impactor - novel size-selective particle sampler for accurate fractioning of inhalable particles

    NASA Astrophysics Data System (ADS)

    Trakumas, S.; Salter, E.

    2009-02-01

    Adverse health effects due to exposure to airborne particles are associated with particle deposition within the human respiratory tract. Particle size, shape, chemical composition, and the individual physiological characteristics of each person determine to what depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle inertial classification devices are available to fractionate airborne particles according to their aerodynamic size to approximate particle penetration through the human respiratory tract. Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. Extensive studies of different cyclonic samplers have shown, however, that the sampling characteristics of cyclones do not follow the entire selected convention accurately. In the search for a more accurate way to assess worker exposure to different fractions of inhaled dust, a novel sampler comprising several inertial impactors arranged in parallel was designed and tested. The new design includes a number of separated impactors arranged in parallel. Prototypes of respirable and thoracic samplers each comprising four impactors arranged in parallel were manufactured and tested. Results indicated that the prototype samplers followed closely the penetration characteristics for which they were designed. The new samplers were found to perform similarly for liquid and solid test particles; penetration characteristics remained unchanged even after prolonged exposure to coal mine dust at high concentration. The new parallel impactor design can be applied to approximate any monotonically decreasing penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as well as area samplers that operate at higher flow rates can be made based on the suggested design. Performance of such samplers can be predicted with high accuracy employing well-established impaction theory.

  20. Inheritance of silicate differentiation during lunar origin by giant impact

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1992-01-01

    It is pointed out that the implication of the popular giant impact model of lunar origin (e.g., Hartmann and Davis, 1975; Cameron and Ward, 1976; Stevenson, 1987) is that any depth-related silicate differentiation within the impactor (and/or the earth) at the time of the impact must be partly inherited by the preferentially peripheral matter that forms the moon. This paper presents calculations of the magnitude of the net differentiation of the protolunar matter for a variety of elements and scenarios, with different assumptions regarding the geometries of the 'sampled' peripheral zones, the relative proportions of the earth-derived to impactor-derived matter in the final moon, and the degree to which the impactor mantle had crystallized prior to the giant impact. It is shown that these differention effects constrain the overall plausibility of the giant impact hypothesis.

  1. Collision forces for compliant projectiles

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1990-01-01

    Force histories resulting from the impact of compliant projectiles were determined experimentally. A long instrumented rod was used as the target, and the impact force was calculated directly from the measured strain response. Results from a series of tests on several different sized impactors were used to define four dimensionless parameters that determine, for a specified impactor velocity and size, the amplitude, duration, shape, and impulse of the impact force history.

  2. The effect of different coating materials on the prevention of powder bounce in the next generation impactor

    PubMed Central

    Khalili, Shadi Farshbaf; Ghanbarzadeh, Saeed; Nokhodchi, Ali; Hamishehkar, Hamed

    2018-01-01

    In the process of quality control of pulmonary drug delivery products, aerosolization efficiency is mainly determined using impactors, e.g. next generation impactor (NGI). However, particle bounce may interfere with the validity and accuracy of results due to the overestimation of the respirable fraction. It is suggested that the coating of impactor's stages may prevent the particle bounce. Therefore, coating materials may influence the results of the aerosolization indexes of pulmonary dosage forms. The aim of this study was to investigate if the aerosolization indices are affected differently by using the different coating materials. In this study, the effects of using different materials including Span® 85, Tween® 80, silicon® oil, glycerin and Brij® 35/glycerin mixture recommended for the coating of NGI stages on the aerosolization indices such as fine particle fraction, fine particle dose, mass median aerodynamic diameter, and geometric standard deviation of salbutamol emitted from a commercial metered dose inhaler (MDI), were assessed. Three statistically different results were obtained on using Tween® 80, Span® 85 and silicon oil, and glycerin and Brij®35/glycerin mixture. It can be concluded that the type of coating material influenced the aerosolization indices of the examined MDI in NGIs. PMID:29853937

  3. The effect of different coating materials on the prevention of powder bounce in the next generation impactor.

    PubMed

    Khalili, Shadi Farshbaf; Ghanbarzadeh, Saeed; Nokhodchi, Ali; Hamishehkar, Hamed

    2018-06-01

    In the process of quality control of pulmonary drug delivery products, aerosolization efficiency is mainly determined using impactors, e.g. next generation impactor (NGI). However, particle bounce may interfere with the validity and accuracy of results due to the overestimation of the respirable fraction. It is suggested that the coating of impactor's stages may prevent the particle bounce. Therefore, coating materials may influence the results of the aerosolization indexes of pulmonary dosage forms. The aim of this study was to investigate if the aerosolization indices are affected differently by using the different coating materials. In this study, the effects of using different materials including Span ® 85, Tween ® 80, silicon ® oil, glycerin and Brij ® 35/glycerin mixture recommended for the coating of NGI stages on the aerosolization indices such as fine particle fraction, fine particle dose, mass median aerodynamic diameter, and geometric standard deviation of salbutamol emitted from a commercial metered dose inhaler (MDI), were assessed. Three statistically different results were obtained on using Tween ® 80, Span ® 85 and silicon oil, and glycerin and Brij ® 35/glycerin mixture. It can be concluded that the type of coating material influenced the aerosolization indices of the examined MDI in NGIs.

  4. Simultaneous collection of airborne particulate matter on several collection substrates with a high-volume cascade impactor

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Vowles, P. D.; McTainsh, G. H.; Simpson, R. W.; Cohen, D. D.; Bailey, G. M.; McOrist, G. D.

    This paper describes a method for the simultaneous collection of size-fractionated aerosol samples on several collection substrates, including glass-fibre filter, carbon tape and silver tape, with a commercially available high-volume cascade impactor. This permitted various chemical analysis procedures, including ion beam analysis (IBA), instrumental neutron activation analysis (INAA), carbon analysis and scanning electron microscopy (SEM), to be carried out on the samples.

  5. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  6. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  7. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    PubMed

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

  8. Impact Tsunami Calculations: Hydrodynamical Simulations vs. Linear Theory

    NASA Technical Reports Server (NTRS)

    Korycansky, E.; Asphaug, E.; Ward, S. N.

    2003-01-01

    Tsunamis generated by the impacts of asteroids and comets into the Earth oceans are widely recognized as a potential catastrophic hazard to the Earth s population. Our general conclusion is that linear theory is a reasonably accurate guide to behavior of tsunamis generated by impactors of moderate size, where the initial transient impact cavity is of moderate depth compared to the ocean depth. This is particularly the case for long wavelength waves that propagate fastest and would reach coastlines first. Such tsunamis would be generated in the open ocean by impactors of 300 meters in diameter, which might be expected to strike the Earth once every few thousand years, on the average. Larger impactors produce cavities deep enough to reach the ocean floor; even here, linear theory is applicable if the starting point is chosen at a later phase in the calculation when the impact crater has slumped back to produce a cavity of moderate depth and slope.

  9. Detailed Modeling of the DART Spacecraft Impact into Didymoon

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G.

    2017-12-01

    In this presentation we will model the impact of the DART spacecraft into the target Didymoon. Most previous modeling of this impact has used full density aluminum spheres with a mass of 300 kg or more recently 500 kg. Many of the published scaling laws for crater size and diameter as well as ejecta modeling assume this type of impactor. The actual spacecraft for the DART impact is not solid and does not contain a solid dedicated kinetic impactor. The spacecraft is considered the impactor. Since the spacecraft is significantly larger ( 100 x 100 x 200 cm) in size than a full density aluminum sphere (radius 35 cm) the resulting impact dynamics will be quite different. Here we model both types of impact and compare the results of the simulation for crater size, crater depth and ejecta. This allows for a comparison of the momentum enhancement factor, beta. Suggestions for improvement of the spacecraft design will be given.

  10. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon

    PubMed Central

    KARATO, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon. PMID:24621956

  11. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    PubMed

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  12. Analysis of equivalent parameters of two spinal cord injury devices: the New York University impactor versus the Infinite Horizon impactor.

    PubMed

    Park, Jin Hoon; Kim, Jeong Hoon; Oh, Sun-Kyu; Baek, Se Rim; Min, Joongkee; Kim, Yong Whan; Kim, Sang Tae; Woo, Chul-Woong; Jeon, Sang Ryong

    2016-11-01

    The New York University (NYU) impactor and the Infinite Horizon (IH) impactor are used to create spinal cord injury (SCI) models. However, the parameters of these two devices that yield equivalent SCI severity remain unclear. To identify equivalent parameters, rats with SCIs induced by either device set at various parameters were subjected to behavioral and histologic analyses. This is an animal laboratory study. Groups of eight rats acquired SCIs by dropping a 10 g rod from a height of 25 mm or 50 mm by using the NYU device or by delivering a force of 150 kdyn, 175 kdyn, 200 kdyn, or 250 kdyn by using the IH impactor. All injured rats were tested weekly for 8 weeks by using the Basso, Beattie, and Bresnahan (BBB) test and the ladder rung test. On the 10th week, the lesion volume of each group was measured by using a 9.4 Tesla magnetic resonance imaging (MRI), and the spinal cords were subjected to histologic analysis using anterograde biotinylated dextran amine (BDA) tracing and immunofluorescence staining with an anti-protein kinase C-gamma (PKC-γ) antibody. Basso, Beattie, and Bresnahan test scores between the 25 mm and the 200 kdyn groups as well as between the 50 mm and and 250 kdyn groups were very similar. Although it was not statistically significant, the mean scores of the ladder rung test in the 200 kdyn group were higher than the 25 mm group at all assessment time points. There was a significantly different cavity volume only between the 50 mm and the 200 kdyn groups. Midline sagittal images of the spinal cord on the MRI revealed that the 25 mm group predominantly had dorsal injuries, whereas the 200 kdyn group had deeper injuries. Anterograde tracing with BDA showed that in the 200 kdyn group, the dorsal corticospinal tract of the caudal area of the lesion was labeled. Similar labeling was not observed in the 25 mm group. Immunofluorescence staining of PKC-γ also revealed strong staining of the dorsal corticospinal tract in the 200 kdyn group but not in the 25 mm group. The 25 mm injuries generated by the NYU impactor are generally equivalent to the 200 kdyn injuries generated by using the IH impactor. However, differences in the ladder rung test scores, MRI images, BDA traces, and PKC-γ staining demonstrate that the two devices exert qualitatively different impacts on the spinal cord. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Impact Response of Composite Materials Involved in Helicopter Vulnerability Assessment: Literature Review - Part 2

    DTIC Science & Technology

    2006-04-01

    Nevertheless, several publications analyse impactor shape effects. For example, a study conducted in paper [ Mitrevski , 2005] considered drop-weight...In: Proc. 11th Int. Conf. on Composite Materials, v. 6, Gold Coast, Australia, 14-18 July, 1997, ACSS, Woodhead Publ Ltd, pp. 148-157. [ Mitrevski ...2005] Mitrevski T., Marshall I.H., Thomson R., Jones R., and Whittingham B., The effect of impactor shape on the impact response of composite

  14. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    NASA Astrophysics Data System (ADS)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  15. Compressive residual strength of graphite/epoxy laminates after impact

    NASA Technical Reports Server (NTRS)

    Guy, Teresa A.; Lagace, Paul A.

    1992-01-01

    The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.

  16. Characterization of Total and Size-Fractionated Manganese Exposure by Work Area in a Shipbuilding Yard.

    PubMed

    Jeong, Jee Yeon; Park, Jong Su; Kim, Pan Gyi

    2016-06-01

    Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of 100 μg/m(3) as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of 20 μg/m(3) for respirable manganese. The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.

  17. Constraints on the pre-impact orbits of Theia, the Borealis impactor and the progenitor of Mercury

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Gabriel, Travis; Asphaug, Erik

    2016-10-01

    Many aspects of the current dynamical and compositional configuration of the inner Solar System, such as Mercury's large core mass fraction, the angular momentum of the Earth-Moon system, and the reorientation of Mars, have been achieved through the effects of giant impacts. It is possible to relate the impact conditions, especially the velocity, to the pre-impact orbits. This in turn provides insight into the source regions for the terrestrial planets for comparison with N-body accretion models. For example, in the case of the canonical model for the formation of the Moon, previous studies have investigated regions in which the Mars-size impactor, Theia, could be quasi-stable for millions of years. We can however obtain constraints on the orbit of an impactor immediately prior to collision simply by knowing the impact velocity. We consider the canonical Moon formation model, as well as the models of Cuk & Stewart (2012), Canup (2012) and Reufer et al. (2012), to derive from each model its constraints on the pre-impact orbit of Theia. We also consider Mars, and provide constraints on the pre-impact orbit of the impactor suggested to have formed the Borealis basin, and Mercury, namely the Benz et al. (2007) scenario for the formation of Mercury. We discuss the implication of these pre-impact orbits for the origin of the bodies and their compositions.

  18. System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric

    2018-05-01

    We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.

  19. Analytical formulation of lunar cratering asymmetries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhou, Ji-Lin

    2016-10-01

    Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system impactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims: We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods: Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM/venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth-Moon distance aM = 20-60 Earth radii in five cases. Results: The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1 + A1cosβ), which decreases as the apex distance β increases. The numerical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2cos2ϕ), which decreases as the latitude modulus | ϕ | increases. The amplitudes A1,2 are reliable measurements of asymmetries. Our analysis explicitly indicates the quantitative relations between cratering distribution and bombardment conditions (impactor properties and the lunar orbital status) like A1 ∝ vM/venc, resulting in a method for reproducing the bombardment conditions through measuring the asymmetry. Mutual confirmation between analytical model and numerical simulations is found in terms of the cratering distribution and its variation with aM. Estimates of A1 for crater density distributions generated by the MBAs and the NEOs are 0.101-0.159 and 0.117, respectively.

  20. The Lack of Small Craters on Eros is not due to the Yarkovsky Effect

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Greenberg, R.

    2007-10-01

    Eros approaches saturation for craters larger than 200 m in diameter, but is significantly depleted in smaller craters [1]. It has been suggested that this could reflect a paucity of small impactors in the main belt, due to their removal by the Yarkovsky effect [1,2]. Here we present the results of a self-consistent collisional and dynamical evolution model for the main belt and NEAs, along with a model for the evolution of asteroid crater populations, that show that Eros' lack of small craters is not likely due to the depletion of small impactors by the Yarkovsky effect, or any other depletion mechanism. To produce a main-belt size distribution that is suitably depleted in small impactors to match Eros' small crater population requires a more extreme size-dependent removal rate than the Yarkovsky effect and Poynting-Robertson drag can provide. Using such an extreme removal rate introduces a wave into the model main-belt size distribution that propagates to large sizes, and is inconsistent with the observed main-belt population. Similarly, it introduces a wave in the model NEA population that is inconsistent with the observed NEAs. Eros is not alone in showing a depletion of small craters. Recent observations of the asteroid Itokawa by the Hyabusa spacecraft show relatively few craters, and Yarkovsky depletion of small impactors has again been suggested as a possible explanation [3]. Our work shows that a substantial depletion of small impactors from the main belt would have consequences at large sizes, inconsistent with observations of the actual main-belt and NEA size distributions. Other explanations for the depletion of small craters on asteroid surfaces must be explored [eg. 4,5]. References: [1] Chapman (2002), Icarus 155, p.104. [2] Bell (2001), LPSC XXXII, no.1964. [3] Saito (2006), Science 312, p.1341. [4] Richardson (2004), Science 306, p.1526. [5] Greenberg (2003), DPS 35, no.24.06.

  1. Giant impactors - Plausible sizes and populations

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Vail, S. M.

    1986-01-01

    The largest sizes of planetesimals required to explain spin properties of planets are investigated in the context of the impact-trigger hypothesis of lunar origin. Solar system models with different large impactor sources are constructed and stochastic variations in obliquities and rotation periods resulting from each source are studied. The present study finds it highly plausible that earth was struck by a body of about 0.03-0.12 earth masses with enough energy and angular momentum to dislodge mantle material and form the present earth-moon system.

  2. Co-Orbital Debris as a Source of Small Impactors and Albedo Features on Tethys

    DTIC Science & Technology

    2017-03-01

    along the equator in the leading hemisphere of Tethys and correspond to the albedo “lens” identified in both Voyager and Cassini data (see Fig. 1...to determine the small- est fragment that would create a resolvable crater on Tethys, given the current imaging data available. We can confidently...identify craters larger than 1 km in diameter at the best Cassini image resolution of ~215 m/pix. Using the same impactor size to crater diameter

  3. Trajectory Design for a Single-String Impactor Concept

    NASA Technical Reports Server (NTRS)

    Dono Perez, Andres; Burton, Roland; Stupl, Jan; Mauro, David

    2017-01-01

    This paper introduces a trajectory design for a secondary spacecraft concept to augment science return in interplanetary missions. The concept consist of a single-string probe with a kinetic impactor on board that generates an artificial plume to perform in-situ sampling. The trajectory design was applied to a particular case study that samples ejecta particles from the Jovian moon Europa. Results were validated using statistical analysis. Details regarding the navigation, targeting and disposal challenges related to this concept are presented herein.

  4. Virtual impact: visualizing the potential effects of cosmic impact in human history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masse, W Bruce; Janecky, David R; Forte, Maurizio

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools basedmore » on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.« less

  5. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near Earth Asteroid Disruption

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent W.

    2015-01-01

    Currently, no planetary defense demonstration mission has ever been flown. While Nuclear Explosive Devices (NEDs) have significantly more energy than a kinetic impactor launched directly from Earth, they present safety and political complications, and therefore may only be used when absolutely necessary. The Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System (BILLIARDS) is a demonstration mission for planetary defense, which is capable of delivering comparable energy to the lower range of NED capabilities in the form of a safer kinetic impactor. A small asteroid (<10m) is captured by a spacecraft, which greatly increases the mass available as a kinetic impactor, without the need to bring all of the mass out of Earth's gravity well. The small asteroid is then deflected onto a collision course with a larger (approx. 100m) asteroid. This collision will deflect or disrupt the larger asteroid. To reduce the cost and complexity, an asteroid pair which has a natural close approach is selected.

  6. Cratering Characteristics of the Europa Kinetic Ice Penetrator

    NASA Astrophysics Data System (ADS)

    Danner, Mariah L.

    This thesis further develops the Europa Kinetic Ice Penetrator (EKIP) landing technique for airless bodies, as well as characterizes the effect EKIP would have on Europa's surface. Damage to the extremophile Planococcus Halocryophilus OR1 (PHOR1) during a laboratory hypervelocity impact test was studied the effect of rapid application of pressure to microbes frozen in ice. Significant die-off occurred, however PHOR1 microbes survived a 2.2km/s impact. Field testing the second-stage deployment, as well as to characterize crater morphology of the EKIP system was conducted. With low impact velocities, penetrators consistently had deeper, narrower craters than natural impactors (rocks), and showed less radial and sub-impactor compression. This, and future crater data into harder substrates, will create a cratering hardness curve for this design impactor into airless bodies. This curve, used with the eventual in situ craters, can be used to constrain the hardness and other physical properties of the surface of icy-bodies.

  7. Impact damage resistance of composite fuselage structure, part 1

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Avery, W. B.; Ilcewicz, L. B.; Grande, D. H.; Coxon, B. R.

    1992-01-01

    The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure.

  8. Method for measuring the size distribution of airborne rhinovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber.more » Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.« less

  9. Gas Dynamics, Characterization, and Calibration of Fast Flow Flight Cascade Impactor Quartz Crystal Microbalances (QCM) for Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.

    1997-01-01

    During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.

  10. Penetration of multiple thin films in micrometeorite capture cells

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.

    1994-01-01

    As part of a continuing effort to develop cosmic dust detectors/collectors for use in space, we performed a series of hypervelocity impact experiments on combined sensor/capture-cell assemblies using 10-200-micron-diameter glass projectiles and olivine crystals at velocities of 0.9-14.4 km/s. The design objective of the space-flight instrument is to measure the trajectories of individual particles with sufficient accuracy to permit identification of their parent bodies and to capture enough impactor material to allow chemical and isotopic analyses of samples returned to Earth. Three different multiple-film small-particle capture cell designs (0.1-100-micron-thick Al foils with approx. 10, 100, and 1800 micron spacing) were evaluated for their ability to capture impactor fragments and residue. Their performances were compared to two other types of capture cells, foil covered Ge crystals, and 0.50 and 0.120 g/cu cm aerogels. All capture cells were tested behind multifilm (1.4-6.0-micron-thick) polyvinylidene fluoride (PVDF) velocity/trajectory sensor devices. Several tests were also done without the PVDF sensors for comparison. The results of this study were reported by Simon in a comprehensive report in which the morphology of impacts and impactor residues in various types of capture cells after passage through two PVDF sensor films is discussed. Impactor fragments in selected capture cells from impacts at velocities up to 6.4 km/s were identified using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS).

  11. ESA NEOCC effort to eliminate high Palermo Scale virtual impactors

    NASA Astrophysics Data System (ADS)

    Micheli, M.; Koschny, D.; Hainaut, O.; Bernardi, F.

    2014-07-01

    At the moment of this writing about 4 % of the known near-Earth objects are known to have at least one future close approach scenario with a non-negligible collision probability within the next century, as routinely computed by the NEODyS and Sentry systems. The most straightforward way to improve the knowledge of the future dynamics of an NEO in order to exclude (or possibly confirm) some of these possible future impact is to obtain additional astrometric observations of the object as soon as it becomes observable again. In particular, since a large fraction (>98 %) of the known objects currently recognized as possible future impactors have been observed during a single opposition, this usually corresponds to obtaining a new set of observations during a second opposition, a so called ''recovery''. However, in some cases the future observability windows for the target after the discovery apparition may be very limited, either because the object is intrinsically small (and therefore requires a very close and consequently rare approach to become observable) or because its orbital dynamic prevents the observability from the ground for a long timespan (as in the case of quasi-resonant objects with a long synodic period). When this happens, the only short-term way to clarify an impact scenario is to look toward the past, and investigate the possibility that unrecognized detections of the object are already present in the databases of old astronomical images, which are often archived by professional telescopes and made available to the community a few months to years after they are exposed. We will here present an effort lead by the newly formed ESA NEO Coordination Centre (NEOCC) in Frascati to pursue both these avenues with the intent of improving the orbital knowledge of the highest-rated possible impactors, as defined by the Palermo Technical Impact Hazard Scale (PS in the following). As an example of our ongoing observational activities, we will first present our recovery observations of a few very faint high-PS objects, and the follow-up observations of recently discovered objects during the outgoing phase of their apparition, down to magnitude 25 or so. Most of these observations were obtained within an accepted DDT proposal of an ESA/ESO team, which gives us access on short notice to the observational capabilities of the 8.2 meter Very Large Telescope at Cerro Paranal, Chile. The instrument has been used to successfully detect targets fainter than V=25, and provide high-accuracy astrometry which in most cases has been sufficient to remove the impact solutions from the allowed future dynamics of the object. As a main focus of our activities at the ESA NEOCC we are also actively soliciting observations of NEOs by other worldwide observers which are known to have access to the most appropriate facilities for each target (in terms of telescope aperture, camera FoV and/or geographic location). We will also quickly summarize the results of some of these activities. In the second part of this contribution, we will present the result of a focused precovery effort by our team, which led to the identification, measurement and submission of previously unrecognized archival detections of possible impactors, most of which scored particularly high in the PS ranking, but would nevertheless have been unobservable for the imminent future. We will discuss a couple of interesting cases which could be entirely excluded as a risk thanks to the addition of faint detections we located in data from the Canada- France-Hawaii Telescope (CFHT), and an interesting case of a ''chain of precoveries'' where a first short-arc precovery allowed for the identification of additional observations obtained more than a decade earlier, which in turn lead to the elimination of the impact risk from that object. We will also discuss how a real time access to the data of current surveys like Pan-STARRS can allow almost immediate precovery observations of recently discovered possible impactors, allowing to clarify the impact probability within days from the discovery, and thus saving most of the observational effort often necessary to provide adequate follow-up to recent discoveries.

  12. Titanium Isotopes Provide Clues to Lunar Origin

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than thought so that the impactor and early Earth actually had the same isotopic compositions? Zhang and coauthors also draw attention to the possibility that the impactor could have been rich in ice, so that the Moon formed mostly from Earth's rocky materials. Questions abound as our understanding of planet formation evolves. Whatever the cause of the titanium-isotope homogeneity in the Earth-Moon system, the new data from titanium isotopes herald new directions for understanding the complicated processes involved in forming the Moon by a giant impact.

  13. Prediction of impact force and duration during low velocity impact on circular composite laminates

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.; Illg, W.

    1983-01-01

    Two simple and improved models--energy-balance and spring-mass--were developed to calculate impact force and duration during low velocity impact of circular composite plates. Both models include the contact deformation of the plate and the impactor as well as bending, transverse shear, and membrane deformations of the plate. The plate was transversely isotropic graphite/epoxy composite laminate and the impactor was a steel sphere. Calculated impact forces from the two analyses agreed with each other. The analyses were verified by comparing the results with reported test data.

  14. The impact rate on Earth.

    PubMed

    Bland, Philip A

    2005-12-15

    Recent data, and modelling of the interaction between asteroids and the atmosphere, has defined a complete size-frequency distribution for terrestrial impactors, from meteorite-sized objects up to kilometre-sized asteroids, for both the upper atmosphere and the Earth's surface. Although there remain significant uncertainties in the incidence of specific size-fractions of impactors, these estimates allow us to constrain the threat posed by impacts to human populations. It is clear that impacts remain a significant natural hazard, but uniquely, they are a threat that we can accurately predict, and take steps to avoid.

  15. Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision.

    PubMed

    Azechi, H; Sakaiya, T; Watari, T; Karasik, M; Saito, H; Ohtani, K; Takeda, K; Hosoda, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Murakami, M; Nagatomo, H; Johzaki, T; Gardner, J; Colombant, D G; Bates, J W; Velikovich, A L; Aglitskiy, Y; Weaver, J; Obenschain, S; Eliezer, S; Kodama, R; Norimatsu, T; Fujita, H; Mima, K; Kan, H

    2009-06-12

    We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.

  16. Genetic algorithms for GNC settings and DACS design application to an asteroid Kinetic Impactor

    NASA Astrophysics Data System (ADS)

    Vernis, P.; Oliviero, V.

    2018-06-01

    This paper deals with an application of Genetic Algorithm (GA) tools in order to perform and optimize the settings phase of the Guidance, Navigation, and Control (GNC) data set for the endgame phase of a Kinetic Impactor (KI) targeting a medium-size Near Earth Object (NEO). A coupled optimization of the GNC settings and of the GC-oriented design of the Divert and Attitude Control System (DACS) is also proposed. The illustration of the developed principles is made considering the NEOShield study frame.

  17. Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Baojin; Salem, David R.

    2017-10-01

    Modified drop weight impact tests were performed on Si O2 -ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.

  18. Concussion in professional football: morphology of brain injuries in the NFL concussion model--part 16.

    PubMed

    Hamberger, Anders; Viano, David C; Säljö, Annette; Bolouri, Hayde

    2009-06-01

    An animal model of concussions in National Football League players has been described in a previous study. It involves a freely moving 300-g Wistar rat impacted on the side of the head at velocities of 7.4 to 11.2 m/s with a 50-g impactor. The impact causes a 6% to 28% incidence of meningeal hemorrhages and 0.1- to 0.3-mm focal petechiae depending on the impact velocity. This study addresses the immunohistochemical responses of the brain. Twenty-seven tests were conducted with a 50-g impactor and velocities of 7.4, 9.3, or 11.2 m/s. The left temporal region of the helmet-protected head was hit 1 or 3 times. Thirty-one additional tests were conducted with a 100-g impactor. Diffuse axonal injury in distant regions of the brain was assessed with immunohistochemistry for NF-200, the heaviest neurofilament subunit, and glial fibrillary acidic protein, an intermediate filament protein in astrocytes. Hemorrhages were analyzed by unspecific peroxidase. There were 10 controls. A single impact at 7.4 and 9.3 m/s velocity with the 50-g impactor causes minimal neuronal injury and astrocytosis. Repeat impacts with 11.2 m/s velocity and more than 9.3-m/s impacts with 100 g cause diffuse axonal injury and distant injury bilaterally in the cerebral cortex, the subcortical, the white matter, the hippocampus CA1, the corpus callosum, and the striatum, as indicated by NF-200 accumulation in neuronal perikarya 10 days after impact. It also causes reactive astrocytosis in the midline regions of the cerebral cortex and periventricularly. Regions with erythrocyte-loaded blood capillaries indicated brain edema in regions of the cerebral cortex, the brainstem, and the cerebellum. When the immunohistochemical results are extrapolated to professional football players, concussions result in no or minimal brain injury. Repeat impacts at higher velocity or with a heavier mass impactor cause extensive and distant diffuse axonal injury. Based on this model, the threshold for diffuse axonal injury is above even the most severe conditions for National Football League concussion.

  19. Fate of Basin-forming Impact Debris from the Moon

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.; Bruck Syal, M.; Raskin, C.; Owen, J. M.

    2016-12-01

    Recent work shows that projectile sizes for basin-forming impacts at the Moon are larger than previously estimated [1]. This finding has implications for the source regions of Late Heavy Bombardment impactors as well as added contributions from debris generated by similar basin-forming collisions. At such large scales, portions of the projectile fragment survive without interactions with the surface and continue downrange along the original trajectory. Such a process most likely occurs for oblique collisions (< 35° from the surface tangent) by bodies larger than 10% of the diameter of the Moon. For the SPA collision, more than 20% of the impacting body survives as newly generated Earth/Moon-crossing objects [2]. Over time some of this debris may have contributed to a spike in impact craters 20-50 km in diameter. Here we model lunar impact basin formation using Spheral, an adaptive Smoothed Particle Hydrodynamics code [3,4], focusing on the dynamical fate of basin ejecta and projectile fragments. Models employ self-gravity for the Moon and impactor and include the Earth's gravitational potential. Large impactors and the Moon are each assigned a two-layer, iron core and forsterite mantle structure. The problem is initialized using hydrostatic equlibrium profiles for pressure and density in both the impactor and target. We begin by modeling debris (target and impactor fragments) ejected from the South Pole-Aitken basin impact and extend the analysis to the Imbrium, Orientale, and Crisium basin formation. [1] Schultz, P.H., Crawford, D.A. Origin and implications of non-radial Imbrium Sculpture on the Moon, Nature 535, 391-394(2016). [2] Schultz, P.H., Crawford, D.A. Origin of nearside structural and geochemical anomalies on the Moon. GSA Special Papers 477, 141-159 (2011). [3] Owen, J. M. ASPH modeling of material damage and failure, in: Proceedings of the Fifth International SPHERIC Workshop, 297-304 (2010). [4] Owen, J. M. A compatibly differenced total energy conserving form of SPH. Int. J. Numer. Meth. Fl. 75, 749-774 (2014). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-ABS-699382.

  20. Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Gray, Barry

    1993-01-01

    The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present.

  1. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth

    USGS Publications Warehouse

    Puchtel, I.S.; Walker, R.J.; James, O.B.; Kring, D.A.

    2008-01-01

    To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites. ?? 2008 Elsevier Ltd.

  2. La masa de los grandes impactores

    NASA Astrophysics Data System (ADS)

    Parisi, M. G.; Brunini, A.

    Los planetas han sido formados fundamentalmente acretando masa a través de colisiones con planetesimales sólidos. La masa más grande de la distribución de planetesimales y las masas máxima y mínima de los impactores, han sido calculadas usando los valores actuales del período y de la inclinación de los planetas (Lissauer & Safronov 1991; Parisi & Brunini 1996). Recientes investigaciones han mostrado, que las órbitas de los planetas gigantes no han sufrido variaciones con el tiempo, siendo su movimiento regular durante su evolución a partir de la finalización de la etapa de acreción (Laskar 1990, 1994). Por lo tanto, la eccentricidad actual de los planetas gigantes se puede utilizar para imponer una cota máxima a las masas y velocidades orbitales de los grandes impactores. Mediante un simple modelo dinámico, y considerando lo arriba mencionado, obtenemos la cota superior para la masa del planetesimal más grande que impactó a cada planeta gigante al final de su etapa de acreción. El resultado más importante de este trabajo es la estimación de la masa máxima permitida para impactar a Júpiter, la cúal es ~ 1.136 × 10 -1, siendo en el caso de Neptuno ~ 3.99 × 10 -2 (expresada en unidades de la masa final de cada planeta). Además, fue posible obtener la velocidad orbital máxima permitida para los impactores como una función de su masa, para cada planeta. Las cotas obtenidas para la masa y velocidad de los impactores de Saturno y Urano (en unidades de la masa y velocidad final de cada planeta respectivamente) son casi las mismas que las obtenidas para Júpiter debido a que estos tres planetas poseen similar eccentricidad actual. Nuestros resultados están en buen acuerdo con los obtenidos por Lissauer & Safronov (1991). Estas cotas podrían ser utilizadas para obtener la distribución de planetesimales en el Sistema Solar primitivo.

  3. Experimental research on pedestrian lower leg impact

    NASA Astrophysics Data System (ADS)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  4. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.

    PubMed

    Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C

    2016-06-15

    Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.

  5. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  6. Calibration and evaluation of a real-time cascade impactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairchild, C.I.; Wheat, L.D.

    1984-04-01

    A 10-stage cascade impactor made by California Measurement Inc., can determine aerodynamic size distributions of dilute aerosols in a few minutes. Collection of impacted particles on greased, vibrating piezoelectric crystals produces changes in vibrational frequency proportional to the collected mass. Based on frequency changes and sampling time, a data reduction module calculates the mass collected on each stage. Calibration of the assembled impactor was performed with monodisperse polystyrene latex (PSL) and Eosin-Y (E-Y) aerosols for the lower stages (4-10), and PSL and pollen particles (ragweed and mulberry) for the upper stages (1-3). The stage experimental effective cutoff aerodynamic diameters (ECAD)more » were up to 22 percent different from theoretical ECADs with the exception of Stages 1 and 2 which were respectively 30 and 35 percent different from theoretical ECADs. The overall loss of particles > 3- and < 0.3-..mu..m was severe. Also, considerable scatter of particles was observed on the collection crystals of Stages 1 and 2. Although a majority of particles were in the impaction area, a large fraction was scattered over the outer portions of these crystals.« less

  7. SPH modelling of energy partitioning during impacts on Venus

    NASA Technical Reports Server (NTRS)

    Takata, T.; Ahrens, T. J.

    1993-01-01

    Impact cratering of the Venusian planetary surface by meteorites was investigated numerically using the Smoothed Particle Hydrodynamics (SPH) method. Venus presently has a dense atmosphere. Vigorous transfer of energy between impacting meteorites, the planetary surface, and the atmosphere is expected during impact events. The investigation concentrated on the effects of the atmosphere on energy partitioning and the flow of ejecta and gas. The SPH method is particularly suitable for studying complex motion, especially because of its ability to be extended to three dimensions. In our simulations, particles representing impactors and targets are initially set to a uniform density, and those of atmosphere are set to be in hydrostatic equilibrium. Target, impactor, and atmosphere are represented by 9800, 80, and 4200 particles, respectively. A Tillotson equation of state for granite is assumed for the target and impactor, and an ideal gas with constant specific heat ratio is used for the atmosphere. Two dimensional axisymmetric geometry was assumed and normal impacts of 10km diameter projectiles with velocities of 5, 10, 20, and 40 km/s, both with and without an atmosphere present were modeled.

  8. Rotational and translational considerations in kinetic impact deflection of potentially hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Xu, Bo; Circi, Christian; Zhang, Lei

    2017-04-01

    Kinetic impact may be the most reliable and easily implemented method to deflect hazardous asteroids using current technology. Depending on warning time, it can be effective on asteroids with diameters of a few hundred meters. Current impact deflection research often focuses on the orbital dynamics of asteroids. In this paper, we use the ejection outcome of a general oblique impact to calculate how an asteroid's rotational and translational state changes after impact. The results demonstrate how small impactors affect the dynamical state of small asteroids having a diameter of about 100 m. According to these consequences, we propose using several small impactors to hit an asteroid continuously and gently, making the deflection mission relatively flexible. After calculating the rotational variation, we find that the rotational state, especially of slender non-porous asteroids, can be changed significantly. This gives the possibility of using multiple small impactors to mitigate a potentially hazardous asteroid by spinning it up into pieces, or to despin one for future in-situ investigation (e.g., asteroid retrieval or mining).

  9. Quest for impact ignition and its future prospect

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Azechi, H.; Watari, T.; Sakaiya, T.; Ohtani, K.; Takeda, K.; Shiraga, H.; Shigemori, K.; Fujioka, S.; Nagatomo, H.; Johzaki, T.; Gardner, J.; Bates, J.; Velikovich, A.; Aglitskiy, Y.; Karasik, M.; Weaver, J.; Obenschain, S.

    2009-11-01

    Since the impact ignition has been proposed [1], we have achieved such crucial milestones under the operation of Gekko XII (ILE) and NIKE (NRL) laser systems as super-high-velocity acceleration of foils ranging 700-1000 km/s and hundred-fold increase in neutron yield by impact collision [2]. For the latter achievement, the kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of 1.6 keV. The use of Bromine-doped plastic target are key measure to suppress Rayleigh-Taylor instabilities and thus to achieve effective collisions. Based on these preliminary results, we have done two-dimensional hydrodynamic simulations to demonstrate that ignition occurs when impactor with a velocity beyond 1500 km/s and a density of 50 g/cm3 collides with main fuel with a density of 400 g/cm3, when the maximum impactor kinetic energy is 10 kJ.[4pt] [1] M. Murakami and H. Nagatomo, Nucl. Inst. & Meth. Phys. Res. A544, 67 (2005).[0pt] [2] H. Azechi, et al., Phys. Rev. Lett. 102, 235002 (2009).

  10. Atmosphere Impact Losses

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2} ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  11. Micro-abrasion package capture cell experiment on the trailing edge of LDEF: Impactor chemistry and whipple bumper shield efficiencies

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Howard J.; Yano, Hajime

    1995-01-01

    Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.

  12. Icy Satellites of Saturn: Impact Cratering and Age Determination

    NASA Technical Reports Server (NTRS)

    Dones, L.; Chapman, C. R.; McKinnon, William B.; Melosh, H. J.; Kirchoff, M. R.; Neukum, G.; Zahnle, K. J.

    2009-01-01

    Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I impactors, which were generally judged to be comets orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the ring moons, and probably some of the midsized classical moons, had been catastrophically disrupted and reaccreted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, ecliptic comets, which likely originate in the Kuiper belt/scattered disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper belt objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact, and catastrophically disrupt, the saturnian moons. Finally, we present crater counts on the satellites from two different groups. Many of the heavily cratered terrains appear to be nearly saturated, so it is difficult to infer the provenance of the impactors from crater counts alone. More large craters have been found on Iapetus than on any other satellite. Enceladus displays an enormous range of surface ages, ranging from the old mid-latitude plains to the extremely young South Polar Terrain. Cassini images provide some evidence for the reality of Population II. Most of the observed craters may have formed in one or more cataclysms, but more work is needed to determine the roles of heliocentric and planetocentric bodies in creating the craters.

  13. Environmental scanning electron microscope imaging examples related to particle analysis.

    PubMed

    Wight, S A; Zeissler, C J

    1993-08-01

    This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.

  14. Klenot Project - Near Earth Objects Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Tichý, Miloš; Tichá, Jana; Kočer, Michal

    2016-01-01

    NEO research is a great challenge just now - for science, for exploration and for planetary defence. Therefore NEO discoveries, astrometric follow-up, orbit computations as well as physical studies are of high interest both to science community and humankind. The KLENOT Project of the Klet Observatory, South Bohemia, Czech Republic pursued the confirmation, early follow-up, long-arc follow-up and recovery of Near Earth Objects since 2002. Tens of thousands astrometric measurements helped to make inventory of NEOs as well as to understand the NEO population. It ranked among the world most prolific professional NEO follow-up programmes during its first phase from 2002 to 2008. The fundamental improvement of the 1.06-m KLENOT Telescope was started in autumn 2008. The new computer controlled paralactic mount was built to substantially increase telescope-time efficiency, the number of observations, their accuracy and limiting magnitude. The testing observations of the KLENOT Telescope Next Generation (NG) were started in October 2011. The new more efficient CCD camera FLI ProLine 230 was installed in summer 2013. The original Klet Software Package has been continually upgraded over the past two decades of operation. Along with huge hardware changes we have decided for essential changes in software and the whole KLENOT work-flow. Using the current higher computing power available, enhancing and updating our databases and astrometry program, the core of our software package, will prove highly beneficial. Moreover, the UCAC4 as the more precise astrometric star catalog was implemented. The modernized KLENOT System was put into full operation in September 2013. This step opens new possibilities for the KLENOT Project, the long-term European Contribution to Monitoring and Cataloging Near Earth Objects. KLENOT Project Goals are confirmatory observations of newly discovered fainter NEO candidates, early follow-up of newly discovered NEOs, long-arc follow-up astrometry of NEOs in need of further data. The higher priority is given to Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs), recoveries of NEOs in the second opposition and also follow-up astrometry of radar or mission targets, special follow-up requests and follow-up astrometry of other unusual objects (comets, bright TNOs) including analysis of cometary features of suspected bodies, and also search for new asteroids, especially NEOs as well as other objects showing unusual motion. The KLENOT Telescope is located at the Klet Observatory, South Bohemia, Czech Republic (Central Europe), at geographical position: latitude 14° 17' 17'' E, longitude 48° 51' 48''N, elevation 1068 meters above sea level, in a rather dark site in the middle of the Protected Landscape Area Blanský les. Average number of clear nights per year about 120. Our IAU/MPC code is 246 KLENOT Project Advantages: • full observing time is dedicated to the KLENOT team • quick changes in an observing plan possible, even during an observing night • long-term NEO activities at Klet (since 1992) • experienced observers/measurers visually validate each moving object candidate • real-time processing of targeted objects KLENOT Next Generation Telescope technical data (since 2013): • new computer controlled paralactic mount • 1.06-m f/3 main mirror (Zeiss) • four lenses primary focus corrector • 1.06-m f/2.7 optical system • CCD camera FLI ProLine PL230 • chip e2v 2048 × 2048 pixels, pixel size 15 microns, Peltier cooling • FOV 37 × 37 arcminutes, image scale 1.1 arcseconds per pixel • limiting magnitude m V=21.5 mag. for 120-sec exposure time KLENOT Project First Phase Results(2002-2008) total of 52,658 astrometric measurements of 5,867 bodies, it contains: • 13,342 astrometric measurements of 1,369 NEAs (MPC,NEODys) • confirmation and astrometry of 623 NEAs from NEOCP (MPECs) • recoveries of 4 comets and 16 NEAs (including 196P/Tichý) • astrometry of 157 Virtual Impactors (CLOMON, SENTRY) • detection of cometary features of 34 bodies (IAUCs) • discovery of splitting of comet C/2004 S1 (Van Ness) • independent discovery of 4 fragments of comet 73P/S-W 3 • asteroid discoveries - 750 bodies • 3 NEOs - Apollo 2002 LK, Aten 2003 UT55, Apollo 2006 XR4, 1 JFA 2004 RT109 The first KLENOT Project Next Generation Results (since 2011) total of 10,054 astrometric measurements of 1,298 bodies, it contains: • 2,211 astrometric measurements of 263 NEAs(MPC,NEODys) • confirmation and astrometry of 143 NEAs from NEOCP (MPECs) • astrometry of 18 Virtual Impactors (CLOMON, SENTRY) • detection of cometary features of 5 bodies (IAUCs)

  15. Orbital and Physical Characteristics of Meter-sized Earth Impactors

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward

    2015-11-01

    We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).

  16. Stardust impact analogs: Resolving pre- and postimpact mineralogy in Stardust Al foils

    NASA Astrophysics Data System (ADS)

    Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; Burchell, Mark J.; Bradley, John P.; Price, Mark C.; Teslich, Nick; Lee, Martin R.; Cole, Mike J.

    2012-04-01

    The grains returned by NASA's Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ˜6.1 km s-1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two-stage light-gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact-generated components are observed in all samples. Al incorporation into melt-derived phases allows differentiation between melt and shock-induced phases. In single grain impactor residues, impact-generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact-generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.

  17. Venus - Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image is centered at 55 degrees north latitude, 348.5 degrees longitude, in the eastern Lakshmi region of Venus. This image, which is of an area 300 kilometers (180 miles) in width and 230 kilometers (138 miles) in length, is a mosaic of orbits 458 through 484. The image shows a relatively flat plains region composed of many lava flows. The dark flows mostly likely represent smooth lava flows similar to 'pahoehoe' flows on Earth while the brighter lava flows are rougher flows similar to 'aa' flows on Earth. (The terms 'pahoehoe' and 'aa' refer to textures of lava with pahoehoe a smooth or ropey surface, and aa a rough, clinkery texture). The rougher flows are brighter because the rough surface returns more energy to the radar than the smooth flows. Situated on top of the lava flows are three dark splotches. Because of the thick Venusian atmosphere, the small impactors break up before they reached the surface. Only the fragments from the broken up impactor are deposited on the surface and these fragments produce the dark splotches in this image. The splotch at the far right (east) has a crater centered in it, indicating that the impactor was not completely destroyed during its journey through the atmosphere. The dark splotches in the center and to the far left in this image each represent an impactor that was broken up into small fragments that did not penetrate the surface to produce a crater. The dark splotch at the left has been modified by the wind. A southwest northeast wind flow has moved some of the debris making up the splotch to the northeast where it has piled up against some small ridges.

  18. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates

    PubMed Central

    Salegio, Ernesto A.; Camisa, William; Tam, Horace; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2016-01-01

    Abstract Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5–1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries. PMID:26670940

  19. The Effectiveness of the Component Impact Test Method for the Side Impact Injury Assessment of the Door Trim

    NASA Astrophysics Data System (ADS)

    Youn, Younghan; Koo, Jeong-Seo

    The complete evaluation of the side vehicle structure and the occupant protection is only possible by means of the full scale side impact crash test. But, auto part manufacturers such as door trim makers can not conduct the test especially when the vehicle is under the developing process. The main objective of this study is to obtain the design guidelines by a simple component level impact test. The relationship between the target absorption energy and impactor speed were examined using the energy absorbed by the door trim. Since each different vehicle type required different energy levels on the door trim. A simple impact test method was developed to estimate abdominal injury by measuring reaction force of the impactor. The reaction force will be converted to a certain level of the energy by the proposed formula. The target of absorption energy for door trim only and the impact speed of simple impactor are derived theoretically based on the conservation of energy. With calculated speed of dummy and the effective mass of abdomen, the energy allocated in the abdomen area of door trim was calculated. The impactor speed can be calculated based on the equivalent energy of door trim absorbed during the full crash test. With the proposed design procedure for the door trim by a simple impact test method was demonstrated to evaluate the abdominal injury. This paper describes a study that was conducted to determine sensitivity of several design factors for reducing abdominal injury values using the matrix of orthogonal array method. In conclusion, with theoretical considerations and empirical test data, the main objective, standardization of door trim design using the simple impact test method was established.

  20. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    PubMed

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  1. A Parameter Study on the Effect of Impactor Size for NASA’s DART Mission

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda; Weaver, Robert; Gisler, Galen

    2018-06-01

    We have modeled the impact of the Double Asteroid Redirection Test (DART) spacecraft into the binary near-Earth asteroid (65803) Didymos. While the primary object is approximately 800 meters across, its secondary body (“moonlet” Didymoon) has a diameter of 150 meters, which is thought to be a much more typical size for the kind of asteroid that would pose a hazard to Earth. DART will be the first demonstration of the kinetic impact technique to change the motion of an asteroid in space, an important consideration for understanding our capabilities in planetary defense of Near-Earth Asteroids. Recent modeling of this impact has used full-density solid aluminum spheres with a mass of approximately 500 kg. Many of the published scaling laws for crater size and diameter as well as ejecta modeling assume this type of impactor, although the actual spacecraft shape being considered for the DART Mission impact is not solid and does not contain a solid dedicated kinetic impactor – rather, the spacecraft itself is considered the impactor. Since the 500 kg hollow spacecraft is significantly larger (~100 x 100 x 200 cm) in size than a solid aluminum sphere (radius ~ 36 cm) the resulting impact dynamics are quite different. Here we have modeled both types of impacts and compare the results of the simulations for crater size, depth, and ejecta for a solid sphere (R = 36 cm) and cylindrical spacecraft (R = 20, 50, and 100 cm), while maintaining a constant mass and material density. This work will allow for a more robust comparison of the momentum enhancement β-factor, which describes the gain in a momentum transfer exerted by the impacting spacecraft on a Near-Earth Object due to ejecta momentum escape. (LA-UR-18-21571)

  2. Los Alamos RAGE Simulations of the HAIV Mission Concept

    NASA Technical Reports Server (NTRS)

    Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben

    2015-01-01

    The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.

  3. Cryo-braking using penetrators for enhanced capabilities for the potential landing of payloads on icy solar system objects

    NASA Astrophysics Data System (ADS)

    Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.

    2018-03-01

    The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.

  4. Waves, Plumes and Bubbles from Jupiter Comet Impacts

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Sankar, Ramanakumar; McCabe, Tyler; Korycansky, Donald

    2017-10-01

    We present results from our numerical simulations of jovian comet impacts that investigate various phases of the Shoemaker-Levy 9 (SL9) and the 2009 impacts into Jupiter's atmosphere. Our work includes a linked series of observationally constrained, three-dimensional radiative-hydrodynamic simulations to model the impact, plume blowout, plume flight/splash, and wave-propagation phases of those impact events. Studying these stages using a single model is challenging because the spatial and temporal scales and the temperature range of those phases may differ by orders of magnitudes (Harrington et al. 2004). In our simulations we model subsequent phases starting with the interpolation of the results of previous simulations onto a new, larger grid that is optimized for capturing all key physics of the relevant phenomena while maintaining computational efficiency. This enables us to carry out end-to-end simulations that require no ad-hoc initial conditions. In this work, we focus on the waves generated by various phenomena during the impact event and study the temporal evolution of their position and speed. In particular, we investigate the shocks generated by the impactor during atmospheric entry, the expansion of the ejected plume and the ascent of the hot bubble of material from terminal depth. These results are compared to the observed characteristics of the expanding SL9 rings (Hammel et al. 1995). Additionally, we present results from our sensitivity tests that focus on studying the differences in the ejecta plume generation using various impactor parameters (e.g., impact angle, impactor size, material, etc.). These simulations are used to explain various phenomena related to the SL9 event and to constrain the characteristics of the unknown 2009 impactor body. This research was supported by National Science Foundation Grant AST-1627409.

  5. On the Impact Origin of Phobos and Deimos. III. Resulting Composition from Different Impactors

    NASA Astrophysics Data System (ADS)

    Pignatale, Francesco C.; Charnoz, Sébastien; Rosenblatt, Pascal; Hyodo, Ryuki; Nakamura, Tomoki; Genda, Hidenori

    2018-02-01

    The origin of Phobos and Deimos in a giant impact-generated disk is gaining larger attention. Although this scenario has been the subject of many studies, an evaluation of the chemical composition of the Mars’s moons in this framework is missing. The chemical composition of Phobos and Deimos is unconstrained. The large uncertainties about the origin of the mid-infrared features; the lack of absorption bands in the visible and near-infrared spectra; and the effects of secondary processes on the moons’ surfaces make the determination of their composition very difficult using remote sensing data. Simulations suggest a formation of a disk made of gas and melt with their composition linked to the nature of the impactor and Mars. Using thermodynamic equilibrium, we investigate the composition of dust (condensates from gas) and solids (from a cooling melt) that result from different types of Mars impactors (Mars-, CI-, CV-, EH-, and comet-like). Our calculations show a wide range of possible chemical compositions and noticeable differences between dust and solids, depending on the considered impactors. Assuming that Phobos and Deimos resulted from the accretion and mixing of dust and solids, we find that the derived assemblage (dust-rich in metallic iron, sulfides and/or carbon, and quenched solids rich in silicates) can be compatible with the observations. The JAXA’s Martian Moons eXploration (MMX) mission will investigate the physical and chemical properties of Phobos and Deimos, especially sampling from Phobos, before returning to Earth. Our results could be then used to disentangle the origin and chemical composition of the pristine body that hit Mars and suggest guidelines for helping in the analysis of the returned samples.

  6. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Maharjan, Rijan; Mukhopadhyay, Shomeek; Allen, Benjamin; Storz, Tobias; Brown, Eric

    2018-05-01

    We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress—on the order of MPa—with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018), 10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018), 10.1103/PhysRevE.97.052604].

  7. The origin of planetary impactors in the inner solar system.

    PubMed

    Strom, Robert G; Malhotra, Renu; Ito, Takashi; Yoshida, Fumi; Kring, David A

    2005-09-16

    Insights into the history of the inner solar system can be derived from the impact cratering record of the Moon, Mars, Venus, and Mercury and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended approximately 3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past approximately 3.8 billion years have a size distribution quite different from that of the main belt asteroids but very similar to that of near-Earth asteroids.

  8. Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron

    USGS Publications Warehouse

    Cahill, Joshua T.S.; Hagerty, Justin J.; Lawrence, David M.; Klima, Rachel L.; Blewett, David T.

    2014-01-01

    The Moon has areas of magnetized crust ("magnetic anomalies"), the origins of which are poorly constrained. A magnetic anomaly near the northern rim of South Pole-Aitken (SPA) basin was recently postulated to originate from remnant metallic iron emplaced by the SPA basin-forming impactor. Here, we remotely examine the regolith of this SPA magnetic anomaly with a combination of Clementine and Lunar Prospector derived iron maps for any evidence of enhanced metallic iron content. We find that these data sets do not definitively detect the hypothesized remnant metallic iron within the upper tens of centimeters of the lunar regolith.

  9. A NEW CHRONOLOGY FOR THE MOON AND MERCURY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchi, Simone; Mottola, Stefano; Cremonese, Gabriele

    2009-06-15

    In this paper, we present a new method for dating the surface of the Moon, obtained by modeling the incoming flux of impactors and converting it into a size distribution of resulting craters. We compare the results from this model with the standard chronology for the Moon showing their similarities and discrepancies. In particular, we find indications of a nonconstant impactor flux in the last 500 Myr and also discuss the implications of our findings for the Late Heavy Bombardment hypothesis. We also show the potential of our model for accurate dating of other inner solar system bodies, by applyingmore » it to Mercury.« less

  10. Various Recrystallizations of CL-20 (HNIW hexanitrohexaazaisowurtzitane).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jason Joe

    Impact sensitivity testing was performed using a modified Bureau of Mines (MBOM) impactor manufactured by Safety Management Services, Inc., shown in Figure 1. Type-12 tooling was utilized on this machine with a 2.5kg impactor and matching intermediate mass. This particular machine is capable of a maximum drop height of 115cm with 0.1cm increments, though 1cm increments are typically used. Sample material was placed (35 ± 2mg) onto 1 inch squares of Norton brand 180A Garnet sandpaper. Positive results were detected visually or audibly by the operator as smoke, flash, report, charring/tearing of the sandpaper, etc.

  11. Image and compositional characteristics of the LDEF Big Guy impact crater

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Zolensky, Michael

    1995-01-01

    A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.

  12. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  13. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  14. Development of a ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions.

    PubMed

    van Nederkassel, A M; Vijverman, V; Massart, D L; Vander Heyden, Y

    2005-09-02

    A fingerprint chromatogram of a standardized Ginkgo biloba extract is developed on a monolithic silica column using a ternary gradient containing water, iso-propanol and tetrahydrofuran. For the detection, UV and evaporative light scattering (ELS) detectors are used, the latter allowing detection of the poor UV absorbing compounds as ginkgolides (A-C and J) and bilobalide in the extract. The complementary information between the UV and ELS fingerprint is evaluated. The ELS detector used in this study can operate in an impactor 'on' or 'off' mode. For each mode, the operating conditions such as the nebulizing gas flow rate, the drift tube temperature and the gain are optimized by use of three-level screening designs to obtain the best signal-to-noise (S/N) ratio in the final ELS fingerprint chromatogram. In both impactor modes, very similar S/N ratios are obtained for the nominal levels of the design. However, optimization of the operating conditions resulted, for both impactor modes, in a significant increase in S/N ratios compared to the initial evaluated conditions, obtained from the detector software.

  15. Hydrocode Models of Mitigation of a 170-Meter-Diameter Asteroid Using Energetic Techniques

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Gisler, G. R.; Heberling, T.; Nouanesengsy, B.; Patchett, J.; Sagert, I.; Tarnowsky, T. J.; Weaver, R.

    2017-12-01

    Binary asteroid 65803 Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART) mission. The smaller member of the binary pair, S/2003 (65803) Didymos B, is approximately 170 meters in diameter. Didymos A is spectrally similar to H-LL ordinary chondrites and asteroids Eros and Itokawa, so we assume Didymos B is similar. We also assume it to be a rubble pile aggregate of material from Didymos A, and take further guidance on material properties from the AIM Didymos Reference Model V. 10 (P. Michel et al., 2015). We are modeling deflection attempts by kinetic impactor and nuclear stand-off burst against a hypothetical solo Didymos B asteroid as part of the NASA-NNSA inter-agency collaboration on impact hazard mitigation. The collaboration agreed on model initial conditions at our February 2017 Technical Interchange Meeting. The kinetic impactor is a 63.5 cm-diameter aluminum impactor striking at 10 km/s. We model the stand-off nuclear burst according to procedures described in Barbee et al. (Acta A. 2017) and Dearborn et al. (in press). We will present our model predictions and their implications for planetary defense mission design space.

  16. Origin and implications of non-radial Imbrium Sculpture on the Moon.

    PubMed

    Schultz, Peter H; Crawford, David A

    2016-07-21

    Rimmed grooves, lineations and elongate craters around Mare Imbrium shape much of the nearside Moon. This pattern was coined the Imbrium Sculpture, and it was originally argued that it must have been formed by a giant oblique (~30°) impact, a conclusion echoed by later studies. Some investigators, however, noticed that many elements of the Imbrium Sculpture are not radial to Imbrium, thereby implicating an endogenic or structural origin. Here we use these non-radial trends to conclude that the Imbrium impactor was a proto-planet (half the diameter of Vesta), once part of a population of large proto-planets in the asteroid belt. Such independent constraints on the sizes of the Imbrium and other basin-forming impactors markedly increase estimates for the mass in the asteroid belt before depletion caused by the orbital migration of Jupiter and Saturn. Moreover, laboratory impact experiments, shock physics codes and the groove widths indicate that multiple fragments (up to 2% of the initial diameter) from each oblique basin-forming impactor, such as the one that formed Imbrium, should have survived planetary collisions and contributed to the heavy impact bombardment between 4.3 and 3.8 billion years ago.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter H.; Crawford, David A.

    Rimmed grooves, lineations and elongate craters around Mare Imbrium shape much of the nearside Moon. This pattern was coined the Imbrium Sculpture 1, and it was originally argued that it must have been formed by a giant oblique (~30°) impact, a conclusion echoed by later studies 2. Some investigators, however, noticed that many elements of the Imbrium Sculpture are not radial to Imbrium, thereby implicating an endogenic or structural origin 3, 4. Here we use these non-radial trends to conclude that the Imbrium impactor was a proto-planet (half the diameter of Vesta), once part of a population of large proto-planetsmore » in the asteroid belt. Such independent constraints on the sizes of the Imbrium and other basin-forming impactors markedly increase estimates for the mass in the asteroid belt before depletion caused by the orbital migration of Jupiter and Saturn 5. Furthermore, laboratory impact experiments, shock physics codes and the groove widths indicate that multiple fragments (up to 2% of the initial diameter) from each oblique basin-forming impactor, such as the one that formed Imbrium, should have survived planetary collisions and contributed to the heavy impact bombardment between 4.3 and 3.8 billion years ago.« less

  18. Origin and implications of non-radial Imbrium Sculpture on the Moon

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Crawford, David A.

    2016-07-01

    Rimmed grooves, lineations and elongate craters around Mare Imbrium shape much of the nearside Moon. This pattern was coined the Imbrium Sculpture, and it was originally argued that it must have been formed by a giant oblique (~30°) impact, a conclusion echoed by later studies. Some investigators, however, noticed that many elements of the Imbrium Sculpture are not radial to Imbrium, thereby implicating an endogenic or structural origin. Here we use these non-radial trends to conclude that the Imbrium impactor was a proto-planet (half the diameter of Vesta), once part of a population of large proto-planets in the asteroid belt. Such independent constraints on the sizes of the Imbrium and other basin-forming impactors markedly increase estimates for the mass in the asteroid belt before depletion caused by the orbital migration of Jupiter and Saturn. Moreover, laboratory impact experiments, shock physics codes and the groove widths indicate that multiple fragments (up to 2% of the initial diameter) from each oblique basin-forming impactor, such as the one that formed Imbrium, should have survived planetary collisions and contributed to the heavy impact bombardment between 4.3 and 3.8 billion years ago.

  19. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  20. A Dragonfly-Shaped Crater

    NASA Image and Video Library

    2017-02-10

    The broader scene for this image is the fluidized ejecta from Bakhuysen Crater to the southwest, but there's something very interesting going on here on a much smaller scale. A small impact crater, about 25 meters in diameter, with a gouged-out trench extends to the south. The ejecta (rocky material ejected from the crater) mostly extends to the east and west of the crater. This "butterfly" ejecta is very common for craters formed at low impact angles. Taken together, these observations suggest that the crater-forming impactor came in at a low angle from the north, hit the ground and ejected material to the sides. The top of the impactor may have sheared off ("decapitating" the impactor) and continued downrange, forming the trench. We can't prove that's what happened, but this explanation is consistent with the observations. Regardless of how it formed, it's quite an interesting-looking "dragonfly" crater. The map is projected here at a scale of 50 centimeters (19.69 inches) per pixel. [The original image scale is 55.7 centimeters (21.92 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21454

  1. Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors.

    PubMed

    Zellner, Nicolle E B

    2017-09-01

    If properly interpreted, the impact record of the Moon, Earth's nearest neighbour, can be used to gain insights into how the Earth has been influenced by impacting events since its formation ~4.5 billion years (Ga) ago. However, the nature and timing of the lunar impactors - and indeed the lunar impact record itself - are not well understood. Of particular interest are the ages of lunar impact basins and what they tell us about the proposed "lunar cataclysm" and/or the late heavy bombardment (LHB), and how this impact episode may have affected early life on Earth or other planets. Investigations of the lunar impactor population over time have been undertaken and include analyses of orbital data and images; lunar, terrestrial, and other planetary sample data; and dynamical modelling. Here, the existing information regarding the nature of the lunar impact record is reviewed and new interpretations are presented. Importantly, it is demonstrated that most evidence supports a prolonged lunar (and thus, terrestrial) bombardment from ~4.2 to 3.4 Ga and not a cataclysmic spike at ~3.9 Ga. Implications for the conditions required for the origin of life are addressed.

  2. Calibration of thin-foil manganin gauge in ALOX material

    NASA Astrophysics Data System (ADS)

    Benham, R. A.; Weirick, L. J.; Lee, L. M.

    1996-05-01

    The purpose of this program was to develop a calibration curve (stress as a function of change in gauge resistance/gauge resistance) and to obtain gauge repeatability data for Micro-Measurements stripped manganin thin-foiled gauges up to 6.1 GPa in ALOX (42% by volume alumina in Epon 828 epoxy) material. A light-gas gun was used to drive an ALOX impactor into the ALOX target containing four gauges in a centered diamond arrangement. Tilt and velocity of the impactor were measured along with the gauge outputs. Impact stresses from 0.5 to 6.1 GPa were selected in increments of 0.7 GPa with duplicate tests done at 0.5, 3.3 and 6.1 GPa. A total of twelve tests was conducted using ALOX. Three initial tests were done using polymethyl methacrylate (PMMA) as the impactor and target at an impact pressure of 3.0 GPa for comparison of gauge output with analysis and literature values. The installed gauge, stripped of its backing, has a nominal thickness of 5 μm. The thin gauge and high speed instrumentation allowed higher time resolution measurements than can be obtained with manganin wire.

  3. Meteorite crater impact study: a new way to study seismology at school with exciting experiments, and an example of meteorite astroblema in France (Rochechouart)

    NASA Astrophysics Data System (ADS)

    Carrer, Diane; Berenguer, Jean-Luc; MacMurray, Andrew

    2016-04-01

    The InSIGHT mission to Mars (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) supported by NASA, IPGP and CNES, is a great opportunity for teachers and pupils to study the Red planet, but also to study other fields of geology at school, such as seismology. With our pupils, we are following the InSight mission and we look forward to analyze seismic data registered by the SEIS seismometer , once it will be available (the InSight mission will launch in 2018 from California, and will land to Mars in 2018 or 2019). As this mission needs meteorite impacts to generate seismic waves ( to discover the Martian interior structure) , we've decided to model those meteorite strikes in the classroom. With our pupils, we've modeled meteorite impact craters with different impactors , such as tennis balls, baseballs, or pingpong balls, and used an analogue substratum made by flour and cocoa. Then, we kept on going our geophysical investigation , studying several parameters. For instance, we've studied the link between size of impactor and size of crater , the link between mass of impactor and Crater Formation, and the link between velocity of impactor and crater formation. In this geophysical approach , potential energy and kinetic energy can be introduced in terms of energy transfer as the impactor falls ( calculation of the velocity of impact and plotting that against crater diameter using v = (2gh)1/2). For each crater formation made in class by students, we have registered seismological data thanks to Audacity software, and study the seismic signal propagation. This exemple of hands-on activity with pupils, and its wide range of geophysical calculation shows how we can do simple experiment modeling meteorite crater impact and exploit registered seismological data at school. We've finaly focused our work with the very famous example of the astroblema of Rochechouart in the South-west of France ( crater formation : - 214 My) , in which it's easy to recognize every typical structure of crater formation (ejecta blankets, overturned crater rim) . In this activity, pupils understand how a model in class can be close to real geological objects.

  4. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.

    PubMed

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-03-12

    In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS's particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind.

  5. Adapting the Abbreviated Impactor Measurement (AIM) concept to make appropriate inhaler aerosol measurements to compare with clinical data: a scoping study with the "Alberta" idealized throat (AIT) inlet.

    PubMed

    Mitchell, Jolyon; Copley, Mark; Sizer, Yvonne; Russell, Theresa; Solomon, Derek

    2012-08-01

    The Abbreviated Impactor Measurement (AIM) concept simplifies determination of aerodynamic size metrics for inhaler quality control testing. A similar approach is needed to compare in vitro particle size distribution metrics with human respiratory tract (HRT) deposition. An abbreviated impactor based on the Andersen eight-stage cascade impactor (ACI) was developed having two size-fractionating stages with cut-points at 4.7 and 1.1 μm aerodynamic diameter at 28.3 L/min, to distinguish between coarse (CPM), fine (FPM), and extra-fine (EPM) mass fractions likely to deposit in the oropharynx, airways of the lungs, or be exhaled, respectively. In vitro data were determined for pressurized metered dose inhaler (pMDI)-delivered salbutamol (100 μg/actuation ex valve) with an "Alberta" idealized adult upper airway (throat) inlet (AIM-pHRT). Corresponding benchmark data for a full resolution Andersen eight-stage cascade impactor with "Alberta" idealized throat (ACI-AIT) and ACI-Ph.Eur./USP inlet were obtained with the same product. Mass recoveries (μg/actuation; mean ± SD) were equivalent at 100.5 ± 0.7; 97.2 ± 4.9 and 101.5 ± 9.5 for the AIM-pHRT, ACI-AIT, and ACI-Ph.Eur./USP induction port, respectively [one-way analysis of variance (ANOVA), p=0.64]. Corresponding values of CPM were 59.2 ± 4.2; 58.4 ± 2.4, and 65.6 ± 5.8; the AIT captured larger particles more efficiently than the Ph.Eur./USP induction port, so that less large particle mass was apparent in the upper stages of the ACI-AIT (p ≤ 0.037). Equivalent values of FPM were similar regardless of inlet/abbreviation at 41.3 ± 4.2; 38.7 ± 3.0, and 35.9 ± 3.8 (p=0.054), and EPM measures (1.7 ± 0.3; 2.0 ± 0.5; 2.1 ± 0.3) were also comparable (p=0.32). The AIT inlet significantly increased the capture of the coarse fraction compared with that collected by the Ph.Eur./USP induction port. Measures obtained using the AIM-pHRT apparatus were comparable with those obtained with the ACI-AIT.

  6. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods

    PubMed Central

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-01-01

    Abstract Objectives In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Methods Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Results Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. Conclusions High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS’s particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind. PMID:29300818

  7. Earth Impact Effects Program: Estimating the Regional Environmental Consequences of Impacts On Earth

    NASA Astrophysics Data System (ADS)

    Collins, G. S.; Melosh, H. J.; Marcus, R. A.

    2009-12-01

    The Earth Impact Effects Program (www.lpl.arizona.edu/impacteffects) is a popular web-based calculator for estimating the regional environmental consequences of a comet or asteroid impact on Earth. It is widely used, both by inquisitive members of the public as an educational device and by scientists as a simple research tool. It applies a variety of scaling laws, based on theory, nuclear explosion test data, observations from terrestrial and extraterrestrial craters and the results of small-scale impact experiments and numerical modelling, to quantify the principal hazards that might affect the people, buildings and landscape in the vicinity of an impact. The program requires six inputs: impactor diameter, impactor density, impact velocity prior to atmospheric entry, impact angle, and the target type (sedimentary rock, crystalline rock, or a water layer above rock), as well as the distance from the impact at which the environmental effects are to be calculated. The program includes simple algorithms for estimating the fate of the impactor during atmospheric traverse, the thermal radiation emitted by the impact plume (fireball) and the intensity of seismic shaking. The program also approximates various dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast in both crater-forming and airburst impacts. We illustrate the strengths and limitations of the program by comparing its predictions (where possible) against known impacts, such as Carancas, Peru (2007); Tunguska, Siberia (1908); Barringer (Meteor) crater, Arizona (ca 49 ka). These tests demonstrate that, while adequate for large impactors, the simple approximation of atmospheric entry in the original program does not properly account for the disruption and dispersal of small impactors as they traverse Earth's atmosphere. We describe recent improvements to the calculator to better describe atmospheric entry of small meteors; the consequences of oceanic impacts; and the recurrance interval between impacts of a given size. In addition, we assess the potential regional hazard of hypothetical impact scenarios of different scales. Our simple calculator suggests that the most wide-reaching regional hazard is seismic shaking: both ejecta-deposit thickness and airblast pressure decay much more rapidly with distance than seismic ground motion. Close to the impact site the most severe hazard is from thermal radiation; however, the curvature of the Earth implies that distant localities are shielded from direct thermal radiation because the fireball is below the horizon.

  8. Centrifuge Impact Cratering Experiments

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  9. Meteorological transport of continental soot to Antarctica?

    NASA Astrophysics Data System (ADS)

    Murphey, B. B.; Hogan, A. W.

    1992-01-01

    An impactor/concentrator/microdensitometer (ICM) instrument system has been constructed and calibrated. This system is sufficiently sensitive to measure the black (carbon soot) component of Antarctic aerosol with a sampling time of four hours. The impactor concentrator was exposed to Antarctic air at Ross Island in September 1987. Microdensitometer analysis of the collected specimens indicates that the maximum black aerosol concentration was observed concurrently with the arrival of the warmest air accompanying a cyclonic storm. This is similar to the concurrence of continental radon and lead isotopes with warm advection, measured on the Antarctic coast by Polian et al. (1986). It is possible that continental soot can be transported to the Antarctic coast several times each year by this mechanism.

  10. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, W.; Brown, P.; Matney, M.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  11. Kinetic Damage from Meteorites

    NASA Technical Reports Server (NTRS)

    Cooke, W.; Matney, M.; Brown, P.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, reentering debris is approx. 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  12. Survival of the impactor during hypervelocity collisions - II. An analogue for high-porosity targets

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Price, M. C.; Delbo, M.; Cole, M. J.

    2017-01-01

    We investigated how a target's porosity affects the outcome of a collision, with respect to the impactor's fate. Laboratory impact experiments using peridot projectiles were performed at a speed range between 0.3 and 3.0 km s-1, on to high-porosity water-ice (40 per cent) and fine-grained calcium carbonate (70 per cent) targets. We report that the amount of implanted material in the target body increases with increasing target's porosity, while the size frequency distribution of the projectile's ejecta fragments becomes steeper. A supplementary Raman study showed no sign of change of the Raman spectra of the recovered olivine projectile fragments indicate minimal physical change.

  13. An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter

    2004-01-01

    Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.

  14. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  15. Low and high velocity impact response of thick hybrid composites

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Ishai, Ori

    1993-01-01

    The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.

  16. Flight Operations for the LCROSS Lunar Impactor Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; D'Ortenzio, Matt D.; Strong, James; Galal, Ken; Bresina, John L.; Foreman, Darin; Barber, Robert; Shirley, Mark; Munger, James; hide

    2010-01-01

    The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining the nature of hydrogen concentrated at the polar regions of the moon. Co-manifested for launch with LRO (Lunar Reconnaissance Orbiter), LCROSS guided its spent Centaur upper stage into the Cabeus crater as a kinetic impactor, and observed the impact flash and resulting debris plume for signs of water and other compounds from a Shepherding Spacecraft. Led by NASA Ames Research Center, LCROSS flight operations spanned 112 days, from June 18 through October 9, 2009. This paper summarizes the experiences from the LCROSS flight, highlights the challenges faced during the mission, and examines the reasons for its ultimate success.

  17. Origin and implications of non-radial Imbrium Sculpture on the Moon

    DOE PAGES

    Schultz, Peter H.; Crawford, David A.

    2016-07-20

    Rimmed grooves, lineations and elongate craters around Mare Imbrium shape much of the nearside Moon. This pattern was coined the Imbrium Sculpture 1, and it was originally argued that it must have been formed by a giant oblique (~30°) impact, a conclusion echoed by later studies 2. Some investigators, however, noticed that many elements of the Imbrium Sculpture are not radial to Imbrium, thereby implicating an endogenic or structural origin 3, 4. Here we use these non-radial trends to conclude that the Imbrium impactor was a proto-planet (half the diameter of Vesta), once part of a population of large proto-planetsmore » in the asteroid belt. Such independent constraints on the sizes of the Imbrium and other basin-forming impactors markedly increase estimates for the mass in the asteroid belt before depletion caused by the orbital migration of Jupiter and Saturn 5. Furthermore, laboratory impact experiments, shock physics codes and the groove widths indicate that multiple fragments (up to 2% of the initial diameter) from each oblique basin-forming impactor, such as the one that formed Imbrium, should have survived planetary collisions and contributed to the heavy impact bombardment between 4.3 and 3.8 billion years ago.« less

  18. Flash heating on the early Earth.

    PubMed

    Lyons, J R; Vasavada, A R

    1999-03-01

    It has been suggested that very large impact events (approximately 500 km diameter impactors) sterilized the surface of the young Earth by producing enough rock vapor to boil the oceans. Here, we consider surface heating due to smaller impactors, and demonstrate that surface temperatures conductive to organic synthesis resulted. In particular, we focus on the synthesis of thermal peptides. Previously, laboratory experiments have demonstrated that dry heating a mixture of amino acids containing excess Asp, Glu, or Lys to temperatures approximately 170 degrees C for approximately 2 hours yields polypeptides. It has been argued that such temperature conditions would not have been available on the early Earth. Here we demonstrate, by analogy with the K/T impact, that the requisite temperatures are achieved on sand surfaces during the atmospheric reentry of fine ejecta particles produced by impacts of bolides approximately 10-20 km in diameter, assuming approximately 1-100 PAL CO2. Impactors of this size struck the Earth with a frequency of approximately 1 per 10(4)-10(5) y at 4.2 Ga. Smaller bolides produced negligible global surface heating, whereas bolides > 30 km in diameter yielded solid surface temperatures > 1000 K, high enough to pyrolyze amino acids and other organic compounds. Thus, peptide formation would have occurred globally for a relatively narrow range of bolide sizes.

  19. Estimates of Comet Fragment Masses from Impact Crater Chains on Callisto and Ganymede

    NASA Technical Reports Server (NTRS)

    McKinnon, William B.; Schenk, Paul M.

    1995-01-01

    Chains of impact craters, or catenae, have been identified in Voyager images of Callisto and Ganymede. Although these resemble in some respects secondary crater chains, the source craters and basins for the catenae cannot be identified. The best explanation is a phenomenon similar to that displayed by former comet Shoemaker-Levy 9; tidal (or other) breakup close to Jupiter followed by gradual orbital separation of the fragments and collision with a Galilean satellite on the outbound leg of the trajectory. Because the trajectories must pass close to Jupiter, this constrains the impact geometry (velocity and impact angle) of the individual fragments. For the dominant classes of impactors, short period Jupiter-family comets and asteroids, velocities at Callisto and Ganymede are dominated by Jovian gravity and a satellite's orbital motion, and are insensitive to the pre-fragmentation heliocentric velocity; velocities are insensitive to satellite gravity for all impactor classes. Complex crater shapes on Callisto and Ganymede are determined from Voyager images and Schmidt-Holsapple scaling is used to back out individual fragment masses. We find that comet fragment radii are generally less than about 500 m (for ice densities) but can be larger. These estimates can be compared with those for the Shoemaker-Levy 9 impactors.

  20. Orbital Debris Shape and Orientation Effects on Impact Damage to Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Williamsen, Joel

    2006-01-01

    Taking the damage results from a previous paper as a guide, and using a tile model created for the STS-107 accident investigation, we used the SPHC hydrodynamic code to evaluate the probable worst-case impact effects of flat, rectangular, "flake-shaped," orbital debris particles on Space Shuttle thermal tiles. We compared the damage from flakes with that produced by spheres. The flakes and spheres were sized according to a "characteristic length" (Lc) derived from radar cross-section measurements, and embodied in the NASA Standard Breakup Model (SBM). Impacts were simulated at near-normal obliquity, at 12 km/sec. We modeled the worst-case flake orientation: a corner-on impact, an orientation we term a "Face A-B" impact. Results of our simulations indicate that flake impactors are less damaging than spheres of the same Lc. Since spherical impactors have been assumed in analyses of shuttle orbital debris impact risk, we find that these risks may have been overestimated. This work represents a preliminary second step, i.e., a follow-on to [1], in developing a sensitivity analysis for the expected range of effects on damage considering spherical vs. non-spherical impactors, as recommended by the Institute for Defense Analyses (IDA) report to the Columbia Accident Investigation Board.

  1. Titan impacts and escape

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, Kevin J.

    2011-01-01

    We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn's moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion. We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s -1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan's surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results. Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/ Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/ Mi ˜ 1-2 were found in the simulations.

  2. On the origin of the organic-rich material on Ceres

    NASA Astrophysics Data System (ADS)

    Marchi, Simone; Bowling, Timothy; De Sanctis, Maria Cristina

    2017-10-01

    The detection of localized, organic-rich material on Ceres [1] poses an interesting conundrum. Either the organic-rich material has an exogenous origin, and thus it has been delivered to Ceres after its formation; or it has an endogenous origin, and thus it has been synthesized and/or concentrated in a specific location on Ceres via internal processes.Both scenarios have shortfalls, indicating we may ultimately be missing how organic matter has been formed, transported and reworked in solar system objects. The very location of Ceres at the boundary between the inner and outer solar system, and its intriguing composition characterized by clays, sodium- and ammonium-carbonates [2], suggest Ceres experienced a very complex chemical evolution. The role of organics in this evolution is not fully understood, with important astrobiological implications [3].Here we investigate the viability of organics delivery to Ceres via asteroidal/cometary impactors. We will present iSALE shock physics code [4-5] simulations that explore a range of impact parameters, such as impactor sizes and velocities, and discuss the likelihood of organics delivery. We find that comet-like projectiles, with relatively high impact velocities, are expected to lose almost all of their organics due to shock compression. Asteroidal-like impactors, with lower incident velocities, can retain 20-30% of their pre-impact organic material during delivery, especially for small impactors and very oblique impact angles. However, the spatial distribution of organics on Ceres seems difficult to reconcile with delivery from small main belt asteroids. These findings corroborate an endogenous origin for the organics on Ceres.[1] De Sanctis M. C. et al. Science 355, 2016. [2] De Sanctis M. C. et al. Nature 536, 2016. [3] Castillo-Rogez J. C. et al. Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989). [4] Amsden A. et al. LANL Report, LA-8095, 1980. [5] Collins G. S. et al. MAPS 39, 2004.

  3. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors

    NASA Astrophysics Data System (ADS)

    Brown, P. G.; Assink, J. D.; Astiz, L.; Blaauw, R.; Boslough, M. B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; Cooke, W.; de Groot-Hedlin, C.; Drob, D. P.; Edwards, W.; Evers, L. G.; Garces, M.; Gill, J.; Hedlin, M.; Kingery, A.; Laske, G.; Le Pichon, A.; Mialle, P.; Moser, D. E.; Saffer, A.; Silber, E.; Smets, P.; Spalding, R. E.; Spurný, P.; Tagliaferri, E.; Uren, D.; Weryk, R. J.; Whitaker, R.; Krzeminski, Z.

    2013-11-01

    Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects. Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave, but owing to lack of observations this is uncertain. Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (+/-100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT = 4.185×1012 joules). We show that a widely referenced technique of estimating airburst damage does not reproduce the observations, and that the mathematical relations based on the effects of nuclear weapons--almost always used with this technique--overestimate blast damage. This suggests that earlier damage estimates near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques. This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes.

  4. Mass Transfer via Low-Velocity Rebound in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Jarmak, S. G.; Colwell, J. E.; Brisset, J.; Dove, A.; Brown, A. Q.

    2017-12-01

    Observations of low-velocity collisions (< 1 m/s) between μm to cm-size particles in a microgravity environment are crucial to an understanding of the surface properties of small, airless bodies as well as the processes that lead to their formation. The COLLIDE (Collisions Into Dust Experiment) and PRIME (Physics of Regolith Impacts in Microgravity Experiment) programs created impacts into simulated planetary regolith with cm-scale impactors to observe ejecta production and coefficients of restitution in microgravity. These experiments were carried out on orbit (COLLIDE, COLLIDE-2), in suborbital space (COLLIDE-3), and on parabolic airplane flights (PRIME) under vacuum. Some impacts at speeds less than 40 cm/s resulted in mass transfer from the target regolith onto the impactor. To study these mass-transfer collisions in more detail without the cost or time requirements of spaceflight or parabolic flights, we developed an experimental apparatus in a laboratory drop tower (free-fall time 0.75 s) and performed experiments at standard pressure. The impactor is suspended from a spring and remains in contact with the bed of regolith until free-fall allows the spring to retract and pull the impactor upwards. This method allowed us to simulate the rebound portion of a low-velocity collision in a laboratory microgravity environment. We achieved rebound velocities of 10 - 60 cm/s, and we observed mass transfer events with rebound speeds below 40 cm/s. The amount of mass transfer produced was more significant than a monolayer of granular material, but less than the amount observed in the COLLIDE and PRIME experiments. These mass-transfer collisions may play a role in the growth of planetesimals. We will present the results of our laboratory-based studies where we vary impact velocity and target material, and discuss implications for collisional evolution in the protoplanetary disk and planetary rings.

  5. Rubble-pile Simulations Using The Open Dynamics Engine

    NASA Astrophysics Data System (ADS)

    Korycansky, Donald; Asphaug, E.

    2008-09-01

    We describe a series of calculations of low-speed collisions of km-scale rubble piles (i.e. asteroids or planetesimals), similar to previous work (Korycansky and Asphaug 2006). The rubble piles are aggregates of polyhedra held together by gravity and friction. Collision velocities are typically of order 1 to 100 m/sec.In this work we make use of a so-called "physics engine" to solve the equations of rigid-body motion and collisions of the polyhedra. Such code libraries have been primarily developed for computer simulations and games. The chief advantage of these libraries is the inclusion of sophisticated algorithms for collision detection, which we have found to be the main computational bottleneck in our calculations. The package we have used is the Open Dynamics Engine, a freely available open-source library (www.ode.org). It solves the equations of motion to first-order accuracy in time and utilizes a fast algorithm for collision detection. We have found a factor of approximately 30 speed-up for our calculations, allowing the exploration of a much larger range of parameter space and the running of multiple calculations in order to sample the stochasticity of the results. For the calculations we report on here, the basic model is the collision of an impactor in the range 0.1--1 km in diameter with a target of 1 km diameter.argets are modeled with 1000 polyhedral elements and impactors modeled with 1 to 1000 elements depending on mass. Collisions of objects with both equal-mass elements, and elements chosen from a power-law distribution, are studied. We concentrate on determining the energy required for catastrophic disruption (Q*D) as a function of impactor/target mass atio and impactor parameter for off-center collisions. This work has been supported by NASA Planetary Geology and Geophysics Program grant NNX07AQ04G.

  6. Europa's small impactor flux and seismic detection predictions

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Teanby, Nicholas A.

    2016-10-01

    Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a much more viable mechanism for probing Europa's interior.

  7. Ancient impactor components preserved and reworked in martian regolith breccia Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2016-10-01

    Northwest Africa (NWA) 7034 and paired stones represent unique samples of martian polymict regolith breccia. Multiple breccia subsamples characterized in this work confirm highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, Pd) contents that are consistently elevated (e.g., Os ∼9.3-18.4 ppb) above indigenous martian igneous rocks (mostly <5 ppb Os), equivalent to ∼3 wt% of admixed CI-type carbonaceous chondritic material, and occur in broadly chondrite-relative proportions. However, a protracted history of impactor component (metal and sulfide) breakdown and redistribution of the associated HSE has masked the original nature of the admixed meteorite signatures. The present-day 187Os/188Os ratios of 0.119-0.136 record a wider variation than observed for all major chondrite types. Combined with the measured 187Re/188Os ratios of 0.154-0.994, the range in Os isotope ratios indicates redistribution of Re and Os from originally chondritic components early in the history of the regolith commencing at ∼4.4 Ga. Superimposed recent Re mobility reflects exposure and weathering at or near the martian and terrestrial surfaces. Elevated Os concentrations (38.0 and 92.6 ppb Os), superchondritic Os/HSE ratios, and 187Os/188Os of 0.1171 and 0.1197 measured for two subsamples of the breccia suggest the redistribution of impactor material at ∼1.5-1.9 Ga, possibly overlapping with a (partial) resetting event at ∼1.4 Ga recorded by U-Pb isotope systematics in the breccia. Martian alteration of the originally chondritic HSE host phases, to form Os-Ir-rich nuggets and Ni-rich pyrite, implies the influence of potentially impact-driven hydrothermal systems. Multiple generations of impactor component admixture, redistribution, and alteration mark the formation and evolution of the martian regolith clasts and matrix of NWA 7034 and paired meteorites, from the pre-Noachian until impact ejection to Earth.

  8. Impact-induced melting and heating of planetary interiors - implications for the thermo-chemical evolution of planets and crystallization of magma oceans

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Manske, L.; Zhu, M.; Nakajima, M.; Breuer, D.; Schwinger, S.; Plesa, A. C.

    2017-12-01

    Large collisions and giant impact events play an important role in the thermo-chemical evolution of planets during their early and late accretion phases. Besides material that is delivered by differentiated and primitive projectiles a significant amount of the kinetic impact energy is transferred to the planets interior resulting in heating and widespread melting of matter. As a consequence, giant impacts are thought to form global magma oceans. The amount and distribution of impact-induced heating and melting has been previously estimated by scaling laws derived from small-scale impact simulations and experiments, simple theoretical considerations, and observations at terrestrial craters. We carried out a suite of numerical models using the iSALE shock physics code and an SPH code combined with the ANEOS package to investigate the melt production in giant impacts and planetary collision events as a function of impactor size and velocity, and the target temperature. Our results are consistent with previously derived scaling laws only for smaller impactors (<10 km in diameter), but significantly deviate for larger impactors: (1) for hot planets, where the temperature below the lithosphere lies close to the solidus temperature, the melt production is significantly increased for impactors comparable in the size to the depth of the lithosphere. The resulting crater structures would drown in their own melt and only large igneous provinces (local magma oceans) would remain visible at the surface;(2) even bigger impacts (planetary collisions) generate global magma oceans; (3) impacts into a completely solidified (cold) target result in more localized heating in comparison to impacts into a magma ocean, where the impact-induced heating is distributed over a larger volume. In addition, we investigate the influence of impacts on a cooling and crystallization of magma oceans and use the lunar magma ocean as an example.

  9. Preliminary design of a prototype particulate stack sampler. [For stack gas temperature under 300/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, J.C.; Littlefield, L.G.; Tillery, M.I.

    1978-06-01

    A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less

  10. Analysis of African Biomass Burning Over the South East Atlantic and its Interaction with Stratocumulus Clouds during ORACLES 2016/17

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Howell, S. G.; Dobracki, A. N.; Smirnow, N.; Winchester, C.; Sedlacek, A. J., III; Podolske, J. R.; Noone, D.; McFarquhar, G. M.; Poellot, M.; Delene, D. J.

    2017-12-01

    During NASA ORACLES 2016/17 airborne missions, biomass burning (BB) advected from the African continent out over the South East Atlantic was intensively studied to better understand the role of BB aerosol in the regional radiation budget but also to discern its effect from natural aerosol on underlying Stratocumulus (Sc) clouds in the marine boundary layer (MBL). Because of its particle size and vast quantities BB aerosol once entrained into the MBL are highly effective as cloud condensation nuclei (CCN) impacting cloud microphysical properties and as such the Sc deck's radiative budget. This work identifies characteristic in-plume size resolved aerosol physiochemistry observed during the campaign with focus on absorbing aerosol measurements retrieved with a Single Particle Soot Photometer (SP2). The results are compared to MBL aerosol obervations and adjacent Sc cloud properties such as the cloud droplet number concentration. Additionally, size resolved aerosol physiochemistry and black carbon concentration were measured in the cloud occasionally using a Counterflow Virtual Impactor (CVI) inlet sampling exclusively cloud droplet residuals. Employing the CVI cloud droplets are inertially separated from the air and dried in-situ en-route to the aerosol instrumentation. This allows us to study natural and combustion-influenced aerosol that were actually activated as CCN in the Sc deck.

  11. Damage Characteristics and Residual Strength of Composite Sandwich Panels Impacted with and Without Compression Loading

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1998-01-01

    The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.

  12. Impact basins in Southern Daedalia, Mars: Evidence for clustered impactors?

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Roark, James H.

    1994-01-01

    The distribution of ancient massifs and old cratered terrain in the southern Daedalia region indicate the presence of at least two and probably three impact basins of large size. One of these is located near where Craddock et al. placed their center for the Daedalia Basin, but it has very different ring diameters. These basins have rings exceeding 1000 km diameter and overlap significantly with centers separated by 500 to 600 km at nearly identical latitudes of -26 to -29 deg. The smaller westernmost basin appears slightly better preserved, but there is little evidence for obvious superposition that might imply a temporal sequence. Recognizing the improbability of random impacts producing aligned, nearly contemporaneous features, we suggest these basins may have resulted from clustered impactors.

  13. Craters in aluminum 1100 targets using glass projectiles at 1-7 km/s

    NASA Technical Reports Server (NTRS)

    Bernhard, R. P.; See, T. H.; Hoerz, F.; Cintala, M. J.

    1994-01-01

    We report on impact experiments using soda-lime glass spheres of 3.2 mm diameter and aluminum targets (1100 series). The purpose is to assist in the interpretation of LDEF instruments and in the development of future cosmic-dust collectors in low-Earth orbit. Because such instruments demand understanding of both the cratering and penetration process, we typically employ targets with thicknesses that range from massive, infinite half-space targets, to ultrathin films. This report addresses a subset of cratering experiments that were conducted to fine-tune our understanding of crater morphology as a function of impact velocity. Also, little empirical insight exists about the physical distribution and shock-metamorphism of the impactor residues as a function of encounter speed, despite their recognized significance in the analysis of space-exposed surfaces. Soda-lime glass spheres were chosen as a reasonable analog to extraterrestrial silicates, and aluminum 1100 was chosen for targets, which among the common Al-alloys, best represents the physical properties of high-purity aluminum. These materials complement existing impact studies that typically employed metallic impactors and less ductile Al-alloys. We have completed dimensional analyses of the resulting craters and are in the process of investigating the detailed distribution of the unmelted and melted impactor residues via SEM methods, as well as potential compositional modifications of the projectile melts via electron microprobe.

  14. Effect of Abdominal Loading Location on Liver Motion: Experimental Assessment using Ultrafast Ultrasound Imaging and Simulation with a Human Body Model.

    PubMed

    Le Ruyet, Anicet; Berthet, Fabien; Rongiéras, Frédéric; Beillas, Philippe

    2016-11-01

    A protocol based on ultrafast ultrasound imaging was applied to study the in situ motion of the liver while the abdomen was subjected to compressive loading at 3 m/s by a hemispherical impactor or a seatbelt. The loading was applied to various locations between the lower abdomen and the mid thorax while feature points inside the liver were followed on the ultrasound movie (2000 frames per second). Based on tests performed on five post mortem human surrogates (including four tested in the current study), trends were found between the loading location and feature point trajectory parameters such as the initial angle of motion or the peak displacement in the direction of impact. The impactor tests were then simulated using the GHBMC M50 human body model that was globally scaled to the dimensions of each surrogate. Some of the experimental trends observed could be reproduced in the simulations (e.g. initial angle) while others differed more widely (e.g. final caudal motion). The causes for the discrepancies need to be further investigated. The liver strain energy density predicted by the model was also widely affected by the impact location. Experimental and simulation results both highlight the importance of the liver position with respect to the impactor when studying its response in situ.

  15. Small-scale impacts as potential trigger for landslides on small Solar system bodies

    NASA Astrophysics Data System (ADS)

    Hofmann, Marc; Sierks, Holger; Blum, Jürgen

    2017-07-01

    We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.

  16. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2017-07-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  17. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.

    PubMed

    Yoon, Ki Young; Park, Chul Woo; Byeon, Jeong Hoon; Hwang, Jungho

    2010-03-01

    We proposed a rapid method to estimate the efficacies of air controlling devices in situ using ATP bioluminescence in combination with an inertial impactor. The inertial impactor was designed to have 1 mum of cutoff diameter, and its performance was estimated analytically, numerically, and experimentally. The proposed method was characterized using Staphylococcus epidermidis, which was aerosolized with a nebulizer. The bioaerosol concentrations were estimated within 25 min using the proposed method without a culturing process, which requires several days for colony formation. A linear relationship was obtained between the results of the proposed ATP method (RLU/m(3)) and the conventional culture-based method (CFU/m(3)), with R(2) 0.9283. The proposed method was applied to estimate the concentration of indoor bioaerosols, which were identified as a mixture of various microbial species including bacteria, fungi, and actinomycetes, in an occupational indoor environment, controlled by mechanical ventilation and an air cleaner. Consequently, the proposed method showed a linearity with the culture-based method for indoor bioaerosols with R(2) 0.8189, even though various kinds of microorganisms existed in the indoor air. The proposed method may be effective in monitoring the changes of relative concentration of indoor bioaerosols and estimating the effectiveness of air control devices in indoor environments.

  18. The cometary and asteroidal impactor flux at the earth

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1988-01-01

    The cratering records on the Earth and the lunar maria provide upper limits on the total impactor flux at the Earth's orbit over the past 600 Myr and the past 3.3 Gyr, respectively. These limits can be compared with estimates of the expected cratering rate from observed comets and asteroids in Earth-crossing orbits, corrected for observational selection effects and incompleteness, and including expected temporal variations in the impactor flux. Both estimates can also be used to calculate the probability of large impacts which may result in biological extinction events on the Earth. The estimated cratering rate on the Earth for craters greater than 10 km-diameter, based on counted craters on dated surfaces is 2.2 + or - 1.1 x 10 to the minus 14th power km(-2) yr(-1) (Shoemaker et al., 1979). Using a revised mass distribution for cometary nuclei based on the results of the spacecraft flybys of Comet Halley in 1986, and other refinements in the estimate of the cometary flux in the terrestrial planets zone, it is now estimated that long-period comets account for 11 percent of the cratering on the Earth (scaled to the estimate above), and short-period comets account for 4 pct (Weissman, 1987). However, the greatest contribution is from large but infrequent, random cometary showers, accounting for 22 pct of the terrestrial cratering.

  19. Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact.

    PubMed

    Greenwood, Richard C; Barrat, Jean-Alix; Miller, Martin F; Anand, Mahesh; Dauphas, Nicolas; Franchi, Ian A; Sillard, Patrick; Starkey, Natalie A

    2018-03-01

    The Earth-Moon system likely formed as a result of a collision between two large planetary objects. Debate about their relative masses, the impact energy involved, and the extent of isotopic homogenization continues. We present the results of a high-precision oxygen isotope study of an extensive suite of lunar and terrestrial samples. We demonstrate that lunar rocks and terrestrial basalts show a 3 to 4 ppm (parts per million), statistically resolvable, difference in Δ 17 O. Taking aubrite meteorites as a candidate impactor material, we show that the giant impact scenario involved nearly complete mixing between the target and impactor. Alternatively, the degree of similarity between the Δ 17 O values of the impactor and the proto-Earth must have been significantly closer than that between Earth and aubrites. If the Earth-Moon system evolved from an initially highly vaporized and isotopically homogenized state, as indicated by recent dynamical models, then the terrestrial basalt-lunar oxygen isotope difference detected by our study may be a reflection of post-giant impact additions to Earth. On the basis of this assumption, our data indicate that post-giant impact additions to Earth could have contributed between 5 and 30% of Earth's water, depending on global water estimates. Consequently, our data indicate that the bulk of Earth's water was accreted before the giant impact and not later, as often proposed.

  20. The Making of Deep Impact

    NASA Image and Video Library

    2006-10-19

    This image shows NASA Deep Impact spacecraft being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. on July 2, 2005. The spacecraft impactor was released from Deep Impact flyby spacecraft.

  1. Short arc orbit determination and imminent impactors in the Gaia era

    NASA Astrophysics Data System (ADS)

    Spoto, F.; Del Vigna, A.; Milani, A.; Tommei, G.; Tanga, P.; Mignard, F.; Carry, B.; Thuillot, W.; David, P.

    2018-06-01

    Short-arc orbit determination is crucial when an asteroid is first discovered. In these cases usually the observations are so few that the differential correction procedure may not converge. We developed an initial orbit computation method, based on systematic ranging, which is an orbit determination technique that systematically explores a raster in the topocentric range and range-rate space region inside the admissible region. We obtained a fully rigorous computation of the probability for the asteroid that could impact the Earth within a few days from the discovery without any a priori assumption. We tested our method on the two past impactors, 2008 TC3 and 2014 AA, on some very well known cases, and on two particular objects observed by the European Space Agency Gaia mission.

  2. NM-Scale Anatomy of an Entire Stardust Carrot Track

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  3. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  4. Forming a Moon with an Earth-like composition via a giant impact.

    PubMed

    Canup, Robin M

    2012-11-23

    In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.

  5. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    NASA Astrophysics Data System (ADS)

    Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.

    2016-02-01

    The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  6. Short arc orbit determination and Gaia alerts

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Tanga, Paolo; Del Vigna, Alessio; Carry, Benoit; Thuillot, William; David, Pedro; Mignard, Francois; Milani, Andrea; Tommei, Giacomo

    2017-10-01

    Since October 2016, the short term (ST) processing of Solar System Objects (SSOs) by Gaia is up and running, and it has produced almost 600 alerts. A crucial point in the chain is the possibility of performing a short arc orbit determination as soon as the object has been detected, which allows the follow up of the object from the ground.The method we present has been recentely developed for two mainreasons: 1) search for imminent impactors within the NEO - Confirmation Page(imminent impactors are asteroids that could impact the Earth infew days from their discovery) 2) validation of the SSO-ST Gaia pipeline.We show some good confirmations on objects that could have been discovered by Gaia, and some properties of the Gaia astrometry for the short term.

  7. Constraints on the pre-impact orbits of Solar system giant impactors

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Gabriel, Travis S. J.; Asphaug, Erik I.

    2018-03-01

    We provide a fast method for computing constraints on impactor pre-impact orbits, applying this to the late giant impacts in the Solar system. These constraints can be used to make quick, broad comparisons of different collision scenarios, identifying some immediately as low-probability events, and narrowing the parameter space in which to target follow-up studies with expensive N-body simulations. We benchmark our parameter space predictions, finding good agreement with existing N-body studies for the Moon. We suggest that high-velocity impact scenarios in the inner Solar system, including all currently proposed single impact scenarios for the formation of Mercury, should be disfavoured. This leaves a multiple hit-and-run scenario as the most probable currently proposed for the formation of Mercury.

  8. Cratering statistics on asteroids: Methods and perspectives

    NASA Astrophysics Data System (ADS)

    Chapman, C.

    2014-07-01

    Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting certain assumptions about issues that should be left as open questions (e.g., the shapes of impactor SFDs are assumed to be identical throughout the solar system and throughout all epochs, the decay rate of the impactor flux in the asteroid belt is assumed to be the same as in the Earth-Moon system, and all kinks in SFDs are interpreted as ''resurfacings'' rather than due to layering of targets or due to other kinds of crater creation and degradation processes). In fact, we know that there are different mixes of comets and asteroids in different parts of the solar system, that size distributions differ in different parts of the asteroid belt, that SFDs of asteroid families evolve, that kinks in SFDs can be produced by layering (e.g., on the Moon), and that small-scale crater populations on asteroids like Itokawa and Eros are dramatically affected by processes of lesser importance to large-scale cratering (e.g., because of bouldery substrates, seismic shaking, etc.). Identification of homogeneous geological units for crater counting is particularly critical. Crater ejecta blankets, which are useful units on planetary-scale bodies, become problematic on smaller bodies where ejecta travel farther and are even ejected at greater than escape velocity resulting in thin, patchy ejecta blankets inappropriate for displaying a useful post-deposition crater population. As we anticipate studying still more cratered small-body surfaces from future spacecraft and even radar imaging of asteroids, comet nuclei, and small satellites, non-specialists and crater-counters alike should be suspicious of crater SFDs obtained through production-line application of black-box routines like Craterstats. Crater SFDs can still be a very useful tool, so long as there is rigorous, statistically robust, open-minded interpretation that takes account of the real unknowns concerning geological and interplanetary contexts.

  9. Concussion in professional football: animal model of brain injury--part 15.

    PubMed

    Viano, David C; Hamberger, Anders; Bolouri, Hayde; Säljö, Annette

    2009-06-01

    A concussion model was developed to study injury mechanisms, functional effects, treatment, and recovery. Concussions in National Football League football involve high-impact velocity (7.4-11.2 m/s) and rapid change in head velocity (DeltaV) (5.4-9.0 m/s). Current animal models do not simulate these head impact conditions. One hundred eight adult male Wistar rats weighing 280 to 350 g were used in ballistic impacts simulating 3 collision severities causing National Football League-type concussion. Pneumatic pressure accelerated a 50 g impactor to velocities of 7.4, 9.3, and 11.2 m/s at the left side of the helmet-protected head. A thin layer of padding on the helmet controlled head acceleration, which was measured on the opposite side of the head, in line with the impact. Peak head acceleration, DeltaV, impact duration, and energy transfer were determined. Fifty-four animals were exposed to single impact, with 18 each having 1, 4, or 10 days of survival. Similar tests were conducted on another 54 animals, which received 3 impacts at 6-hour intervals. An additional 72 animals were tested with a 100g impactor to study more serious brain injuries. Brains were perfused, and surface injuries were identified. The 50 g impactor matches concussion conditions scaled to the rat. Impact velocity and head DeltaV were within 1% and 3% of targets on average. Head acceleration reached 450 g to 1750 g without skull fracture. The test is repeatable and robust. Gross pathology was observed in 11%, 28%, and 33% of animals in the 7.4-, 9.3-, and 11.2-m/s single impacts, respectively. At 7.4 m/s, a single diameter area of less than 0.5 mm of fine petechial hemorrhage occurred on the brain surface in the parenchyma and meninges nearest the point of impact. At higher velocities, there were larger areas of bleeding, sometimes with subdural hemorrhage. When the 50 g impactor tests were examined by logistic regression, greater energy transfer increased the probability of injury (odds ratio, 5.83; P = 0.01), as did 3 repeat impacts (odds ratio, 4.72; P = 0.002). The number of survival days decreased the probability of observing injury (odds ratio, 0.25 and 0.11 for 4 and 10 days, respectively, compared with 1 day). The 100g impactor produced more severe brain injuries. A concussion model was developed to simulate the high velocity of impact and rapid head DeltaV of concussions in National Football League players. The new procedure can be used to evaluate immediate and latent effects of concussion and more severe injury with greater impact mass.

  10. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at different stages of the impactors.

  11. The cratering record in the inner solar system: Implications for earth

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass extinctions is 10 km in diameter. Thus impactors greater than or equal to the size postulated for K-T impactor are rare within the inner solar system since the end of heavy bombardment.

  12. Orbital and physical characteristics of meter-scale impactors from airburst observations

    NASA Astrophysics Data System (ADS)

    Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.

    2016-03-01

    We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).

  13. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus

    PubMed Central

    Baigent, Susan J.; Nair, Venugopal K.; Le Galludec, Hervé

    2016-01-01

    CVI988/Rispens vaccine, the ‘gold standard’ vaccine against Marek’s disease in poultry, is not easily distinguishable from virulent strains of Marek’s disease herpesvirus (MDV). Accurate differential measurement of CVI988 and virulent MDV is commercially important to confirm successful vaccination, to diagnose Marek’s disease, and to investigate causes of vaccine failure. A real-time quantitative PCR assay to distinguish CVI988 and virulent MDV based on a consistent single nucleotide polymorphism in the pp38 gene, was developed, optimised and validated using common primers to amplify both viruses, but differential detection of PCR products using two short probes specific for either CVI988 or virulent MDV. Both probes showed perfect specificity for three commercial preparations of CVI988 and 12 virulent MDV strains. Validation against BAC-sequence-specific and US2-sequence-specific q-PCR, on spleen samples from experimental chickens co-infected with BAC-cloned pCVI988 and wild-type virulent MDV, demonstrated that CVI988 and virulent MDV could be quantified very accurately. The assay was then used to follow kinetics of replication of commercial CVI988 and virulent MDV in feather tips and blood of vaccinated and challenged experimental chickens. The assay is a great improvement in enabling accurate differential quantification of CVI988 and virulent MDV over a biologically relevant range of virus levels. PMID:26973285

  14. Finite element analysis of unnotched charpy impact tests

    DOT National Transportation Integrated Search

    2008-10-01

    This paper describes nonlinear finite element analysis (FEA) to examine the energy to : fracture unnotched Charpy specimens under pendulum impact loading. An oversized, : nonstandard pendulum impactor, called the Bulk Fracture Charpy Machine (BFCM), ...

  15. Psyche: State of Knowledge from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Shepard, M. K.; Takir, D.; Sanchez, J. A.; Richardson, J.; Emery, J. P.; Taylor, P. A.

    2017-07-01

    We present results from a multi-year campaign to characterize asteroid (16) Psyche, the target of NASA Discovery mission. Our results suggest that Psyche is covered with exogenic carbonaceous impactor similar to Vesta.

  16. Geologic signatures of atmospheric effects on impact cratering on Venus

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Highlights of the research include geologic signatures of impact energy and atmospheric response to crater formation. Laboratory experiments were performed at the NASA Ames Vertical Gun Range (AVGR) to assess the interaction between disrupted impactor and atmosphere during entry, and to assess the energy coupling between impacts and the surrounding atmosphere. The Schlieren imaging at the AVGR was used in combination with Magellan imaging and theoretical studies to study the evolution of the impactor following impact. The Schlieren imaging documented the downrange blast front created by vaporization during oblique impacts. Laboratory experiments allowed assessing the effect of impact angle on coupling efficiency with an atmosphere. And the impact angle's effect on surface blasts and run-out flows allowed the distinction of crater clusters created by simultaneous impacts from those created by isolated regions of older age.

  17. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  18. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    NASA Technical Reports Server (NTRS)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  19. OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poellot, Michael

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights ofmore » the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.« less

  20. Fundamental Physics

    NASA Image and Video Library

    2003-01-22

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  1. Low Velocity Impacts of Variable Tip Radius on Carbon/Epoxy Plates

    NASA Astrophysics Data System (ADS)

    Delaney, Mac P.

    With a growing use of composite materials in aircraft structures, there is a greater need to understand the response of these materials to low velocity impacts. Low velocity impacts from tool drops or ground equipment collisions can be of varying bluntness and can leave little or no visible evidence of damage. Therefore, a need exists to investigate the initiation of internal damage and the relationship between this internal damage and the external visible damage with respect to the bluntness of the impactor. A pendulum impactor was used to impact 76.2 x 127 mm carbon/epoxy panels that were 8, 16, and 24 plies thick. The panels were impacted by hardened steel tips with radii of 12.7 to 76.2 mm. The experimental results show that the failure threshold energies for each panel thickness and tip radius combination occur at a distinct and consistent energy. This threshold increases with impactor bluntness, and this effect is greater for the 8 ply panel than it is for the 16 or 24 ply panels. To describe the visibility of impact damage, the area of delamination was compared to the depth of the dents resulting from the impacts. For the sharper impact tips, there is a clear relationship between the delamination area and the depth of the dents. However, these relationships are dependent on the radius of the impact tip, and for the blunter impact tips no strong correlation could be determined between the delamination area and the depth of the dents.

  2. New insights on petrography and geochemistry of impactites from the Lonar crater, India

    NASA Astrophysics Data System (ADS)

    Ray, Dwijesh; Upadhyay, Dewashish; Misra, Saumitra; Newsom, Horton E.; Ghosh, Sambhunath

    2017-08-01

    The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, 65 Ma). The impactites reported from the crater to date mainly include centimeter- to decimeter-sized impact-melt bombs, and aerodynamically shaped millimeter- and submillimeter-sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non-in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non-in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top-most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter-sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH-type chondrite with the submillimeter-sized spherules containing 6 wt% impactor components.

  3. Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2015-01-01

    Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.

  4. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact

    PubMed Central

    Barrat, Jean-Alix; Sillard, Patrick; Starkey, Natalie A.

    2018-01-01

    The Earth-Moon system likely formed as a result of a collision between two large planetary objects. Debate about their relative masses, the impact energy involved, and the extent of isotopic homogenization continues. We present the results of a high-precision oxygen isotope study of an extensive suite of lunar and terrestrial samples. We demonstrate that lunar rocks and terrestrial basalts show a 3 to 4 ppm (parts per million), statistically resolvable, difference in Δ17O. Taking aubrite meteorites as a candidate impactor material, we show that the giant impact scenario involved nearly complete mixing between the target and impactor. Alternatively, the degree of similarity between the Δ17O values of the impactor and the proto-Earth must have been significantly closer than that between Earth and aubrites. If the Earth-Moon system evolved from an initially highly vaporized and isotopically homogenized state, as indicated by recent dynamical models, then the terrestrial basalt-lunar oxygen isotope difference detected by our study may be a reflection of post–giant impact additions to Earth. On the basis of this assumption, our data indicate that post–giant impact additions to Earth could have contributed between 5 and 30% of Earth’s water, depending on global water estimates. Consequently, our data indicate that the bulk of Earth’s water was accreted before the giant impact and not later, as often proposed. PMID:29600271

  5. Lessons Learned from Daily Uplink Operations during the Deep Impact Mission

    NASA Technical Reports Server (NTRS)

    Stehly, Joseph S.

    2006-01-01

    The daily preparation of uplink products (commands and files) for Deep Impact was as problematic as the final encounter images were spectacular. The operations team was faced with many challenges during the six-month mission to comet Tempel One of the biggest difficulties was that the Deep Impact Flyby and Impactor vehicles necessitated a high volume of uplink products while also utilizing a new uplink file transfer capability. The Jet Propulsion Laboratory (JPL) Multi-Mission Ground Systems and Services (MGSS) Mission Planning and Sequence Team (MPST) had the responsibility of preparing the uplink products for use on the two spacecraft. These responsibilities included processing nearly 15,000 flight products, modeling the states of the spacecraft during all activities for subsystem review, and ensuring that the proper commands and files were uplinked to the spacecraft. To guarantee this transpired and the health and safety of the two spacecraft were not jeopardized several new ground scripts and procedures were developed while the Deep Impact Flyby and Impactor spacecraft were en route to their encounter with Tempel-1. These scripts underwent several adaptations throughout the entire mission up until three days before the separation of the Flyby and Impactor vehicles. The problems presented by Deep Impact's daily operations and the development of scripts and procedures to ease those challenges resulted in several valuable lessons learned. These lessons are now being integrated into the design of current and future MGSS missions at JPL.

  6. Geochemical arguments for an Earth-like Moon-forming impactor

    PubMed Central

    Dauphas, Nicolas; Burkhardt, Christoph; Warren, Paul H.; Fang-Zhen, Teng

    2014-01-01

    Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building blocks. The similarity in isotopic composition (Δ17O, ε50Ti and ε54Cr) between lunar and terrestrial rocks is explained by the fact that the Moon-forming impactor came from the same region of the disc as other Earth-forming embryos, and therefore was similar in isotopic composition to the Earth. The heavy δ30Si values of the silicate Earth and the Moon relative to known chondrites may be due to fractionation in the solar nebula/protoplanetary disc rather than partitioning of silicon in Earth's core. An inversion method is presented to calculate the Hf/W ratios and ε182W values of the proto-Earth and impactor mantles for a given Moon-forming impact scenario. The similarity in tungsten isotopic composition between lunar and terrestrial rocks is a coincidence that can be explained in a canonical giant impact scenario if an early formed embryo (two-stage model age of 10–20 Myr) collided with the proto-Earth formed over a more protracted accretion history (two-stage model age of 30–40 Myr). PMID:25114316

  7. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  9. Sampling Indoor Aerosols on the International Space Station

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  10. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S.; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.

  11. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... longitudinal axis of the probe's impact face as shown in Figure U5-A in appendix A to this subpart; (4) The... the three load cell forces must be concurrent in time. (2) Maximum impactor force (impact probe...

  12. Further Mapping of Mercury's Crustal Magnetic Field Using MESSENGER Magnetometer Data

    NASA Astrophysics Data System (ADS)

    Hood, L. L.; Oliveira, J. S.; Spudis, P. D.; Galluzzi, V.

    2018-05-01

    Further mapping of Mercury's crustal magnetic field shows that anomalies are associated with some impact craters but not others. Differences in impactor composition (e.g., iron content) may be indicated by this new observation.

  13. Evaluation of a Portable Photometer for Estimating Diesel Particulate Matter Concentrations in an Underground Limestone Mine

    PubMed Central

    Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.

    2010-01-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071

  14. Study of the atmospheric aerosol composition in equatorial Africa using PIXE as analytical technique

    NASA Astrophysics Data System (ADS)

    Maenhaut, W.; Akilimali, K.

    1987-03-01

    Small Nuclepore total filter holders and a single orifice 8-stage cascade impactor were used to collect atmospheric aerosol samples in Kinshasa, Zaire, and Butare, Rwanda. The samples were analyzed for about 20 elements by means of the PIXE technique. The results obtained for parallel samples, taken with two total filter holders and one cascade impactor, were generally in excellent agreement, suggesting that the different samplers collected very similar aerosol particle populations. Most elements were associated with a crustal dust dispersion source, which may include road dust dispersal. The Butare samples, particularly those collected during the night, were significantly influenced by biomass burning, as was deduced from enhanced filter blackness and noncrustal K levels. The pyrogenic component also contained P, S, Mn and Rb. Br and Pb were highly enriched at both locations, indicating that automotive sources had a strong influence on the aerosol composition.

  15. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor.

    PubMed

    Bottke, William F; Vokrouhlický, David; Nesvorný, David

    2007-09-06

    The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past approximately 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a approximately 170-km-diameter body (carbonaceous-chondrite-like) that broke up 160(-20)+30Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.

  16. Environmental effects of large impacts on Mars.

    PubMed

    Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin

    2002-12-06

    The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers.

  17. Impact-Mobilized Dust in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2002-01-01

    We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.

  18. Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.

    1990-01-01

    The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.

  19. Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets

    NASA Astrophysics Data System (ADS)

    Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.

    1996-03-01

    We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.

  20. Melting, vaporization, and energy partitioning for impacts on asteroidal and planetary objects

    NASA Technical Reports Server (NTRS)

    Smither, Catherine L.; Ahrens, Thomas J.

    1992-01-01

    A three-dimensional smoothed particle hydrodynamics code was used to model normal and oblique impacts of silicate projectiles on asteroidal and planetary bodies. The energy of the system, initially in the kinetic energy of the impactor, is partitioned after impact into internal and kinetic energy of the impactor and the target body. These simulations show that, unlike the case of impacts onto a half-space, a significant amount of energy remains in the kinetic energy of the impacting body, as parts of it travel past the main planet and escape the system. This effect is greater for more oblique impacts, and for impacts onto the small planets. Melting and vaporization of both bodies were also examined. The amount of the target body melted was much greater in the case of smaller targets than for an impact of a similar scale on a larger body.

  1. The missing impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Speidel, D. H.

    1993-01-01

    The size-frequency pattern of the 842 impact craters on Venus measured to date can be well described (across four standard deviation units) as a single log normal distribution with a mean crater diameter of 14.5 km. This result was predicted in 1991 on examination of the initial Magellan analysis. If this observed distribution is close to the real distribution, the 'missing' 90 percent of the small craters and the 'anomalous' lack of surface splotches may thus be neither missing nor anomalous. I think that the missing craters and missing splotches can be satisfactorily explained by accepting that the observed distribution approximates the real one, that it is not craters that are missing but the impactors. What you see is what you got. The implication that Venus crossing impactors would have the same type of log normal distribution is consistent with recently described distribution for terrestrial craters and Earth crossing asteroids.

  2. Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong

    2018-06-01

    In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.

  3. Nonlinear elastic behavior of sub-critically damaged body armor panel

    NASA Astrophysics Data System (ADS)

    Fisher, Jason T.; Chimenti, D. E.

    2012-05-01

    A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.

  4. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    NASA Astrophysics Data System (ADS)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  5. Study of the penetration of a plate made of titanium alloy VT6 with a steel ball

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.

    2018-03-01

    The purpose of this work is the development and verification of mathematical relationships, adapted to the package of finite element analysis LS-DYNA and describing the deformation and destruction of a titanium plate in a high-speed collision. Using data from experiments on the interaction of a steel ball with a titanium plate made of VT6 alloy, verification of the available constants necessary for describing the behavior of the material using the Johnson-Cook relationships was performed, as well as verification of the parameters of the fracture model used in the numerical modeling of the collision process. An analysis of experimental data on the interaction of a spherical impactor with a plate showed that the data accepted for VT6 alloy in the first approximation for deformation hardening in the Johnson-Cook model give too high results on the residual velocities of the impactor when piercing the plate.

  6. A Cyber-Astronaut's Final Moves

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows how Deep Impact's impactor targeted comet Tempel 1 as the spacecraft made its final approach in the early morning hours of July 4, Eastern time. The autonomous navigation system on the probe was designed to make as many as three impactor targeting maneuvers, identified as ITMs in this picture, to correct its course to the comet.

    The upper left dot indicates where the probe would have passed the comet's nucleus if no maneuvers were performed. The dot below the nucleus shows where the probe would have flown past the comet if only the first maneuver was made. The leftmost dot on the nucleus marks the spot where the probe would have crunched the comet if only the first two maneuvers had been performed. The lower dot on the nucleus indicates the vicinity where, once the third maneuver was performed, the probe met its final reward and collided with the comet.

  7. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  8. Geochemical arguments for an Earth-like Moon-forming impactor.

    PubMed

    Dauphas, Nicolas; Burkhardt, Christoph; Warren, Paul H; Fang-Zhen, Teng

    2014-09-13

    Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building blocks. The similarity in isotopic composition (Δ(17)O, ε(50)Ti and ε(54)Cr) between lunar and terrestrial rocks is explained by the fact that the Moon-forming impactor came from the same region of the disc as other Earth-forming embryos, and therefore was similar in isotopic composition to the Earth. The heavy δ(30)Si values of the silicate Earth and the Moon relative to known chondrites may be due to fractionation in the solar nebula/protoplanetary disc rather than partitioning of silicon in Earth's core. An inversion method is presented to calculate the Hf/W ratios and ε(182)W values of the proto-Earth and impactor mantles for a given Moon-forming impact scenario. The similarity in tungsten isotopic composition between lunar and terrestrial rocks is a coincidence that can be explained in a canonical giant impact scenario if an early formed embryo (two-stage model age of 10-20 Myr) collided with the proto-Earth formed over a more protracted accretion history (two-stage model age of 30-40 Myr). © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. The Physics of Protoplanetesimal Dust Agglomerates. IX. Mechanical Properties of Dust Aggregates Probed by a Solid-projectile Impact

    NASA Astrophysics Data System (ADS)

    Katsuragi, Hiroaki; Blum, Jürgen

    2017-12-01

    Dynamic characterization of mechanical properties of dust aggregates has been one of the most important problems to quantitatively discuss the dust growth in protoplanetary disks. We experimentally investigate the dynamic properties of dust aggregates by low-speed (≤slant 3.2 m s-1) impacts of solid projectiles. Spherical impactors made of glass, steel, or lead are dropped onto a dust aggregate with a packing fraction of ϕ = 0.35 under vacuum conditions. The impact results in cratering or fragmentation of the dust aggregate, depending on the impact energy. The crater shape can be approximated by a spherical segment and no ejecta are observed. To understand the underlying physics of impacts into dust aggregates, the motion of the solid projectile is acquired by a high-speed camera. Using the obtained position data of the impactor, we analyze the drag-force law and dynamic pressure induced by the impact. We find that there are two characteristic strengths. One is defined by the ratio between impact energy and crater volume and is ≃120 kPa. The other strength indicates the fragmentation threshold of dynamic pressure and is ≃10 kPa. The former characterizes the apparent plastic deformation and is consistent with the drag force responsible for impactor deceleration. The latter corresponds to the dynamic tensile strength to create cracks. Using these results, a simple model for the compaction and fragmentation threshold of dust aggregates is proposed. In addition, the comparison of drag-force laws for dust aggregates and loose granular matter reveals the similarities and differences between the two materials.

  10. Effect of impact stress on microbial recovery on an agar surface.

    PubMed Central

    Stewart, S L; Grinshpun, S A; Willeke, K; Terzieva, S; Ulevicius, V; Donnelly, J

    1995-01-01

    Microbial stress due to the impaction of microorganisms onto an agar collection surface was studied experimentally. The relative recovery rates of aerosolized Pseudomonas fluorescens and Micrococcus luteus were determined as a function of the impaction velocity by using a moving agar slide impactor operating over a flow rate range from 3.8 to 40 liters/min yielding impaction velocities from 24 to 250 m/s. As a reference, the sixth stage of the Andersen Six-Stage Viable Particle Sizing Sampler was used at its operating flow rate of 28.3 liters/min (24 m/s). At a collection efficiency of close to 100% for the agar slide impactor, an increase in sampling flow rate and, therefore, in impaction velocity produced a significant decline in the percentage of microorganisms recovered. Conversely, when the collection efficiency was less than 100%, greater recovery and lower injury rates occurred. The highest relative rate of recovery (approximately 51% for P. fluorescens and approximately 62% for M. luteus) was obtained on the complete (Trypticase soy agar) medium at 40 and 24 m/s (6.4 and 3.8 liters/min), respectively. M. luteus demonstrated less damage than P. fluorescens, suggesting the hardy nature of the gram-positive strain versus that of the gram-negative microorganism. Comparison of results from the agar slide and Andersen impactors at the same sampling velocity showed that recovery and injury due to collection depends not only on the magnitude of the impaction velocity but also on the degree to which the microorganisms may be embedded in the collection medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7747946

  11. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  12. Product Quality Research Institute evaluation of cascade impactor profiles of pharmaceutical aerosols: part 2--evaluation of a method for determining equivalence.

    PubMed

    Christopher, David; Adams, Wallace P; Lee, Douglas S; Morgan, Beth; Pan, Ziqing; Singh, Gur Jai Pal; Tsong, Yi; Lyapustina, Svetlana

    2007-01-19

    The purpose of this article is to present the thought process, methods, and interim results of a PQRI Working Group, which was charged with evaluating the chi-square ratio test as a potential method for determining in vitro equivalence of aerodynamic particle size distribution (APSD) profiles obtained from cascade impactor measurements. Because this test was designed with the intention of being used as a tool in regulatory review of drug applications, the capability of the test to detect differences in APSD profiles correctly and consistently was evaluated in a systematic way across a designed space of possible profiles. To establish a "base line," properties of the test in the simplest case of pairs of identical profiles were studied. Next, the test's performance was studied with pairs of profiles, where some difference was simulated in a systematic way on a single deposition site using realistic product profiles. The results obtained in these studies, which are presented in detail here, suggest that the chi-square ratio test in itself is not sufficient to determine equivalence of particle size distributions. This article, therefore, introduces the proposal to combine the chi-square ratio test with a test for impactor-sized mass based on Population Bioequivalence and describes methods for evaluating discrimination capabilities of the combined test. The approaches and results described in this article elucidate some of the capabilities and limitations of the original chi-square ratio test and provide rationale for development of additional tests capable of comparing APSD profiles of pharmaceutical aerosols.

  13. Application of the modified chi-square ratio statistic in a stepwise procedure for cascade impactor equivalence testing.

    PubMed

    Weber, Benjamin; Lee, Sau L; Delvadia, Renishkumar; Lionberger, Robert; Li, Bing V; Tsong, Yi; Hochhaus, Guenther

    2015-03-01

    Equivalence testing of aerodynamic particle size distribution (APSD) through multi-stage cascade impactors (CIs) is important for establishing bioequivalence of orally inhaled drug products. Recent work demonstrated that the median of the modified chi-square ratio statistic (MmCSRS) is a promising metric for APSD equivalence testing of test (T) and reference (R) products as it can be applied to a reduced number of CI sites that are more relevant for lung deposition. This metric is also less sensitive to the increased variability often observed for low-deposition sites. A method to establish critical values for the MmCSRS is described here. This method considers the variability of the R product by employing a reference variance scaling approach that allows definition of critical values as a function of the observed variability of the R product. A stepwise CI equivalence test is proposed that integrates the MmCSRS as a method for comparing the relative shapes of CI profiles and incorporates statistical tests for assessing equivalence of single actuation content and impactor sized mass. This stepwise CI equivalence test was applied to 55 published CI profile scenarios, which were classified as equivalent or inequivalent by members of the Product Quality Research Institute working group (PQRI WG). The results of the stepwise CI equivalence test using a 25% difference in MmCSRS as an acceptance criterion provided the best matching with those of the PQRI WG as decisions of both methods agreed in 75% of the 55 CI profile scenarios.

  14. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Erasmus, N.; Greenberg, A.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2017-02-01

    We present a machine learning model that can predict which asteroid deflection technology would be most effective, given the likely population of impactors. Our model can help policy and funding agencies prioritize technology development.

  15. Heat Map of Jupiter Impact

    NASA Image and Video Library

    2011-01-26

    This infrared image, showing thermal radiation at a wavelength of 9.7 microns, was obtained by the Gemini North Telescope in Hawaii. The bright white and yellow features at bottom are the aftermath of an impactor hitting Jupiter on July 19, 2009.

  16. Separation Anxiety Over for Deep Impact

    NASA Image and Video Library

    2005-07-04

    This image of NASA Deep Impact impactor probe was taken by the mission mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 2:07 a.m. Eastern time, July 3, 2005.

  17. PROCEEDINGS: ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT (ASHEVILLE, NC, MAY 1978)

    EPA Science Inventory

    The proceedings consist of 17 papers on improved instruments and techniques for sampling and measuring particulate emissions and aerosols; e.g., cascade impactors, cyclone collectors, and diffusion-battery/nuclei-counter combinations. Transmissometers and instruments for measurin...

  18. Concussion in professional football: helmet testing to assess impact performance--part 11.

    PubMed

    Pellman, Elliot J; Viano, David C; Withnall, Chris; Shewchenko, Nick; Bir, Cynthia A; Halstead, P David

    2006-01-01

    National Football League (NFL) concussions occur at an impact velocity of 9.3 +/- 1.9 m/s (20.8 +/- 4.2 mph) oblique on the facemask, side, and back of the helmet. There is a need for new testing to evaluate helmet performance for impacts causing concussion. This study provides background on new testing methods that form a basis for supplemental National Operating Committee on Standards for Athletic Equipment (NOCSAE) helmet standards. First, pendulum impacts were used to simulate 7.4 and 9.3 m/s impacts causing concussion in NFL players. An instrumented Hybrid III head was helmeted and supported on the neck, which was fixed to a sliding table for frontal and lateral impacts. Second, a linear pneumatic impactor was used to evaluate helmets at 9.3 m/s and an elite impact condition at 11.2 m/s. The upper torso of the Hybrid III dummy was used. It allowed interactions with shoulder pads and other equipment. The severity of the head responses was measured by a severity index, translational and rotational acceleration, and other biomechanical responses. High-speed videos of the helmet kinematics were also recorded. The tests were evaluated for their similarity to conditions causing NFL concussions. Finally, a new linear impactor was developed for use by NOCSAE. The pendulum test closely simulated the conditions causing concussion in NFL players. Newer helmet designs and padding reduced the risk of concussion in 7.4 and 9.3 m/s impacts oblique on the facemask and lateral on the helmet shell. The linear impactor provided a broader speed range for helmet testing and more interactions with safety equipment. NOCSAE has prepared a draft supplemental standard for the 7.4 and 9.3 m/s impacts using a newly designed pneumatic impactor. No helmet designs currently address the elite impact condition at 11.2 m/s, as padding bottoms out and head responses dramatically increase. The proposed NOCSAE standard is the first to address helmet performance in reducing concussion risks in football. Helmet performance has improved with thicker padding and fuller coverage by the shell. However, there remains a challenge for innovative designs that reduce risks in the 11.2 m/s elite impact condition.

  19. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near-Earth Asteroid Disruption

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent William

    2015-01-01

    Collisions from near-Earth asteroids (NEAs) have the potential to cause widespread harm to life on Earth. The hypervelocity nature of these collisions means that a relatively small asteroid (about a quartermile in diameter) could cause a global disaster. Proposed strategies for deflecting or disrupting such a threatening asteroid include detonation of a nuclear explosive device (NED) in close proximity to the asteroid, as well as intercepting the asteroid with a hypervelocity kinetic impactor. NEDs allow for the delivery of large amounts of energy to a NEA for a given mass launched from the Earth, but have not yet been developed or tested for use in deep space. They also present safety and political complications, and therefore may only be used when absolutely necessary. Kinetic impactors require a relatively simple spacecraft compared to NEDs, but also deliver a much lower energy for a given launch mass. To date, no demonstration mission has been conducted for either case, and such a demonstration mission must be conducted prior to the need to utilize them during an actual scenario to ensure that an established, proven system is available for planetary defense when the need arises. One method that has been proposed to deliver a kinetic impactor with impact energy approaching that of an NED is the "billiard-ball" approach. This approach would involve capturing an asteroid approximately ten meters in diameter with a relatively small spacecraft (compared to the launch mass of an equivalent direct kinetic impactor), and redirecting it into the path of an Earth-threatening asteroid. This would cause an impact which would disrupt the Earth-threatening asteroid or deflect it from its Earth-crossing trajectory. The BILLIARDS Project seeks to perform a demonstration of this mission concept in order to establish a protocol that can be used in the event of an impending Earth/asteroid collision. In order to accomplish this objective, the mission must (1) rendezvous with a small (less than 10m), NEA (hereinafter "Alpha"), (2) maneuver Alpha to a collision with a approx. 100 m NEA (hereinafter "Beta"), and (3) produce a detectable deflection or disruption of Beta. In addition to these primary objectives, the BILLIARDS project will contribute to the scientific understanding of the physical properties and collision dynamics of asteroids, and provide opportunities for international collaboration.

  20. Lateral and posterior dynamic bending of the mid-shaft femur: fracture risk curves for the adult population.

    PubMed

    Kennedy, Eric A; Hurst, William J; Stitzel, Joel D; Cormier, Joseph M; Hansen, Gail A; Smith, Eric P; Duma, Stefan M

    2004-11-01

    The purpose of this study was to develop injury risk functions for dynamic bending of the human femur in the lateral-to-medial and posterior-to-anterior loading directions. A total of 45 experiments were performed on human cadaver femurs using a dynamic three-point drop test setup. An impactor of 9.8 kg was dropped from 2.2 m for an impact velocity of 5 m/s. Five-axis load cells measured the impactor and support loads, while an in situ strain gage measured the failure strain and subsequent strain rate. All 45 tests resulted in mid-shaft femur fractures with comminuted wedge and oblique fractures as the most common fracture patterns. In the lateral-to-medial bending tests the reaction loads were 4180 +/- 764 N, and the impactor loads were 4780 +/- 792 N. In the posterior-to-anterior bending tests the reaction loads were 3780 +/- 930 N, and the impactor loads were 4310 +/- 1040 N. The difference between the sum of the reaction forces and the applied load is due to inertial effects. The reaction loads were used to estimate the mid-shaft bending moments at failure since there was insufficient data to include the inertial effects in the calculations. The resulting moments are conservative estimates (lower bounds) of the mid-shaft bending moments at failure and are appropriate for use in the assessment of knee restraints and pedestrian impacts with ATD measurements. Regression analysis was used to identify significant parameters, and parametric survival analysis was used to estimate risk functions. Femur cross-sectional area, area moment of inertia (I), maximum distance to the neutral axis (c), I/c, occupant gender, and occupant mass are shown to be significant predictors of fracture tolerance, while no significant difference is shown for loading direction, bone mineral density, leg aspect and age. Risk functions are presented for femur cross-sectional area and I/c as they offer the highest correlation to peak bending moment. The risk function that utilizes the most highly correlated (R2 = 0.82) and significant (p = 0.0001) variable, cross-sectional area, predicts a 50 percent risk of femur fracture of 240 Nm, 395 Nm, and 562 Nm for equivalent cross-sectional area of the 5(th) percentile female, 50(th) percentile male, and 95(th) percentile male respectively.

  1. Late Veneer collisions and their impact on the evolution of Venus (PS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Golabek, Gregor; Tackley, Paul; Raymond, Sean

    2017-04-01

    During the end of the accretion, the so-called Late Veneer phase, while the bulk of the mass of terrestrial planets is already in place, a substantial number of large collisions can still occur. Those impacts are thought to be responsible for the repartition of the Highly Siderophile Elements. They are also susceptible to have a strong effect on volatile repartition and mantle convection. We study how Late Veneer impacts modify the evolution of Venus and its atmosphere, using a coupled numerical simulation. We focus on volatile exchanges and their effects on surface conditions. Mantle dynamics, volcanism and degassing processes lead to an input of gases in the atmosphere and are modeled using the StagYY mantle convection code. Volatile losses are estimated through atmospheric escape modeling. It involves two different aspects: hydrodynamic escape (0-500 Myr) and non-thermal escape. Hydrodynamic escape is massive but occurs only when the solar energy input is strong. Post 4 Ga escape from non-thermal processes is comparatively low but long-lived. The resulting state of the atmosphere is used to the calculate greenhouse effect and surface temperature, through a one-dimensional gray radiative-convective model. Large impacts are capable of contributing to (i) atmospheric escape, (ii) volatile replenishment and (iii) energy transfer to the mantle. We test various impactor compositions, impact parameters (velocity, location, size, and timing) and eroding power. Scenarios we tested are adapted from numerical stochastic simulations (Raymond et al., 2013). Impactor sizes are dominated by large bodies (R>500 km). Erosion of the atmosphere by a few large impacts appears limited. Swarms of smaller more mass-effective impactors seem required for this effect to be significant. Large impactors have two main effects on the atmosphere. They can (i) create a large input of volatile from the melting they cause during the impact and through the volatiles they carry. This leads to an increase in atmosphere density and surface temperatures. However, early impacts can also (ii) deplete the mantle of Venus and (assuming strong early escape) ultimately remove volatiles from the system, leading to lower late degassing and lower surface temperatures. The competition between those effects depends on the time of the impact, which directly governs the strength of atmospheric losses.

  2. Sensitivity of head and cervical spine injury measures to impact factors relevant to rollover crashes.

    PubMed

    Mattos, G A; Mcintosh, A S; Grzebieta, R H; Yoganandan, N; Pintar, F A

    2015-01-01

    Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly. A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine. The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle. The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.

  3. Aerosol Physics Considerations for Using Cerium Oxide CeO 2 as a Surrogate for Plutonium Oxide PuO 2 in Airborne Release Fraction Measurements for Storage Container Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Tao, Yong

    Cerium oxide (CeO2) dust is recommended as a surrogate for plutonium oxide (PuO2) in airborne release fraction experiments. The total range of applicable particle sizes for PuO2 extends from 0.0032 μm (the diameter of a single PuO2 molecule) to 10 μm (the defined upper boundary for respirable particles). For particulates with a physical particle diameter of 1.0 μm, the corresponding aerodynamic diameters for CeO2 and PuO2 are 2.7 μm and 3.4 μm, respectively. Cascade impactor air samplers are capable of measuring the size distributions of CeO2 or PuO2 particulates. In this document, the aerodynamic diameters for CeO2 and PuO2 weremore » calculated for seven different physical diameters (0.0032, 0.02, 0.11, 0.27, 1.0, 3.2, and 10 μm). For cascade impactor measurements, CeO2 and PuO2 particulates with the same physical diameter would be collected onto the same or adjacent collection substrates. The difference between the aerodynamic diameter of CeO2 and PuO2 particles (that have the same physical diameter) is 39% of the resolution of a twelve-stage MSP Inc. 125 cascade impactor, and 34% for an eight-stage Andersen impactor. An approach is given to calculate the committed effective dose (CED) coefficient for PuO2 aerosol particles, compared to a corresponding aerodynamic diameter of CeO2 particles. With this approach, use of CeO2 as a surrogate for PuO2 material would follow a direct conversion based on a molar equivalent. In addition to the analytical information developed for this document, several US national labs have published articles about the use of CeO2 as a PuO2 surrogate. Different physical and chemical aspects were considered by these investigators, including thermal properties, ceramic formulations, cold pressing, sintering, molecular reactions, and mass loss in high temperature gas flows. All of those US national lab studies recommended the use of CeO2 as a surrogate material for PuO2.« less

  4. Planetary Accretion as Informed by Meteoritic Samples of Early Solar System Planetesimals

    NASA Astrophysics Data System (ADS)

    Kring, D. A.

    2017-08-01

    Meteoritic impact melts and impact breccias contain information about the timing and sizes of collisions, which, when augmented with hints about impactor compositions, provide clues about mixing and the dynamical situation in the early solar system.

  5. SENSITIVITY ANALYSIS OF THE USEPA WINS PM 2.5 SEPARATOR

    EPA Science Inventory

    Factors affecting the performance of the US EPA WINS PM2.5 separator have been systematically evaluated. In conjunction with the separator's laboratory calibrated penetration curve, analysis of the governing equation that describes conventional impactor performance was used to ...

  6. Analysis of impact energy to fracture un-notched charpy specimens made from railroad tank car steel

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes a nonlinear finite element analysis : (FEA) framework that examines the impact energy to fracture : unnotched Charpy specimens by an oversized, nonstandard : pendulum impactor called the Bulk Fracture Charpy Machine : (BFCM). The...

  7. DEVELOPMENT AND LABORATORY PERFORMANCE EVALUATION OF A PERSONAL CASCADE IMPACTOR. (R825270)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Detailed puncture analyses tank cars : analysis of different impactor threats and impact conditions.

    DOT National Transportation Integrated Search

    2013-03-01

    There has been significant research in recent years to analyze and improve the impact behavior and puncture resistance of railroad tank cars. Much of this research has been performed using detailed nonlinear finite element analyses supported by full ...

  9. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  10. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal blankets.

  11. The current impact flux on Mars and its seasonal variation

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2015-12-01

    We calculate the present-day impact flux on Mars and its variation over the martian year, using the current data on the orbital distribution of known Mars-crossing minor planets. We adapt the Öpik-Wetherill formulation for calculating collision probabilities, paying careful attention to the non-uniform distribution of the perihelion longitude and the argument of perihelion owed to secular planetary perturbations. We find that, at the current epoch, the Mars crossers have an axial distribution of the argument of perihelion, and the mean direction of their eccentricity vectors is nearly aligned with Mars' eccentricity vector. These previously neglected angular non-uniformities have the effect of depressing the mean annual impact flux by a factor of about 2 compared to the estimate based on a uniform random distribution of the angular elements of Mars-crossers; the amplitude of the seasonal variation of the impact flux is likewise depressed by a factor of about 4-5. We estimate that the flux of large impactors (of absolute magnitude H < 16) within ±30° of Mars' aphelion is about three times larger than when the planet is near perihelion. Extrapolation of our results to a model population of meter-size Mars-crossers shows that if these small impactors have a uniform distribution of their angular elements, then their aphelion-to-perihelion impact flux ratio would be 11-15, but if they track the orbital distribution of the large impactors, including their non-uniform angular elements, then this ratio would be about 3. Comparison of our results with the current dataset of fresh impact craters on Mars (detected with Mars-orbiting spacecraft) appears to rule out the uniform distribution of angular elements.

  12. Evaluation of a novel personal nanoparticle sampler.

    PubMed

    Zhou, Yue; Irshad, Hammad; Tsai, Chuen-Jinn; Hung, Shao-Ming; Cheng, Yung-Sung

    2014-02-01

    This work investigated the performance in terms of collection efficiency and aspiration efficiency of a personal sampler capable of collecting ultrafine particles (nanoparticles) in the occupational environment. This sampler consists of a cyclone for respirable particle classification, micro-orifice impactor stages with an acceleration nozzle to achieve nanoparticle classification and a backup filter to collect nanoparticles. Collection efficiencies of the cyclone and impactor stages were determined using monodisperse polystyrene latex and silver particles, respectively. Calibration of the cyclone and impactor stages showed 50% cut-off diameters of 3.95 μm and 94.7 nm meeting the design requirements. Aspiration efficiencies of the sampler were tested in a wind tunnel with wind speeds of 0.5, 1.0, and 1.5 m s(-1). The test samplers were mounted on a full size mannequin with three orientations toward the wind direction (0°, 90°, and 180°). Monodisperse oleic acid aerosols tagged with sodium fluorescein in the size range of 2 to 10 μm were used in the test. For particles smaller than 2 μm, the fluorescent polystyrene latex particles were generated by using nebulizers. For comparison of the aspiration efficiency, a NIOSH two-stage personal bioaerosol sampler was also tested. Results showed that the orientation-averaged aspiration efficiency for both samplers was close to the inhalable fraction curve. However, the direction of wind strongly affected the aspiration efficiency. The results also showed that the aspiration efficiency was not affected by the ratio of free-stream velocity to the velocity through the sampler orifice. Our evaluation showed that the current design of the personal sampler met the designed criteria for collecting nanoparticles ≤100 nm in occupational environments.

  13. Emission of bacterial bioaerosols from a composting facility in Maharashtra, India.

    PubMed

    Pahari, Arnab Kumar; Dasgupta, Debdeep; Patil, Rashmi S; Mukherji, Suparna

    2016-07-01

    This study was undertaken to quantify and characterize size-segregated bacterial bioaerosols both on-site and off-site of a waste treatment facility (WTF) in Maharashtra employing windrow composting. Viable bacterial bioaerosols on nutrient agar (NA) and actinomycetes isolation agar (AIA) were quantified after sampling using Anderson-six stage impactor. Viable bacterial bioaerosols were identified based on 16S rDNA sequencing. Approximately, 16-34% of the total viable bacteria collected at the WTF were in the size range 0.65-2.1μm that can penetrate deep into the respiratory tract and also represents bacteria present in free form. Thus, 66-84% of bacterial bioaerosols were associated with coarse airborne particles greater than 2.1μm. A total of 24 bacterial species were isolated and characterized through gram staining. Among these 25% were gram negative and 75% were gram positive. The predominant bacterial genera were Bacillus, Streptococcus, Staphylococcus, Acinetobacter and Kocuria. The mean on-site concentration of total viable bacteria on NA and AIA and airborne particles (PM2.5 and PM10) were higher than the corresponding off-site values. The mean on-site concentration of viable bacteria on NA and AIA were in the range of 3.8×10(3) to 5.4×10(4)CFU/m(3) and 9.8×10(3) to 1.2×10(5)CFU/m(3), respectively, during activity period. Good correlation (R(2)=0.999) was observed between total bioaerosols and aerosols (PM10) collected using Anderson impactor and High volume sampler, respectively. Sampling size segregated aerosols using the Siotus personal cascade impactor indicated higher association of bacteria with the coarse fraction (greater than 2.5μm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Coastal California's Fog Aerobiology and Ecology: Designing and Testing an Optimal Passive Impactor Collection Unit

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Whinnery, J. T.; Ly, V. T.; Travers, S. V.; Sagaga, J.; Dahlgren, R. P.

    2017-12-01

    Microorganisms play a major role in our biosphere due to their ability to alter water, carbon and other geochemical cycles. Fog and low-level cloud water can play a major role in dispersing and supporting such microbial diversity. An ideal region to gather these microorganisms for characterization is the central coast of California, where dense fog is common. Fog captured from an unmanned aerial vehicle (UAV) at different altitudes will be analyzed to better understand the nature of microorganisms in the lower atmosphere and their potential geochemical impacts. The capture design consists of a square-meter hydrophobic mesh that hangs from a carbon fiber rod attached to a UAV. The DJI M600, a hexacopter, will be utilized as the transport for the payload, the passive impactor collection unit (PICU). The M600 will hover in a fog bank at altitudes between 10 and 100 m collecting water samples via the PICU. A computational flow dynamics (CFD) model will optimize the PICU's size, shape and placement for maximum capture efficiency and to avoid contamination from the UAV downwash. On board, there will also be an altitude, temperature and barometric pressure sensor whose output is logged to an SD card. A scale model of the PICU has been tested with several different types of hydrophobic meshes in a fog chamber at 90-95% humidity; polypropylene was found to capture the fog droplets most efficiently at a rate of .0042 g/cm2/hour. If the amount collected is proportional to the area of mesh, the estimated amount of water collected under optimal fog and flight conditions by the impactor is 21.3 g. If successful, this work will help identify the organisms living in the lower atmosphere as well as their potential geochemical impacts.

  15. Composition of 298 Baptistina: Implications for the K/T impactor link

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Emery, J. P.; Gaffey, M. J.; Bottke, W. F.; Cramer, A.; Kelley, M. S.

    2009-01-01

    Bottke et al. (2007) suggested that the breakup of the Baptistina asteroid family (BAF) 160+30 /-20 Myr ago produced an “asteroid shower” that increased by a factor of 2-3 the impact flux of kilometer-sized and larger asteroids striking the Earth over the last ~120 Myr. This result led them to propose that the impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago also may have come from the BAF. This putative link was based both on collisional/dynamical modeling work and on physical evidence. For the latter, the available broadband color and spectroscopic data on BAF members indicate many are likely to be dark, low albedo asteroids. This is consistent with the carbonaceous chondrite-like nature of a 65 Myr old fossil meteorite (Kyte 1998)and with chromium from K/T boundary sediments with an isotopic signature similar to that from CM2 carbonaceous chondrites. To test elements of this scenario, we obtained near-IR and thermal IR spectroscopic data of asteroid 298 Baptistina using the NASA IRTF in order to determine surface mineralogy and estimate its albedo. We found that the asteroid has moderately strong absorption features due to the presence of olivine and pyroxene, and a moderately high albedo (~20%). These combined properties strongly suggest that the asteroid is more like an S-type rather than Xc-type (Mothé-Diniz et al. 2005). This weakens the case for 298 Baptistina being a CM2 carbonaceous chondrite and its link to the K/T impactor. We also observed several bright (V Mag. ≤16.8) BAF members to determine their composition.

  16. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less

  17. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  18. An High Resolution Near-Earth Objects Population Enabling Next-Generation Search Strategies

    NASA Technical Reports Server (NTRS)

    Tricaico, Pasquale; Beshore, E. C.; Larson, S. M.; Boattini, A.; Williams, G. V.

    2010-01-01

    Over the past decade, the dedicated search for kilometer-size near-Earth objects (NEOs), potentially hazardous objects (PHOs), and potential Earth impactors has led to a boost in the rate of discoveries of these objects. The catalog of known NEOs is the fundamental ingredient used to develop a model for the NEOs population, either by assessing and correcting for the observational bias (Jedicke et al., 2002), or by evaluating the migration rates from the NEOs source regions (Bottke et al., 2002). The modeled NEOs population is a necessary tool used to track the progress in the search of large NEOs (Jedicke et al., 2003) and to try to predict the distribution of the ones still undiscovered, as well as to study the sky distribution of potential Earth impactors (Chesley & Spahr, 2004). We present a method to model the NEOs population in all six orbital elements, on a finely grained grid, allowing us the design and test of targeted and optimized search strategies. This method relies on the observational data routinely reported to the Minor Planet Center (MPC) by the Catalina Sky Survey (CSS) and by other active NEO surveys over the past decade, to determine on a nightly basis the efficiency in detecting moving objects as a function of observable quantities including apparent magnitude, rate of motion, airmass, and galactic latitude. The cumulative detection probability is then be computed for objects within a small range in orbital elements and absolute magnitude, and the comparison with the number of know NEOs within the same range allows us to model the population. When propagated to the present epoch and projected on the sky plane, this provides the distribution of the missing large NEOs, PHOs, and potential impactors.

  19. [Polycyclic aromatic hydrocarbons and soluble organic fraction in fine particles from solid fraction of biodiesel exhaust fumes].

    PubMed

    Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2012-01-01

    This paper presents the results of investigations into the distribution of fine particles in the biodiesel exhaust fumes (bio-DEP), as well as into the content of polycyclic aromatic hydrocarbons (PAHs) and soluble organic fraction (SOF) in the study fractions. Samples of biodiesel B20 and B40 exhaust combustion fumes were generated at the model station composed of a diesel engine from Diesel TDI 2007 Volkswagen. Sioutas personal cascade impactor (SPCI) with Teflon filters and low-pressure impactor ELIPI (Dekati Low Pressure Impactor) were used for sampling diesel exhaust fine particles. The analysis of PAHs adsorbed on particulate fractions was performed by high performance liquid chromatography with fluorescence detection (HPLC/FL). For the determination of dry residue soluble organic fraction of biodiesel exhaust particles the gravimetric method was used. The combustion exhaust fumes of 100% ON contained mainly naphthalene, acenaphthalene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene and chrysene, whilst the exhaust of B40-single PAHs of 4 and 5 rings, such as chrysene, benzo(k)fluoranthene, dibenzo (ah)anthracene and benzo(ghi)perylene. The total content of PAHs in diesel exhaust particles averaged 910 ng/m3 for 100% ON and 340 ng/m3 for B40. The concentrations of benzo(a)antarcene were at the levels of 310 ng/m3 (100% ON) and 90 ng/m3 (B40). The investigations indicated that a fraction < 025 microm represents the main component of diesel exhaust particles, regardless of the used fuel. Bioester B 100 commonly added to diesel fuel (ON) causes a reduction of the total particulates emission and thus reduces the amount of toxic substances adsorbed on their surface.

  20. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  1. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  2. Formation of Apollo 16 impactites and the composition of late accreted material: Constraints from Os isotopes, highly siderophile elements and sulfur abundances

    NASA Astrophysics Data System (ADS)

    Gleißner, Philipp; Becker, Harry

    2017-03-01

    Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).

  3. Comparison of endotoxin and particle bounce in Marple cascade samplers with and without impaction grease.

    PubMed

    Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels; Nakatsu, J; Mehaffy, John

    2009-01-01

    The health of persons engaged in agricultural activities are often related or associated with environmental exposures in their workplace. Accurately measuring, analyzing, and reporting these exposures is paramount to outcomes interpretation. This paper describes issues related to sampling air in poultry barns with a cascade impactor. Specifically, the authors describe how particle bounce can affect measurement outcomes and how the use of impaction grease can impact particle bounce and laboratory analyses such as endotoxin measurements. This project was designed to (1) study the effect of particle bounce in Marple cascade impactors that use polyvinyl chloride (PVC) filters; (2) to determine the effect of impaction grease on endotoxin assays when sampling poultry barn dust. A pilot study was undertaken utilizing six-stage Marple cascade impactors with PVC filters. Distortion of particulate size distributions and the effects of impaction grease on endotoxin analysis in samples of poultry dust distributed into a wind tunnel were studied. Although there was no significant difference in the overall dust concentration between utilizing impaction grease and not, there was a greater than 50% decrease in the mass median aerodynamic diameter (MMAD) values when impaction grease was not utilized. There was no difference in airborne endotoxin concentration or endotoxin MMAD between filters treated with impaction grease and those not treated. The results indicate that particle bounce should be a consideration when sampling poultry barn dust with Marple samplers containing PVC filters with no impaction grease. Careful consideration should be given to the utilization of impaction grease on PVC filters, which will undergo endotoxin analysis, as there is potential for interference, particularly if high or low levels of endotoxin are anticipated.

  4. NEA impactors: what direction to they come from?

    NASA Astrophysics Data System (ADS)

    Harris, Alan

    2018-04-01

    One might expect, if Earth-crossing NEAs are "thermalized" by prior close scattering encounters with the Earth, that final impact trajectories would be isotropic in direction. But orbital perturbations and other sources of entry and exit to the Earth-crossing zone are faster acting that thermalization, so the actual distribution of impacting orbits is quite anisotropic. I have studied impactor directions by adjusting the orbits of known Earth-crossing PHAs slightly to put them on intersecting orbits and then computed the direction of approach to the Earth. This arguably suffers from "looking under the lamp post", since NEAs are mostly discovered close to the opposition direction, so I also took the distribution of NEA orbits recently derived by Granvik and others and extracted, from a set of 100,000 synthetic orbits they provided, a subset of Earth-crossing PHAs and similarly adjusted them to be intersecting orbits. This should represent an unbiased set of orbits. I then weighted the impact directions by the individual Opik impact probability to obtain a distribution of impact directions weighted by actual impact probabilities. The result was that more than 40% of incoming trajectories clustered within 60 degrees of the opposition direction, and a similar fraction come from within 60 degrees of the solar direction. Thus ~80% of impactors come from only about 1/3 of the sky area, with almost none coming from 60-120 degrees solar elongation. The message is that existing ground-based surveys can hardly be improved upon by greater sky coverage with respect to detecting "death plunge" objects, and even space-based instruments offer very little improvement due to the very low solar elongation of most objects approaching from the solar direction.

  5. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the future Earth miss distance allows us to map the surface locations where a spacecraft impact would lead to an Earth impact 150--200 years later. In effect, we are able to project Earth impact trajectories, or keyholes, onto the asteroid surface and, for a given value of β, we can target our impactor spacecraft for an area on the surface that avoids potential Earth impacts. Of course, at the present time we have little information on what is the appropriate value or range of values for β in the case of asteroid Bennu, or any other asteroid for that matter. However, if this information is made known, either through a precursor mission or better inferences as to its nature we can develop a distribution of β that can be used to better design an impact deflection strategy. Specifically, we can compute a map of Earth impact probability density on the surface of the asteroid based on an assumed probability density function for β. If we target the lowest impact probability density regions then we maximize the chance of a successful deflection. This approach has the potential to allow more efficient kinetic impactor deflection, and therefore the deflection of larger bodies than would otherwise be possible.

  6. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  7. Geochemical Constraints on the Size of the Moon — Forming Giant Impact

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Gillet, P.

    2018-05-01

    We use the partitioning of siderophile trace elements to model the geochemical influence of the Moon-forming giant impact on Earth’s mantle during core formation. We find the size of the impactor to be 15% of Earth mass or smaller.

  8. Centrifuge impact cratering experiments: Scaling laws for non-porous targets

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.

    1987-01-01

    A geotechnical centrifuge was used to investigate large body impacts onto planetary surfaces. At elevated gravity, it is possible to match various dimensionless similarity parameters which were shown to govern large scale impacts. Observations of crater growth and target flow fields have provided detailed and critical tests of a complete and unified scaling theory for impact cratering. Scaling estimates were determined for nonporous targets. Scaling estimates for large scale cratering in rock proposed previously by others have assumed that the crater radius is proportional to powers of the impactor energy and gravity, with no additional dependence on impact velocity. The size scaling laws determined from ongoing centrifuge experiments differ from earlier ones in three respects. First, a distinct dependence of impact velocity is recognized, even for constant impactor energy. Second, the present energy exponent for low porosity targets, like competent rock, is lower than earlier estimates. Third, the gravity exponent is recognized here as being related to both the energy and the velocity exponents.

  9. Towards reducing impact-induced brain injury: lessons from a computational study of army and football helmet pads.

    PubMed

    Moss, William C; King, Michael J; Blackman, Eric G

    2014-01-01

    We use computational simulations to compare the impact response of different football and U.S. Army helmet pad materials. We conduct experiments to characterise the material response of different helmet pads. We simulate experimental helmet impact tests performed by the U.S. Army to validate our methods. We then simulate a cylindrical impactor striking different pads. The acceleration history of the impactor is used to calculate the head injury criterion for each pad. We conduct sensitivity studies exploring the effects of pad composition, geometry and material stiffness. We find that (1) the football pad materials do not outperform the currently used military pad material in militarily relevant impact scenarios; (2) optimal material properties for a pad depend on impact energy and (3) thicker pads perform better at all velocities. Although we considered only the isolated response of pad materials, not entire helmet systems, our analysis suggests that by using larger helmet shells with correspondingly thicker pads, impact-induced traumatic brain injury may be reduced.

  10. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  11. Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.

    2007-01-01

    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.

  12. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  13. Lunar-forming impacts: processes and alternatives

    PubMed Central

    Canup, R. M.

    2014-01-01

    The formation of a protolunar disc by a giant impact with the early Earth is discussed, focusing on two classes of impacts: (i) canonical impacts, in which a Mars-sized impactor produces a planet–disc system whose angular momentum is comparable to that in the current Earth and Moon, and (ii) high-angular-momentum impacts, which produce a system whose angular momentum is approximately a factor of 2 larger than that in the current Earth and Moon. In (i), the disc originates primarily from impactor-derived material and thus is expected to have an initial composition distinct from that of the Earth's mantle. In (ii), a hotter, more compact initial disc is produced with a silicate composition that can be nearly identical to that of the silicate Earth. Both scenarios require subsequent processes for consistency with the current Earth and Moon: disc–planet compositional equilibration in the case of (i), or large-scale angular momentum loss during capture of the newly formed Moon into the evection resonance with the Sun in the case of (ii). PMID:25114302

  14. Copper Hugoniot measurements to 2.8 TPa on Z.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Michael D.; Haill, Thomas A

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure onmore » the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.« less

  15. Use of a New Portable Instrumented Impactor on the NASA Composite Crew Module Damage Tolerance Program

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Polis, Daniel L.

    2014-01-01

    Damage tolerance performance is critical to composite structures because surface impacts at relatively low energies may result in a significant strength loss. For certification, damage tolerance criteria require aerospace vehicles to meet design loads while containing damage at critical locations. Data from standard small coupon testing are difficult to apply to larger more complex structures. Due to the complexity of predicting both the impact damage and the residual properties, damage tolerance is demonstrated primarily by testing. A portable, spring-propelled, impact device was developed which allows the impact damage response to be investigated on large specimens, full-scale components, or entire vehicles. During impact, both the force history and projectile velocity are captured. The device was successfully used to demonstrate the damage tolerance performance of the NASA Composite Crew Module. The impactor was used to impact 18 different design features at impact energies up to 35 J. Detailed examples of these results are presented, showing impact force histories, damage inspection results, and response to loading.

  16. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poellot, Michael

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellitemore » program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.« less

  17. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  18. Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R. (Editor)

    2008-01-01

    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.

  19. Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene

    NASA Astrophysics Data System (ADS)

    Palen, Edward J.; Allen, David T.; Pandis, Spyros N.; Paulson, Suzanne; Seinfeld, John H.; Flagan, Richard C.

    The chemical composition of aerosol generated in the photooxidation of 1-octene was examined using infrared microscopy interfaced with a low pressure impactor. The low pressure impactor segregated the aerosol into eight size fractions and deposited the aerosol onto ZnSe impaction substrates. The ZnSe surfaces were transparent in the mid-infrared region and therefore allowed direct analysis of the aerosol, with no extraction, using infrared microscopy. Infrared spectra of the size segregated aerosol showed strong absorbances due to ketone, alcohol, carboxylic acid and organonitrate functional groups. Absorbance features were relatively independent of particle size, with the exception of the carboxylic acid absorbances, which were found only in the largest aerosol size fractions. Molar loadings for each of the groups were estimated, based on model compound calibration standards. The molar loadings indicate that most aerosol species are multifunctional, with an average of one ketone group per molecule, an alcohol group in two of every three molecules and an organonitrate group in one of every three molecules.

  20. New approaches to the Moon's isotopic crisis

    PubMed Central

    Melosh, H. J.

    2014-01-01

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth–Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301

  1. Elastic wave generated by granular impact on rough and erodible surfaces

    NASA Astrophysics Data System (ADS)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime

    2018-01-01

    The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.

  2. INDOOR AND OUTDOOR PM10 AND ASSOCIATED METALS AND PESTICIDES IN ARIZONA

    EPA Science Inventory

    The National Human Exposure Assessment Survey study in Arizona (AZ NHEXAS) sampled trace metals in multimedia in and outside of 176 representative homes in Arizona. PM10 was collected using low-flow impactors indoors and out. Primary metals evaluated from monitoring of indoor...

  3. Volumetric Collection Efficiency and Droplet Sizing Accuracy of Rotary Impactors

    DTIC Science & Technology

    2011-02-01

    commonly associated with drift from agrochemical applications, another less com‐ mon application is vector control, which relies on the movement of...droplet sizes are commonly less than 40 m (Mount, 1998). With potential increases in overall exposure levels from agrochemical ap‐ plication as well as

  4. USE OF POLYURETHANE FOAM AS THE IMPACTION SUBSTRATE/COLLECTION MEDIUM IN CONVENTIONAL INERTIAL IMPACTORS. (R825270)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. EVALUATION OF THE LOADING CHARACTERISTICS OF THE EPA WINS PM 2.5 SEPARATOR

    EPA Science Inventory

    The loading characteristics of the USEPA WINS (Well Impactor Ninety Six) PM2.5 separator was an important design consideration during the separator's development. In recognition that all inertial separators eventually overload, the loading surface of the WINS was designed to be...

  6. Solar Sailing Kinetic Energy Interceptor (KEI) Mission for Impacting/Deflecting Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2005-01-01

    A solar sailing mission architecture, which requires a t least ten 160-m, 300-kg solar sail spacecraft with a characteristic acceleration of 0.5 mm/sqs, is proposed as a realistic near- term option for mitigating the threat posed by near-Earth asteroids (NEAs). Its mission feasibility is demonstrated for a fictional asteroid mitigation problem created by AIAA. This problem assumes that a 200-m asteroid, designated 2004WR, was detected on July 4, 2004, and that the expected impact will occur on January 14, 2015. The solar sailing phase of the proposed mission for the AIAA asteroid mitigation problem is comprised of the initial cruise phase from 1 AU t o 0.25 AU (1.5 years), the cranking orbit phase (3.5 years), and the retrograde orbit phase (1 year) prior to impacting the target asteroid at its perihelion (0.75 AU from the sun) on January 1, 2012. The proposed mission will require at least ten kinetic energy interceptor (KEI) solar sail spacecraft. Each KEI sailcraft consists of a 160- m, 150-kg solar sail and a 150-kg microsatellite impactor. The impactor is to be separated from a large solar sail prior to impacting the 200-m target asteroid at its perihelion. Each 150-kg microsatellite impactor, with a relative impact velocity of at least 70 km/s, will cause a conservatively estimated AV of 0.3 cm/s in the trajectory of the 200-m target asteroid, due largely to the impulsive effect of material ejected from the newly-formed crater. The deflection caused by a single impactor will increase the Earth-miss-distance by 0.45Re (where Re denotes the Earth radius of 6,378 km). Therefore, at least ten KEI sailcraft will be required for consecutive impacts, but probably without causing fragmentation, to increase the total Earth-miss-distance by 4.5Re. This miss-distance increase of 29,000 km is outside of a typical uncertainty/error of about 10,000 km in predicting the Earth-miss- distance. A conventional Delta I1 2925 launch vehicle is capable of injecting at least two KEI sailcraft into an Earth escaping orbit. A 40-m solar sail is currently being developed by NASA and industries for a possible flight validation experiment within 10 years, and a 160-m solar sail is expected to be available within 20 years.

  7. Design and Calibration of a High Volume Cascade Impactor

    ERIC Educational Resources Information Center

    Gussman, R. A.; And Others

    1973-01-01

    This study was to develop an air sampling device capable of classifying large quantities of airborne particulate matter into discrete size fractions. Such fractionation will facilitate chemical analysis of the various particulate pollutants and thereby provide a more realistic assessment of the effects of particulate matter on human beings. (BL)

  8. NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Air data set contains analytical results for measurements of up to 9 pesticides in 127 air samples over 51 households. Samples were taken by pumping standardized air volumes through URG impactors with a 10 um cutpoint and polyurethane foam (PUF) filters at indo...

  9. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR PARTICULATE MATTER IN BLANK SAMPLES

    EPA Science Inventory

    The Particulate Matter in Blank Samples data set contains the analytical results for measurements of two particle sizes in 12 samples. Filters were pre-weighed, loaded into impactors, kept unexposed in the laboratory, unloaded and post-weighed. Positive weight gains for laborat...

  10. ANNULAR IMPACTOR SAMPLING DEVICE

    DOEpatents

    Tait, G.W.C.

    1959-03-31

    A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

  11. 76 FR 3211 - Federal Motor Vehicle Safety Standards, Ejection Mitigation; Phase-In Reporting Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... be tethered near the base of the vehicle's pillars or otherwise designed to keep the impactor within... performance and occupant behavior, and with the FHWA taking the lead, improving roadway designs. Vehicle... remaining in the vehicle during a rollover included improved roof crush resistance and research on whether...

  12. DEVELOPMENT OF A SAMPLING PROCEDURE FOR LARGE NITROGEN- AND SULFUR-BEARING AEROSOLS

    EPA Science Inventory

    A single-stage impactor was modified to utilize a removable TFE impaction surface mounted on the end of an annular denuder. hen used with a polycarbonate filter coated with silicone oil, its cut point was 2.5 um and bounce was <1% for 8-um particles. ignificant bounce occurred wi...

  13. EVALUATION OF THE CMAQ - AIM MODEL AGAINST SIZE AND CHEMICALLY-RESOLVED IMPACTOR DATA AT A COASTAL URBAN SITE

    EPA Science Inventory

    CMAQ-UCD (formerly known as CMAQ-AIM), is a fully dynamic, sectional aerosol model which has been coupled to the Community Multiscale Air Quality (CMAQ) host air quality model. Aerosol sulfate, nitrate, ammonium, sodium, and chloride model outputs are compared against MOUDI data...

  14. CHARACTERIZATION OF LARGE PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES: MASS DISTRIBUTION AND INDIVIDUAL PARTICLE ANALYSIS

    EPA Science Inventory

    A unique combination of an effective sampler and analysis of individual particles has been used in studying large particles (> 5 micrometers) at a rural site in Eastern United States. The sampler is a modified 'high volume' rotary inertial impactor, which consists of four collect...

  15. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  16. Evaluation of the Community Multiscale Air Quality (CMAQ) modeling system against size-resolved measurements of inorganic particle composition across sites in North America

    EPA Science Inventory

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4<...

  17. Particle size distributions of metal and non-metal elements in an urban near-highway environment

    EPA Science Inventory

    Determination of the size-resolved elemental composition of near-highway particulate matter (PM) is important due to the health and environmental risks it poses. In the current study, twelve 24 h PM samples were collected (in July-August 2006) using a low-pressure impactor positi...

  18. 49 CFR 572.184 - Shoulder assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... within ±2 degrees and the midsagittal plane of the thorax is positioned perpendicular to the direction of the plane of motion of the impactor at contact with the shoulder. The arms are oriented forward at 50... about the midsaggital plane with the distance between the innermost point on the opposite ankle at 100...

  19. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks

    PubMed Central

    Buchholz, Bruce A.; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M.; Guilderson, Thomas P.

    2011-01-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56–100 nm, 100–180 nm, 180–320 nm, 320–560 nm, 560–1000 nm, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20–200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  20. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M.

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work,more » numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.« less

  1. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  2. Hypervelocity Impact Testing of International Space Station Meteoroid/Orbital Debris Shielding Using an Inhibited Shaped Charge Launcher

    NASA Technical Reports Server (NTRS)

    Kerr, Justin H.; Grosch, Donald

    2001-01-01

    Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.

  3. The Mass of Large Impactors

    NASA Technical Reports Server (NTRS)

    Parisi, M. G.; Brunini, A.

    1996-01-01

    By means of a simplified dynamical model, we have computed the eccentricity change in the orbit of each giant planet, caused by a single, large impact at the end of the accretion process. In order to set an upper bound on this eccentricity change, we have considered the giant planets' present eccentricities as primordial ones. By means of this procedure, we were able to obtain an implicit relation for the impactor masses and maximum velocities. We have estimated by this method the maximum allowed mass to impact Jupiter to be approx. 1.136 x 10(exp -1), being in the case of Neptune approx. 3.99 x 10(exp -2) (expressed in units of each planet final mass). Due to the similar present eccentricities of Saturn, Uranus and Jupiter, the constraint masses and velocities of the bodies to impact them (in units of each planet final mass and velocity respectively) are almost the same for the three planets. These results are in good agreement with those obtained by Lissauer and Safronov. These bounds might be used to derive the mass distribution of planetesimals in the early solar system.

  4. Transport and Use of a Centaur Second Stage in Space

    NASA Technical Reports Server (NTRS)

    Strong, James M.; Morgowicz, Bernard; Drucker, Eric; Tompkins, Paul D.; Kennedy, Brian; Barber, Robert D,; Luzod, Louie T.; Kennedy, Brian Michael; Luzod, Louie T.

    2010-01-01

    As nations continue to explore space, the desire to reduce costs will continue to grow. As a method of cost reduction, transporting and/or use of launch system components as integral components of missions may become more commonplace in the future. There have been numerous scenarios written for using launch vehicle components (primarily space shuttle used external tanks) as part of flight missions or future habitats. Future studies for possible uses of launch vehicle upper stages might include asteroid diverter using gravity orbital perturbation, orbiting station component, raw material at an outpost, and kinetic impactor. The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining whether water exists at the polar regions of the moon. Manifested as a secondary payload with the LRO (Lunar Reconnaissance Orbiter) spacecraft aboard an Atlas V launch vehicle, LCROSS guided its spent Centaur Earth Departure Upper Stage (EDUS) into the lunar crater Cabeu's, as a kinetic impactor. This paper describes some of the challenges that the LCROSS project encountered in planning, designing, launching with and carrying the Centaur upper stage to the moon.

  5. Final report on fiscal year 1992 activities for the environmental monitors line-loss study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenoyer, J.L.

    The work performed on this Environmental Monitors Line-Loss Study has been performed under Contract Numbers MLW-SVV-073750 and MFH-SVV-207554. Work on the task was initiated mid-December 1991, and this report documents and summarizes the work performed through January 18, 1993. The sections included in this report summarize the work performed on the Environmental Monitors Line-Loss Study. The sections included in this report are arranged to reflect individual sub-tasks and include: descriptions of measurement systems and procedures used to obtain cascade impactor samples and laser spectrometer measurements from multiple stacks and locations; information on data acquisition, analyses, assessment, and software; discussion ofmore » the analyses and measurement results from the cascade impactor and laser spectrometer systems and software used; discussion on the development of general test methods and procedures for line-loss determinations; an overall summary and specific conclusions that can be made with regard to efforts performed on this task during FY 1992 and FY 1993. Supporting information for these sections is included in this report as appendices.« less

  6. Crash energy absorption of two-segment crash box with holes under frontal load

    NASA Astrophysics Data System (ADS)

    Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina

    2016-03-01

    Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.

  7. Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission

    NASA Astrophysics Data System (ADS)

    Stevanović, J.; Teanby, N. A.; Wookey, J.; Selby, N.; Daubar, I. J.; Vaubaillon, J.; Garcia, R.

    2017-10-01

    In 2018, NASA will launch InSight, a single-station suite of geophysical instruments, designed to characterise the martian interior. We investigate the seismo-acoustic signal generated by a bolide entering the martian atmosphere and exploding in a terminal airburst, and assess this phenomenon as a potential observable for the SEIS seismic payload. Terrestrial analogue data from four recent events are used to identify diagnostic airburst characteristics in both the time and frequency domain. In order to estimate a potential number of detectable events for InSight, we first model the impactor source population from observations made on the Earth, scaled for planetary radius, entry velocity and source density. We go on to calculate a range of potential airbursts from the larger incident impactor population. We estimate there to be {˜} 1000 events of this nature per year on Mars. To then derive a detectable number of airbursts for InSight, we scale this number according to atmospheric attenuation, air-to-ground coupling inefficiencies and by instrument capability for SEIS. We predict between 10-200 detectable events per year for InSight.

  8. MASCOT2, a Lander to Characterize the Target of an Asteroid Kinetic Impactor Deflection Test (AIM) Mission

    NASA Astrophysics Data System (ADS)

    Biele, J.; Ulamec, S.; Krause, C.; Cozzoni, B.; Lange, C.; Grundmann, J. T.; Grimm, C.; Ho, T.-M.; Herique, A.; Plettemeier, D.; Grott, M.; Auster, H.-U.; Hercik, D.; Carnelli, I.; Galvez, A.; Philippe, C.; Küppers, M.; Grieger, B.; Gil Fernandez, J.; Grygorczuk, J.

    2017-09-01

    In the course of the AIDA/AIM mission studies [1,2] a lander, MASCOT2, has been studied to be deployed on the moon of the binary Near-Earth Asteroid system, (65803) Didymos. The AIDA technology demonstration mission, composed of a kinetic impactor, DART, and an observing spacecraft, AIM, has been designed to deliver vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof that the asteroid has been deflected at all. A landed asset on the target asteroid greatly supports analyzing its dynamical state, mass, geophysical properties, surface and subsurface structure. The lander's main instrument is a bistatic, low frequency radar (LFR) [3a,b] to sound the interior structure of the asteroid. It is supported by a camera (MasCAM) [4], a radiometer (MARA)[5], an accelerometer (DACC [9]), and, optionally regarding the science case, also a magnetometer (MasMAG)[6].

  9. An Evaluation of Proposed Mechanisms of Slab Flattening in Central Mexico

    NASA Astrophysics Data System (ADS)

    Skinner, Steven M.; Clayton, Robert W.

    2011-08-01

    Central Mexico is the site of an enigmatic zone of flat subduction. The general geometry of the subducting slab has been known for some time and is characterized by a horizontal zone bounded on either side by two moderately dipping sections. We systematically evaluate proposed hypotheses for shallow subduction in Mexico based on the spatial and temporal evidence, and we find no simple or obvious explanation for the shallow subduction in Mexico. We are unable to locate an oceanic lithosphere impactor, or the conjugate of an impactor, that is most often called upon to explain shallow subduction zones as in South America, Japan, and Laramide deformation in the US. The only bathymetric feature that is of the right age and in the correct position on the conjugate plate is a set of unnamed seamounts that are too small to have a significant effect on the buoyancy of the slab. The only candidate that we cannot dismiss is a change in the dynamics of subduction through a change in wedge viscosity, possibly caused by water brought in by the slab.

  10. New approaches to the Moon's isotopic crisis.

    PubMed

    Melosh, H J

    2014-09-13

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug; hide

    2009-01-01

    A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.

  12. Testing and Resilience of the Impact Origin of the Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Canup, R. M.

    2016-01-01

    The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.

  13. Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Lyons, Suzane N.

    1998-01-01

    In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.

  14. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1992-01-01

    Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.

  15. Ancient Bombardment of the Inner Solar System: Reinvestigation of the "Fingerprints" of Different Impactor Populations on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Michael, Gregory; Fassett, Caleb I.; van der Bogert, Carolyn H.; Riedel, Christian; Kneissl, Thomas; Hiesinger, Harald

    2018-03-01

    The lunar cratering record provides valuable information about the late accretion history of the inner solar system. However, our understanding of the origin, rate, and timing of the impacting projectiles is far from complete. To learn more about these projectiles, we can examine crater size-frequency distributions (CSFDs) on the Moon. Here we reinvestigate the crater populations of 30 lunar basins (≥ 300 km) using the buffered nonsparseness correction technique, which takes crater obliteration into account, thus providing more accurate measurements for the frequencies of smaller crater sizes. Moreover, we revisit the stratigraphic relationships of basins based on N(20) crater frequencies, absolute model ages, and observation data. The buffered nonsparseness correction-corrected CSFDs of individual basins, particularly at smaller crater diameters are shifted upward. Contrary to previous studies, the shapes of the summed CSFDs of Pre-Nectarian (excluding South Pole-Aitken Basin), Nectarian (including Nectaris), and Imbrian (including Imbrium) basins show no statistically significant differences and thus provide no evidence for a change of impactor population.

  16. Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya.

    PubMed

    Gatari, Michael; Wagner, Annemarie; Boman, Johan

    2005-04-01

    Air pollution problems in major cities within the developing countries need to be studied. There are scanty measurements from the developing countries on airborne particles despite their adverse implications to human health, visibility and climate. One of the major sources of anthropogenic air pollution is energy production. Energy demand is bound to increase as population increases, especially in major cities of the world. Fine particles, particles with aerodynamic diameter < or = 2.5 microm, are mainly anthropogenic and these particles were collected in the capital cities of Vietnam and Kenya. A cyclone airborne particle collector was used to sample in Hanoi during the months of May to October 2000 and a dichotomous virtual impactor in Nairobi in February 2000. The samples were analysed for elemental content by an energy dispersive X-ray fluorescence (EDXRF) spectrometer. S, Cl, K and Fe exceeded atmospheric concentrations of 100 ng m(-3) at both cities. Atmospheric elemental concentrations in both Hanoi and Nairobi were orders of magnitude higher than their respective rural towns. Traffic, biomass and waste burning emissions were implicated as the main sources of air pollution in Nairobi, while coal combustion and road transport were the major sources in Hanoi. Regional air pollution had a major impact over Hanoi, whereas an influence of that kind was not identified in Nairobi. Pb and other toxic elements had concentration levels below WHO guideline, however, the two cities are threatened by future high levels of air pollution due to the high rate of population growth. Long-term measurements are required in both areas to evaluate if the alarming situation is deteriorating.

  17. Intraoperative impaction of total knee replacements: an explicit finite-element-analysis of principal stresses in ceramic vs. cobalt-chromium femoral components.

    PubMed

    Kluess, Daniel; Mittelmeier, Wolfram; Bader, Rainer

    2010-12-01

    In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty. We generated an explicit finite-element-model to calculate the stresses developed under the highly dynamic intraoperative impaction with regard to cobalt-chromium and ceramic implant material as well as application of a silicone cover in order to reduce stress. The impaction was calculated with the hammer hitting the backside of the impactor at previously measured initial velocities. Subsequently the impactor, consisting of a steel handhold and a polyoxymethylene head, hit the femoral component. Instead of modelling femoral bone, the implant was mounted on four spring elements with spring constants previously determined in an experimental impaction model. The maximum principal stresses in the implants were evaluated at 8000 increments during the first 4 ms of impact. The ceramic implant showed principal stresses 10% to 48% higher than the cobalt chromium femoral component. The simulation of a 5mm thick silicone layer between the impactor and the femoral component showed a strong decrease of vibration resulting in a reduction of 54% to 68% of the maximum stress amounts. The calculated amounts of principal stress were beneath the ultimate bending strengths of each material. Based on the results, intraoperative fracture of femoral components in total knee replacement may not be caused solely by impaction, but also by contributing geometrical factors such as inadequate preparation of the distal femur. In order to minimize the influence of impaction related stress peaks we recommend limiting the velocity as well as the weight of the impaction hammer when inserting femoral components. The silicone cover seems to deliver a strong decrease of implant stress and should be considered in surgery technique in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  19. Laboratory Studies of Survival Limits of Bacteria During Shock Compression: Application to Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2004-12-01

    Shock recovery experiments on suspensions of 106 mm-3 E. coli bacteria contained in water-based medium, within stainless steel containers, are used to simulate the impact environment of bacteria residing in water-filled cracks in rocks. Early Earth life is likely to have existed in such environments. Some 10-2 to 10-4 of the bacteria population survived initial (800 ns duration) shock pressures in water of 219 and 260 MPa. TEM images of shock recovered bacteria indicate cell wall indentations and rupture, possibly induced by inward invasion of medium into the cell wall. Notably cell wall rupture occurs dynamically at ˜0.1 times the static pressures E.coli have been demonstrated (Sharma et al., 2002) to survive and may be caused by Rayleigh-Taylor instabilities. We infer the invading fluid pressure may exceed the tensile strength of the cell wall. We assume the overpressures are limited to the initial shock pressure in water. Parameters for the Grady & Lipkin (1980) model of tensile failure versus time-scale (strain rate) are fit to present data, assuming that at low strain rates, overpressures exceeding cell Turgor pressure require ˜103 sec. This model, if validated by experiments at other timescales, may permit using short loading duration laboratory data to infer response of organisms to lower shock overpressures for the longer times (100 to 103 s) of planetary impacts. An Ahrens & O'Keefe (1987) shock attenuation model is then applied for Earth impactors. This model suggests that Earth impactors of radius 1.5 km induce shocks within water-filled cracks in rock to dynamic pressure such that stresses exceeding the survivability threshold of E. coli bacteria, to radii of 1.7-2.6×102 km. In contrast, a giant (1500 km radius) impactor produces a non survival zone for E. coli that encompasses the entire Earth.

  20. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.; AIDA Team

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at 7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will substantially advance understanding of impact processes on asteroids.

  1. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.

    PubMed

    Kreider, Marisa L; Cyrs, William D; Tosiano, Melissa A; Panko, Julie M

    2015-11-01

    Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios where many particle types are present. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Planetary Scale Impacts and Consequences for the Mars Hemispheric Dichotomy

    NASA Astrophysics Data System (ADS)

    Marinova, M. M.; Aharonson, O.; Asphaug, E.

    2007-12-01

    Planetary-scale impacts are events in which the resultant impact basin is a significant fraction of the planet's circumference. The curvature of the planet is expected to be important in the impact process, especially as it relates to the fate of downrange ejecta in off-axis events. Planetary-scale impacts are abundant in the Solar System, especially early in its evolution. A possible candidate planetary-scale impact basin is the Martian hemispheric dichotomy, expressed as a difference in surface elevation, crustal thickness, and surface age between the northern lowlands and the southern highlands. We investigate the characteristics of planetary-scale impacts, and in particular the effects of a mega impact on Mars. We use a 3 dimensional self-gravitational Smoothed Particle Hydrodynamics (SPH) model to simulate the impacts, implementing an olivine equation of state derived for the Tillotson formulation, and use this to establish the initial pressure and internal energy profile of the planet. The parameter space of impactor energy, impactor size, and impact velocity are explored for Mars hemispheric impacts. We find that for a given impact energy, head-on large but slow impacts produce more melt and cover more of the planet with melt than small, fast, and oblique events. Head-on impacts produce crustal blow-off and a melt pool at the antipode. Oblique impacts do not cover much of the planet with melt, but create sizable basins. Various degrees of crustal thickening are apparent around the crater over a length of ~1000 km; this crustal thickening could relax over geological time. Fast impacts eject material with escape velocity many times their own mass. In all cases, less than 10% of the impactor's mass is placed in orbit. For oblique events, a significant fraction of the angular momentum in the system is carried away by escaping material, limiting the efficiency of angular momentum transfer to the planet.

  3. The effect of reinforcing bars to flaw detection in RC structure using group velocity profile generated by surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chiang; Cheng, Chia-Chi; Wang, Hong-Hua; Hsu, Keng-Tsang; Chiang, Chih-Hung

    2018-03-01

    A new flaw detection method for concrete plate-like structure is realized using the dispersion profile of the group velocity of surface waves obtained by a sensor with proper distance from the transient impacting load. The waveform obtained by the sensor is analyzed using STFT and reassigned method to obtain a group velocity spectrogram. The delaminating crack or honeycomb which locates underneath the test line between the impactor and the receiver as well as the low-density layer on top of sound concrete are proved to be detectable in both numerical and experimental studies. The velocity turning point in the wavelength-velocity profile is about 1.6 to 2.2 times of the depths of the flaws or the low-density layer wavelength. As the proposed method is easy to operate, inexpensive and effective on solving many problems of concrete deterioration, one essential question to be concerned is the effect of dense reinforcing rebar to the stress wave propagation. In this preliminary study, the theoretical modal dispersion curves for a plain concrete plate and a concrete plate containing a thin steel layer are compared. A 2D numerical model with concrete and steel layers was constructed. The images of slowness spectrograms obtained by placing impactor and receiver at variant distances are compared with theoretical modal dispersion curve. Experiments are performed on a heavy lattice arranged bridge pier. The results show that the response of the rebar layers is near 0.3 ms/m in slowness spectrogram instead of around 0.5 ms/m plain concrete. The steel rebar layer affects the results more severely when the test line is parallel to the direction of shallower rebars. For more clearly observing the condition of concrete, one can filter the response in the waveform with the time less than 0.4 ms/m multiplying the impactor-receiver distance.

  4. Lunar impact flashes - tracing the NEO size distribution

    NASA Astrophysics Data System (ADS)

    Avdellidou, Chrysa; Koschny, Detlef; NELIOTA Team

    2017-10-01

    Almost 20 years ago, we started to monitor the lunar surface with small telescopes to detect light flashes resulting from the hypervelocity collisions of meteoroids. The initial purpose was to understand the flux of impactors on Earth. The estimation of the flux of near Earth Objects (NEOs) is important not only for the protection of the human civilisation (meter-sized, see Chelyabinsk event in 2013), but also for the protection of the space assets (cm-sized objects). Apart from the NEO flux, the lunar surface helps the study of the impact events per se. The European Space Agency (ESA) is directing and funding lunar observations at 1.2 m Kryoneri telescope in Peloponnese, Greece. This telescope is equipped with a dichroic beam-splitter that directs the light onto two sCMOS cameras, that observe in visible and infrared wavelengths, using Rc and Ic Cousin filters respectively. Currently it is the largest telescope in the world that performs dedicated lunar impact flashes observations. We present the first flash observations in two bands, allowing us to measure flash temperatures for the first time. We find that the temperatures have a range that agrees with the theoretical approaches. Since the temperature can now be calculated, we have a more accurate estimation of the impactor’s mass and the size of the radiated ejecta plume.Having the Moon as a large-scale laboratory, new horizons are set towards the understanding of the nature of impacts, the impactor's material type and the energy partitioning, that is a constant puzzle in impact studies. This can now happen as more impact parameters can be determined and combined, such as the impactor’s mass and speed, flash luminosity, radiating volume, crater size when applicable etc. Future statistics can determine the different lunar regolith properties at different impact sites, especially during a meteoroid stream where the impactors share a common origin and possibly composition.

  5. Scaling Law of Impact Induced Shock Pressure in Planetary Mantle

    NASA Astrophysics Data System (ADS)

    Monteux, Julien; Arkani-Hamed, Jafar

    2015-04-01

    While hydrocode simulation of impact induced shock pressure inside planetary mantle is more accurate, it is not suitable for studying several hundreds of impacts occurring during the accretion of a planet. Not only simulation of each impact takes over two orders of magnitude longer computer time than that of a scaling law simulation [1], but also it is cumbersome to apply for growing proto-planets where size of a proto-planet and impact velocities of the accreting bodies increase significantly. This is compounded by the formation of the iron core during the accretion with increasing size. Major impacting bodies during accretion of a Mars type planet have very low velocities. We use iSale hydrocode simulations and adopt physical properties of dunite for the mantle to calculate shock pressure and particle velocity in a Mars type body for 11 impact velocities ranging from 4 to 60 km/s. Large impactors of 100 to 1000 km in diameter, comparable to those impacted on Mars and created giant impact basins, are examined. The results are in good agreement with those of Pierazzo et al. [2] which were calculated for impact velocities higher than 10 km/s and impactor of 0.2 to 10 km in diameter. The internal consistency of our models indicates that our scaling laws are also accurate for lower impact velocities. We found no distinct isobaric region, rather the peak shock pressure changes relatively slowly versus distance from the impact site in the near field zone, within ~ 3 times the impactor radius, compare to that in the far field zone as also suggested by Ahrens and O'Keefe [3]. Hence we propose two distinct scaling laws, the power law distribution of shock pressure P as a function of distance R from the impact site at the surface, one for the near field zone and the other for the far field zone: Log P = a + n Log (R/Rimp) With n = 1.72 - 2.44 Log(Vimp) for R < ~3 Rimp, and n = -0.84 -0.51 Log(Vimp) for R > ~3 Rimp where a is a constant, Rimp is the impactor radius, and Vimp (in km/s) is the impact velocity. The scaling law provides us a mean to determine impact heating of a growing proto-planet. We also show the effect of dynamic phase change in dunite at around 220 GPa during the passage of the shock wave occurring for impact velocities higher than 10 km/s. [1] Arkani-Hamed, J., and Ivanov, B., (2014), Phys. Earth Planet. Inter., 230, 45-59. [2] Pierazzo, E., Vickery, A.M., and Melosh, H.J., (1997), Icarus 127, 408-423. [3] Ahrens, T.J., and O'Keefe, J.D., (1987). Int. J. Impact Eng. 5, 13-32.

  6. Optimal trajectories from the Earth-Moon L1 and L3 points to deflect hazardous asteroids and comets.

    PubMed

    Maccone, Claudio

    2004-05-01

    Software code named asteroff was recently created by the author to simulate the deflection of hazardous asteroids off of their collision course with the Earth. This code was both copyrighted and patented to avoid unauthorized use of ideas that could possibly be vital to construct a planetary defense system in the vicinity of the Earth. Having so said, the basic ideas and equations underlying the asteroff simulation code are openly described in this paper. A system of two space bases housing missiles is proposed to achieve the planetary defense of the Earth against dangerous asteroids and comets, collectively called impactors herein. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L(1) (between the Earth and the Moon) and L(3) (in the direction opposite to the Moon from the Earth). We show that placing missile bases at L(1) and L(3) would enable those missiles to deflect the trajectory of impactors by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. One additional remark is that the theory developed in this paper is just a beginning for a wider set of future research. In fact, we only develop the Keplerian analytical theory for the optimal planetary defense achievable from the Earth-Moon Lagrangian points L(1) and L(3). Much more sophisticated analytical refinements would be needed to: (1) take into account many perturbation forces of all kinds acting on both the impactors and missiles shot from L(1) and L(3); (2) add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L(4) and L(5) of the Earth-Moon System or from the surface of the Moon itself; and (3) encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see which impactors could be diverted by which missiles, even in the very simplified scheme outlined here. Published for the first time in February 2002, our Keplerian planetary defense theory has proved, in just one year, to be simple enough to catch the attention of scholars, in addition to popular writers, and even of someone from the US Military. These recent developments might possibly mark the beginning of an all embracing vision in planetary defense beyond all learned congressional activities, dramatic movies, and unknown military plans covered by secrecy.

  7. The intact capture of hypervelocity dust particles using underdense foams

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the probability of survival for the impacting particle. The primary objectives of the experiment are to (1) Examine the morphology of primary and secondary hypervelocity impact craters. Primary attention will be paid to craters caused by ejecta during hypervelocity impacts of different substrates. (2) Determine the size distribution of ejecta by means of witness plates and collect fragments of ejecta from craters by means of momentum-sensitive mcropore foam. (3) Assess the directionality of the flux by means of penetration-hole alignment of thin films placed above the cells. (4) Capture intact the particles that perforated the thin film and entered the cell. Capture media consisted of both previously flight-tested micropore foams and aerogel. The foams had different latent heats of fusion and, accordingly, will capture particles over a range of momenta. Aerogel was incorporated into the cells to determine the minimum diameter than can be captured intact.

  8. Collisional Effects on Magnesium-rich Minerals found in Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Lederer, S.; Jensen, E.; Strojia, C.; Smith, D.; Keller, L.; Berger, E.; Lindsay, S.; Wooden, D.; Cintala, M.; Zolensky, M.

    2014-01-01

    While generally touted to be the least-altered bodies remaining from the age of the solar system's formation, comets and asteroids have undergone evolutionary processing throughout the 4.5-billion-year lifetime of the solar system. They have suffered the effects of collisions by impactors ranging in size from micrometeoroids to other comets and asteroids. As such, we must ask ourselves: can we detect these evolutionary effects remotely through telescopic observations? With this in mind, a suite of experiments were conducted, impacting magnesium-rich minerals as analogues to those that have been detected in the spectra of both asteroid surfaces and in the dust of cometary comae, including forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate). These minerals were impacted at velocities ranging from 2.0 km/s to 2.8 km/s using the vertical gun in the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center. These speeds mimic typical velocities of impacts occurring in the Kuiper belt [1]. Two classes of projectile were used: spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted (e.g., forsterite impactors for forsterite targets, etc.). The peak shock pressure varies significantly, depending on the target and impactor materials and the velocity; thus, shock effects differed in targets impacted at the same velocity but with compositionally different projectiles. The results indicate both: (a) how varying the impactor-density might change the outcome from a scientific viewpoint, as well as (b) possible contamination effects of the ceramic projectile in the resultant spectra of the target minerals from an experimental perspective. Temperature effects were also investigated by impacting samples at both 25 deg. and -25 deg. to: (a) probe whether the varying temperatures experienced by small bodies plays a role in the resultant spectra, and (b) constrain necessary experimental parameters. Analysis of Fourier Transform Infrared (FTIR) spectra obtained from the experimentally shocked materials shows clear indications of spectral shifts in wavelength, as well as a change in relative peak strengths of the spectral signatures at one wavelength compared with another, in all minerals except magnesite. Samples of the forsterite and orthoenstatite that displayed the spectral changes were examined with a transmission electron microscope, which revealed evidence of planar dislocations. The density of the dislocations in the experimentally shocked minerals mimicked the dislocation densities measured in both forsterite and enstatite grains recovered from Comet Wild 2 by the Stardust mission [2, 3, 4]. Further discussion on analyses of peak shock pressure and temperature-dependent effects can be found in Jensen et al., this meeting

  9. Large Meteoroid Impact on the Moon on 17 March 2013

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E.; Suggs, Robert M.; Suggs, Ronnie J.

    2014-01-01

    Since early 2006, NASA's Marshall Space Flight Center has observed over 300 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of an 8-year routine observing campaign was observed in two 0.35 m telescopes outfitted with Watec 902H2 Ultimate monochrome CCD cameras recording interleaved 30 fps video. Standard CCD photometric techniques, described in [1], were applied to the video after saturation correction, yielding a peak R magnitude of 3.0 +/- 0.4 in a 1/30 second video exposure. This corresponds to a luminous energy of 7.1 × 10(exp 6) J. Geographic Information System (GIS) tools were used to georeference the lunar impact imagery and yielded a crater location at 20.60 +/- 0.17deg N, 23.92 +/- 0.30deg W. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact by comparing post-impact images from 28 July 2013 to pre-impact images on 12 Feb 2012. The images show fresh, bright ejecta around an 18 m diameter circular crater, with a 15 m inner diameter measured from the level of pre-existing terrain, at 20.7135deg N, 24.3302deg W. An asymmetrical ray pattern with both high and low reflectance ejecta zones extends 1-2 km beyond the crater, and a series of mostly low reflectance splotches can be seen within 30 km of the crater - likely due to secondary impacts [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of 5 fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Assuming a velocity-dependent luminous efficiency (ratio of luminous energy to kinetic energy) from [5] and an impact velocity of 25.6 km/s derived from fireball measurements, the impactor kinetic energy was 5.4 × 10(exp 9) J and the impactor mass was 16 kg. Assuming an impact angle of 56deg from horizontal (based on fireball orbit measurements), a regolith density of 1500 kg/m(exp 3), and impactor density between 1800 and 3000 kg/m(exp 3), the impact crater diameter was estimated to be 8-18 m at the pre-impact surface and 10-23 m rim-to-rim using the Holsapple [6] and Gault [7] models, a result consistent with the observed crater.

  10. Tungsten isotope evidence for post-giant impact equilibration of the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Kruijer, T.; Kleine, T.; Fischer-Gödde, M.

    2015-12-01

    The Moon is thought to have formed by re-accretion of material ejected by a giant impact on Earth [e.g., 1]. This model, at least in its classical form, predicts an isotopic difference between the Earth and Moon, because the Moon would largely consist of impactor material. Yet Earth and Moon show an unexpected isotopic similarity for many elements [e.g., 2]. Here we use variations in 182W—the decay-product of short-lived 182Hf (t1/2~9 Myr)—between the Moon and the bulk silicate Earth (BSE) to shed new light on this issue. We precisely determined the lunar 182W value by analysing KREEP-rich samples with MC-ICPMS and a new approach for quantifying cosmogenic 182W variations using Hf isotopes [6]. We find that the Moon shows a 27±4 ppm 182W excess over the modern BSE, in excellent agreement with [7]. This excess agrees with the predicted 182W change resulting from disproportional late accretion to the Earth and Moon after Earth's core had fully formed [6,7]. Thus, the pre-late-veneer BSE and the Moon were indistinguishable in 182W. However, the giant impact itself should have caused a notable Earth-Moon 182W difference by (1) changing the ɛ182W of the proto-Earth mantle by adding impactor mantle and core material, both carrying distinct 182W anomalies, and (2) by supplying W-rich but 182W-depleted impactor core material into the lunar accretion disk [6]. Thus, the Earth-Moon 182W homogeneity is an unexpected outcome of the giant impact. Unlike for Ti and O isotopes, the 182W homogeneity cannot be explained by accretion of impactor and proto-Earth from a homogeneous inner disk reservoir [3] or by making the Moon fully from proto-Earth mantle [4,5]. Thus, the 182W results require an efficient post-impact isotopic equilibration of the BSE and the Moon, but the mechanism for this has yet to be explored. One option is that Earth's mantle and its vapour atmosphere remained connected with the lunar accretion disk just after the giant impact [8]. [1] Canup R.M. & Asphaug E. (2001) Nature 412, 708-712. [2] Zhang J. et al (2012) Nature Geosci. 5, 251-255. [3] Dauphas N. et al (2014) Phil Trans R. Soc. [4] Ćuk, M. & Stewart S.T. (2012) Science 338, 1047-1052. [5] Canup R.M. et al (2012) Science 338, 1052-1055. [6] Kruijer T.S. et al. (2015) Nature, 520, 534-537. [7] Touboul et al. (2015) Nature 520, 530-533. [8] Lock S.J. et al. (2015) LPSC #2193.

  11. Double Asteroid Redirection Test (DART) element of AIDA mission

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Michel, P.; Rivkin, A.; Barnouin, O.; Stickle, A.; Miller, P.; Chesley, S.; Richardson, D.

    2017-09-01

    The AIDA mission, an international cooperation between NASA and ESA, will be the first demonstration of a kinetic impactor spacecraft to deflect an asteroid. AIDA will perform the first hypervelocity impact on an asteroid where the impact conditions are fully known and the target properties are also characterized. AIDA will reduce risks for any future asteroid hazard mitigation.

  12. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... part of the dummy assembly shown in drawing 175-0000 including load sensors specified in § 572.189(e... measuring sensor in the abdomen as shown in Figure U5; (5) The impactor impacts the dummy's abdomen at 4.0 m... of the forces of the three abdominal load sensors, specified in 572.189(e), shall be not less than...

  13. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as measured with the test probe-mounted accelerometer must be not less than 3450 N (776 lbf) and not... tibia may contact any exterior surface. (3) Align the test probe so that throughout its stroke and at... movement at the time of initial contact between the impactor and the knee. (5) The test probe velocity at...

  14. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... as measured with the test probe-mounted accelerometer must be not less than 3450 N (776 lbf) and not... tibia may contact any exterior surface. (3) Align the test probe so that throughout its stroke and at... movement at the time of initial contact between the impactor and the knee. (5) The test probe velocity at...

  15. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as measured with the test probe-mounted accelerometer must be not less than 3450 N (776 lbf) and not... tibia may contact any exterior surface. (3) Align the test probe so that throughout its stroke and at... movement at the time of initial contact between the impactor and the knee. (5) The test probe velocity at...

  16. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as measured with the test probe-mounted accelerometer must be not less than 3450 N (776 lbf) and not... tibia may contact any exterior surface. (3) Align the test probe so that throughout its stroke and at... movement at the time of initial contact between the impactor and the knee. (5) The test probe velocity at...

  17. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as measured with the test probe-mounted accelerometer must be not less than 3450 N (776 lbf) and not... tibia may contact any exterior surface. (3) Align the test probe so that throughout its stroke and at... movement at the time of initial contact between the impactor and the knee. (5) The test probe velocity at...

  18. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  19. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FIELD USE OF THE PARTICULATE SAMPLER (UA-F-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...

  20. High-Speed Photographic Study of Wave Propagation and Impact Damage in Transparent Laminates

    DTIC Science & Technology

    2008-04-01

    23 8.2 Generating Optimized Power Diagrams for FEM Analysis...dimensions which removes short edges (and areas) such that a larger time step in a subsequent FEM analysis can be used...a zone where most contacts have already failed.............32 Figure 47. Insufficiency of generic FEM approaches. A steel impactor hits an AlON

  1. Mega-precovery and data mining of near-Earth asteroids and other Solar System objects

    NASA Astrophysics Data System (ADS)

    Popescu, M.; Vaduvescu, O.; Char, F.; Curelaru, L.; Euronear Team

    2014-07-01

    The vast collection of CCD images and photographic plate archives available from the world-wide archives and telescopes is still insufficiently exploited. Within the EURONEAR project we designed two data mining software with the purpose to search very large collections of archives for images which serendipitously include known asteroids or comets in their field, with the main aims to extend the arc and improve the orbits. In this sense, ''Precovery'' (published in 2008, aiming to search all known NEAs in few archives via IMCCE's SkyBoT server) and ''Mega-Precovery'' (published in 2010, querying the IMCCE's Miriade server) were made available to the community via the EURONEAR website (euronear.imcce.fr). Briefly, Mega-Precovery aims to search one or a few known asteroids or comets in a mega-collection including millions of images from some of the largest observatory archives: ESO (15 instruments served by ESO Archive including VLT), NVO (8 instruments served by U.S. NVO Archive), CADC (11 instruments, including HST and Gemini), plus other important instrument archives: SDSS, CFHTLS, INT-WFC, Subaru-SuprimeCam and AAT-WFI, adding together 39 instruments and 4.3 million images (Mar 2014), and our Mega-Archive is growing. Here we present some of the most important results obtained with our data-mining software and some new planned search options of Mega-Precovery. Particularly, the following capabilities will be added soon: the ING archive (all imaging cameras) will be included and new search options will be made available (such as query by orbital elements and by observations) to be able to target new Solar System objects such as Virtual Impactors, bolides, planetary satellites, TNOs (besides the comets added recently). In order to better characterize the archives, we introduce the ''AOmegaA'' factor (archival etendue) proportional to the AOmega (etendue) and the number of images in an archive. With the aim to enlarge the Mega-Archive database, we invite the observatories (particularly those storing their images online and also those that own plate archives which could be scanned on request) to contact us in order to add their instrument archives (consisting of an ASCII file with telescope pointings in a simple format) to our Mega-Precovery open project. We intend for the future to synchronise our service with the Virtual Observatory.

  2. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... procedure in subsection (c) of this section: (1) The peak resistance force as measured with the test probe.... (3) Align the test probe so that throughout its stroke and at contact with the knee it is within 2... contact between the impactor and the knee. (5) The test probe velocity at the time of contact shall be 2.1...

  3. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... procedure in subsection (c) of this section: (1) The peak resistance force as measured with the test probe.... (3) Align the test probe so that throughout its stroke and at contact with the knee it is within 2... contact between the impactor and the knee. (5) The test probe velocity at the time of contact shall be 2.1...

  4. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... procedure in subsection (c) of this section: (1) The peak resistance force as measured with the test probe.... (3) Align the test probe so that throughout its stroke and at contact with the knee it is within 2... contact between the impactor and the knee. (5) The test probe velocity at the time of contact shall be 2.1...

  5. The Maneuverable Atmospheric Probe (MAP), a Remotely Piloted Vehicle.

    DTIC Science & Technology

    1982-05-01

    9 lb. MAP vehicle and major- components .................................... 10 2. Endevco Pitot tube airspeed indicator mounted below front...28 8. Cascaded PIXE impactors, housing cylinder and wing pod front end cup with aerosol inlet plastic tubing ........................... 30 9...turbulence sensors, a Pitot tube , two air temperature sensors, and a yaw gust probe. Located at each wing tip are sensors that contain encapsulated

  6. System and Apparatus for Filtering Particles

    NASA Technical Reports Server (NTRS)

    Agui, Juan H. (Inventor); Vijayakumar, Rajagopal (Inventor)

    2015-01-01

    A modular pre-filtration apparatus may be beneficial to extend the life of a filter. The apparatus may include an impactor that can collect a first set of particles in the air, and a scroll filter that can collect a second set of particles in the air. A filter may follow the pre-filtration apparatus, thus causing the life of the filter to be increased.

  7. Tension strength of a thick graphite/epoxy laminate after impact by a 1/2-in. radius impactor

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Illg, W.; Garber, D. P.

    1986-01-01

    NASA is developing graphite/epoxy filament-wound cases for solid rocket motors of the space shuttle. They are wet-wound with AS4W graphite fiber and HBRF-55A epoxy. The membrane region is about 1.4 inches thick. Two 30-inch-diameter by 12-inch-long cylinders were impacted every two inches of circumference with 1/2-inch radius impactors that were dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Two-inch-wide test specimens were cut from the cylinders. Each was centered on an impact site. The specimens were x-rayed and loaded to failure in uniaxial tension. Rigid body mechanics and the Hertz law were used to predict impact force, local deformations, contact diameters, and contact pressures. The depth of impact damage was predicted using Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions were reasonably good. The strengths of the impacted specimens were reduced by as much as 37 percent without visible surface damage. Even the radiographs did not reveal the nonvisible damage.

  8. The violent environment of the origin of life - Progress and uncertainties

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.

    1993-01-01

    Dating of terrestrial fossils and returned lunar samples reveals that the origin of life on Earth occurred not in a quiescent, peaceful environment, but rather in a violent, impact-ridden one. This realization has important consequences. On the one hand, sufficiently large and fast impactors can erode planetary atmospheres, and the very largest of these may have sterilized the surface of the Earth. In this regard, deep-sea hydrothermal vents become especially interesting for the history of early life, as they provide an environment protected against all but the greatest impact devastation. At the same time, impactors would have been delivering key biogenic elements (such as carbon and nitrogen) to Earth's surface, and (with much greater difficulty) intact organic molecules as well. Estimates of the various sources of prebiotic organics suggest that the heavy bombardment either produced or delivered quantities of organics comparable to those produced by other energy sources. However, substantial uncertainties exist. After reviewing the current understanding of the role of the heavy bombardment in the origins of life, a number of remaining key uncertainties are considered, and attempts are made to both quantify their magnitude and point to means of resolving them.

  9. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  10. Radiative signals from impact of Shoemaker-Levy on Jupiter

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Orton, Glenn S.; Takata, Toshiko; Okeefe, John D.

    1994-01-01

    The temperature and internal energy fields calculated by Takata et al. in the plume are used to calculate the greybody thermal radiation emitted versus wavelength to predict what might be observed by several spectral sensors operating from different platforms when fragments of Comet Shoemaker-Levy 9 (SL-9) impact Jupiter in July 1994. A SPH code was used by Takata et al. to calculate the full three dimensional flow and thermodynamic fields in the comet fragment and the atmosphere of Jupiter. We determined the fragment penetration depth, energy partitioning between the atmosphere and the impactor, and energy density deposited per unit length over the trajectory. Once the impactor had disintegrated and stopped, and the strong atmospheric shock decayed, the flow is driven by buoyancy effects. We then used our SPH code to calculate the flow and thermodynamic fields: pressure, article velocity, temperature, and internal energy distributions in the plume. The calculations for 2 and 10 km cometary fragments yield maximum deposition depths of approximately 175 and 525 km, respectively (1 bar = 0 km depth). We also calculated that 0.7 and 0.6 of the initial kinetic energy of the 10 and 2 km bolides, respectively, are deposited as internal energy in Jupiter's atmosphere.

  11. Impact Cratering Physics al Large Planetary Scales

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2007-06-01

    Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).

  12. Experimental investigation of the relationship between impact crater morphology and impacting particle velocity and direction

    NASA Technical Reports Server (NTRS)

    Mackay, N. G.; Green, S. F.; Gardner, D. J.; Mcdonnell, J. A. M.

    1995-01-01

    Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.

  13. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  14. Crash energy absorption of two-segment crash box with holes under frontal load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina

    Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less

  15. Stop hitting yourself: did most terrestrial impactors originate from the terrestrial planets?

    NASA Astrophysics Data System (ADS)

    Jackson, Alan; Asphaug, Erik; Elkins-Tanton, Linda

    2014-11-01

    Although the asteroid belt is the main source of impactors in the inner solar system today, it contains only 0.0006 Earth mass, or 0.05 Lunar mass. While the asteroid belt would have been more massive when it formed, it is unlikely to have had greater than 0.5 Lunar mass since the formation of Jupiter and the dissipation of the solar nebula. By comparison, giant impacts onto the terrestrial planets typically release debris equal to several per cent of the planets mass. The Moon-forming impact on Earth and the dichotomy forming impact on Mars, to consider but two of these major events, released 1.3 and 0.3 Lunar mass in debris respectively, many times the mass of the present day asteroid belt. This escaping impact debris is less long lived than the main asteroid belt, as it is injected on unstable, planet-crossing orbits, but this same factor also increases the impact probability with the terrestrial planets and asteroids. We show that as a result terrestrial ejecta played a major role in the impact history of the early inner solar system, and we expect the same is also likely to be true in other planetary systems.

  16. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  17. In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team

    2016-10-01

    In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.

  18. Crater with Exposed Layers

    NASA Image and Video Library

    2017-01-17

    On Earth, geologists can dig holes and pull up core samples to find out what lies beneath the surface. On Mars, geologists cannot dig holes very easily themselves, but a process has been occurring for billions of years that has been digging holes for them: impact cratering. Impact craters form when an asteroid, meteoroid, or comet crashes into a planet's surface, causing an explosion. The energy of the explosion, and the resulting size of the impact crater, depends on the size and density of the impactor, as well as the properties of the surface it hits. In general, the larger and denser the impactor, the larger the crater it will form. The impact crater in this image is a little less than 3 kilometers in diameter. The impact revealed layers when it excavated the Martian surface. Layers can form in a variety of different ways. Multiple lava flows in one area can form stacked sequences, as can deposits from rivers or lakes. Understanding the geology around impact craters and searching for mineralogical data within their layers can help scientists on Earth better understand what the walls of impact craters on Mars expose. http://photojournal.jpl.nasa.gov/catalog/PIA12328

  19. Minimizing variability of cascade impaction measurements in inhalers and nebulizers.

    PubMed

    Bonam, Matthew; Christopher, David; Cipolla, David; Donovan, Brent; Goodwin, David; Holmes, Susan; Lyapustina, Svetlana; Mitchell, Jolyon; Nichols, Steve; Pettersson, Gunilla; Quale, Chris; Rao, Nagaraja; Singh, Dilraj; Tougas, Terrence; Van Oort, Mike; Walther, Bernd; Wyka, Bruce

    2008-01-01

    The purpose of this article is to catalogue in a systematic way the available information about factors that may influence the outcome and variability of cascade impactor (CI) measurements of pharmaceutical aerosols for inhalation, such as those obtained from metered dose inhalers (MDIs), dry powder inhalers (DPIs) or products for nebulization; and to suggest ways to minimize the influence of such factors. To accomplish this task, the authors constructed a cause-and-effect Ishikawa diagram for a CI measurement and considered the influence of each root cause based on industry experience and thorough literature review. The results illustrate the intricate network of underlying causes of CI variability, with the potential for several multi-way statistical interactions. It was also found that significantly more quantitative information exists about impactor-related causes than about operator-derived influences, the contribution of drug assay methodology and product-related causes, suggesting a need for further research in those areas. The understanding and awareness of all these factors should aid in the development of optimized CI methods and appropriate quality control measures for aerodynamic particle size distribution (APSD) of pharmaceutical aerosols, in line with the current regulatory initiatives involving quality-by-design (QbD).

  20. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to present uncertainties in the impactor size distribution between d = 1- 100km , computing absolute ages for the surface of Pluto is entirely dependent on the extrapolation to small sizes and thus fraught with uncertainty. We show, however, what the ages would be for several cases and illustrate the relative importance of each Kuiper belt sub-population to the cratering rate, both now and integrated into the past. In addition, we compute the largest "fresh" crater expected to have formed in 1 Gyr on the surface of Pluto and in 3 Gyr on Charon (to 95% confidence) and use the "wavy" size distribution models to predict whether these largest "fresh" craters will provide surfaces for which portions of the crater production function can be measured should most of the target's surface appear saturated. The fly-through results coupled with telescopic surveys that bridge current uncertainties in the d = 10- 100km regime should eventually result in the population estimate uncertainties for the Kuiper belt sub-populations, and thus the impact fluxes onto Pluto and Charon, dipping to < 30 % . We also compute "disruption timescales" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra. We find that none of the four satellites have likely undergone a catastrophic disruption and reassembly event in the past ≈ 4Gyr . In addition, we find that for a knee size distribution with αfaint ⩽ 0.4 (down to sub-km diameters), satellites of all sizes are able to survive catastrophic disruption over the past 4 Gyr.

  1. Stardust: An overview of the craters in aluminium foils (calibration, classification and particle size distribution)

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Kearsley, A. T.; Wozniakiewicz, P. J.; Hörz, F.; Borg, J.; Graham, G. A.; Leroux, H.; Bridges, J. C.; Bland, P. A.; Bradley, J. P.; Dai, Z. R.; Teslich, N.; See, T.; Warren, J.; Bastien, R.; Hoppe, P.; Heck, P. R.; Huth, J.; Stadermann, F. J.; Floss, C.; Marhas, K.; Stephan, T.; Leitner, J.; Green, S. F.

    2007-08-01

    The NASA Stardust mission (1) to comet 81P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured intact in aerogel and as residue rich craters in aluminium foils (2). Although the aerogel (and its content of dust grains) has gathered most attention, the foils have also been subject to extensive analysis. Many groups contributed to the dimensional characterization of representative populations of foilcraters in the Preliminary Examination and combined with a laboratory calibration this yielded a particle size distribution of the dust encountered during the fly by of the comet (3). The calibration experiments will be described in this paper in detail. They involved using the two stage light gas gun at the University of Kent (4) to impact Stardust grade aluminium foils (from the same batch as used on Stardust) with projectiles at 6.1 km/s (the cometary encounter speed). A variety of projectiles were used to simulate possible cometary dust grain composition, morphology and structure. Prior to the return of Stardust, glass beads were used to provide the initial calibration (5) which was used to obtain the size distribution reported in (3). A range of projectiles of differing density were then used (6) to determine the sensitivity of the results to impactor density (also allowed for in (5)). Subsequently this work has been significantly extended (7) to allow for a greater range of projectile densities and strengths. The work has now been extended further to allow for aggregate impactors which have a high individual grain density, but a low overall bulk density. In addition, the results have been extended down in impactor size from the previous lower limit of 10 microns to 1.5 micron impactor diameter. The application of these new calibration results to the measurement of the cometary dust size distribution will be discussed. It will be shown that the changes are within the range originally presented in (3). The results will be compared to the dust size distribution obtained from the tracks in the aerogel and the combined results contrasted to those obtained with active impact detectors in real time during the cometary encounter (8, 9). At small dust grain sizes (a few microns and below) a significant discrepancy is seen which is still unexplained. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716, 2006. (3) Hörz F. et al., Science 314, 1716 - 1719, 2006. (4) Burchell M.J. et al., Meas. Sci. Technol. 10, 41 - 50, 1999. (5) Kearsley A.T. et al., MAPS 41, 167 - 180, 2006. (6) Kearsley A.T. et al., MAPS 42, 191 - 210, 2007. (7) Kearsley A.T. et al., MAPS submitted, 2007. (8) Tuzzolino A.J. et al., Science 304, 1776 - 1780. (9) Green, S.F. et al., J. Geophys. Res. 109, E12S04, 2004.

  2. Physical and Chemical Aerosol Properties At An Urban and A Rural Site During An Episode of Strong Photochemical Activity During Escompte

    NASA Astrophysics Data System (ADS)

    van Dingenen, R.; Putaud, J. P.; dell'Acqua, A.; Martins-Dos Santos, S.; Viidanoja, J.; Raes, F.

    During the ESCOMPTE campaign (10 June to 14 July, 2001), JRC mobile laboratories for aerosol physical and chemical measurements were deployed at two ground-based sites: Vallon Dol, located at the Northern edge of the Marseille agglomeration and Vi- non, a rural site about 80 km North-East of Marseille. Both sites were equipped with on-line instrumentation for number size distributions in the diameter size range 6nm to 10µm (10 minute time resolution), equivalent black carbon (15 minute time reso- lution), major anions and cations (15 minute time resolution). Time-integrated filter sampling at each site with a time resolution of 6-12 hours was performed with 2 sets of virtual impactors, separating the fine and coarse aerosol fraction. One set, loaded with quartz filters, was analyzed off-line using the `evolved gas analysis` technique for organic and elemental carbon. The second set, loaded with paper filters, was analyzed for dust (by ashing) and ionic composition. On top of the common instrumentation, the urban site was additionally performing on-line PM10 measurements (TEOM with sample equilibration system, 10 minute time resolution) and, during intensive obser- vation periods (IOP), size-segregated sampling with a 8 stage low-pressure Berner im- pactor (6-12 hours time resolution). In this presentation we will focus on data obtained during the second IOP (20-6 to 26-6). During this episode, the sea-breeze transported Marseille pollution plume was clearly observed at the Vinon rural site. Comparison of the aerosol properties at both sites will allow to evaluate the processes that contribute to the (trans)formation of particulate matter in the particular conditions of a marine air mass, mixed with local pollution and undergoing strong photochemical processes during in-land transport.

  3. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    NASA Astrophysics Data System (ADS)

    Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-07-01

    To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  4. The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-12-01

    In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.

  5. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  6. Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets: Implications for mixing processes

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia H.; Hudson, James G.

    1995-01-01

    In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.

  7. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  8. The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.

    2017-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.

  9. Neutralization of Bacterial Aerosols by Aerodynamic Shocks in a Novel Impactor System: An Integrated Computational and Experimental Study

    DTIC Science & Technology

    2010-10-15

    phenylalanine dehydrogenase activity [56]. At 14 MPa, 15% of the E. coli cells were destroyed [56]. The researchers mentioned the importance of the...losses (1 - nout/nin) were calculated for circular tubes using the following expression [23]: ’ DL \\2/3 fDL\\ [—J +377(g-J (5-2) where n^ and nin

  10. Scenario-Based Case Study Analysis of Asteroid Mitigation in the Short Response Time Regime

    NASA Astrophysics Data System (ADS)

    Seery, B.; Greenaugh, K. C.

    2017-12-01

    Asteroid impact on Earth is a rare but inevitable occurrence, with potentially cataclysmic consequences. If a pending impact is discovered, mitigation options include civil-defense preparations as well as missions to deflect the asteroid and/or robustly disrupt and disperse it to an extent that only a negligible fraction remains on a threatening path (National Research Council's "Defending the Planet," 2010). If discovered with sufficient warning time, a kinetic impactor can deflect smaller objects, but response delays can rule out the option. If a body is too large to deflect by kinetic impactor, or the time for response is insufficient, deflection or disruption can be achieved with a nuclear device. The use of nuclear ablation is considered within the context of current capabilities, requiring no need for nuclear testing. Existing, well-understood devices are sufficient for the largest known Potentially Hazardous Objects (PHOs). The National Aeronautics and Space Administration/Goddard Space Flight Center and the Department of Energy/National Nuclear Security Administration are collaborating to determine the critical characterization issues that define the boundaries for the asteroid-deflection options. Drawing from such work, we examine the timeline for a deflection mission, and how to provide the best opportunity for an impactor to suffice by minimizing the response time. This integrated problem considers the physical process of the deflection method (impact or ablation), along with the spacecraft, launch capability, risk analysis, and the available intercept flight trajectories. Our joint DOE/NASA team has conducted case study analysis of three distinctly different PHOs, on a hypothetical earth impacting trajectory. The size of the design reference bodies ranges from 100 - 500 meters in diameter, with varying physical parameters such as composition, spin state, and metallicity, to name a few. We assemble the design reference of the small body in question using known values for key parameters and expert elicitation to make educated guesses on the unknown parameters, including an estimate of the overall uncertainties in those values. Our scenario-based systems approach includes 2-D and 3-D physics-based modeling and simulations.

  11. Characterization of inclusions in terrestrial impact formed zircon: Constraining the formation conditions of Hadean zircon from Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Faltys, J. P.; Wielicki, M. M.; Sizemore, T. M.

    2017-12-01

    Due to the discovery and subsequent geochemical analysis of Hadean terrestrial material (e.g. detrital zircon from Jack Hills, Western Australia), a dramatic paradigm shift has occurred in the hypothesized near surface conditions of the first 500 million years of Earth's evolution. From a hellish setting riddled with impactors and not fit for life to a much milder environment that may have been uniquely suitable for the origin of life. Geochemical analyses of these ancient materials have been used to suggest the presence of water at or near the surface as well as the existence of continental crust during the Hadean, both of which have been suggested as necessary for the origin of life. However, the intensity of extraterrestrial bombardment during the Hadean and the effects of such events on the origin of life remains poorly understood. Clearly, as evidenced by Phanerozoic impact events, extraterrestrial impactors have the potential to dramatically effect the environment, particularly the biosphere. Early Earth likely experienced multiple large impact events, as evidenced by the lunar record, however whether those impacts were sufficient to frustrate the origin of life remains an open question. Although multiple lines of evidence, including the inclusion population, suggest the formation of Hadean zircon from Jack Hills as crystallizing in an under-thrust environment from S-type magmas, a recent study has suggested their formation in an impact melt environment analogous to a portion of the Sudbury Igneous Complex at the Sudbury impact structure. To determine between these two formation scenarios we have under-taken an inclusion study of terrestrial impact formed zircon from four of the largest terrestrial impact structures (Sudbury, Canada; Manicouagan, Canada; Vredefort, South Africa; Morokweng, South Africa), to compare to the vast inclusion dataset that exists for Jack Hills zircon. Preliminary data suggests a different inclusion population, from Hadean zircon, associated with impact formed zircon; however, if certain populations of the Jack Hills record appear to share inclusion assemblages with impact formed zircon, this could provide a tool to constrain the frequency and timing of large impactors on early Earth and their possible effects on conditions conducive for the origin of life.

  12. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    NASA Astrophysics Data System (ADS)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady pressure data for different try geometries is done against experimental and other published theoretical results, which yielded a geometry which best reflects the load values as in a real bird impact event.

  13. Modeling momentum transfer by the DART spacecraft into the moon of Didymos

    NASA Astrophysics Data System (ADS)

    Stickle, Angela M.; Atchison, Justin A.; Barnouin, Olivier S.; Cheng, Andy F.; Ernst, Carolyn M.; Richardson, Derek C.; Rivkin, Andy S.

    2015-11-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission is a joint concept between NASA and ESA designed to test the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two independent, but mutually supportive, components: the NASA-led Double Asteroid Redirect Test (DART), and the ESA-led Asteroid Impact Monitoring (AIM) mission. The spacecraft will be sent to the near-Earth binary asteroid 65803 Didymos, which makes unusually close approaches to Earth in 2022 and 2024. These close approaches make it an ideal target for a kinetic impactor asteroid deflection demonstration, as it will be easily observable from Earth-based observatories. The ~2 m3, 300 kg DART spacecraft will impact the moon of the binary system at 6.25 km/s. The deflection of the moon will then be determined by the orbiting AIM spacecraft and from ground-based observations by measuring the change in the moon’s orbital period. A modeling study supporting this mission concept was performed to determine the expected momentum transfer to the moon following impact. The combination of CTH hydrocode models, analytical scaling predictions, and N-body pkdgrav simulations helps to constrain the expected results of the kinetic impactor experiment.To better understand the large parameter space (including material strength, porosity, impact location and angle), simulations of the DART impact were performed using the CTH hydrocode. The resultant crater size, velocity imparted to the moon, and momentum transfer were calculated for all cases. For “realistic” asteroid types, simulated DART impacts produce craters with diameters on the order of 10 m, an imparted Δv of 0.5-2 mm/s and a dimensionless momentum enhancement (“beta factor”) of 1.07-5 for targets ranging from a highly porous aggregate to a fully dense rock. These results generally agree with predictions from theoretical and analytical studies. Following impact, pkdgrav simulations of the system evolution track changes in the orbital period of the moon and examine the effects of the shapes of Didymos and its moon on the deflection. These simulations indicate that the shapes of the bodies can influence the subsequent dynamics of the moon.

  14. Analysis of Impact Induced Damage and its Effect on Structural Integrity of Space Flight Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wnuk, Michael P.

    1997-01-01

    The objective of this research work has been to provide analytical background and support to the ongoing experimental program at NASA, White Sands Test Facility, involving testing composite overwrapped pressure vessels (COPV) for impact damage and cyclic pressurization. Preliminary theoretical basis, including the governing equations for a shallow shell subjected to internal pressure, has been established. Effects of the Griffith type cracks on the structural integrity of the cylindrical vessel were evaluated by methods of Fracture Mechanics. The results indicate that the effective mass of the pressure vessel is an important factor influencing the response to impact events. We also have found that the material properties of the target, contained in the constitutive equations of the composite attached to the Aluminum liner, dominate the impact event in the low velocity range, the material properties become less important, while the target mass distribution and the impactor mass become more significant as the velocity of the impactor increases. Therefore, at high-velocity impact it is not only the kinetic energy of the impactor but also its mass which has a significant effect on the dynamics of the event, and consequently on the induced damage. This work also suggests a methodology for an assessment of the rate of loading effects on the degradation of the material toughness associated with a high-velocity impact where the rate effects become significant. To model the rate dependence of the material response a viscoelastic-plastic constitutive equations were assumed, and on this basis predictions are made regarding the rate dependent material resistance curve. Other dynamic phenomena associated with the impact event have been treated in the framework of the Computational Mechanics using the courtesy of Prof. P. Guebelle and his graduate student at University of Illinois at Urbana-Champaign who have an access to a super-fast computer located on their campus. Finally, the guidelines for a follow-up research program are provided in the body of this report. They address three major areas: theoretical research, numerical studies, and further experimental work.

  15. Fast Prediction of Blast Damage from Airbursts: An Empirical Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Stokan, Ed

    2016-10-01

    The February 15, 2013 Chelyabinsk airburst was the first modern bolide whose associated shockwave caused blast damage at the ground (Popova et al., 2013). Near-Earth Object (NEO) impacts in the Chelyabinsk-size range (~20 m) are expected to occur every few decades (Boslough et al., 2015) and therefore we expect ground damage from meteoric airbursts to be the next planetary defense threat to be confronted. With pre-impact detections of small NEOs certain to become more common, decision makers will be faced with estimating blast damage from impactors with uncertain physical properties on short timescales.High fidelity numerical bolide entry models have been developed in recent years (eg. Boslough and Crawford, 2008; Shuvalov et al., 2013), but the wide range in a priori data about strength, fragmentation behavior, and other physical properties for a specific impactor make predictions of bolide behavior difficult. The long computational running times for hydrocode models make the exploration of a wide parameter space challenging in the days to hours before an actual impact.Our approach to this problem is to use an analytical bolide entry model, the triggered-progressive fragmentation model (TPFM) developed by ReVelle (2005) within a Monte Carlo formalism. In particular, we couple this model with empirical constraints on the statistical spread in strength for meter-scale impactors from Brown et al (2015) based on the observed height at maximum bolide brightness. We also use the correlation of peak bolide brightness with total energy as given by Brown (2016) as a proxy for fragmentation behaviour. Using these constraints, we are able to quickly generate a large set of realizations of probable bolide energy deposition curves and produce simple estimates of expected blast damage using existing analytical relations.We validate this code with the known parameters of the Chelyabinsk airburst and explore how changes to the entry conditions of the observed bolide may have modified the blast damage at the ground. We will also present how this approach could be used in an actual short-warning impact scenario.

  16. Heterogeneous Delivery of Silicate and Metal to the Earth via Large Planetesimals

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Canup, R. M.; Walker, R. J.

    2017-12-01

    Earth's mantle abundances of at least some highly siderophile elements, (HSE; Re, Os, Ir, Ru, Pt, Rh, Pd, and Au), are much higher than would result from metal-silicate equilibration during terrestrial core formation, and can be better explained as a result of late accretion of a minimum of 0.5% Earth's masses after core formation was complete. Traditional models assume that HSEs delivered by late projectiles completely mixed and chemically equilibrated with the Earth's mantle. This appears likely for undifferentiated, well-mixed projectiles, or for relatively small, differentiated projectiles. However several arguments suggest that late projectiles may have been large (> 1500 km in diameter) and differentiated, and in this case, portions of the projectile's core may merge with the Earth's core, rather than being mixed into the Earth's mantle. We investigate projectile mixing with a suite of SPH simulations of differentiated planetesimal colliding with the Earth. A range of outcomes emerge from our simulations suggesting that for large impactors (>1500 km), the delivery of HSE to the Earth's mantle may be disproportionate with the overall delivery of mass. For impacts with impact angles < 45° , between ˜ 20% to 80% of the impactor's core may merge directly with the Earth's core; while for impact angle > 60°, most of the impactor core escapes for moderate impact speeds. An implication is that the late accreted mass inferred from terrestrial HSE abundances may be a substantial underestimate, by a factor 2-5. In addition, partial mixing of projectiles result in an enrichment in mantle vs core material delivered to the bulk silicate Earth, implying substantial compositional variations in the accreted mass. Such variations could produce initially localized domains in Earth's mantle with distinct, mass independent isotopic signatures, given the isotopic variability resulting from nucleosynthetic heterogeneities among genetically diverse meteorites. In general we find that larger, low angle collisions would be more likely to produce initial mantle domains of anomalous composition material. We discuss the implications of these findings in the light of isotopic anomalies (e.g. W) in ancient terrestrial rocks.

  17. Using collisions and resonances to tilting Uranus

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-01-01

    Uranus’ large obliquity (98°) is widely thought to have occurred from a polar strike with an Earth sized object. Morbidelli et al. (2012) argue that two or more collisions are required in order to explain the prograde motion of Uranus’ satellites. These impactors could have been less massive by about a factor of ten, but multiple polar strikes are still improbable as even larger mass impactors would be needed for more equatorial collisions. Here we explore an alternative non-collisional model inspired by the explanation to Saturn’s significant tilt (27°). Ward and Hamilton (2004) & Hamilton and Ward (2004) argue that a secular resonance currently between Saturn’s spin axis and Neptune’s orbital pole is responsible for Saturn’s large obliquity. Unfortunately, Uranus’ axial precession frequency today is too long to match any of the current planets’ fundamental frequencies. Boué and Laskar (2010) explain that Uranus may have harbored an improbably large moon in the past which could have sped up the planet’s axial precession frequency enough to resonate with the regression of its own orbital pole. We explore another scenario which requires only the interactions between the giant planets.Thommes et al. (1999, 2002, 2003) argue that at least the cores of Uranus and Neptune were formed in between Jupiter and Saturn, as the density of the protoplanetary disk was greater there. If Neptune was scattered outward before Uranus, then a secular spin-orbit resonance between the two planets is possible. However, driving Uranus’ obliquity to near 90° with a resonance capture requires a timescale on the order of 100 Myr. If Neptune migrated out quicker or its orbital inclination was initially larger, then we find that the resulting resonance kick can tilt Uranus more than 40° in a reasonable timespan. This could replace one of the impactors required in the collisional scenario described by Morbidelli et al. (2012), but in most situations the effect of such a kick is only about 10°. Since collisions are therefore necessary to explain at least part of the tilting, we are now considering hybrid models that involve combinations of resonance captures and kicks, and collisions.

  18. Geochemical and isotopic study of impact melts and spherules from the Lonar impact crater, India, indicate melting of the Precambrian basement beneath the 'target' Deccan basalts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.

    2016-12-01

    The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall, our geochemical data for both the melt rocks and spherules suggest mixing between the chondritic impactor, the Deccan host basalt and the basement rocks at Lonar.

  19. Sedimentary laminations in the Isheyevo (CH/CBb) carbonaceous chondrite formed by gentle impact-plume sweep-up

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Knauth, L. Paul; Morris, Melissa A.

    2017-08-01

    Prominent macroscopic sedimentary laminations, consisting of mm- to cm-thick alternating well-sorted but poorly mixed silicate and metal-rich layers cut by faults and downward penetrating load structures, are prevalent in the Isheyevo (CH/CBb) carbonaceous chondrite. The load structures give the up direction of this sedimentary rock that accumulated from in-falling metal- and silicate-rich grains under near vacuum conditions onto the surface of an accreting planetesimal. The Isheyevo meteorite is the end result of a combination of events and processes that we suggest was initiated by the glancing blow impact of two planetesimals. The smaller impactor was disrupted forming an impact plume downrange of the impact. The components within the plume were aerodynamically size sorted by the nebular gas and swept up by the impacted planetesimal before turbulent mixing within the plume could blur the effects of the sorting. This plume would have contained a range of materials including elementally zoned Fe-Ni metal grains that condensed in the plume to disrupted unaltered material from the crust of the impactor, such as the hydrated matrix lumps. The juxtaposition of hydrated matrix lumps, some of which have not been heated above 150 °C, together with components that formed above 1000 °C, is compelling evidence that they were swept up together. Sweep-up would have occurred as the rotating impactor moved through the plume producing layers of material: the Isheyevo sample thus represents material accumulated while that part of the rotating planetesimal moved into the plume. Vibrations from subsequent impacts helped to form the load structures and induced weak grading within the layers via kinetic sieving. Following sweep-up, the particles were compacted under low static temperatures as evidenced by the preservation of elementally zoned Fe-Ni metal grains with preserved martensite α2 cores, distinct metal-metal grain boundaries, and metal-deformation microstructures. This meteorite provides evidence of gentle layer-by-layer accretion in the early Solar System, and also extends the terrestrial sedimentary source-to-sink paradigm to a near vacuum environment where neither fluvial nor aeolian processes operate.

  20. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.

  1. Effect of the surface roughness on the seismic signal generated by a single rock impact: insight from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud

    2016-04-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the seismic energy and frequency induced by the plate roughness.

  2. Comparison of the Production Size-frequency Distribution (SFD) of Craters on Saturnian Satellites With the Lunar Crater SFD and Asteroid Diameter SFD

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.; Michael, G.

    2008-09-01

    Introduction: The understanding of the geologic history of the saturnian satellites (and hence of the history of the solar system) is a major goal for us as part of the Cassini imaging experiment (ISS) team. For this reason, the SFDs of craters on Saturn's medium-sized moons have been analyzed and compared with the goal to determine the sources of the primary impactors on the saturnian satellites. Comparison of SFDs: The lunar SFD was derived by Neukum (1983). Multiple measurements of the crater production SFD on the saturnian satellites have shown a high similarity to the lunar curve (Neukum et al., 2006). From measurements on Iapetus, crater counts over 4 orders of magnitude in crater diameter are available now. Those measurements fit nicely to the velocity-corrected lunar curve for crater diameters below 60 km. By analyzing the body-diameter SFD of main-belt asteroids (data source: MPC web site, http://cfa-www.harvard.edu/iau/mpc.html, July 2008), a strong similarity with respect to the lunar curve is found as well. Hence, there are good reasons for the conclusion that asteroidal impactors captured by Saturn are responsible for the cratering record measured on the saturnian satellites. References and notes: Magnitude-to-diameter conversion of asteroids: D2=1/Pv*106.247-0.4*H H: absolute magnitude; Pv: geometric albedo; (Fowler & Chillemi, 1992) Neukum, G. (1983): Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians Univ. München, Munich, Germany, 186 pp. Neukum, G.; Wagner, R.; Wolf, U.; Denk, T. (2006): The Cratering Record and Cratering Chronologies of the Saturnian Satellites and the Origin of Impactors: Results from Cassini ISS Data. European Planetary Science Congress (EPSC) 2006, Berlin, Germany, 18-22 September 2006, p.610. Fowler, J.W.; Chillemi, J.R. (1992): IRAS asteroid data processing. In: Tedesco, E.F., Veeder, G.J., Fowler, J.W., Chillemi, J.R. (eds.): The IRAS Minor Planet Survey. Technical Report PL-TR-92-2049, Phillips Laboratory, Hanscom AF Base, MA.

  3. Diagnostic Clast-Texture Criteria for Recognition of Impact Deposits

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Bratton, C.; Pope, K. O.; Ocampo, A. C.

    1999-01-01

    It is difficult to find definitive evidence for impact in the geological record because there are many endogenous geological processes that can produce diamictites similar to those generated by impact ejecta. The classic impact criteria of shock fabrics in certain minerals, and iridium layers, for example, may be either difficult to find, or long-since erased from the impact site (shock fabrics also anneal with time). It is important to be able to recognize impact-generated materials in order to understand earth's crustal development and biological evolution. In future exploration of Mars and other solar-system bodies, recognition of impact materials will be important for elucidating planetary evolution, planetary volatile inventories, and exobiological issues. The cobble depicted is typical of many that have been found in diamictite deposits in Belize generated by the Chicxulub K-T impact event. The pebbles are roughly-hewn in general shape with smoothed corners and edges. Surfaces are almost uniformly frosted (on both protuberances and hollows), but some asperities are glazed. Optical microscopy and thin-section petrographic microscopy reveal the frosting to be only a few microns thick, with a well-defined granular structure; grains are the same size as those composing the bulk of the limestone, but their clearer appearance may represent annealing. One or two adjacent pebble faces are often decorated with striated gouges and closely-spaced hemispherical depressions representing indentation hollows produced by well-rounded impacting clasts of up to 0.5 cm in diameter. Some of the impactors are still embedded in the cobble surface. Non-destructive x-ray diffraction techniques showed the impactors to be of the same mineralogy as the target cobble. We believe this unusual glazing and frosting to be related to the impact event, but this must be reconciled with its survival for over 60 my. since it is composed of one of the most alterable substances, CaCO3. We focus, however, on the non-fractured rounded pebbles that appear to have impacted the larger cobble as a swarm of clasts, probably encountered during ballistic flight. It cannot be defined whether the cobble swept through the pebble cloud, or the pebbles rained upon a slowermoving cobble. Two interesting questions arise: (1) Where did large numbers of such well rounded pebbles come from in the ejecta curtain?, and (2) How did they embed themselves in a nominally brittle rock without suffering damage? Are the well-rounded pebbles crystalline (devitrified) melt spherules? Further investigations are in progress. If the cobble was cold and brittle, impact of well-rounded pebbles would have produced Hertzian fracture patterns (a) in the virtually elastically isotropic cobble target. For penetration depths of about 0.5 of the impactor diameter, the pebbles would require a relative impact velocity sufficient to cause pebble fragmentation and crushing, and the development of a complex Hertzian-Boussinesq fracture field (b) involving deep fracturing and lateral surface spalling (impact velocities > 50 m/s). The existing relationship could only evolve by the impact of cold, hard pebbles into a soft, plastic cobble surface (c). For limestone to have been plastic, it must have been at elevated temperature, but to prevent calcification of the material, the ambient pressure must also have been elevated. This would be possible either in the impact's gas plume, or within the confines of a thin aerodynamically-produced shock bow generated by supersonic ballistic motion of the cobble. In the latter case, it is implied that the cobble swept through the pebbles rather than vice-versa. Although there are high T-P conditions associated with volcanism, such textures have not been reported on volcaniclastic materials, nor from other high T-P environments; e.g., metamorphic (as far as the authors are aware). We propose that this very easily recognizable embedding and indentation surface texture can be used as a diagnostic criterion for the recognition of impact ejecta. The term "peening texture" is suggested, because it is absolutely analogous to the plastic-deformation induced, metal-surface textures generated by ball-bearing bombardment used in engineering metallurgy to work-harden metal surfaces. Additional information is contained in the original (Figures).

  4. Aerosol Optical Properties of the Free Troposphere

    DTIC Science & Technology

    1991-12-16

    will be made possible by using the specialized instrumentation developed at the University of Wyoming during the last year. le SUBIECT TEA~mS IS...investigators. Since most of the progress concerning the instrument development portion of the research was presented in the quarterly reports, this report...I iiii averages. lmpactor The cascade impactor is a PIXE Corporation five stage single orifice device. The equiva- lent aerodynamic cutoff diameters

  5. Enhancing Injury Protection Capabilities of Army Combat Helmets

    DTIC Science & Technology

    2006-11-01

    rate on each material’s energy attenuation characteristics, dynamic compression tests were conducted using a monorail drop tower conforming to ANSI...equipment. An Army combat helmet is fitted to the monorail drop tower (left). The variable weight, flat impactor (right) is fitted to the monorail ...3.3.1 Impact attenuation All impact tests were conducted using the USAARL vertical monorail drop tower (Figure 1, left). Impact sites along with

  6. Cloud condensation nucleus counter by impactor sampling technique

    NASA Technical Reports Server (NTRS)

    Ohtake, T.

    1981-01-01

    Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.

  7. Asteroid Impact Mission: relevance to asteroid mining

    NASA Astrophysics Data System (ADS)

    Michel, P.; Kueppers, M.; Carnelli, I.

    2017-09-01

    The Asteroid Impact Mission (AIM) is the European (ESA) component of the AIDA mission in collaboration with NASA. The objectives of AIDA are: (1) to perform a test of asteroid deflection using a kinetic impactor with the USA (NASA) component DART, and (2) with AIM, to investigate the binary near-Earth asteroid Didymos, in particular its secondary and target of DART, with data of high value for mining purposes.

  8. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  9. Impact erosion of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Shuvalov, Valery

    1999-06-01

    The problem of planetary atmospheres evolution due to impacts of large cosmic bodies was investigated by Ahrens, O'Keefe, Cameron, Hunten and others. These studies were focused mainly on the atmosphere growth under impact devolatilization and atmosphere losses due to escape of high velocity ejecta. Most of the results concerning atmosphere erosion were based on assumption that atmosphere itself does not influence significantly on the ejecta evolution. However more detailed investigations show that atmospheric drag is important at least for 1-10km impactors. From the other hand the theory of large explosions in an exponential atmosphere is not applicable in the case under consideration because of the influence of a trail created during the body flight through the atmosphere. In the present study the problem of 1-10km asteroid impacts against the Earth is investigated with the use of multi-material hydrocode SOVA. This code is similar to the widely used CTH system and allows to model all stages of the impact (penetration into the atmosphere, collision with the ground surface covered by water basin, ejecta evolution). The air mass ejected from each altitude depending on impactor size and velocity is determined. Apart from the impacts into the present-day atmosphere, the erosion of the dense Proto-Atmosphere is also considered.

  10. Impact-generated winds on Venus: Causes and effects

    NASA Technical Reports Server (NTRS)

    Schultz, Pater H.

    1992-01-01

    The pressure of the dense atmosphere of Venus significantly changes the appearance of ejecta deposits relative to craters on the Moon and Mercury. Conversely, specific styles and sequences of ejecta emplacement can be inferred to represent different intensities of atmospheric response winds acting over different timescales. Three characteristic timescales can be inferred from the geologic record: surface scouring and impactor-controlled (angle and direction) initiation of the long fluidized run-out flows; nonballistic emplacement of inner, radar-bright ejecta facies and radar-dark outer facies; and very late reworking of surface materials. These three timescales roughly correspond to processes observed in laboratory experiments that can be scaled to conditions on Venus (with appropriate assumptions): coupling between the atmosphere and earlytime vapor/melt (target and impactor) that produces an intense shock that subsequently evolves into blast/response winds; less energetic dynamic response of the atmosphere to the outward-moving ballistic ejecta curtain that generates nonthermal turbulent eddies; and late recovery of the atmosphere to impact-generated thermal and pressure gradients expressed as low-energy but long-lived winds. These different timescales and processes can be viewed as the atmosphere equivalent of shock melting, material motion, and far-field seismic response in the target. The three processes (early Processes, Atmospheric Processes, and Late Recovery Winds) are discussed at length.

  11. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  12. Particle bounce in a personal cascade impactor: a field evaluation.

    PubMed

    Hinds, W C; Liu, W C; Froines, J R

    1985-09-01

    The collection characteristics of five types of substrates (collection surfaces) used in personal cascade impactors were evaluated for particle bounce in the laboratory with lead dioxide dust, and in the field with brass pouring fume and brass grinding dust. The substrates tested were uncoated stainless steel, silicon grease-coated stainless steel, oil-saturated Millipore membrane filter, oil-saturated Teflon membrane filter and oil-saturated sintered stainless steel. The use of coated and uncoated stainless steel plates to collect lead dioxide dust produced no difference in measured mass median diameter (MMD); however, with brass grinding dust, there was a 50% decrease in measured MMD when uncoated stainless steel substrates were used, as compared with coated stainless steel substrates. Oil-saturated Millipore membrane surfaces gave consistently lower MMDs than coated stainless steel surfaces. Coated and uncoated stainless steel gave similar MMDs when used to sample brass pouring fume. Oil-saturated Teflon membrane and oil-saturated sintered metal, surfaces for which the collection efficiency is presumed to be independent of the particle loading, gave MMDs similar to those measured for grease-coated stainless steel. The implications of these comparisons are discussed. It is concluded that bounce characteristics are strongly dependent on aerosol material and the suitability of collection surfaces needs to be determined by field evaluation.

  13. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  14. Sampling and data handling methods for inhalable particulate sampling. Final report nov 78-dec 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.B.; Cushing, K.M.; Johnson, J.W.

    1982-05-01

    The report reviews the objectives of a research program on sampling and measuring particles in the inhalable particulate (IP) size range in emissions from stationary sources, and describes methods and equipment required. A computer technique was developed to analyze data on particle-size distributions of samples taken with cascade impactors from industrial process streams. Research in sampling systems for IP matter included concepts for maintaining isokinetic sampling conditions, necessary for representative sampling of the larger particles, while flowrates in the particle-sizing device were constant. Laboratory studies were conducted to develop suitable IP sampling systems with overall cut diameters of 15 micrometersmore » and conforming to a specified collection efficiency curve. Collection efficiencies were similarly measured for a horizontal elutriator. Design parameters were calculated for horizontal elutriators to be used with impactors, the EPA SASS train, and the EPA FAS train. Two cyclone systems were designed and evaluated. Tests on an Andersen Size Selective Inlet, a 15-micrometer precollector for high-volume samplers, showed its performance to be with the proposed limits for IP samplers. A stack sampling system was designed in which the aerosol is diluted in flow patterns and with mixing times simulating those in stack plumes.« less

  15. A novel graded density impactor

    NASA Astrophysics Data System (ADS)

    Winter, Ron; Cotton, Matthew; Harris, Ernest; Eakins, Daniel; Chapman, David

    2013-06-01

    Ramp loading using graded-density-impactors as flyers in plate impact experiments can yield useful information about the dynamic properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to fabricate a graded-density flyer, termed the ``bed of nails'' (BON). A 2 mm thick x 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. Two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at The Institute of Shock Physics, Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in free surface velocity over a period of about 2.5 microseconds. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum.

  16. Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections

    NASA Technical Reports Server (NTRS)

    Smit, J.; Groot, H.; Dejonge, R.; Smit, P.

    1988-01-01

    The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s).

  17. A Super Energy Mitigation Nanostructure at High Impact Speed Based on Buckyball System

    PubMed Central

    Xu, Jun; Li, Yibing; Xiang, Yong; Chen, Xi

    2013-01-01

    The energy mitigation properties of buckyballs are investigated using molecular dynamics (MD) simulations. A one dimensional buckyball long chain is employed as a unit cell of granular fullerene particles. Two types of buckyballs i.e. C60 and C720 with recoverable and non-recoverable behaviors are chosen respectively. For C60 whose deformation is relatively small, a dissipative contact model is proposed. Over 90% of the total impact energy is proven to be mitigated through interfacial reflection of wave propagation, the van der Waals interaction, covalent potential energy and atomistic kinetic energy evidenced by the decent force attenuation and elongation of transmitted impact. Further, the C720 system is found to outperform its C60 counterpart and is able to mitigate over 99% of the total kinetic energy by using a much shorter chain thanks to its non-recoverable deformation which enhances the four energy dissipation terms. Systematic studies are carried out to elucidate the effects of impactor speed and mass, as well as buckyball size and number on the system energy mitigation performance. This one dimensional buckyball system is especially helpful to deal with the impactor of high impact speed but small mass. The results may shed some lights on the research of high-efficiency energy mitigation material selections and structure designs. PMID:23724082

  18. Optical Analysis of Impact Features in Aerogel From the Orbital Debris Collection Experiment on the MIR Station

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cress, Glen; Zolensky, Mike; See, Thomas H.; Bernhard, Ronald P.; Warren, Jack L.

    1999-01-01

    The Mir Environmental Effects Package (MEEP) was deployed on the Mir station and retrieved after 18 months in space. The payload included the orbital debris collector (ODC), designed and built at the Johnson Space Center to capture and return analyzable residues of the man-made and natural particulate environment in low-Earth orbit for a detailed assessment of its compositional makeup and potential origins. The ODC exposed 2 identical trays, with highly porous, low-density SiO2 aerogel as the basic collector medium, pointed in opposite directions. The aerogel was expected to gently decelerate and capture hypervelocity particles, as opposed to other media that resulted in melting or vaporization of many impactors. Even cursory examination of the returned ODC collectors revealed a surprising variety of impact features. The compositional analyses using scanning electron "miccroscope-energy-dispersive X-ray spectroscopy concentrated on a survey-type inventory of diverse particle types and associated impact features. Detections, in the form of carrot-shaped tracks and shallow pits, included metallic Al, stainless steel, soldering compounds, human waste, and paint flakes. Many pits contained no detectable impactor residue (it was assumed to have vaporized), but most of the tracks contained analyzable residue. The study showed that aerogel would be useful for future low-velocity impact analysis.

  19. Asteroid diversion considerations and comparisons of diversion techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, J. Michael; Miller, Paul; Rovny, Jared

    The threat of asteroid impacts on Earth poses a low-probability but high consequence risk, with possible outcomes ranging from regional to global catastrophe. However, unique amongst such global threats we have the capability of averting such disasters. Diversion approaches by either kinetic impactor or nuclear energy deposition are the two most practical technologies for mitigating hazardous near Earth asteroids. One of the greatest challenges in understanding our options is the uncertain response of asteroids to such impulsive techniques, due both to our lack of knowledge of the composition and structure of these objects as well as their highly varied nature.more » Predicting whether we will simply divert or break up a given object is a crucial: the weak self-gravity and inferred weak structure of typical asteroids present the strong possibility the body will fragment for modest impulses. Predictive modeling of failure and fragmentation is one important tool for such studies. In this paper we apply advances in modeling failure and fracture using Adaptive Smoothed Particle Hydrodynamics (ASPH) to understand mega-cratering on asteroids as a validation exercise, and show examples of diverting the near Earth asteroid Bennu using both a kinetic impactor and ablative blow-off due to nuclear energy deposition.« less

  20. Asteroid diversion considerations and comparisons of diversion techniques

    DOE PAGES

    Owen, J. Michael; Miller, Paul; Rovny, Jared; ...

    2015-05-19

    The threat of asteroid impacts on Earth poses a low-probability but high consequence risk, with possible outcomes ranging from regional to global catastrophe. However, unique amongst such global threats we have the capability of averting such disasters. Diversion approaches by either kinetic impactor or nuclear energy deposition are the two most practical technologies for mitigating hazardous near Earth asteroids. One of the greatest challenges in understanding our options is the uncertain response of asteroids to such impulsive techniques, due both to our lack of knowledge of the composition and structure of these objects as well as their highly varied nature.more » Predicting whether we will simply divert or break up a given object is a crucial: the weak self-gravity and inferred weak structure of typical asteroids present the strong possibility the body will fragment for modest impulses. Predictive modeling of failure and fragmentation is one important tool for such studies. In this paper we apply advances in modeling failure and fracture using Adaptive Smoothed Particle Hydrodynamics (ASPH) to understand mega-cratering on asteroids as a validation exercise, and show examples of diverting the near Earth asteroid Bennu using both a kinetic impactor and ablative blow-off due to nuclear energy deposition.« less

  1. Interinstrument Variability and Validation Study for the XMX/2L-MIL Biological Air Sampler

    DTIC Science & Technology

    2012-07-13

    fixed final nozzle orientation. Three XMXs were operated in a 12-m3 aerosol test chamber (ATC) in which a Bacillus globigii (Bg) aerosol was...impactor, aerosol, biological aerosol, collection media, biological agent, Remel M5®, PBS solution, Bacillus globigii, male-specific 2 bacteriophage, MS2...Edmonton AB, Canada. The performance of the XMX was evaluated using two biological agents, spore-forming bacteria Bacillus globigii (Bg) and viral

  2. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury

    DTIC Science & Technology

    2016-07-01

    Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12...subjected to spinal cord impact with a custom-made controlled spinal cord impactor and balloon compression. Neurological function was assessed for

  3. Venus - Impact Crater in Eastern Navka Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north.

  4. Dissociation of Hexavalent Chromium from Sanded Paint Particles into a Simulated Lung Fluid

    DTIC Science & Technology

    2006-06-01

    was simulated with a porcine based mucin . Sanded particles were collected based on particle size into the impactor’s six petri dishes, which...was used to imitate particle deposition onto a layer of lung fluid. The lung fluid was simulated with a porcine based mucin . Sanded particles were...documented as those directly related to corrosion control such as maintenance, repair, treatment , washing, painting, depainting, and sealing. These

  5. Designing global climate and atmospheric chemistry simulations for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact

    NASA Astrophysics Data System (ADS)

    Toon, Owen B.; Bardeen, Charles; Garcia, Rolando

    2016-10-01

    About 66 million years ago, an asteroid about 10 km in diameter struck the Yucatan Peninsula creating the Chicxulub crater. The crater has been dated and found to be coincident with the Cretaceous-Paleogene (K-Pg) mass extinction event, one of six great mass extinctions in the last 600 million years. This event precipitated one of the largest episodes of rapid climate change in Earth's history, yet no modern three-dimensional climate calculations have simulated the event. Similarly, while there is an ongoing effort to detect asteroids that might hit Earth and to develop methods to stop them, there have been no modern calculations of the sizes of asteroids whose impacts on land would cause devastating effects on Earth. Here, we provide the information needed to initialize such calculations for the K-Pg impactor and for a 1 km diameter impactor. There is considerable controversy about the details of the events that followed the Chicxulub impact. We proceed through the data record in the order of confidence that a climatically important material was present in the atmosphere. The climatic importance is roughly proportional to the optical depth of the material. Spherules with diameters of several hundred microns are found globally in an abundance that would have produced an atmospheric layer with an optical depth around 20, yet their large sizes would only allow them to stay airborne for a few days. They were likely important for triggering global wildfires. Soot, probably from global or near-global wildfires, is found globally in an abundance that would have produced an optical depth near 100, which would effectively prevent sunlight from reaching the surface. Nanometer-sized iron particles are also present globally. Theory suggests these particles might be remnants of the vaporized asteroid and target that initially remained as vapor rather than condensing on the hundred-micron spherules when they entered the atmosphere. If present in the greatest abundance allowed by theory, their optical depth would have exceeded 1000. Clastics may be present globally, but only the quartz fraction can be quantified since shock features can identify it. However, it is very difficult to determine the total abundance of clastics. We reconcile previous widely disparate estimates and suggest the clastics may have had an optical depth near 100. Sulfur is predicted to originate about equally from the impactor and from the Yucatan surface materials. By mass, sulfur is less than 10 % of the observed mass of the spheres and estimated mass of nanoparticles. Since the sulfur probably reacted on the surfaces of the soot, nanoparticles, clastics, and spheres, it is likely a minor component of the climate forcing; however, detailed studies of the conversion of sulfur gases to particles are needed to determine if sulfuric acid aerosols dominated in late stages of the evolution of the atmospheric debris. Numerous gases, including CO2, SO2 (or SO3), H2O, CO2, Cl, Br, and I, were likely injected into the upper atmosphere by the impact or the immediate effects of the impact such as fires across the planet. Their abundance might have increased relative to current ambient values by a significant fraction for CO2, and by factors of 100 to 1000 for the other gases. For the 1 km impactor, nanoparticles might have had an optical depth of 1.5 if the impact occurred on land. If the impactor struck a densely forested region, soot from the forest fires might have had an optical depth of 0.1. Only S and I would be expected to be perturbed significantly relative to ambient gas-phase values. One kilometer asteroids impacting the ocean may inject seawater into the stratosphere as well as halogens that are dissolved in the seawater. For each of the materials mentioned, we provide initial abundances and injection altitudes. For particles, we suggest initial size distributions and optical constants. We also suggest new observations that could be made to narrow the uncertainties about the particles and gases generated by large impacts.

  6. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S. F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J. B.; Biele, J.; Ciarletti, V.; Hérique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L.; Naidu, S. P.; Barnouin, O. S.; Richardson, D. C.; Rivkin, A.; Scheirich, P.; Moskovitz, N.; Thirouin, A.; Schwartz, S. R.; Campo Bagatin, A.; Yu, Y.

    2016-06-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body and lead to improved efficiency for future kinetic impactor designs. This paper focuses on the science return of AIM, the current knowledge of its target from ground-based observations, and the instrumentation planned to get the necessary data.

  7. Nature of the impactor at the K/T boundary: clues from Os, W and Cr isotopes.

    NASA Astrophysics Data System (ADS)

    Quitté, G.; Robin, E.; Capmas, F.; Levasseur, S.; Rocchia, R.; Birck, J. L.; Allègre, C. J.

    2003-04-01

    We measured the isotope composition of Os, W and Cr in K/T boundary sediments of three marine sites (Stevns Klint, Caravaca and Bidart) to determine the nature of the bolid that impacted the Earth 65 Myrs ago. We also analysed Ni-rich cosmic spinels, because they are thought to keep the signature of the impactor. The low REE content in spinels precludes indeed the hypothesis of a mixing with more than 10% of terrestrial material. The Os and W enrichment at the K/T boundary could be explained by a scavenging of chalcophile elements at the time of sulfide precipitation. The 187Os/186Os ratio of the K/T sediments is higher than the ratio of any kind of meteorites. On top of a possible mixing with surrounding sediments, we suggest that the boundary contained more Re in the past (lost since that time by alteration and oxidation) and that the Os isotope ratio is in fact disturbed. On each of the three sites, the boundary itself does not present any tungsten isotopic anomaly. The most likely interpretation is that the extraterrestrial material is diluted enough into the sediments so that the isotopic signature has been erased. Spinels show a small deficit of (0.34±0.9) ɛ in 182W. The large error bar precludes any clear conclusion whether or not a meteoritic signature is really present. If the spinels really carry an extraterrestrial signature as expected, their W composition is in favour of an ordinary chondrite. All K/T samples (sediments and spinels) are apparently depleted in 53Cr by about 0.5 ɛ (after renormalization of 54Cr to the terrestrial value) whereas ordinary chondrites display an excess of about 0.5 ɛ. Among meteorites, only carbonaceous chondrites present a negative value for the 53Cr/52Cr ratio relative to the terrestrial value. As more than 90% of the Cr present in spinels is of extraterrestrial origin, the Cr isotopes unambiguously show that the K/T impactor was a carbonaceous chondrite. These isotopic results also confirm the extraterrestrial origin of spinels. The W isotope composition of the spinels does not fully agree with the conclusion of a carbonaceous chondrite, but a refined measurement is required to discuss this discrepancy in more details.

  8. Impacts and evolution: future prospects.

    PubMed

    Morrison, David

    2003-01-01

    The discipline of astrobiology includes the dynamics of biological evolution. One of the major ways that the cosmos influences life is through the catastrophic environmental disruptions caused when comets and asteroids collide with a planet. We now recognize that such impacts have caused mass extinctions and played a major role in determining the evolution of life on Earth. The time-averaged impact flux as a function of projectile energy can be derived from lunar cratering statistics as well as the current population of near Earth asteroids (NEAs). Effects of impacts of various energies can be modeled, using data from historic impacts [such as the Cretaceous-Tertiary (KT) impactor 65 million years ago] and the observed 1994 bombardment of Jupiter by fragments of Comet Shoemaker-Levy 9. It is of particular interest to find from such models that the terrestrial environment is highly vulnerable to perturbation from impacts, so that even such a small event as the KT impact (by a projectile 10-15 km in diameter) can lead to a mass extinction. Similar considerations allow us to model the effects of still smaller (and much more likely) impacts, down to the size of the asteroid that exploded over Tunguska in 1908 (energy approximately 10 megatons). Combining the impact flux with estimates of environmental and ecological effects reveals that the greatest contemporary hazard is associated with impactors near 1 million megatons in energy (approximately 2 km in diameter for an asteroid). The current impact hazard is significant relative to other natural hazards, and arguments can be developed to illuminate a variety of public policy issues. The first priority in any plan for defense against impactors is to survey the population of Earth-crossing NEAs and project their orbits forward in time. This is the purpose of the Spaceguard Survey, which has already found more than half of the NEAs >1 km in diameter. If there is an NEA on a collision course with Earth, it can be discovered and the impact predicted with decades or more of warning. It is then possible to consider how to deflect or disrupt the NEA. Unlike other natural hazards, the impact risk can be largely eliminated, given sufficient advanced knowledge to take action against the threatening projectile.

  9. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock pressure in the core decreases following a second power law. In this study, we express the output obtained from iSALE hydrocodes by scaling laws to illustrate the influence of the ray angle relative to the axis of symmetry, the target rheology, the impactor size and the impact velocity. We use these shock-pressure scaling laws to determine the impact heating of terrestrial planets.

  10. An analytical method coupling accelerated solvent extraction and HPLC-fluorescence for the quantification of particle-bound PAHs in indoor air sampled with a 3-stages cascade impactor.

    PubMed

    Liaud, Céline; Millet, Maurice; Le Calvé, Stéphane

    2015-01-01

    Most of Polycyclic Aromatic Hydrocarbons (PAHs) are associated to airborne particles and their health impact depends on the particle size where they are bound. This work aims to develop a high sensitive analytical technique to quantify particulate PAHs sampled with a 3-stages cascade impactor in order to derive simultaneously their individual concentration in PM1, PM2.5 and PM10. Three key steps of the method were evaluated separately in order to avoid any PAHs loss during the global sample preparation procedure: (1) the accelerated solvent extraction of PAHs from the filter; (2) the primary concentration of the extract until 1 mL by means of a rotary evaporator at 45°C and 220 mbar and (3) the final concentration of the pre-concentrated extract to about 100-150 µL under a gentle nitrogen stream. Each recovery experiment was realized in triplicates. All these steps evaluated independently show that the overall PAHs loss, even for those with a low molecular weight, should not exceed more than a few percent. Extracts were then analyzed by using a HPLC coupled to fluorescence and Diode Array Detectors with the external standard method. The resulting calibration curves containing between 9 and 12 points were plotted in the concentration range of 0.05-45 µg L(-1) for most of the 16 US-EPA priority PAHs and were fully linear (R(2)>0.999). Limits Of Quantification were in the range 0.05-0.47 µg L(-1) corresponding to 0.75-7.05 pg m(-3) for 20 m(3) of pumped air. Finally, taking into account the average PAHs concentrations previously reported in typical European indoor environments, and considering the use of a 3-stages cascade impactor to collect simultaneously PM>10 µm, 2.5 µm

  11. The recognition and interpretation of micro-particle impacts on space craft surfaces

    NASA Astrophysics Data System (ADS)

    Kearsley, Anton

    Modern analysis instruments now allow the rapid examination of returned spacecraft surfaces, enabling the location and identification of impact features, and the attribution of their impactor origins. This paper describes application of novel electron, ion and micro-X-ray Fluorescence techniques to impacts on diverse compositions of substrate, including solar cell glass, poly-sulfone and fluoro-polymer-impregnated glass fibre composites, multilayer insulation foils, aluminium and titanium alloys. Examples will include two generations of solar cells and stiffener materials from the Hubble Space Telescope (HST), Beta-cloth from the NASA Mir-Trek cover blanket, aluminised Kapton foils from the Japanese Space Flyer Unit (SFU) and the European Retrievable Carrier (EuReCa), Al-alloy plates from the Long Duration Exposure Facility (LDEF), Al foils from the NASA Stardust mission, Al-alloy and Zinc orthotitanate (ZOT) painted alloy plate from HST, and titanium alloys from a re-entered titanium pressure tank. Each type of spacecraft surface poses unique problems of analysis, especially in the recognition of extraneous signatures from the impacting particle, especially if a complex chemical composition is already present in the target. For example, solar cells provide an excellent capture and analysis medium for monitoring fluxes of micrometre-scale orbital debris from solid rocket motor firings in low Earth orbit. However, they provide a hard and dense capture medium upon which substantial modification of the impactor may occur, making the precise identification of micrometeoroid components difficult. Unfortunately, extensive spallation by larger (> 100 micrometre) particle impacts on the thin and brittle structure of solar cells also usually results in complete loss of impactor signature. Although thick alloy surfaces may prevent complete impact penetration, the analysis of particle residues within their deep concavity has proven difficult, until the recent introduction of new high-efficiency energy dispersive X-ray (EDX) detectors. Along with Particle Induced X-ray Emission and micro-XRF imaging systems, the new EDX detectors allow recognition of subtle trace quantities of residue from even millimetre-scale craters and thin foil penetrations. Data from these differing substrates and techniques need to be integrated if we are to fully document micro-particle populations from the wide range of natural (cometary and asteroidal, i.e. micrometeoroid) and artificial (i.e. orbital debris) sources.

  12. Calculations of Asteroid Impacts into Deep and Shallow Water

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent. There is some indication that near-field effects are more severe if the impact occurs in shallow water.

  13. The giant impact produced a precipitated Moon

    NASA Astrophysics Data System (ADS)

    Cameron, A. G. W.

    1993-03-01

    The author's current simulations of Giant Impacts on the protoearth show the development of large hot rock vapor atmospheres. The Balbus-Hawley mechanism will pump mass and angular momentum outwards in the equatorial plane; upon cooling and expansion the rock vapor will condense refractory material beyond the Roche distance, where it is available for lunar formation. During the last seven years, the author together with several colleagues has carried out a series of numerical investigations of the Giant Impact theory for the origin of the Moon. These involved three-dimensional simulations of the impact and its aftermath using Smooth Particle Hydrodynamics (SPH), in which the matter in the system is divided into discrete particles whose motions and internal energies are determined as a result of the imposed initial conditions. Densities and pressures are determined from the combined overlaps of the particles, which have a bell-shaped density distribution characterized by a smoothing length. In the original series of runs all particle masses and smoothing lengths had the same values; the matter in the colliding bodies consisted of initial iron cores and rock (dunite) mantles. Each of 41 runs used 3,008 particles, took several weeks of continuous computation, and gave fairly good representations of the ultimate state of the post-collision body or bodies but at best crude and qualitative information about individual particles in orbit. During the last two years an improved SPH program was used in which the masses and smoothing lengths of the particles are variable, and the intent of the current series of computations is to investigate the behavior of the matter exterior to the main parts of the body or bodies subsequent to the collisions. These runs are taking times comparable to a year of continuous computation in each case; they use 10,000 particles with 5,000 particles in the target and 5,000 in the impactor, and the particles thus have variable masses and smoothing lengths (the latter are dynamically adjusted so that a particle typically overlaps a few tens of its neighbors). Since the matter in the impactor provides the majority of the mass left in orbit after the collision, and since the masses of the particles that originated in the impactor are smaller than those in the target, the mass resolution in the exterior parts of the problem is greatly improved and the exterior particles properly simulate atmospheres in hydrostatic equilibrium.

  14. Impacts and evolution: future prospects

    NASA Technical Reports Server (NTRS)

    Morrison, David

    2003-01-01

    The discipline of astrobiology includes the dynamics of biological evolution. One of the major ways that the cosmos influences life is through the catastrophic environmental disruptions caused when comets and asteroids collide with a planet. We now recognize that such impacts have caused mass extinctions and played a major role in determining the evolution of life on Earth. The time-averaged impact flux as a function of projectile energy can be derived from lunar cratering statistics as well as the current population of near Earth asteroids (NEAs). Effects of impacts of various energies can be modeled, using data from historic impacts [such as the Cretaceous-Tertiary (KT) impactor 65 million years ago] and the observed 1994 bombardment of Jupiter by fragments of Comet Shoemaker-Levy 9. It is of particular interest to find from such models that the terrestrial environment is highly vulnerable to perturbation from impacts, so that even such a small event as the KT impact (by a projectile 10-15 km in diameter) can lead to a mass extinction. Similar considerations allow us to model the effects of still smaller (and much more likely) impacts, down to the size of the asteroid that exploded over Tunguska in 1908 (energy approximately 10 megatons). Combining the impact flux with estimates of environmental and ecological effects reveals that the greatest contemporary hazard is associated with impactors near 1 million megatons in energy (approximately 2 km in diameter for an asteroid). The current impact hazard is significant relative to other natural hazards, and arguments can be developed to illuminate a variety of public policy issues. The first priority in any plan for defense against impactors is to survey the population of Earth-crossing NEAs and project their orbits forward in time. This is the purpose of the Spaceguard Survey, which has already found more than half of the NEAs >1 km in diameter. If there is an NEA on a collision course with Earth, it can be discovered and the impact predicted with decades or more of warning. It is then possible to consider how to deflect or disrupt the NEA. Unlike other natural hazards, the impact risk can be largely eliminated, given sufficient advanced knowledge to take action against the threatening projectile.

  15. Siderophile Element Constraints on the Origin of the Moon

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Day, J. M.

    2016-12-01

    Siderophile elements provide important clues to the origin of the Moon. One key feature of the Earth-Moon system is the estimated 20X lower abundances of highly siderophile elements (HSE) in the accessible lunar mantle, compared to the bulk silicate Earth. This has been attributed to the disproportional addition of materials with chondritic bulk compositions to the mantles of each body by stochastic late accretion. When corrected for late accretionary differences, the two bodies appear to have 182W compositions that are identical to within a few ppm. This observation follows other evidence for isotopic similarity between the two bodies (e.g., O, Ti and Cr) which record the genetic signatures of planetary building blocks. Giant impact models have been sought to account for the isotopic similarities between the Moon and Earth, given the outcomes of some scenarios that the Moon is composed mainly of impactor materials. This may indicate the proto-Earth and giant impactor formed from genetically similar materials. The similarity in 182W is more problematic because the 182Hf-182W system is radiogenic (t½ = 8.9 Ma), and the proportion of 182W present in each body reflects the average timing of core formation, combined with the Hf/W. The collision of two planetary bodies with essentially identical 182W is improbable, so the isotopic match provides strong evidence of isotopic mixing between the Earth's mantle and proto-lunar disk. The identical 182W for the Earth and Moon at the time of formation also argues for formation of the Moon >60 Ma after solar system formation, as previously suggested, although this constraint is relaxed if the Hf/W of the mantles of both bodies are the same to within a few percent. The homogeneity of 182W in disparate products of the lunar magma ocean also argues for system closure occurring >60 Ma after solar system formation. If the interpretation of disproportional late accretion is correct, then the late accretionary accumulation clocks for both the Moon and Earth began at the time of the giant impact, which must have been a clearinghouse event for any HSE that were present in the terrestrial mantle prior to the impact. This means that at least some of the metal from the core of the impactor efficiently extracted HSE from the silicate Earth while en route to merge with Earth's core.

  16. Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; See, Thomas H.; Bernhard, Ronald P.; Brownlee, Donald E.

    1995-01-01

    Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes our systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF's trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the 'forward-facing' versus the 'trailing-edge' CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low. It is also suggested that approximately 45 percent of all craters greater than 100 micron in diameter are caused by man-made impactors on the A11 surfaces. This makes the production rate for craters greater than 100 micron in diameter, resulting from orbital debris, a factor of 40 higher on the forward-facing sides as opposed to the trailing-edge direction.

  17. Development of an Animal Model of Thoracolumbar Burst Fracture Induced Acute Spinal Cord Injury

    DTIC Science & Technology

    2015-05-01

    Department of Neurosurgery 600 N. Wolfe St., Meyer 5-185 Baltimore, MD 21287 AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER rtment of...Neurosurgery 600 N. Wolfe St., Meyer 5-185 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army...impactor and mounting platform were fabricated to be placed anteriorly or posteriorly over a large animal (e.g., pig, sheep, dog ). Repeated impacts

  18. Tempel Alive with Light

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This spectacular image of comet Tempel 1 was taken 67 seconds after it obliterated Deep Impact's impactor spacecraft. The image was taken by the high-resolution camera on the mission's flyby craft. Scattered light from the collision saturated the camera's detector, creating the bright splash seen here. Linear spokes of light radiate away from the impact site, while reflected sunlight illuminates most of the comet surface. The image reveals topographic features, including ridges, scalloped edges and possibly impact craters formed long ago.

  19. Orbital Debris Shape and Orientation Effects on Ballistic Limits

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Williamsen, Joel E.

    2005-01-01

    The SPHC hydrodynamic code was used to evaluate the effects of orbital debris particle shape and orientation on penetration of a typical spacecraft dual-wall shield. Impacts were simulated at near-normal obliquity at 12 km/sec. Debris cloud characteristics and damage potential are compared with those from impacts by spherical projectiles. Results of these simulations indicate the uncertainties in the predicted ballistic limits due to modeling uncertainty and to uncertainty in the impactor orientation.

  20. Predictions of Helmet Pad Suspension System Performance using Isolated Pad Impact Results

    DTIC Science & Technology

    2010-09-13

    Equation 2 and Equation 3, respectively. 3. METHOD The primary method of data collection for this report is detailed in the 2008 Joint Live Fire ...tests and the helmet system tests (see Figure 3). All testing was performed with a monorail drop tower (see Figure 4) at three conditioning...right) and system test setup (right and center left) Figure 5. MEP monorail drop test setup with a hemispherical impactor (left and center left

Top